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Contention and Reliability-Aware Energy Efficiency
Task Mapping on NoC-Based MPSoCs

Lei Mo∗, Member, IEEE, Xinmei Li∗, Student Member, IEEE, Angeliki Kritikakou†, Member, IEEE, and Xiaojun
Zhai‡, Senior Member, IEEE

Abstract—Recently, Network-on-Chip (NoC)-based Multi-
Processor System-on-Chips (MPSoCs) have become popular
computing platforms for real-time applications due to high
communication performance and energy efficiency over traditional
bus-based MPSoCs. Due to the nature of network structures,
network congestion along with transient faults, can significantly
affect communication efficiency and system reliability. Most
existing works have rarely focused on the concurrent optimization
of network contention, reliability, and energy consumption. Here,
we study the problem of contention and reliability-aware task
mapping under real-time constraints for dynamic voltage and
frequency scaling-enabled NoC. The problem entails optimizing
voltage/frequency on cores and links to reduce energy consumption
and ensure system reliability, while task mapping and slack
time are adopted to alleviate network contention and reduce
latency. We aim to minimize computation and communication
energy and balance workload. This problem is formulated as
a mixed-integer nonlinear programming, and we present an
effective linearization scheme that equivalently transforms it into
a mixed-integer linear programming to find the optimal solution.
To reduce computation time, we propose a three-step heuristic,
including task allocation, frequency scaling and edge scheduling,
and communication contention management. Finally, we perform
extensive simulations to evaluate the proposed method. The
results show we can achieve 31.6% and 21.7% energy savings,
with 95.5% and 98.6% less contention than the existing methods.

Index Terms—Contention-aware, Reliability-aware, Energy
Management, Task mapping, NoC.

I. INTRODUCTION

W ITH the increasing demand for high computing per-
formances, e.g., Internet of Things (IoT) [1], big data

processes [2], cloud centers [3] and blockchain systems [4],
Multi-Processor System-on-Chip (MPSoC) architectures inte-
grate multiple cores into a single platform. The increase in
cores leads to many issues and challenges for traditional shared
bus-based multicore platforms, such as poor scalability and low
communication efficiency due to the limited bus bandwidth [5].
To address the scalability and bandwidth issues, Network-on-
Chip (NoC) has been proposed as an interconnection architec-
ture solution with much better scalability, flexibility, parallelism,
and communication efficiency, compared to the traditional bus-
based multicore platforms [6]. In the NoC-based MPSoCs, e.g.,
the Ethereal NoC [7], the Versal NoC [8], and the Arteris
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NoC [9], the Operating System (OS) can run at each core,
responsible for task scheduling, task loading, packet assem-
bly/disassembly, and Direct Memory Access (DMA) manage-
ment, enabling the platforms to meet multiple constraints.

Furthermore, energy consumption has become an essential
issue for the NoC-based MPSoCs as the number of cores
increases. To achieve an effective system, appropriate task
mapping methods are needed. Most energy-aware task mapping
methods in bus-based MPSoCs mainly focus on the energy
consumption of computation, e.g., [10]–[12]. To reduce both
computation and communication energy consumption, the NoC-
based MPSoCs are enhanced with Dynamic Voltage and Fre-
quency Scheduling (DVFS) for cores, routers, and links [13]–
[16]. The energy consumption can be reduced by lowering the
Voltage/Frequency (V/F) level. However, the decrease in operat-
ing V/F levels impacts the transient fault rate on cores, routers,
and links, thereby decreasing the system reliability [17]. There-
fore, the trade-off between energy consumption and system
reliability should be considered during task mapping on NoC-
based MPSoCs. Some existing works [18]–[21] have studied the
joint design problem of saving energy and enhancing system
reliability. For instance, transient faults are considered on links
and routers [18], [19] or cores [20], [21]. As transient faults may
occur during task execution and communication, it is necessary
to consider that they can occur on cores, routers, and links when
optimizing task mapping for energy consumption and system
reliability on NoC-based platforms.

