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Abstract

Graphics Processing Units (GPUs) are the reference architecture to accelerate
High Performance Computing (HPC) applications and the training/interference
of Convolutional Neural Networks (CNNs). For both these domains, performance
and reliability are two of the main constraints. It is believed that the only way
to increase reliability is to sacrifice performance, e.g., using redundancies. We
show in this paper that this is not always the case. As a very promising result,
we found that most GPUs performance improvements also bring the benefit of
increasing the number of executions correctly completed before experiencing a
Silent Data Corruption (SDC). We consider four different common GPUs’ perfor-
mance optimizations: architectural solutions, software implementations, compiler
optimizations, and threads degree of parallelism. We compare different imple-
mentations of a variety of parallel codes and, through beam experiments and
applications profiling, we show that the performance improvement typically (but
not necessarily) increases the GPU SDC rate. Nevertheless, for the vast major-
ity of the configurations the performance gain is much higher than the SDC rate
increase, allowing to process a higher amount of correct data. As we show, the
programmer choices can increase up to 25× the number of correctly completed
executions without redesigning the algorithm nor including specific hardening
solutions.

Keywords: Error rate, Graphics Processing Unit, Reliability
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1 Introduction

Graphics Processing Units (GPUs) have evolved from being devices dedicated to
gaming, graphics, and video rendering to flexible accelerators for a variety of High Per-
formance Computing (HPC) and safety-critical applications, including autonomous
vehicles. In particular, GPUs are the reference architecture for the training and
the interference of Convolutional Neural Networks (CNNs), which are required to
detect and classify objects in a frame. This market shift led to a burst in GPUs’
computing capabilities and efficiency, significant improvements in the programming
frameworks and performance evaluation tools, and a sudden concern about their
hardware reliability.

A common belief is that reliability and performance are conflicting proprieties with
opposite requirements. Reliability and performance should then be traded-off, trying
to achieve a sufficient reliability level without losing too much on performance or
ensuring that the recovery from faults does not significantly impact the performance.
In this paper we show that, on GPUs, this is not the case. Our goal is to show
how and why better performance leads to a higher amount of correctly processed
data. This trend holds both when the optimization uses less GPU area (thus reducing
the Silent Data Corruption rate) but also when a larger area is used since, as we
show, the gain brought by better performances is much higher than the drawback
of having a higher error rate. For those applications in which the SDC rate must
be minimized regardless of performance (as in some safety-critical applications), we
will even identify the optimizations that improve both performance and error rate,
providing an execution that is simultaneously faster and more reliable.

We consider four common and effective ways to improve GPUs performance, follow-
ing the common philosophy of GPU efficient programming, which is to use the highest
possible amount of parallel resources without incurring in memory or computing cores
saturation and avoiding latencies or dependencies. The optimizations we consider are
available to the programmer in current GPU hardware or software design frameworks
and do not require extra resources, specific hardening solutions, nor extra effort to be
implemented. The GPU performance improvement techniques we consider are: (1) soft-
ware optimizations, i.e., algorithm-efficient implementations, (2) degree of parallelism
improvement, i.e., increase the number of parallel threads reducing the operations in
each thread, (4) architectural solutions, such as tensor core and mixed-precision, and
(3) compiler optimizations. We measure how the performance improvements impact
the execution time and the error rate of realistic applications from various domains
and of dedicated microbenchmarks, crafted to stimulate specific computing resources
of GPUs. Overall, we consider more than 50 different configurations.

Intuitively, the best performance is achieved on a GPU when its parallel capabilities
are fully exploited. Nevertheless, when more operations are executed in parallel, the
device error rate might increase. Thus, most of the time, a higher occupation of the
GPU hardware delivers higher performance at the cost of a higher error rate. We
claim in this paper that, in the vast majority of the cases, for GPUs, the performance
gain grows faster than the error rate. In other words, the benefit of better using
additional resources (in terms of shorter execution time) is, most of the time, higher
than the possible drawback (higher Failure In Time (FIT) rate, i.e., failures in 109h
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of operation). Interestingly, some GPU performance improvement techniques, such as
mixed-precision and some compiler optimizations, have the effect of reducing both the
execution time and the GPU exposed area, exacerbating the reliability benefit.

While software fault injection has been exploited to evaluate the reliability of
codes [1–5], the different hardware utilization that derives from a more efficient soft-
ware mapping in the GPU architecture can be measured only with beam experiments.
In fact, most of the considered solutions to improve performance do not modify the
code, but rather improve how the code is executed in the hardware. Injecting faults
in software is likely to mask most of the underlying hardware utilization effects we
intend to highlight. Therefore, to measure the realistic impact on the error rate of the
different codes implementations, we take advantage of the results of controlled accel-
erated neutron beams. We collect and combine the data from experiments performed
in the last few years on Fermi, Kepler, and Volta GPUs and highlight the common
performance-reliability trade-offs. Then, with dedicated software profiling and archi-
tectural analysis we explain the observed trend and, whenever possible, generalize it
for other algorithms, configurations, and architectures.

For each code and performance improvement strategy, we calculate the Failure
In Time (FIT - errors every 109 hours of operation), the execution time, and the
Mean Executions/Work Between Failures (MEBF/MWBF - the number of operations
completed or data produced correctly between two errors) [6–8]. Whenever possible, we
correlate the reliability and performance trend to the implementation characteristics.
While the trade-off between performance and reliability has already been studied in
CPUs [6–8], we go a step beyond by showing how, for GPUs, in most configurations,
performance increases faster than the SDC rate. Higher performance, then, allows the
GPU to correctly complete a higher number of executions before the error occurrence.

The main contributions of this work are the following:

1. We demystify the performance vs. reliability myth by demonstrating,
through beam experiments, that, for GPUs, higher performance does not neces-
sarily imply a higher FIT rate and, even when it does, we can still complete more
correct executions between failures.

2. We assess the impact on GPUs reliability of common code optimizations
by measuring the error rate of various codes executed on GPUs applying 4 widely
used techniques to improve their performance.

3. We give highlights on how to guarantee a more reliable computation by
discussing the correlation between programmer choices, performance, and reliabil-
ity, with the goal of helping software developers and device architects deciding the
optimizations to apply to the GPU applications to use the available hardware in
the most reliable way.

The remainder of this paper is as follows. The next Section presents the background
and related work that precedes this research. We explain the proposed evaluation
in Section 3. Section 4 describes the experiments, codes, and devices used in this
work. The evaluation results of each optimization solution are presented in Section 5.
Implications and projections of our results are discussed in Section 6. Finally, Section 7
concludes the paper.
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2 Background and Related works

In this section, we present the background, the motivation and limitations of our work,
and related work on GPUs reliability. We give particular attention to the reliability
and performance metrics we use to demonstrate our claim that a more efficient use of
GPU hardware is preferable as it increases the number of correct executions.

2.1 GPUs Reliability

Galactic cosmic rays interact with the terrestrial atmosphere generating a flux of par-
ticles (mainly neutrons) that reach the ground. About 13 neutrons/((cm2)×h) reach
the earth’s surface [9]. A neutron strike may perturb a transistor’s state, generating
bit-flips in storage elements or producing current spikes in logic circuits that, if latched,
lead to an error [10]. A transient error may not affect the program output (i.e., the
fault is masked or benign) or may be propagated through the stack of system layers
and produce a failure. A Failure can manifest as a Silent Data Corruption (SDC -
undetected wrong output), or Detected Unrecoverable Errors (DUEs), such as a
program crash (application hang) or a device turning not responsive (system crash).

