
HAL Id: hal-04528866
https://hal.science/hal-04528866

Submitted on 2 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Role of Ice Mechanics on Snow Viscoplasticity
Louis Védrine, Pascal Hagenmuller, Lionel Gélébart, Maurine Montagnat,

Antoine Bernard

To cite this version:
Louis Védrine, Pascal Hagenmuller, Lionel Gélébart, Maurine Montagnat, Antoine Bernard.
Role of Ice Mechanics on Snow Viscoplasticity. Geophysical Research Letters, 2024, 51 (7),
pp.e2023GL107676. �10.1029/2023GL107676�. �hal-04528866�

https://hal.science/hal-04528866
https://hal.archives-ouvertes.fr


manuscript submitted to Geophysical Research Letters

Role of ice mechanics on snow viscoplasticity1
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Key Points:10

• Ice in snow cannot be considered as homogeneous, individual crystals are shown11

to impact snow creep.12

• The models shows that basal glide of a few ice zones supports most of the snow13

deformation.14

• In the simulations, the contribution of the hard slip systems is negligible, and de-15

formation accommodation is enabled by the pore space.16
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Abstract17

The porous structure of snow becomes denser with time under gravity, primarily due to18

the creep of its ice matrix with viscoplasticity. Despite investigation of this behaviour19

at the macroscopic scale, the driving microscopic mechanisms are still not well under-20

stood. Thanks to high-performance computing and dedicated solvers, we modelled snow21

elasto-viscoplasticity with 3D images of its microstructure and different mechanical mod-22

els of ice. The comparison of our numerical experiments to oedometric compression tests23

measured by tomography showed that ice in snow rather behaves as a heterogeneous set24

of ice crystals than as homogeneous polycrystalline ice. Similarly to dense ice, the basal25

slip system contributed at most, in the simulations, to the total snow deformation. How-26

ever, in the model, the deformation accommodation between crystals was permitted by27

the pore space and did not require any prismatic and pyramidal slips, whereas the lat-28

ter are pre-requisite for the simulation of dense ice.29

Keywords: Viscoplasticity, Snow, Crystal, Microstructure, Tomography30

Plain Language Summary31

Knowledge of snow settlement is essential for many applications, such as paleocli-32

matology and avalanche forecasting. Snow densification is mainly driven by time depen-33

dent and irreversible deformations. Simulating this highly nonlinear behaviour for in-34

tricate microstructures is time-consuming, leading to a scarcity of studies and a limited35

understanding of the underlying microscale mechanisms. In this study, we took advan-36

tage of an advanced numerical solver to calculate the behaviour of 3D imaged snow sam-37

ples and compared it with in situ experiments. Our analysis has shown that the crys-38

talline structure must be taken into account, but the discrepancy between experiments39

and simulations suggests the existence of other mechanisms, particularly between snow40

grains. Interestingly, deformation mechanisms other than those required to simulate dense41

ice have been observed.42

1 Introduction43

Once on the ground, snow naturally settles under its weight. Its density typically44

increases from 100 kg m−3 just after its deposition on the ground to 550 kg m−3 at the45

end of the winter season at mid-latitude regions, up to the density of ice, 917 kg m−3,46

for buried perennial snow on glaciers or ice sheets (Alley, 1987; Arnaud, Lipenkov, et47

al., 1998). The primary driving mechanisms of this settlement are the deformation of the48

ice skeleton of snow and the subsequent pore volume reduction (e.g., Yosida et al., 1958).49

Understanding the viscoplastic behaviour of snow is crucial to predict its densification,50

which is required to model the snowpack evolution (Lehning et al., 2002; Vionnet et al.,51

2012; Simson et al., 2021) or the pore close-off in ice cores (Gregory et al., 2014), which52

in turn relates to many applications such as avalanche forecasting (Morin et al., 2020),53

hydrology (DeBeer & Pomeroy, 2017) or paleo-climatology (Barnola et al., 1987).54