Due to the nature of the network-based structure, the task
mapping strategy on NoC-based platforms may cause network
contention among the task data communication over the shared
communication resource, i.e., routers and links. If a link is
occupied due to the transmission of a message, any other mes-
sages requiring the same link will wait until the link becomes
available [6], [14]. Network congestion degrades system perfor-
mance due to the increased transmission delay, thereby affecting
the execution time of applications, which is of paramount
importance, especially for real-time applications [6]. For the
NoC-based platforms, it is necessary to consider communica-
tion contention during task mapping. However, most existing
works focused on energy and (or) reliability improvement but
ignored the influence of communication contention [18], [21].
Other works alleviated the network congestion by introducing
fixed slack time into the task scheduling [13]. Note that load
imbalance may cause overloading and local network congestion
on NoC. Overloading decreases power efficiency and system
reliability [22]–[24] since the cores with high computation loads
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stay active most of the time while the remaining cores are
idle. To obtain an efficient system, we must simultaneously
alleviate network contention, balance workload, and improve
energy efficiency and reliability.

To address the above issues, we propose a novel task mapping
method to jointly optimize energy efficiency through DVFS
while balancing the workload and mitigating the communication
contention on the NoC-based platform under real-time and
reliability constraints. Therefore, our method is suitable for
applications with energy efficiency, reliability, and timeliness
requirements, such as autonomous drones [25], and video pro-
cessing systems [26]. The main contributions of this paper are
summarized as follows:
(1) We holistically model the problem of reducing energy

consumption and balancing the workload for NoC-based
platforms. DVFS adjusts the V/F levels of cores and links,
reducing the total energy consumption under real-time and
reliability constraints. Communication contention is consid-
ered, where flexible slack time alleviates communication
contention, reducing latency.

(2) Based on the system model, the task mapping problem
is formulated as a mixed-integer nonlinear programming
(MINLP) problem, with the aim to minimize energy con-
sumption and balance workload under multiple constraints.
We apply the linearization method by introducing auxiliary
variables and additional constraints and then equivalently
transform the original problem into a mixed-integer linear
programming (MILP) problem to find the optimal solution.

(3) Taking advantage of the structure of the task mapping
problem, we propose a novel three-step heuristic to find
the solutions. First, a dynamic programming-based task
allocation heuristic is applied to find the task-to-core de-
cision. Then, the improved feasibility-pump heuristic is
used to determine the frequency assignment and the edge
scheduling. Finally, we calculate the precise contention
slack time and adjust frequencies on cores within the task
deadlines to reduce energy.

(4) We perform simulations on randomly generated task sets
and realistic application task sets to evaluate the perfor-
mance of our method in terms of energy consumption, task
reliability, and communication contention. Compared to the
state-of-the-art methods [6] and [21], our method achieves
31.6% and 21.7% energy reduction and has 95.5% and
98.6% lower average contention, while balancing workload
and satisfying reliability constraints. In addition, compared
to the optimal solution, our method has a polynomial com-
putation time, but with only 24.8% lower energy efficiency.

The remainder of this paper is organized as follows. Section II
discusses the related work. Section III presents a contention- and
reliability-aware task mapping problem. Section IV describes
the proposed three-step heuristic. Section V shows the simula-
tion results, and Section VI concludes this paper.

II. RELATED WORK

To improve system efficiency, such as achieving energy and
communication efficiency and reliability, task mapping on NoC-
based MPSoCs has gained significant attention in recent years.

TABLE I
COMPARISON OF RELATED WORKS

Ref. Optimization objectives RA CA LB
[27] Energy × × ×
[16] Energy × × ×
[21] Energy

√
× ×

[28] Task Replication Overhead
√

× ×
[20] Energy

√
× ×

[29] Energy + Temperature
√

× ×
[6] Latency ×

√
×

[30] Latency ×
√

×
[31] Makespan ×

√
×

[13] Makespan ×
√

×
[32] Energy + Latency ×

√
×

[15] Energy + Latency ×
√

×
[14] Energy ×

√
×

[18] Energy + Reliability + Latency
√

× ×
[19] Energy + Reliability + Latency

√ √
×

[22] Communication Efficiency + Workload × ×
√

[33] Energy + Execution Time + Workload
√

×
√

[34] Energy + Makespan + Contention ×
√ √

Pro. Minimize Energy + Balance Workload
√ √ √

Table I summarizes some representative works of task mapping
on NoC-based MPSoCs, which include Reliability Awareness
(RA), Contention Awareness (CA), and Load Balance (LB).