In this paper, we focus on SDCs, only. We decide not to include DUEs in our anal-
ysis since it has already been shown that DUEs depend mainly on some hardware
components and are not directly correlated with the executed operations [11]. Addi-
tionally, DUEs, being detected by definition, are considered less critical than SDCs.
While we do not show details about DUEs, we can say that the variation between
the DUEs FIT rate we observed among all codes and configurations is, at most,
51% (we measure SDC-performance variations of up to 25 × ). This observation also
demonstrates that the different SDC trends we discuss are not caused by a different
propagation of the same fault (an SDC becoming a DUE or vice-versa), but rather on
different reliability behaviors induced by the optimizations.

The reliability of GPUs for safety-critical and HPC applications has already
been extensively evaluated through beam experiments [12–16] and fault injection
at Register-Transfer Level (RTL) [17, 18], microarchitecture level [2, 3] or software
level [5, 19–22]. Additionally, based on the error rate analysis, the fault model, and the
fault propagation study, some effective hardening solutions to increase GPUs reliability
have been proposed [13, 22–29].

While the reliability of GPUs is well studied and some efficient and effective
hardening solutions have been proposed, it is still largely unclear how the different
implementations of an algorithm modify the utilization of the GPU hardware and,
then, the FIT rate. As one of our contributions, we intend to understand how an
increased and more optimized utilization of the GPU computing resources affect the
device error rate.

2.2 Reliability Characteristics and Evaluation Metrics

The primary metric to measure the reliability of a device is the Failure In Time (FIT)
rate. The FIT rate depends on the amount of resources used for computation, i.e., the
sensitive area or cross section [10], and their corruption probability of affecting the
output, i.e., the Architectural or Program Vulnerability Factors (AVF or PVF) [30, 31].
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The AVF and PVF are measured with fault injection, which tracks faults propaga-
tion to the output. Fault injection, then, assumes that a fault occurred and identifies
whether the fault affects the output. We recall that, as discussed in Section 2.1, we
focus on the Silent Data Corruption (SDC) FIT rate of GPUs, i.e., the application
output error rate.

The FIT rate, being by definition a rate, does not depend on the execution time.
The error rate is usually measured with accelerated beam experiments, dividing the
number of observed application output errors by the neutron fluence (n/cm2). The
fluence is given per cm2 to ease the error rate calculation, as measuring the exact
area of the transistors/device would be unfeasible. Given these definitions, if the same
amount of memory is exposed for a time interval t or 2t, its FIT rate will not change.
In fact, under a constant flux (neutrons/cm2/sec), in 2t, we expect twice the errors
and a double neutrons fluence (n/cm2) to hit the device, giving the same error rate.
This is under the assumptions -proved true for terrestrial environment [9]- that the flux
of particles is constant and sufficiently low not to have 2 corruptions from 2 different
particles in 2t. On the contrary, if we double the amount of memory exposed for the
same time interval t, we expect twice the number of errors but the same neutron
fluence (n/cm2) to hit the device: we are doubling the error rate. Similarly, executing
x or 2x sequential (independent, for simplicity) instructions does not change the code
FIT rate. On the contrary, If the additional x instructions are executed in parallel
with the original sequence, the FIT rate is expected to double (same execution time,
same fluence, but doubled the error rate). We use these premises to comment on how
performance improvement can impact the GPU FIT rate and reliability.

The interesting aspect, only apparently playing against GPUs, is that a slower
execution does not increase the FIT rate while using more parallel resources or bigger
hardware cores, with a potential benefit on GPUs performance, increases the FIT rate.
We will demonstrate in Section 5 that on GPUs most of the common optimizations
increase the performance faster than the error rate.

To combine error rate and performance, the Mean Instructions, Executions, or
Work Between Failure metrics (MIBF, MEBF, MWBF) were introduced [6–8]. The
idea is to consider how many instructions, executions, or workloads can be correctly
completed before the output error occurrence. Considering a constant FIT rate, then
the faster configuration will have a higher MIBF, MEBF or MWBF.

In this work, we use the SDC FIT metric to quantify the impact of performance
improvements strategies on the GPUs output error rate. Then, we use the MEBF
and MWBF to identify the configuration that delivers a better performance-reliability
trade-off.

2.3 Motivation, Contributions, and Limitations

GPUs architecture is voted to performance, and several previous works, listed in
Section 2.1, have highlighted some intrinsic reliability vulnerabilities. Our intuition
is that GPUs are so speed-oriented that performance increase faster than the error
rate. In other words, faster configurations can be more proficuous, i.e., they produce
more correct data before the error occurrence. We underline that all the configura-
tions we test are easily selected when designing, programming, or compiling a code
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Fig. 1: Overview of the proposed study. Improving the performance of codes executed
on GPUs by (1) optimizing the code, (2) taking advantage of dedicated architectural
solutions, (3) increasing the Degree of Parallelism, or (4) using aggressive optimization
flags will also impact the error rate (not necessarily for worse, as we will show). We
aim to identify the configurations that provide a performance gain higher than the
FIT rate increase, thus improving the MEBF.

for GPUs. There is no additional effort, hardware, or hardening strategy required to
improve reliability in the optimizations we consider. Some previous works have already
shown that a given optimization modifies the error rate of GPUs. This is the case
of parallelism distribution [8] and the use of mixed-precision [32]. Nonetheless, these
works are focused on specific optimization and specific implementation. With this
paper we want to highlight the big picture, combining existing data, dedicated experi-
ments, and application profiling to highlight a common trend in different performance
improvements in GPUs, so to understand and generalize the observed trends.

The main pragmatic contribution we intend to provide, besides the experimental
evaluation of the impact of optimizations on GPUs error rate, is that, as a general
rule, on GPUs, if what matters is the amount of data correctly produced, then it is
advisable to improve as much as possible the execution performance. The proposed
analysis also highlights which optimizations are more likely to bring benefits in terms
of the amount of data correctly produced. We also identify some optimizations that
improve both performance and reliability and should then be definitely used even in
safety-critical applications.

The error rate we present is obtained with accelerated particles beam experiments.
This choice is dictated by our interest in presenting a realistic reliability behavior and
by the fact that some of the optimizations we evaluate act at a lower level of abstraction
than software fault injection. In other words, in some configurations the code does
not change, but the compiler or hardware optimization improves performance. For
these configurations, the AVF and PVF should experience negligible changes (the
source code is the same), while the FIT rate is significantly modified since different
hardware resources, with potentially different error rates, are used for computation.
For instance, let us consider whether we change the Degree of Parallelism or use
tensor cores instead of adders and multipliers. In such cases, we would not need to
significantly modify the GPU kernel, provided that the tensor core instructions can
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seamlessly replace the sequence of adders and multipliers. However, the error rate is
expected to change significantly. Then, a software fault simulation might mask some
of the effects we intend to highlight, regardless of the amount of code modifications we
make. This is because the fault simulation will not consider the changes in the used
hardware resources.

We acknowledge that beam experiments have the limitation of hiding the fault
propagation, as faults are observed only when they manifest as output errors. With
beam experiments data, we cannot distinguish which level of the hardware or the
software contributes to the device error rate. Nonetheless, we always test configurations
that differ of one and only one characteristic. For instance, when we apply a different
compiler optimization, we do not change the code, the inputs, the device, etc. We
can then correlate the observed impact on the error rate to the characteristic we
have changed. Additionally, as mentioned in Section 2.1, while the SDC rate changes
significantly between configurations (up to 25×), the DUE rate changes at most of
50%. This is a strong indication that the different SDC trends observed are not caused
by a different fault propagation but by different hardware error rates. Finally, as we
discuss four different strategies applied to various codes, it is impossible to give all
the details about the implementations. We will discuss the main ones, referencing the
related documents where all implementation details can be found.