The snow microstructure comprises open pores and sintered crystals of hexagonal55

ice (Ih). From a mechanical standpoint, the contribution of air is negligible, and snow56

mechanics thus depends solely on the spatial arrangement of these crystals and the de-57

formation mechanisms they undergo. Under an overburden, isolated ice crystals essen-58

tially deform plastically by gliding of basal dislocations (Duval et al., 1983b). Non-basal59

dislocations were introduced in models to accommodate basal glide, but are poorly char-60

acterized (Hondoh, 2000). Their creep rate is at least two orders of magnitude lower than61

the one of the basal glide (Duval et al., 1983b). Ice crystals thus exhibit an extremely62

anisotropic viscoplastic behaviour. When the crystals are sintered together, the grain63

boundaries act as obstacles for dislocation movement, which results in hardening and more64

complex deformation mechanisms. For dense polycrystalline ice, these obstacles are max-65
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imal, and the high stresses generated at the crystal boundaries are thought to initiate66

recrystallization: new crystals are nucleated and crystal boundaries migrate to replace67

the highly distorted zones (Meyssonnier et al., 2009b; Montagnat et al., 2015). With in-68

creasing porosity, the obstacles to dislocation at grain boundaries are successively reduced,69

and grains can deform more independently from each other with the free space permit-70

ted by the pores (Theile et al., 2011). For firn and snow with a density lower than 550 kg m−3,71

an additional mechanism is thought to come into play: grain boundary sliding (Alley,72

1987). It provides a convenient formalism for modeling firn densification (Lundin et al.,73

2017; Schultz et al., 2022) but lacks experimental evidence so far (Meyssonnier et al., 2009b).74

For snow with even lower density, less attention was drawn to the crystalline na-75

ture of ice in snow (e.g., Shapiro et al., 1997). Only recently Riche et al. (2013); Calonne76

et al. (2017); Montagnat et al. (2021) measured the crystallographic orientations statis-77

tically in snow. Indeed, the stress concentration in a few bearing force chains and bonds,78

related to the shape and size of the ice skeleton (geometrical microstructure), is thought79

to be the central control of the overall mechanical behaviour (Kry, 1975; Johnson & Hop-80

kins, 2005; Wautier et al., 2017). However, the geometrical microstructure alone appears81

insufficient to describe the diverse creep rates observed on different snow types (Calonne82

et al., 2020; Fourteau et al., 2022). Besides, the driving deformation mechanism at the83

microscale, either inter-crystalline deformation (e.g., grain boundary sliding) or (ii) intra-84

crystalline deformation, remains a matter of debate because of a lack of experimental85

evidence (Theile et al., 2011; Meyssonnier et al., 2009a; Sundu et al., 2024).86

An alternative approach to understand and predict the mechanisms at play in snow87

viscoplasticity relies on numerical experiments. The idea is to evaluate how different hy-88

pothetical mechanisms in ice would affect the overall mechanical behaviour of snow. Ex-89

perimental data, even if they do not exhibit the obvious signature of the involved mech-90

anisms, can then be used to discriminate the modeling assumptions. The main ingre-91

dients are the porous and crystalline microstructure of snow and the deformation mech-92

anisms active in ice crystals and at their boundaries. Different studies followed this mod-93

eling path in the last decades. Johnson and Hopkins (2005); Kabore et al. (2021) mod-94

eled the snow microstructure as a set of solid discrete elements interacting with each other95

through an elastic viscous-plastic contact law. By definition, this method describes the96

dominant mechanism as grain boundary sliding. The snow viscosity simulated by Johnson97

and Hopkins (2005); Peters et al. (2021) required an important scaling to reproduce ex-98

perimental creep data of natural snow. However, the artificial microstructure used in the99

simulation limits any 1:1 comparison to experimental data. In contrast, Theile et al. (2011);100

Wautier et al. (2017) used a microstructure directly derived from tomographic data. They101

only considered the deformation within the crystals and obtained a fair agreement with102

experimental data. However, Theile et al. (2011) described the snow microstructure as103

a collection of inter-connected finite element beams, which cannot reproduce deforma-104

tion obstacles at the crystal boundaries. Wautier et al. (2017) described ice in snow as105

a homogeneous material, polycrystalline ice. This approach is not suited to account for106

the free space around ice crystals in snow, which may favour basal dislocations glide, in107

contrast to dense polycrystalline ice.108

In line with these previous studies, we aim to quantify the effect of ice mechanics109

on snow viscoplasticity. We use time-series of three-dimensional images obtained via to-110

mography during mechanical tests as direct inputs of a mechanical model. The mate-111

rial law for ice in the snow is either homogeneous polycrystalline ice (ice foam model),112

or each crystal is associated with a given crystal plasticity model (sintered crystal model).113

This general approach avoids any over-simplification of the snow microstructure and the114

ice mechanics.115
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Figure 1. Main workflow. (a) Schemes of the mechanical tests. (b) 3D snow microstructure

image used for the simulation: binary ice-air image for the ice foam model (top), grain image for

the sintered crystal model (bottom). (c) Numerical set-up and boundary conditions.