Energy efficiency is essential in NoC-based MPSoCs, es-
pecially for battery-powered mobile embedded systems [16].
Several works have studied energy-aware task scheduling on
NoC-based MPSoCs [16], [27] to minimize the total energy
of computation and communication under real-time constraints.
However, using low operating frequency to execute tasks may
impact task reliability, increasing the appearance of transient
faults. To address this issue, some approaches introduce relia-
bility constraints into energy-aware task mapping problem [20],
[21]. For transient faults occurring on cores, a fixed fault-
tolerant policy is applied [21], where tasks are duplicated,
and frequencies are adjusted simultaneously. To mitigate the
transient faults while improving real-time response, a fault-
tolerant method selects from several policies, i.e., checkpoint-
ing, task replication, and checkpointing with task replication
techniques [20]. A fault-tolerant mechanism based on the
backup copy that simultaneously optimizes temperature and
energy consumption is proposed in [29]. The primary task and
backup copy are executed on the primary and backup cores,
respectively, and the backup cores are used only when failures
exist in the primary cores. However, task replication introduces
replicas, which increases computation and communication costs.
To minimize task replicas and latency, [28] jointly addresses
transient faults of cores, links, and routers on NoCs.

Communication latency is another critical issue, as it affects
the execution time of mapped applications, especially for real-
time applications [6]. To minimize the communication latency,
approaches focus on the link contention between data transfers
over NoC [6], [30], [31]. In [6], [30], contention metrics are
introduced to identify the links of NoC with high loads, which
are prone to suffer congestion. The latency can be minimized
by bypassing the congested links. The communications with
potential contentions are prioritized, and priorities are used to
reduce the makespan [31]. However, the above methods only
consider optimizing communication efficiency, whereas energy
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efficiency and reliability are not considered.
Considering network contention, several works [13]–[15],

[32], [34] jointly optimize energy and latency. Few works also
take into account reliability [18], [19]. Considering energy- and
contention-aware task mapping on NoCs, the communication
latency is optimized in [13], [32] by adding a fixed latency time
into task scheduling, where the fixed latency time is calculated
by the worst congestion estimation to alleviate the impact
caused by link congestion. Energy consumption can be further
reduced through task mapping and DVFS. However, introduc-
ing a fixed latency time may postpone task completion time.
Therefore, optimizing task assignment and operation frequency
can help in meeting task deadlines. Communications with
contentions are prioritized to minimize energy consumption
[14], [15], [31]. Compared to [14] that only considers DVFS,
[15] integrates DVFS and DPM (Dynamic Power Management)
techniques together to reduce further energy consumption. The
optimization of the communication energy, reliability, and la-
tency on NoCs is proposed in [18] by assigning the tasks onto
a redundant core to avoid faulty links. Remapping and wait
mechanisms are applied to solve the faults on cores, links, and
routers while introducing fixed waiting time due to congestion
into the scheduling [19]. However, the methods mentioned
above only consider communication energy, more overhead is
introduced for task remapping, they require redundant NoC
hardware, and they omit the workload balance.

Regarding workload balance, it is optimized to improve the
system [22], [33], [34]. For instance, a trade-off task mapping
method balances workload and communication efficiency to
reduce task execution time in [22]. Considering faults on
routers, task reliability is tackled simultaneously considering
energy consumption, execution time, and load balancing [33],
but without network contention. An optimization method con-
sidering energy, makespan, and contention is proposed to avoid
spatial and temporal contentions in [34]. However, the frequency
adjustment and real-time constraints are not taken into account.
Compared to the state-of-the-art methods in Table I, our work
minimizes energy consumption and balances workload under
real-time and reliability constraints while alleviating the net-
work contention on the NoC-based platform.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