3 Performance-Reliability in GPUs

In this Section, we give an overview of the idea behind the paper, discussing the
reasons why, in GPUs, better performance can provide a higher number of corrected
executions before the error occurrence even if they increase the error rate.

When an algorithm is written or the code is implemented or compiled to be
executed on a GPU, several possible optimizations can be applied to improve the
performance. As shown in Figure 1, these optimizations, by changing the way the algo-
rithm is mapped in the underlying hardware, modify the amount or kind of resources
used for computation and thus impact performance but also the error rate. We recall
that, since the FIT rate is independent on the execution time (see Section 2.2), the
error rate is modified because of the different source code implementation, not because
of its shorter execution time.

Figure 1 illustrates the main idea of our paper. It is not meant to be exhaustive
but to give a quick overview of our evaluation. FIT and performance are the two
main variables we consider, separately or combined in the MEBF metric. The GPU
architectural advances, programming strategies, and compiler optimizations are voted
to improve the performance. We aim at evaluating the impact of these strategies on
the FIT rate and at identifying when the performance gain is higher than the corre-
sponding (possible) SDC FIT rate increase. As schematized in the graph at the left
of Figure 1, better performance most of the time implies better MEBF. When the
performance-MEBF trend is over the diagonal it means that the benefit of optimiz-
ing the code clearly exceeds the drawback (possible FIT increase). We consider four
possible ways to improve the GPU performance. We anticipate that most, but not all,
performance improvements we evaluate increase the FIT rate.
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Algorithm Implementation: there are several ways to write the code that solves
an algorithm. On GPUs, the programmer has an additional degree of freedom, which is
the parallelism implementation. Most of the techniques to improve the performance of
an algorithm are focused on maximizing the GPU occupancy and the locality of data.
General Matrix Multiplication (GEMM) [33] is the cornerstone example. By dividing
the matrices to multiply in a custom approach it is possible to avoid caches satura-
tion and ensure that each thread works on data already available in the Streaming
Multiprocessor (SM). An Optimized GEMM implementation can reduce of 1 order of
magnitude the execution time compared to the Naive implementation of GEMM [33].
While an optimized algorithm implementation typically provides significant perfor-
mance gain, it is hard to predict, a priori, the optimization effect on the error rate.
The optimization normally involves code modification and, thus, the executed opera-
tions differ, impacting both the raw FIT rate (different functional units have different
FIT rates), the AVF (the probability for a fault to propagate to an architectural vis-
ible state), and the PVF (the probability for a fault to reach the program output).
Nonetheless, the optimizations normally increase the computation density, i.e., the
number of operations executed in parallel and, then, increase also the FIT rate. This
is confirmed by the experimental data we provide and justify in Section 5.1.

Degree of Parallelism (DOP): when a workload needs to be executed on a
GPU, the higher the number of parallel threads in which the workload is divided, the
higher the DOP. Given a workload, then, the higher the DOP, the lower the number
of operations each thread has to execute. If there are no dependencies and the mem-
ory/computing resources are not saturated, a higher DOP is expected to significantly
improve the performance, especially on GPUs as shown in [8]. Unfortunately, a higher
number of parallel threads means that a larger area of the GPU is used for compu-
tation and thread scheduling, and, thus, the FIT rate is also expected to increase.
We anticipate that, as we show in Section 5.2, depending on how a higher DOP is
implemented, it can also decrease the FIT rate (if the memory per thread is reduced).

Architectural Solutions: lately, the GPU architecture has been significantly
improved by adding dedicated functional units for operations that are of strategic
interest. This is the case of tensor cores [34] and multiple float precisions [35]. A tensor
core is a hardware unit that multiplies a matrix tile of NxM in a single instruction.
For Volta microarchitecture, this tile has the dimensions of 4×4 [34]. Rather than
implementing matrix multiplication in software, as a sequence of ADD-MUL or FMA,
the programmer can boost the performance using dedicated cores. Obviously, a tensor
core is much larger than a multiplier or an adder [34] and, thus, it also has a higher
error rate than a single ADD or MUL. The use of lower float precision (32bit, 16bit,
or lower precision) cores is a peculiar optimization as, besides being faster, lower
precision cores are also smaller and, thus, are expected to reduce not just the execution
time but also the FIT rate of the code, as shown in [32, 36]. The prize to pay is the
reduced precision of the output. Whenever this reduction is acceptable, as we show in
Section 5.3, using lower float precision than FP64 significantly improves the reliability
of GPUs.

Compiler Optimizations: the process of translating the C++ CUDA code into
GPU executable is very complex, and it includes several optimizations the programmer
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Table 1: Characteristics and features of the evaluated GPUs, Fermi (GTX480), Kepler
(K20), and Volta (V100).

Micro
arch.

Node
size

SMs
Cores
per SM

Main
memory

GPU clock
(MHz)

CUDA
Version

GTX480 Fermi
CMOS
40nm

15
32 FP32/
INT32

1.5GB
GDDR5

701
v. 6.0

d. 331.38

K20 Kepler
CMOS
28nm

13
192 FP32/
INT32
64 FP64

5GB
GDDR5

706
v. 10.2

d. 440.33

V100 Volta
FFN
12nm

80
64 FP16/FP32

32 FP64
8 Tensor Cores

16GB
HBM2

1530
v. 11.3

d. 465.19

can decide to apply. Even if the source code does not change, the compiler optimization
modifies the machine code to be executed. As a result, the compiler can impact the
instructions distribution and memory utilization, which changes the way the software
is mapped in the underlying hardware. As we show in Section 5.4, both performance
and FIT rate are impacted by compiler optimization and, generally, the higher the
optimization, the more reliable the execution.

4 Evaluation Methodology

To evaluate the FIT/performance trade-off we consider several representative applica-
tions from different computing domains executed on three different GPU architectures.
In this Section, we describe the tested codes, the considered GPUs, and the neutron
beam experiment procedure.

4.1 Codes and Devices

The codes we test are: General Matrix Multiplication (Naive GEMM and Optimized
GEMM), LavaMD, Fast Fourier Transform (FFT), Sorting (Quicksort and Merge-
sort), Needleman-Wunsch (NW), an object detection convolutional neural network
(YOLO), and two dedicated microbenchmarks (a sequence of independent ADDs and
MULs). We have selected the most suitable codes for each optimization and use Naive
GEMM as a common benchmark for all optimizations. Testing all benchmarks for all
optimization would be unfeasible due to beam time limitation (we need about 24h of
beam time to characterize one code). We have choose an input size to set the execu-
tion time of the codes (in their optimized or naive implementation) from 5 ms to 2.5
sec., tuned to guarantee a sufficiently high error rate to collect enough SDCs without
allowing more than one neutron to generate a fault in one execution.

We consider three GPUs architectures: Fermi, Kepler, and Volta. Table 1 shows
the details of the devices that we consider, Fermi (GTX480), Kepler (Tesla K20), and
Volta (Tesla V100) NVIDIA GPUs. Fermi, belonging to an older GPU generation,
has computing cores for FP32 and can run efficiently FP64 operations [37]. Kepler
supports float and double (FP64) precisions and Volta GPUs support three IEEE754
float point precisions (FP64, FP32, and FP16) plus eight tensor cores.
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In some configurations, we also compare the results when the available Single Error
Correction Double Error Detection (SECDED) Error Correcting Code (ECC) is turned
ON or OFF (when enabled ECC protects the register file, shared memory, caches, and
DDR). As already mentioned, we only compare different configurations on one device.
Even if our intention is not to compare different devices but how optimizations impact
the error rate and the performance on a GPU, in Section 6 we give an overview of
how the reliability of GPUs evolved through the years.