2 Material and Methods116

2.1 Experimental data117

We used two different mechanical tests: a strain-rate-controlled experiment (Bernard,118

2023) and a load-controlled experiment (Bernard et al., 2022) (Fig.1a). In these tests,119

the macroscopic stress or strain was measured, and the microstructure was regularly scanned120

at a micro-metric resolution in an X-ray tomograph (DeskTom130, RXSolutions). The121

experiments were conducted under isothermal conditions on natural snow that was let122

evolve in a cold room at respectively −20 ◦C and −6 ◦C for several weeks. Experimen-123

tal conditions and imaging setup are summarized in Table 1, and detailed in Bernard124

et al. (2022); Bernard (2023).125

The greyscale attenuation images measured by tomography were binary segmented126

into pore space and a continuous ice matrix (Hagenmuller et al., 2013; Bernard et al.,127

2022) (Fig.1b top). This data does not contain any information about crystal bound-128

aries. The ice matrix was thus segmented into individual grains based on two geomet-129

rical criteria: negative minimal principal curvature and low contiguity between the grains130

(Hagenmuller, Chambon, et al., 2014; Peinke et al., 2020) (Fig.1b bottom). We assumed131

that the grains detected by the algorithm correspond to the ice crystals, which is rea-132

sonable for this type of snow according to Arnaud, Gay, et al. (1998).133

2.2 Numerical model134

2.2.1 Constitutive law for ice135

A key ingredient of the numerical model is the elasto-viscoplastic law used for ice.136

The strain tensor in ice can be decomposed as the sum of an elastic and a viscoplastic137

part: ε = εe+εvp. The elastic strain εe is related to the stress tensor σ and the stiff-138

ness tensor C as σ = C : εe. The viscoplastic strain rate ε̇vp is related to the stress139
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Table 1. Experimental conditions of the mechanical tests. The type of snow is defined accord-

ing to (Fierz et al., 2009), where DF stands for Decomposing and Fragmented snow, and RG

stands for Rounded Grains. The numbers shown in brackets, e.g., [a, b], mean that the parame-

ter ranges between, e.g., a and b. Details can be found in the associated references.

Parameter Load-controlled Strain-rate-controlled

Temperature (°C) −8± 0.5 −18.5± 0.5
Type of snow DF DF/RG
Initial density (kg m−3) 230 206
Initial specific surface area (m2 kg−1) 30 28
Test duration (days) 5 3.5

Strain rate (s−1) [10−8, 10−7] 1.8× 10−6

Stress (kPa) 2.1 [0, 300]
Sample size: diameter (mm) x height (mm) 35 × 38 14 × 14

Image cubic side-length (voxel) 900 800
Image resolution (µm) 8.5 8
X-ray voltage (kV) 50 50
X-ray current (µA) 160 160
Number of scans 14 11
Typical strain between scans (%) 0.5 5

Reference Bernard et al. (2022) Bernard (2023)

tensor σ as ε̇vp = f(σ). The values of C or f depend on whether ice is considered a140

homogeneous material or a set of sintered single-crystals.141

Ice foam model. Ice in snow can be considered homogeneous polycrystalline ice, where142

the contributions of each crystal are averaged as in dense ice (Mellor, 1975; Theile et al.,143

2011; Wautier et al., 2017). The elasticity tensor of the ice matrix C is then isotropic144

and described by the Young’s modulus E = 9 GPa and the Poisson ratio ν = 0.3 (Petrovic,145

2003). The viscous part of pure dense ice is described by a 3D Norton-Hoff law as (Gagliardini146