1) NoC Model: The target platform is a 2D mesh NoC-
based homogeneous MPSoCs, as it is widely used in current
NoC architecture [13], [14], [27]. The platform has a set P ,
{P1, . . . , PM} of M cores, and a set R , {R1, . . . , RM} of M
corresponding routers. For a 2D mesh NoC topology, as shown
in Fig. 1(a), each router Rs has five I/O ports, where four ports
are linked to the neighboring routers, while one is associated
with the corresponding core Ps [13]. In addition, each port has
a link and a buffer to transmit and store the data, respectively.
All the cores and links in the NoC platform are DVFS-enabled.
Each core can operate on a set {(vp,1, fp,1), . . . , (vp,Np

, fp,Np
)}

of Np discrete V/F levels, where (vp,k, fp,k) denotes the kth

V/F level of the core (1 ≤ k ≤ Np). Similarly, each link can
operate at a set {(vl,1, fl,1), . . . , (vl,Nl

, fl,Nl
)} of Nl discrete

V/F levels, and (vl,g, fl,g) denotes the gth V/F level of the
link (1 ≤ g ≤ Nl). We adopt the deterministic XY routing,
a popular routing method on 2D mesh NoC [13], [14], [27].
The routing set of physical links between cores Ps and Pd is
Ls,d , {ls,i, . . . , lj,d}, where ls,i (or lj,d) denotes the physical
link between cores Ps and Pi (or cores Pj and Pd), and each
link ls,d is full duplex with a bandwidth bω . The distance
between Ps and Pd represents the number of links in the
set Ls,d, and it can be measured by the Manhattan distance
hs,d = |xs − xd| + |ys − yd|, where (xs, ys) and (xd, yd)
are the coordinates of cores Ps and Pd in a mesh-based NoC,
respectively, as the example shown in Fig. 1(a).

2) Task Model: A real-time application with N dependent
tasks is modeled as a Directed Acyclic Graph (DAG) with 6-
tuple elements {T , E ,S,W,D, H}. T , {τ1, . . . , τN} is a real-
time task set with N tasks. E denotes the set of edges, where
each edge ei,j represents the dependency between tasks τi and
τj . Each edge has a weight si,j ∈ S, representing the size of
communication data between τi and τj . Each task τi has ωi ∈
W cycles, measured by Worst-Case Execution Cycles (WCEC).
Task τi is released at time 0 and has an individual deadline Di ∈
D. H is the scheduling horizon, which is also the period of task
τi. Due to the dependency, each task τi cannot start execution
until all its predecessors’ input data has arrived. At the same
time, the output data is concurrently available for transmission
to all its successors only when it completes execution.

We consider the transmission time over links for task data
communication since the extra overheads (e.g., data copy be-
tween buffers and inter-router delay) are negligible compared
with the transmission time [13]. Besides, we consider that the
transmission time is increased with the routing distance. For the
edge ei,j , if the data with the size si,j is transmitted from τi
to τj by one unit link, the link transmission time with the V/F
level (vl,g, fl,g) is calculated as

tULi,j,g = si,j/(bωfl,g), ∀ei,j ∈ E , 1 ≤ g ≤ Nl. (1)

If the routing distance is more than one unit, e.g., tasks τi
and τj are assigned to different cores Ps and Pd, and the
routing distance associated with the edge ei,j is hs,d, the
transmission time with the V/F level (vl,g, fl,g) is computed
as tLi,j,g = hs,dt

UL
i,j,g . If two tasks are assigned to the same core,

the communication cost between them is assumed to be zero.
3) Energy Model: Since each core and link can operate on

different V/F levels, switching brings extra overhead to energy
consumption and execution time. Compared with the energy
and time required for task execution and data communication,
the switching overhead is very small, especially when the
switching rate is low. Hence, we omit the overhead of frequency
switching [14], [16], [27]. We consider the power dissipation by
computation and communication in the power model. Given the
V/F level (vp,k, fp,k), the computation power P compk dissipated
in executing tasks is computed as follows [27]:

P compk = Ceffv
2
p,kfp,k︸ ︷︷ ︸

dynamic power

+Lg (vp,kIsub + |vbs|Ij)︸ ︷︷ ︸
static power

, (2)

where Ceff , Lg , Isub, vbs, and Ij denotes the effective switch-
ing capacitance, the number of devices in the circuit, the sub-
threshold leakage current, the body bias voltage, and the reverse
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(a) Task mapping of Gauss elimination on a 4× 4 NoC with XY routing.
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(b) Task execution and communication time.