GPUs have internal hardware that adjusts frequency based on temperature to avoid
damaging the device. In our experiments, the room temperature was controlled and
kept constant. Moreover, before starting the experiment, we ran several executions of
the code for the warm-up, ensuring a stable device configuration. We have measured
the execution time of each execution (each experimental run is composed of thousands
of executions) and never observed significant variations (less than 5%).

For all evaluated codes, we used NVIDIA Profiler tools to measure the kernel
execution time on the GPU, focusing only on the device code. We repeated the same
kernel (or set of kernels) 30× and calculated the average of the measured time.

4.2 Neutrons Beam Experiments

To measure the SDC FIT rate, we take advantage of controlled neutron beam experi-
ments performed in the past few years. In each experiment, that lasts for some days, we
test one particular performance improvement, i.e., we always compare data obtained in
the same experiment and facility. To cross-validate the results and ensure reproducibil-
ity, we tested matrix multiplication on the same GPU at both LANSCE and ChipIR.
The difference between the measured FIT rates was well inside the error margins.

Beam experiments were performed at ChipIR facility of the Rutherford Appleton
Laboratory (RAL) in Didcot, UK, and at the LANSCE facility of the Los Alamos
National Laboratory (LANL) in Los Alamos, US. ChipIR and LANSCE deliver a
neutron beam with a spectrum of energy that is suitable to mimic the atmospheric
neutron effects in electronic devices [38], allowing to measure the realistic FIT rate of
the device executing a code. With the experiments, we measure the probability for a
neutron to cause an error in the GPU. Since the spectrum of energy is similar to the
terrestrial one and since neutron effects are not cumulative (the fault probability is
independent of the number of neutrons that hit the device [10], the error rate calculated
with our experiments is the expected error rate caused by terrestrial neutrons on a
GPU.

To detect SDCs we execute continuously the code in the irradiated GPU with a
known input and check the application output correctness. When the experimental
output differs from the expected (fault-free) output we count an SDC. We perform
hundreds of thousands executions in the irradiated GPU, collecting at least 100 SDCs
per configuration, ensuring a 95% confidence intervals to be lower than 15%. Thanks to
watchdogs we are also able to measure the occurrences of DUEs (application crashes,
device reboot, device hang). As mentioned in Section 2, we do not report DUEs in this
paper since the DUE rate is not significantly affected by the performance optimizations
we tested (DUE rate changes of at most 50%).
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Fig. 2: Portion of the neutron beam setup during one of the test campaigns at
ChipIR. Each GPU is aligned with the beam and connected, via PCIe extensors,
to a motherboard that is covered with boron plastic to avoid scattering neutrons
corruption.

The available neutron flux at ChipIR and LANSCE are about 106n/(cm2/s) and
105n/(cm2/s), respectively, i.e. about 7–8 orders of magnitude higher than the terres-
trial flux (3.61× 10−3 n/(cm2× s) at sea level [9]) Since the terrestrial neutron flux is
low, in a realistic application, it is highly unlikely to observe more than a single cor-
ruption during the program execution. We have carefully designed the experiments to
maintain this property (observed error rates were lower than 1 error per 1,000 execu-
tions). Experimental data, then, can be scaled to the natural radioactive environment
without introducing artifacts.

While the probability for a neutron to cause a permanent fault in SRAM memory
or logic components is negligible [10], DDR can experience permanent or intermittent
faults caused by neutrons [39]. Our experimental setup can detect any signs of a
permanently damaged GPU during our experiments. During neutron irradiation, we
execute additional runs at every output error occurrence to ensure that the observed
error is not repeated in the following executions. Moreover, we regularly perform
hardware integrity checks (memory checks) when the neutron beam is turned off,
and we also log any operating system messages that indicate driver errors related to
permanent faults, such as ECC uncorrectable errors. If there is any indication that
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the GPU is permanently damaged, we remove the data obtained between the cheeks.
Consequently, the data is not used for the paper’s conclusion.

Figure 2 shows a portion of the setup installed at ChipIR during one of the mul-
tiple test campaigns we performed. We align multiple GPUs with the neutron beam
and control them using motherboards. The supporting motherboards and equipment
are covered with boron plastic to protect them from scattering thermal neutrons. Only
the GPU core is irradiated, that is, DDR and power control circuitry of the board is
outside of the beam spot. We are, in fact, interested in the radiation effects on the
computing core of the GPU not on the DDR, which has already been extensively stud-
ied. For Volta GPUs, in which the HBM2 memories are very close to the GPU core,
we either turn the ECC ON or triplicate the data in the main memory to guarantee
that all observed errors are generated in the GPU core. Additionally, ECC on GPUs
uses Single Error Correction and Double Error Detection (SECDED). Thus, ECC can
correct a single error and detect if two bits are flipped in a memory word. During the
experiments, all executions where double-bit flips are detected are considered DUEs
as the NVIDIA driver raises an exception and is thus removed from the SDC rate
analysis. Since with beam experiments, faults are observed only when they mani-
fest at the output, in our evaluation, we focus on the error rate, i.e., the probability
for the output to be corrupted. We compare configurations in which one and only
one characteristic is changed. Even if we cannot determine the cause of the error, we
can still conclude that the only changed characteristic is resulting in a change in the
failure rate. It is also interesting to note that the impact of the fault in the output cor-
rectness depends on the resource that has been corrupted. Recent works have shown,
with low-level fault-injections, that faults in memories have a naive fault model (sin-
gle or double bit flips) while a fault in the Arithmetic Logic Unit (ALU), scheduler, or
special functional units induce a not trivial syndrome, eventually corrupting multiple
parallel processes [40–43].

While ChipIR and LANSCE have been shown to provide similar FIT rates, we
only compare configurations tested at the same facility to reduce data uncertainty.
We always compare configurations that differ of only one characteristic. Thus, we can
derive that the observed trend is strictly related to the characteristic that we have
modified. Moreover, thanks to the application profile and analysis, we can provide a
justification for the obtained results.

5 Performance and Error Rate Comparison

In this section, we consider four different solutions to improve GPU performance: (a)
algorithm solutions, i.e., code optimization to better fit GPUs computing capabilities,
(b) degree of parallelism, to fully use the GPU parallel architecture, (c) architectural
solutions, such as tensor core and mixed-precision, and (d) compiler optimization to
produce a more efficient machine code. For each evaluated solution, we consider the
benefit in terms of performance and the impact on the error rate.

To compare the performance and the error rate of the different codes implementa-
tions, we plot the relative FIT rate and execution time of the tested configurations.
That is, we divide the FIT rate (execution time) of each tested configuration by the
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Fig. 3: Relative effects of changing the algorithm implementation on the Failure In
Time rate, Execution time, and Mean Execution Between Failures for FFT, GEMM,
NW, and Sort executed on the Kepler K20 with ECC OFF. For each benchmark, we
evaluate the Naive vs. Optimized implementation. The input and algorithm is the
same for each configuration. For all codes, the lower FIT and MEBF (1.0 reference
point) is achieved for the naive implementation, while the lower execution time with
the optimized implementation (i.e., 860 ms, 7 ms, 1280 ms, and 344 ms for FFT,
Optimized GEMM, NW, and SORT, respectively.). Then, increasing the code perfor-
mance increases the FIT rate, but the performance gain is higher than the error rate
increasing. Consequently, more executions are correctly completed before a failure.

lower FIT rate (execution time) we measured. Thus, we show how the different opti-
mizations impact the FIT rate and the execution time. Additionally, we show the
relative MEBF (and MWBF for mixed-precision, as the amount of produced data
changes). In other words, in each of the following graphs the lower measured value
for FIT rate, execution time, and MEBF is plotted with value 1.0. We decided to
present relative FIT rate values to ease the comparison between configurations and
not to reveal business-sensitive data. In literature, it is possible to find experimental
data showing the absolute FIT rate of GPUs [44, 45]. Depending on the device and
code executed, the GPU error rate ranges between 10s to 1000s of FITs.