& Meyssonnier, 1999):147

ε̇vp =
3

2
Aσn−1

eq σ′ (1)

where σ′ is the deviatoric stress tensor and σeq =
√

3
2σ

′ : σ′ is the Von Mises equiv-148

alent stress and A = 7.8×10−8 MPa−n s−1 at -10°C and n = 3 (Budd & Jacka, 1989;149

Castelnau et al., 1997; Theile et al., 2011).150

Sintered crystal model. Ice in snow can also be explicitly modelled as a set of in-151

dividual ice crystals sintered together, each characterized by a large viscoplastic anisotropy.152

Since the crystalline orientation is not captured by tomography, it was randomly sam-153

pled in an isotropic distribution (see Text S3 and Fig. S4 for sensitivity analysis). The154

elasticity tensor C was supposed to be isotropic transverse in the crystal reference frame155

and defined according to Gammon et al. (1983) (C11 = 13.9 GPa, C33 = 15.0 GPa,156

C44 = 3.0 GPa, C12 = 7.1 GPa, C13 = 5.8 GPa). For the viscoplastic part, we used157

the crystal plasticity model of Lebensohn et al. (2009). In this model, ice crystals can158

deform through slip on three soft basal systems, three hard prismatic systems, and six159

hard pyramidal systems (Montagnat et al., 2014). On the k-th system, the slip-rate γ̇(k)
160
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is related to the shear stress τ (k) by161

γ̇(k) = γ̇
(k)
0

(
|τ (k)|
τ
(k)
0

)n(k)

sign(τ (k)) (2)

with n(k) the stress exponent, γ̇
(k)
0 the reference shear-rate and τ

(k)
0 the critical shear stress.162

The critical stresses τ
(k)
0 for the prismatic and pyramidal systems were assumed to be163

constant (no hardening) and equal to 260 MPa, which is 20 times larger than the val-164

ues chosen for the basal systems (13 MPa). For all systems, the creep exponent is n(k) =165

3 and the reference shear-rate is γ̇
(k)
0 = 1 s−1. This setup enables to reproduce the be-166

haviour of polycrystalline ice, when the single crystals are randomly arranged into a dense167

packing (Text. S1 in Supporting Information). This model, although simpler than Suquet168

et al. (2012), was preferred for the sintered crystal model, as it allows a simple compar-169

ison with the foam model, giving the same stress exponent n on the macroscopic scale.170

To account for temperature effects on ice viscoplasticity, we scaled the pre-factor171

A of the ice foam model (Eq. 1) and the pre-factor γ̇
(k)
0 of the crystal model (Eq. 2) by172

an Arrhenius relation: e
−Q
RT , with Q = 69.1 kJ mol−1 the activation energy of ice, R =173

8.3 J (mol K)−1 the universal gas constant and T the temperature (K) (Mellor & Testa,174

1969). This scaling enables us to account for the different temperatures in the two ex-175

periments (−8 ◦C and −18.5 ◦C, Tab. 1).176

2.2.2 Simulation set-up177

The simulations were performed with the Fast Fourier Transform (FFT)-based solver178

AMITEX FFTP (Gélébart et al., 2020). This solver takes as direct input the 3D air-ice179

image (ice foam model) or the 3D image of the crystal assembly (sintered crystal model).180

The numerical model cannot account for topological change of the ice skeleton (e.g., new181

contacts). The simulation of one experiment thus consists of several simulations of “in-182

stantaneous creep experiments” as in Theile et al. (2011), with initial conditions vary-183

ing through the test (re-set at each new image). The Norton-Hoff model and the crys-184

tal plasticity model were implemented through the MFront code generator (Helfer et al.,185

2015). The numerical integration of crystal plasticity is computationally expensive, but186

the solver benefits from the MPI implementation.187

Using an FFT-based solver involves using periodic boundary conditions. The bound-188

ary conditions were chosen to mimic the mechanical tests, where the snow sample can-189

not deform laterally and the axial friction on the sample holder is limited. Therefore,190

in the simulation, we imposed the average lateral deformation (Exx = Eyy = 0) and191

the shear stress to zero (Σxy = Σyz = Σxz = 0), where E and Σ are respectively the192

volume average of strain and stress. The axial loading was imposed according to the type193

of test (Fig.1c).194

To reduce the computation time, the simulations were not conducted on the en-195

tire scanned volume at the nominal image resolution. Instead, we reduced the resolu-196

tion by a factor of 2, i.e. to voxels of size 16 and 17 microns respectively for the strain-197

rate-controlled and load-controlled experiments, and we extracted a volume of 300×300×198