Fig. 1. An example of task mapping with communication contention.

bias junction current, respectively. Besides the V/F level, the
operating temperature also influences the static power. In this
paper, we did not consider temperature, as it will introduce
another dimension of variables into the task mapping problem,
making it more difficult to solve. Instead, we mainly focus
on optimizing energy efficiency, reliability, and communication
contention, similar to the existing works [16], [20], [21].

The following link power model is adopted from [27]:

P linkg = saCrepv
2
l,gfl,g + Lg

(
vl,gK3e

K4vl,geK5vbs + |vbs|Ij
)
,

(3)
where sa is the average switching activity, Crep is capacity load
of a repeater, and K3, K4 and K5 are hardware parameters.

Note that the routers and the links on NoC mainly consume
communication energy. The communication energy for edge ei,j
with the data size si,j from core Ps to Pd, if it is operated at
the V/F level (vl,g, fl,g) [14], [27], is given by:

Ecommg = si,j [(hs,d + 1)ERbit + hs,dELbit,g] , (4)

where ERbit is the energy consumption of transmitting a bit data
on a router, and ELbit,g = P linkg /bωfl,g is the energy consumed
by transmitting a bit data over a link with the frequency fl,g.
Since hs,d is the number of the links that a bit data passes
during the communication, hs,d + 1 is the number of routers
that a bit data passes. On this basis, (hs,d + 1)ERbit is the
energy consumption of transmitting a bit data for routes, while
hs,dELbit,g is the energy consumption of transmitting a bit data
with the V/F (vl,g, fl,g) on links.

4) Communication Contention Model: In NoC, any physical
link can only transmit one message at the same time; otherwise,
communication contention occurs, leading to data transmission
blocking and system performance degradation. The existence
of communication contention should satisfy the time and space
constraints. For instance, we assume that tasks τi, τj , τm,
τn, and τv are assigned to cores Ps, Pd, Pp, Pq , and Pf ,
respectively. For these dependent tasks, the routing sets of the
communication for the edges ei,j , em,n, and ev,j are Ls,d, Lp,q ,
and Lf,d, as shown in Fig. 1(a).

The communication contention in time is defined as the over-
lap of communication time for different edges, such as edges
ei,j and em,n in Fig. 1(b). If there is a communication time
overlapping among ei,j and em,n, the contention constraints in
time can be expressed as tsi,j < tem,n and tsm,n < tei,j ,
where tsi,j and tsm,n (tei,j and tem,n) denote the start time
(end time) of data transmission for edge ei,j and em,n.

To indicate the sequence between ei,j and em,n, we introduce
a binary variable ηi,j,m,n, where ηi,j,m,n = 1 denotes that edge

ei,j begins communication before em,n completes, otherwise,
ηi,j,m,n = 0. Note that the value of ηi,j,m,n is influenced by
the start time and the end time of the edges ei,j and em,n, the
relationship between them can be represented as

(tem,n − tsi,j)/Z ≤ ηi,j,m,n ≤ (tem,n − tsi,j)/Z + 1, (5)
(tei,j − tsm,n)/Z ≤ ηm,n,i,j ≤ (tei,j − tsm,n)/Z + 1, (6)

ei,j 6= em,n ∈ E , ηi,j,m,n, ηm,n,i,j ∈ {0, 1},

where Z is a large positive integer. When tsi,j < tem,n holds,
(5) is relaxed to ηi,j,m,n = 1. Similarly, when tsm,n < tei,j
holds, (6) can be transformed into ηm,n,i,j = 1. As the example
shown in Fig. 1(b), since there is a time overlap between the
edges ei,j and em,n, we have ηi,j,m,n = ηm,n,i,j = 1.

The communication contention in space is defined that the
routing sets of the edges have at least one shared link, e.g., in
Fig. 1(a), for the edges ei,j and em,n, we have Ls,d

⋂
Lp,q 6= ∅,

where Ls,d
⋂
Lp,q denotes the common links between the rout-

ing sets of the edges ei,j and em,n. Hence, the communication
contention occurs between the edges ei,j and em,n.