We show how and detail why most of (but not all) the solutions that improve
the performance have the drawback of increasing the error rate. However, in the vast
majority of the cases, the performance gain is much higher than the error rate increase,
leading to a more reliable execution.

All experimentally measured relative FIT rates and MEBF are shown with 95%
confidence intervals with a Poisson distribution. The methodology from Quinn [46]
was used for this purpose. The error bars for MEBF were then calculated based on
the FIT rate error bars alone.

5.1 Algorithmic Solutions

The same algorithm can be implemented in various ways and, on GPUs, it is also
necessary to find the parallel implementation that delivers the best performance.
The most common code optimizations reduce the memory latencies, increase data
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locality, and adapt the computation to the parallel architecture of GPUs, e.g., lim-
iting the interactions between active threads, removing conditional statements and
synchronizations.

We have selected four common algorithms for GPUs: 512x512 FFT, 2Kx2K
GEMM, 16K NW, and 32M Sorting. For each, we have considered a naive parallel
implementation, i.e., not crafted to fully exploit GPU characteristics, and the opti-
mized implementation. Both implementations are taken from available benchmarks
suites [47–49]. We underline that our goal is not to discuss how to optimize the cod-
ing for GPUs but rather to understand the existing optimizations that impact on the
performance and error rate. In the following, we will provide an overview of the differ-
ences between the two implementations. Further details about the optimizations can
be found in the benchmarks repositories [47–49].

In the Naive GEMM implementation, each thread is responsible for computing one
output element, performing 2048 sums and additions, thus saturating the number of
registers and caches available in the SM. The Optimized GEMM implementation is
taken from the NVIDIA CuBLAS library and, by dividing the matrices in custom tiles
sizes and applying specific algorithm policies, ensures that each thread works only on
local data and increases the parallel occupancy of the SM [33]. For FFT, in the naive
implementation, each thread computes an FFT on 512 points independently from
the others, forcing most data to be stored in the main memory, increasing the mem-
ory latency. The efficient FFT implementation, developed by Volkov and Kazian [50],
divides the 512 FFT computations among 64 threads (2 warps), using only shared data
and avoiding synchronizations. For NW (sequencing of DNA), in the naive implemen-
tation, each algorithm step, performing a diagonal search, is done in a dedicated kernel
while the optimized implementation organizes the input in matrices of 32x32 cells, and
each group is assigned to a warp, reducing the number of kernels and improving the
efficiency. For sorting, the naive implementation is Quicksort, and the optimized one
is Mergesort. Both MergeSort and QuickSort use Bitonic sort to sort batches of array
elements. However, the way they are organized can impact their performance. Merge-
Sort’s sub-kernel calls are optimized for sorting midsized (key, value) array pairs. In
our case, the CPU manages these sub-kernel calls. On the other hand, QuickSort uses
CUDA Device Parallelism to manage the sub-kernel calls, which adds some synchro-
nization inside the GPU kernel. This synchronization reduces the performance of the
input array sorting.

Figure 3 shows the relative FIT rate, execution time, and MEBF of the naive and
optimized implementation of the four algorithms executed on Kepler K20 GPUs, with
ECC OFF. As shown, the naive implementation is from 0.5 × (for NW) to 6 × (for
Naive GEMM) slower than the optimized one. The FIT rate has the opposite trend
for all the codes, with the optimized implementation having an up to 2 × higher
error rate than the naive one (for FFT). The higher FIT rate is caused by the denser
computation imposed by the optimizations. In fact, by removing the parallel thread
stalls (due to synchronizations or memory latencies) or by avoiding the saturation
of local memory (caches and registers), we can increase the number of threads that
are active in parallel. This, as shown in Figure 3, has the benefit of improving the
performance but increases the number of parallel operations, thus increasing the FIT
rate.
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A promising result is that, for all the considered optimizations, the performance
benefit is higher than the FIT rate increase. The MEBF (number of executions com-
pleted between failures) is always higher for the optimized version, being up to 5 ×
higher for Optimized GEMM. A optimized algorithm is then to be preferred, if the
goal is to increase the amount of data correctly produced by the GPU. On average,
the optimized version of the algorithm allows to correctly complete about 2.2× more
executions than the naive one.

5.2 Degree of Parallelism

To maximize the performance of a code on a GPU, it is fundamental to increase
as much as possible the Degree of Parallelism (DOP) at the thread and instruction
level. We consider two applications, 2048x2048 double precision floating point GEMM
(Naive version) and a 512x512 FFT, and two microbenchmarks (ADD and MUL),
implemented with increasing DOP. The idea is to keep the workload constant, gradu-
ally increasing the number of threads in which the workload is divided (reducing the
number of operations each thread has to perform). We have used a Fermi GPU with
the ECC turned OFF for this experiment.

Figure 4 shows how increasing the DOP influences the FIT, execution time, and
MEBF of Naive GEMM and FFT. On the left side of Figure 4 we keep constant the
number of threads per block (256 for Naive GEMM and 512 for FFT), increasing just
the number of blocks. On the right side of Figure 4 we keep the number of blocks
constant (16K for Naive GEMM and 512 for FFT), increasing just the number of
threads per block. The number of blocks and threads per block has been chosen to fit
the algorithm better and ease its coding.

5.2.1 Constant number of threads per block

A very interesting trend can be observed on the left part of Figure 4, where the DOP is
increased, keeping the number of threads per block constant to 256 for Naive GEMM
and 512 for FFT. In both algorithms, the execution time and the FIT rate decrease
when we increase the number of blocks. This should not surprise, given that even
the configuration with the lowest number of blocks fully exploits the GPU hardware
(except for FFT with 14 blocks, which leaves idle 1 of the 15 SMs, to ease the cod-
ing of the algorithm), and each block has 256 or 512 threads, ensuring that all 32
CUDA cores in each SM of the Fermi GPU are being used. Thus, the DOP is increased
without increasing the GPU exposed computing area but actually reducing the SM
memory footprint (which influences the error rate as ECC is OFF). Since the num-
ber of operations to perform is constant and we increase the number of blocks (but
keeping the number of threads per block constant), each thread has fewer operations
to complete and, thus, less memory to allocate. The number of blocks that can be
scheduled in parallel is fixed, and thus, the memory footprint at a given time in the
GPU is reduced. In other words, the overall memory utilization is the same, but the
memory allocated at a given moment is reduced.