300 voxels inside the scans (Fig. 1). We performed a volume convergence analysis on one199

sample and showed that the chosen volume and resolution are representative of the sam-200

ple. To fasten the solver convergence, we reduced the infinite mechanical contrast be-201

tween ice and air to Eice/Eair = 108 by giving a very small stiffness to air. We observed202

that this choice reduced the computing cost and did not affect the results (Fig. S2).203
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Figure 2. Comparison of the experimental and numerical results. (a) Evolution of the non-

linear viscosity and the yield stress as a function of strain (strain-rate-controlled). (b) Temporal

evolution of the nonlinear viscosity and the strain rate (load-controlled)). The inset figures corre-

spond to the simulated macroscopic stress or strain evolution for different constitutive materials

for a given microstructure. The error bars are related to the limited simulation volume (error

of ± 14.9 %, Fig. S3), the resolution decrease (error ± 16.4 %, Fig. S3) and uncertainties on

temperature (error of ± 6.2 % at -8 ◦C and ± -6.8 % at -18.5 ◦C ).
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3 Results and discussion204

3.1 Simulated macroscopic stress-strain curve205

We observe three different regimes of stress evolution with strain during the com-206

pression test at a constant strain-rate (Fig.2a inset). First, the stress increases linearly207

with strain in an elastic regime characterized by a slope E. Then, the stress deviates from208

elasticity with viscoplasticity progressively activated. After this transient regime, the stress209

eventually reaches a constant value, the yield stress σY , where the snow sample perfectly210

flows (stationary creep). This yield stress depends on the constitutive law of ice and the211

snow microstructure. Similarly, Figure 2b (inset) shows the time evolution of strain un-212

der constant stress. After a brief phase of pure elasticity during the numerical loading213

of the sample (stress from 0 to 2.1 kPa in 1 s), the ice matrix starts to flow and the strain214

rate increases to a constant value.215

The permanent viscoplastic regime is reached after a typical strain of 0.1% (Fig.216

2a) or a time of 104 s (Fig. 2b). The yield stress or flow rate are, hereafter, derived at217

a simulation strain of 0.5% and a simulation time of 105 s. The time or strain required218

to reach the stationary creep flow regime is relatively small compared to the time be-219

tween two scans (∼8 h) or change in the microstructure. Therefore, the assumption that220

mechanical creep experiments with an evolving microstructure can be decomposed into221

“instantaneous creep experiments” seems reasonable. In other words, this separation of222

time scales enables us to compare the yield stress estimated numerically on a given mi-223

crostructure to the stress measured when the microstructure was captured (Theile et al.,224

2011).225

The elastic and viscoplastic regimes were simulated with different models for ice.226

The stiffness of the sample is not affected by the modelling assumptions, i.e. the slight227

anisotropy of crystalline elasticity (30%) could be neglected. Indeed, a relative error of228

0.5% is committed on the axial Young’s modulus with the ice foam model compared to229

the sintered crystal model. Therefore, assuming ice in snow as a foam of ice to study snow230

elasticity (Schneebeli, 2004; Srivastava et al., 2010; Köchle & Schneebeli, 2014; Hagen-231

muller, Theile, & Schneebeli, 2014; Hagenmuller, Calonne, et al., 2014; Wautier et al.,232

2015; Reuter et al., 2019) appears reasonable, even never properly evaluated so far. In233

contrast, the simulated viscoplastic regime is very different between the ice foam and the234

sintered crystal models. For instance, at a strain rate of 1.8× 10−6 s−1, a yield stress235

of 22.2 kPa and 8.7 kPa is obtained respectively for the ice foam and sintered crystal mod-236

els (Fig. 2a). As expected, the crystal model makes the snow sample flow more easily.237