In fact, at most 15 blocks can be executed concurrently on the Fermi and, as
we increase the DOP, each thread has less operations to perform and, consequently,
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Fig. 4: Relative effects of varying the Degree of Parallelism on the FIT rate, execution
time, and MEBF of Naive GEMM and FFT executed on the Fermi GPU with ECC
OFF. We first maintain the number of threads per block constant (256 for Naive
GEMM and 512 for FFT), increasing the number of blocks, and then keep the number
of blocks constant (16K for Naive GEMM and 512 for FFT), increasing the number
of threads per block. The workload is constant for all configurations. Increasing the
number of blocks (left figures) or increasing the number of parallel threads per block
(right figures) increases the DOP, reducing the number of operations each thread has
to execute. The execution time for the fastest configurations (highest DOP, i.e., 256
threads and 16K Blocks) is 655ms for Naive GEMM and 104ms for FFT.

smaller memory requirements. While the overall memory utilization is the same, at a
given time, the amount of exposed memory is then reduced and the fact that there
are more blocks to schedule does not increase the exposed memory area, as at most
15 of them can be executed in parallel. As a result, a higher DOP with constant block
size implies fewer operations executed and less memory stored in each SM, slightly
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reducing the FIT rate. Concurrently, the execution time is also reduced as a higher
DOP better fits the GPU architecture. This leads to a significant MEBF improvement,
with the configuration delivering a higher performance having a MEBF that is 2 ×
and 1.6 × higher than the slower one for Naive GEMM and FFT, respectively.

5.2.2 Constant number of blocks

A different trend is observed when the DOP is increased keeping the number of blocks
constant (16K for Naive GEMM and 512 for FFT) and increasing the number of
threads per block (right figures). In Figure 4b, it is worth noting that we have used
thread blocks smaller than 32. This can lead to inactive threads within a warp since
the smallest warp size is 32 threads. Although this scenario should be avoided if aiming
for the highest performance, we have used it as a theoretical starting point for our
analysis. This approach helps highlight the increasing trend of FIT, making it easier
to understand our claim.

For both Naive GEMM and FFT, when the number of threads per block is
increased, the FIT rate increases, and the execution time decreases. This is because
increasing the number of threads per block imposes higher memory and scheduler
requirements in each SM (which increases the FIT) and reduces the number of sequen-
tial operations of each thread (which reduces the execution time). The number of
threads per block should then be carefully engineered. We also consider a configuration
that does not fully exploit the GPU parallelism (16 threads per block for Naive GEMM
and 1 for FFT). As shown in Figure 4, using fewer computing cores than the 32 avail-
able per SM reduces the FIT rate but jeopardizes the performance. Passing from 16
to 64 threads per block for Naive GEMM and from 1 to 32 for FFT, in fact, increases
the FIT rate of 1.5 × and 3.2 × , respectively, but reduces the execution time to 1/2
and 1/5, respectively. Intuitively, as 32 CUDA cores are available per SM, instantiat-
ing less than 32 threads per block underutilizes the GPU hardware reducing the FIT
rate but compromising the GPU parallel efficiency. As shown in Figure 4, underuti-
lizing the GPU is not a good reliability solution as the FIT reduction is not sufficient
to compensate for the performance degradation. When the instantiated threads are
fewer than the available CUDA cores, in fact, both Naive GEMM and FFT have the
lowest MEBF.

When the number of threads per block saturates the available cores, as shown in
the right side of Figure 4, the FIT rate is basically constant for Naive GEMM (number
of threads per block from 64 to 256) and, for FFT, the FIT increase is of about 0.5×
(threads per block are from 32 to 512). The (slight) FIT increase is caused by the
higher strain in the scheduler (more threads to manage) and the different memory
distribution. For FFT, the FIT increases faster as threads interact with each other
(butterfly modules), while in Naive GEMM, as there is no interaction between threads,
it is easier for the scheduler to dispatch parallel threads. As a result, when the DOP
saturates the number of available computing cores, the FIT rate slightly increases and
the performance gain slows down. For Naive GEMM, the best MEBF is achieved when
128 threads per block are instantiated, and it is just 0.2% lower than the configuration
that provides the best performance (256 threads). For the FFT, the data exchange
between threads reduces the benefit of a higher DOP, increasing the FIT rate faster
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than the performance. As a result, the best MEBF is achieved as soon as there are
sufficient threads to occupy all available CUDA cores (32).

What we can derive from the proposed DOP analysis is that underutilizing the
GPU is never a good idea as, even if the FIT rate is reduced, the performance are
jeopardized. When the GPU resources are saturated, the FIT rate normally grows
slower than the execution time reduction, increasing the MEBF. Particular attention
needs to be given to the block size. Having too many threads in a block can lead
to memory latencies or scheduler overcharges that reduce the benefit brought by the
faster execution.

Note that the DOP must be combined with an intelligent algorithm design to
enhance thread- and instruction-level parallelism. Simply increasing the number of
threads or blocks without a proper strategy may result in poor performance. For
instance, the Naive GEMM schedules more threads per block than the Optimized
GEMM (1024 vs. 256), but it is significantly slower (6x) due to the lack of hierarchical
decomposition strategies used in the Optimized GEMM in cuBLAS. In contrast, the
Optimized GEMM splits matrix tiles to extract maximum instruction- and thread-level
parallelism while minimizing unnecessary memory movements. This approach follows
the concepts discussed in Volkov and Kazian [50] and in Volkov and Demmel [33].

While increasing the number of blocks seems a good reliability solution, increasing
the number of threads per block modifies the SM occupancy and deserves better
attention. To further investigate the GPU reliability dependence on the SM occupancy,
we consider two microbenchmarks, ADD and MUL, in which each of the 15 blocks of
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Fig. 6: Relative impact of using mixed-precision or tensor core in the Failure In Time,
Execution Time, and Mean Executions or Work Between Failures of the tested Volta
V100 GPU. For the FP16 YOLOv3 we have highlighted the time wasted in the casting
of data. The use of dedicated reduced precision cores improves the performance and
reduces the FIT rate, both when ECC is OFF and ON (ECC ON reduces of 1 order of
magnitude the SDC rate). Tensor core is particularly efficient in reducing the execution
time, thus exacerbating the benefit in terms of MEBF. The execution time of the most
optimized version is 254 ms for GEMM with FP16 Tensor Cores, 1,029 ms for GEMM
optimized with FP16, 315 ms for LavaMD with FP16, and 29 ms for YOLOV3 with
FP16.

threads need to execute 10,240,000 operations (ADDs or MULs). Unlike Naive GEMM
and FFT, for the microbenchmarks, there is no caches utilization and no interaction
nor dependencies between threads (each thread executes the operations on dedicated
registers). We test 15 blocks to avoid stimulating the block scheduler. We start by
instantiating one warp of threads (32 threads) per block, executing the 10,240,000
operations (320,000 operations for each thread). Then, we increase the number of
threads by a multiple of 32, gradually reducing the operations each thread has to
execute.

Figure 5 shows the relative FIT rate, execution time, and MEBF of both ADD and
MUL microbenchmarks as we increase the block size from 32 to 1024 threads, keeping
the overall workload constant. It is worth noting that ADD and MUL have different
FIT rates since they use different data paths and since GPUs possess dedicated hard-
ware for both sums and multiplications. In fact, even if MUL is much more complex
than ADD, the execution time of the two operations is very similar. Moreover, ADD
and MUL are very different operations, which means that the probability of the hard-
ware fault propagating to the output is different, further justifying the observed FIT
rates.

As observed for Naive GEMM and FFT on the right side of Figure 4, increasing the
number of threads (15x32, 15x256, 15x512, 15x1K) gradually increases the FIT rate.
The FIT increases because of the higher strain on the warp scheduler and of the data
distribution in the SM register file. In particular, as the threads in ADD and MUL
benchmarks do not interact with each other, there are no dependencies, and the whole
block of threads can be put in the active waiting queue of the GPU and can then be
corrupted. As a result, the FIT increases for ADD and MUL at a rate much faster
than for Naive GEMM and FFT. That is, while Figure 4 shows that the maximum
increase in the FIT rate is up to 6×, the FIT rate increase for the microbenchmarks
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ADD and MUL is up to 16×. As shown in Figure 5, increasing the code parallelism
still improves the performance, with the configuration with the highest number of
parallel threads (15x1K) being the one with the lowest execution time (and highest
FIT rate). The configuration with the lowest FIT rate does not provide the higher
MEBF, on the contrary, it is the configuration with the worst MEBF because of the
very high execution time.

From the data on Figure 4 and Figure 5 we can derive that, when the number of
threads per block is increased, the execution time decreases fast until saturating (at
128 threads per block for Naive GEMM, 32 for FFT, 256 for ADD and MUL). This is
also the configuration that seems to provide the best MEBF. Further increasing the
block size only slightly reduces the execution time but because each thread executes
fewer operations, not because the GPU is better utilized. As a general rule, we can
state that the number of threads per block should be engineered to fully exploit the
GPU parallelism without saturating the SM register/cache.

5.3 Architectural Solutions

The GPUs architects are making available dedicated hardware resources to improve
the efficiency and the performance of key operations. This is the case of tensor core
and mixed-precision functional units. In modern GPUs, NVIDIA introduced dedicated
functional units to execute operations in various floating point precision (FP64, FP32,
FP16, and 8-bit integer). Lower precision units are smaller, faster, and more efficient.
On the other hand, there are normally more low precision than high precision units
available. In the Volta architecture, there are twice as many FP32 cores as FP64 cores.
Nonetheless, the execution time and energy consumption of the FP64 implementation
of the code is higher than the FP32, indicating that a globally larger area is required
to execute an FP64 code. The user can select the precision of the executed operations
to tune the hardware utilization (and the execution time) with the application’s needs.
Tensor core is an architectural solution to improve the performance of matrix multi-
plication execution. A tensor core is a hardware unit that multiplies a matrix tile of
N ×M in a single instruction. For Volta microarchitecture, this tile has the dimen-
sions of 4×4 [34]. The tensor core is based on Matrix-Multiply-Add (MMA) operation,
accumulating the multiplication of two matrices in the output and it delivers up to 9x
higher performance than the software implementation of GEMM (sequence of sums
and multiplications) on GPUs and up to 47x than a CPU-based system [35].

The strategic choice to design dedicated hardware for mixed-precision and matrix
multiplication is justified by the importance of these operations for the training and
interference of Convolutional Neural Networks (CNNs). In fact, executing CNNs in
low precision significantly reduce the GPU’s power consumption and execution time,
with a negligible impact on the object detection accuracy [51]. Additionally, more than
70% of operations in a CNN are matrix-multiplication (convolution) related [52] and
can benefit from the use of the tensor core. Despite improving the performance, the
use of tensor core and mixed-precision functional units, by modifying the hardware
used for computation, is likely to impact (for better or worse) the GPU error rate.

Figure 6 shows, for the Volta V100 GPU, the relative FIT rate, execution time,
MEBF, and MWBF for LavaMD, and GEMM implemented in FP64, FP32, and FP16.
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GEMM is also executed with ECC ON and, in FP16, using tensor core. We also con-
sider YOLOV3 executed in FP32 and FP16. Both YOLOV3 precisions are executed
with ECC ON. To have a fair comparison, YOLO was not retrained. We simply cast
the FP32 data to FP16 and execute the convolutions. This choice guarantees that the
FP32 and FP16 implementations share the same PVF and the same weights, thus, the
observed different error rate is solely related to the precision reduction. The cast oper-
ations reduce about 23% the benefit, in terms of performance, of executing the CNN in
lower precision. In Figure 6, we also show the Mean Work Between Failure (MWBF) to
have a fair comparison between the different precisions (an FP64 execution produces
4× more work than an FP16 execution).

From Figure 6, it is evident that both reduced precision and tensor core improve
the performance. On average, the FP64 implementation has a 3.94× higher execution
time than the FP16 implementation. As mentioned, for YOLO, the execution time of
FP32 and PF16 is similar due to data casting. A purely FP16 execution would have
a 23% lower execution time. Interestingly, the FIT rate follows the same trend of the
execution time, with the FP64 implementation having, on average, a 4 × higher FIT
rate compared to the FP16 implementation. This is not surprising, as the lower the
precision, the lower the area of the functional unit. Consequently, reducing the preci-
sion of the operations significantly improves the MEBF, and even if we consider the
MWBF (4× more bits are output for FP64 than for FP16), the reduced precision exe-
cution outperforms the other configurations. In accordance with previous studies [53],
when ECC is enabled, we observed that the SDC rate is reduced of about 1 order
of magnitude (here we only show relative comparisons). What is interesting, is that
when ECC is ON (only shown for GEMM), the benefit in the FIT rate is maintained,
indicating that the lower error rate is not solely attributed to the lower amount of
memory (with ECC ON memory faults are masked) but also to the smaller sizes of the
lower precision functional units. Whenever possible, the use of lower precision units
is definitely recommended on GPUs. It is worth noting that such a positive result
for reduced precision is achieved only thanks to the dedicated hardware available in
GPUs. The opposite trend has been observed if the reduced precision operations are
executed in devices that lack dedicated functional units [32].

Tensor core, as shown for GEMM with ECC ON in Figure 6, has a 63% lower
FIT rate compared to the software implementation of FP16 matrix multiplication.
The tensor core circuit, despite being bigger than an adder and multiplier, is slightly
more reliable than the combination of adders, multiplications, and the loop control
variables required to implement GEMM in software. Tensor core is particularly efficient
in improving the GPU performance, providing (in the FP16 implementation) a 2 ×
higher MEBF (and MWBF) than the FP16 software GEMM. Whenever possible, then,
the use of a tensor core is highly recommended.

Finally, when the ECC is disabled, all memory levels remain unprotected. This
means the SDC rate will be directly correlated to the memory used. However, even
if the ECC is turned off, how memory values are utilized can still affect the SDC
rate. For instance, if two different optimizations have the same memory footprint, the
way each code uses the memory values (i.e., the optimization technique) will have an
impact on the SDC rate.
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Fig. 7: Relative differences of changing the compiler optimizations of Failure In Time,
Execution Time, and Mean Executions Between Failures for GEMM executed on
Kepler GPU with ECC ON. The reduction in the number of instructions and the
better usage of the GPU resources improves the performance and the reliability, conse-
quently increasing the MEBF. The execution time of the baseline and most optimized
version (O3) of GEMM is 233 ms.

5.4 Compiler Optimizations

Figure 7 shows the relative execution time, FIT rate, and the MEBF for the GEMM
compiled with four different optimizations, O0, O1, O3+MinRf (O3 restricting the
thread register usage to the minimum), and O3. The GEMM kernel uses 25, 16, and
29 registers per thread for optimizations O0/O1, O3+MinRF, and O3, respectively.
We show the value for each metric relative to the lower value between the tested
configurations. That is, the lower value for each metric in each graph is always 1.
Results are obtained on a Kepler K20 GPU with ECC ON. We choose to test the
compiler optimization with ECC enabled to focus on the computation errors.

The static compiler optimizations, by changing the number and kind of machine
instructions of each thread, can impact the reliability of a code running on a GPU.
The O0 flag produces the least optimized machine code, including many instructions
that could be simplified or reordered. The O0 version has the highest number of
instructions, being 290% higher than the O3 version, the O0 version also includes 21×
more memory movements instructions than the O3 and 9× more integer instructions
than the O3 version. As shown in Figure 7, these inefficient set of instructions increases
both the execution time and the error rate, consequently reducing the MEBF.