Interestingly, blocking the hard slip systems of the sintered crystal model (only basal glide)238

does not significantly affect the macroscopic mechanical behaviour of the snow for both239

experiments.240

As the snow stress strain-rate relation is non-linear, the classical compactive vis-241

cosity cannot describe both tests (Kojima, 1967). The creep exponent of all slip systems242

is here constant (n = 3). Therefore, per homogenization, this exponent scales to the243

visco-plastic model of snow (Wautier et al., 2017) and we can identify the observed creep244

of snow by a Glen’s law with a non-linear viscosity B:245

ϵ̇snow =
1

B
σn
Y (3)

3.2 Evaluation of the numerical model with the experiments246

In the strain-rate-controlled experiment, the measured non-linear viscosity B in-247

creases from 6.8× 10−2 to 1.2× 104 MPa−n s−1, while the density increases from 206248

to 458 kg m−3 (Fig. 2). The simulations well reproduce this trend with density, and the249

order of magnitude of B. For a similar density range, Scapozza and Bartelt (2003) ob-250

tained a viscosity change from 10−2 to 106 MPa−n s−1 at a temperature of -12◦C. Note251
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that in this experiment, the exponent of Glen’s law was identified experimentally, and252

varies from 1.7 for a density of 150 kg m−3 to 3.7 for a density of 423 kg m−3. In the253

load-controlled experiment, the increase of the non-linear viscosity with time is less pro-254

nounced, as the overall deformation or densification remains rather small (ϵz ≤ 9.1%).255

However, the simulation also reproduces this tedious trend driven by microstructure evo-256

lution.257

The simulations with the sintered crystal and the ice foam model respectively un-258

derestimate and overestimate B in the strain-rate-controlled experiment. The measured259

and simulated value of B at the beginning of the experiment is uncertain due to the lim-260

ited resolution of the force sensor (±4 kPa). However, for stresses higher than 25 kPa,261

we observe that the sintered crystals model is closer to the experimental measurements,262

than the foam model. Indeed, the mean absolute percentage error (MAPE) between sim-263

ulations and the experiments is equal to 414% for the ice foam model and to 62% for the264

sintered crystal model. The difference between the sintered crystal and the ice foam mod-265

els reduces when density increases. The ratio decreases from 16.6 at a density of 206 kg m−3,266

to 9.7 at a density of 458 kg m−3. This is consistent with the fact that the two models267

converge together when the porous structure becomes pure ice (see Supp. Inf. S1 and268

A. Lebensohn (2001)). More generally, we expect that the models become closer when269

the crystal boundaries become pre-dominant barriers to basal dislocation glide.270

For the load-controlled experiment, the simulations based on the sintered crystal271

model are closer to the experiment (over-estimation of B by an average factor of 8.9) com-272

pared to the ones based on the ice foam model (over-estimation of B by 157). Note that273

the error factor estimated here on the non-linear viscosity are raised to the power of 3274

compared to the errors computed on linear viscosity (η = σ
ϵ̇ ), as it is presented by (Kojima,275

1967; Theile et al., 2011). Experimental uncertainties also exist in the load-controlled276

test (Figure 2b), but they are difficult to estimate and related to i) the measurement of277

the strain rate and ii) the force effectively applied to the considered snow volume. Nev-278

ertheless, they can be estimated to be less than the ratio 8.9 between the best model and279

the experiment.280

Overall, for snow, here with a density in the range 206 to 458 kg m−3, the two mod-281

els for ice yield very different viscoplastic properties, and the sintered crystal model ap-282

pears to be closer to the experimental data. This observation agrees with the recent work283

of Fourteau et al. (2023), who shows that it is impossible to find a calibrated isotropic284

law to represent different types of microstructures, and questions the magnitude of non-285

linear viscosity simulated by Wautier et al. (2017). Nevertheless, the significant discrep-286

ancies between the sintered crystal model and experiments show that some mechanisms287

may still be missing in this modelling.288

3.3 Microscale drivers of snow viscoplasticity289

In the sintered crystal model, we observe that a small deformation of the ice ma-290

trix yields important deformation of the pore space and the overall snow material. In-291

deed, the average deformation of the ice matrix is here typically 100 times smaller than292

in the equivalent snow material (Fig. S4). In addition, the distribution of strain or stresses293

in the ice matrix itself is highly heterogeneous (standard deviation of 30% on strain in294

the ice matrix) and comprises both zones in tension and compression (noted with a pos-295

itive sign) (Fig. 3). For instance, 4% of the ice volume exhibits an axial deformation 10296

times larger than the average ice deformation, while a significant part (e.g., 34.5%) of297

the microstructure exhibits almost no deformation (e.g., |ϵz| ≤ 0.1ϵ̄z). This confirms298

previous numerical observations on elastic properties (Hagenmuller, Theile, & Schnee-299

beli, 2014) but is here even more pronounced as the ice can locally undergo large vis-300

coplastic deformation.301
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Figure 3. Slice view of the tested sample shown in figure 1 and associated mechanical fields:

(a) Von Mises equivalent stress σeq. (b) Equivalent viscoplastic basal slip. (c) Equivalent vis-

coplastic non basal slip. (d) Basal activity. Strain-rate-controlled experiment, axial stress corre-

sponding to this microstructure of 8.7 kPa.

Interestingly, similarly to dense ice, the basal slip system contributes at most to302

the total simulated plastic deformation of snow (90% in average for ice, 99% for snow,303

see Fig. S4). However, the entanglement of slip system deformations appears to be dif-304

ferent between snow and dense ice. The model shows that the deformation accommo-305

dation between crystals is permitted by the pore space and does not require prismatic306

and pyramidal slips, whereas the latters are pre-requisite for the simulation of any de-307

formation in dense ice. In addition, blocking the hard slip systems of the sintered crys-308

tal model does not significantly affect the macroscopic mechanical behaviour of the snow309

for both experiments (Fig. 2). Thus, a stronger effect of the basal system parameteri-310

zation on the macroscopic response of the snow can be expected. Indeed, the chosen pa-311

rameterization was mostly evaluated on pure ice experiments (Castelnau et al., 1996, 1997;312

Mansuy et al., 2000), but different choice for the basal slip system(e.g., exponent n or313

critical shear stress τ0) might yield similar results for polycrystalline ice but not for snow314

(Duval et al., 1983a; Suquet et al., 2012).315

Stresses and strains are heterogeneously distributed in the microstructure and gen-316

erally located at necks between ice grains that participate in a force bearing chain (Fig.317

3). These geometric necks also mainly correspond, here, to the crystal boundaries. The318

grain boundaries (defined as a one voxel wide band on either side of the interface between319

2 grains, which represent 11% of the ice volume fraction), concentrate 20.5% of the equiv-320

alent stress, 21% of basal equivalent strain and 22.2% of non-basal equivalent strain. When321

we do not account anymore for the single crystals (i.e., foam model), the stress concen-322

tration reduces to 17% of the equivalent stress. This stress concentration is thus not only323

linked to the geometry of the microstructure, but also to the mechanical model of ice.324

Interestingly, the relative basal activity remains high everywhere. It is lower next to cer-325

tain crystal boundaries, where the stresses are the highest (Fig. 3d). Non-basal contri-326

butions also appear in crystals with very little plastic deformation but large stress con-327

centration (e.g., the grain circled in Fig. 3). This observation indicates that crystal bound-328

aries may slightly limit basal slip, but in a proportion that is not visible on the overall329

viscous behaviour (here for a snow sample with a density of 235 kg m−3).330

4 Conclusion331

We simulated the viscoplasticity of snow based on its 3D microstructure and dif-332

ferent constitutive laws for the ice matrix. These numerical experiments were compared333

to cold-room in-tomograph experiments, either load-controlled or strain-rate-controlled.334

The macro-scale comparison revealed that ice in snow rather behaves as a set of sintered335
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crystals than a foam of polycrystalline ice. Moreover, we showed that the accommoda-336

tion of deformation by means of the hard non-basal slip systems is hardly needed, even337

less than for bulk polycrystalline ice. This is attributed to the ability to relax strain in-338

compatibilities at ice / air interfaces. The residual mismatch between the measured and339

the simulated viscosity tends to demonstrate that other mechanisms occurring, e.g., at340

bonds need to be accounted for, such as, role of non-basal contributions with harden-341

ing (Duval et al., 1983a; Suquet et al., 2012), superplasticity (Alley, 1987; Raj & Ashby,342

1971; Goldsby & Kohlstedt, 2001; Sundu et al., 2024), but also ductile failure (Kirchner343

et al., 2001; Capelli et al., 2020).344
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