The execution time decreases significantly when the first optimization level is
applied (O1), but the FIT rate remains similar to O0. As discussed in Section 2.2,
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the FIT rate does not depend on the execution time but on how the code uses the
resources. O1 significantly reduced the number of machine instructions compared to
O0, however, the instruction organization is still inefficient. In fact, the stalls caused
by instruction dependence on the code generated with O1 are still higher than the
code generated with O3 (19% higher). O1 basically only organizes the instructions dif-
ferently, but still reaches a similar execution time compared to O3. As the execution
time for O1 is almost half the O0 one, and the FIT remains similar, the MEBF for
the O1 configuration is ∼ 2x the O0 one.

O3 optimization level is the most aggressive optimization that can be applied to the
code without approximation, algorithm improvement, or architectural optimizations.
We consider the O3 both when the register per thread is limited to 16 (45% fewer
registers than only O3 code) and when all registers can be used. The execution time
for the two versions are similar (O3+MinRF has a 5% higher execution time), and
O3+MinRF has 5.5% more instructions than the O3 version, necessary to perform the
register spill to the memory. These additional instructions executed on the O3+MinRF
increase the FIT rate. We recall that, as the ECC is enabled, the extra register footprint
of O3 compared to O3+MinRF does not increase the FIT rate.

O3 compiled code provides the optimal resource utilization, with the smallest num-
ber of machine instructions to reach the code solution (in O3, only 13% of the stalls are
caused by instruction dependency). Consequently, O3 has the lowest FIT rate com-
pared to the other configurations, and the MEBF of O3 can be 6.1× higher than O0.
Compiler optimizations, then, can significantly impact the reliability of a code, and
better resources utilization can reduce the FIT rate while improving the performance.
Higher compiler optimizations, then, are definitely to be preferred.

6 Implications and Projections

Figure 8, recalling the graph of Figure 1, resumes obtained results for the different opti-
mizations we have considered. We have considered, for each optimization, the naive,
average, and high optimization level (that depends on the optimization itself). Details
about each optimization can be found in the previous Sections. We have observed that
GPUs seem particularly suitable for fast execution, even when reliability is concerned.
The chosen optimization impacts the area of the GPU used for computation and, thus,
the SDC FIT rate. Using compiler optimizations (Section 5.4) or taking advantage of
architectural solutions such as reduced-precision or tensor cores (Section 5.3) reduces
the SDC FIT rates and improves performance. Optimizing the algorithm (Section 5.1)
or exploiting the Degree of Parallelism (Section 5.2), on the contrary, has the side effect
of increasing the exposed area and, thus, the FIT rate. Nonetheless, in most configura-
tions, the performance gain is higher than the drawback brought by a higher FIT rate.
In particular, when the programmer optimizes the algorithm for the GPU architecture,
the FIT increases, but a significant performance improvement ensures a higher MEBF
(over 2× more executions correctly performed for any of the considered optimization
strategies). The Degree of Parallelism is highly beneficial for both the execution time
and error rate when implemented by increasing the number of blocks and keeping the

23



number of threads per block constant to the maximum that can be executed in par-
allel in a SM. When the number of threads per block increases, the higher MEBF is
achieved when the computing resources are not saturated (i.e., threads do not wait
to be executed). Architectural improvements are the most effective optimizations in
terms of MEBF. If the programmer chooses to use a lower precision execution, both
the FIT rate and execution time are reduced significantly, achieving, on average, over
10 × (up to ∼ 25 × for LavaMD) a higher number of executions correctly completed
between failures. The tensor core does not impact much the FIT rate but bursts the
performance, reaching a ∼ 16× higher MEBF than the software GEMM. Finally, for
GEMM, higher compiler optimizations are preferred as they reduce the FIT rate and
the execution time, guaranteeing an over 6 × higher MEBF.

If the goal is to increase the amount of data that can be correctly produced, when-
ever possible, it is then always preferable to choose the configuration that delivers the
best performance and avoids inter SM resources saturation. If the GPU is used in a
project where high reliability is required, such as autonomous vehicles, then to be com-
pliant with existing reliability standards such as the ISO26262, it is necessary to reduce
the FIT rate, regardless of the performance. We have seen that DOP at blocks level,
mixed-precision, and compiler optimizations are excellent ways to (slightly) reduce
the FIT rate with a positive side effect of improving (significantly) the performance.
We believe that the most impactful result we have presented is that, without partic-
ular effort, the programmer has the capability of easily improving (significantly) the
reliability of the execution.

In this paper, not to reveal business-sensitive information, we have not explicitly
compared the error rate of the three architectures we have tested (Fermi, Kepler,
Volta). Nonetheless, we can mention that the reliability of the tested GPUs have sig-
nificantly improved through the generations. Overall, executing the same code on a
Kepler GPU has an experimentally measured error rate of about one order of magni-
tude lower than the Fermi, and the same code on the Volta would be almost one order
of magnitude more reliable than on the Kepler. The improved reliability seems much
higher than the one reported for similar technologies and even higher than the reported
one for the memory structures of NVIDIA GPUs [54]. Obviously, as the technology
and architecture of GPU advance, the performance improves [35]. If we also consider
the improvement in the performance and efficiency between the different GPU gener-
ations, the number of correctly completed executions are likely to increase by almost
two orders of magnitude. The intense research to improve GPUs’ reliability has borne
fruit and paves a promising path for the future.

7 Conclusions

In this paper, we have evaluated the impact in the final code reliability of the most
common optimizations available to GPU developers and architects. We have con-
sidered software optimizations, Degree Of Parallelism, compiler optimizations, and
architectural solutions to speed up a set of applications executed on GPUs belong-
ing to three different generations. The results we have presented, based on extensive
neutron beam experiment campaigns, are highly encouraging, as the faster execution
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Fig. 8: Overview of the results for the different performance optimizations strategies
we have considered. We have averaged the performance/MEBF improvements for a
naive implementation (low optimization level), average optimization (not available for
algorithm solution), and aggressive optimization (high optimization level).

does not necessarily increase the GPU error rate, and even if it does, the execution
time is reduced much more than the FIT rate increase. To improve reliability, then, it
is not mandatory to add extra hardware or specific hardening solutions. It is actually
not even necessary to sacrifice performance as, in most configurations, we can have it
all: a faster configuration that can also produce more correct data.

In particular, the use of dedicated hardware functional units and compiler opti-
mizations are particularly efficient in improving the reliability-performance trade-off.
Degree Of Parallelism increase needs a special attention, as saturating the inter-
SM resources delivers an MEBF that is (slightly) smaller than the best achievable
one. Finally, the technology and GPU architecture evolution play a significant role
in improving reliability. This is a promising indication that, once being only voted
to applications with low-reliability requirements, GPUs are now becoming devices
designed with a particular attention to reliability.

Novel GPU architectures have additional architectural resources to improve the
efficiency of computation. While we leave the test of these novel resources and devices
as future work, our evaluation suggests that in the vast majority of the cases, a more
efficient execution leads to a higher amount of data correctly produced. We think this
also holds for the new generations of GPUs. Finally, as a future direction, we can
focus on evaluating the impact of specific optimizations that newer architectures like
Ampere and Ada bring on reliability. Two examples of such optimizations include new
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float and integer precision (e.g., FP8 and INT4) and using approximation flags such
as approximations to division or approximation to float math functions.
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