To alleviate the contention, we add flexible slack time into the
communication process to ensure that the congested data can
be transmitted sequentially. The slack time with a fixed value
will generate additional idle time on cores, increasing energy
consumption [13], [32]. In this paper, we set slack time as an
adaptive value, which depends on the communication cost of
overlapping links.

The slack time tslacki,j and tslackm,n for the edges ei,j and em,n
can be given by:

ei,j 6= em,n ∈ E , Ps 6= Pd, Pp 6= Pq ∈ P, tslacki,j , tslackm,n ≥ 0,

tslacki,j , tslackm,n ≥ |Ls,d ∩ Lp,q| ·max
{
tULi,j , t

UL
m,n

}
−

Z(6− xi,s − xj,d − xm,p − xn,q − ηi,j,m,n − ηm,n,i,j), (7)

where |Ls,d ∩ Lp,q| denotes the number of overlapping links
between the edges ei,j and em,n; binary variable xi,s = 1
denotes task τi is assigned to core Ps, otherwise, xi,s = 0;
binary variable cLi,j,g = 1 denotes the message for edge
ei,j is transmitted with (vl,g, fl,g), otherwise, cLi,j,g = 0;
tULi,j =

∑
g∈Nl

cLi,j,gt
UL
i,j,g is the transmission time on one unit

link for the edge ei,j . Similarly, for the edge em,n we have
tULm,n =

∑
g∈Nl

cLm,n,gt
UL
m,n,g .

As the example shown in Fig. 1, we have xi,s = xj,d =
xm,p = xn,q = xv,f = 1. When contention constraints in
time and space are satisfied, i.e., ηi,j,m,n = ηm,n,i,j = 1
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and Ls,d
⋂
Lp,q 6= ∅, the communication contention happens

between the edges ei,j and em,n. Therefore, (7) is relaxed to

tslacki,j , tslackm,n ≥ |Ls,d ∩ Lp,q| ×max
{
tULi,j , t

UL
m,n

}
. (8)

Note that the edges can operate at different V/F levels,
and communication contention could happen over multiple
edges simultaneously. For edges ei,j and em,n, the maximum
communication time on overlapping links is |Ls,d ∩ Lp,q| ·
max{tULi,j , tULm,n}. If there is no communication contention, i.e.,
contention constraints regarding time and space are not satisfied,
since ηi,j,m,n + ηm,n,i,j ≤ 1 and Ls,d

⋂
Lp,q = ∅, we have

−Z(6−xi,s−xj,d−xm,p−xm,q−ηi,j,m,n−ηm,n,i,j)� 0 and
|Ls,d ∩ Lp,q| = 0, and thus, (7) is relaxed to tslacki,j , tslackm,n ≥ 0,
which can be ignored since the lower bound of continuous
variables tslacki,j and tslackm,n is 0. Similarly, for the contention
between ei,j and ev,j , we can get

tslacki,j , tslackv,j ≥ |Ls,d ∩ Lf,d| ×max
{
tULi,j , t

UL
v,j

}
. (9)

When the contention happens over multiple edges concur-
rently, e.g., ei,j , em,n, and ev,j in Fig. 1(b), the lower bound
of slack time tslacki,j should be updated according to (8) and (9),
since tslacki,j is influenced by tslackm,n and tslackv,j at the same time.

5) Fault-tolerant Model: During the application execution
process, several faults can affect the system reliability, e.g.,
transient faults, intermittent faults, and permanent faults. We
mainly focus on transient faults on cores, routers, and links
since transient faults have higher rates than intermittent and
permanent faults [29]. In addition, a fault on a router may affect
the links connected to this router. In the worst case, a fault in
any part of a router can be treated as a fault occurring in all the
links related to the faulty router [18]. Therefore, we assume that
the faults on routers are included in the faults over the links.

We consider that the average rate caused by transient faults
is followed by the Poisson distribution [17], [35], [36]. Besides,
the fault rate is affected by the voltage the system is run at [17].
Hence, the fault rate with a scaled frequency f can be modeled
as λ(f) = λ0×10

d(fmax−f)
fmax−fmin , where λ0 is the average fault rate at

fmax, and d is a positive constant, representing the sensitivity of
faults caused by transient faults to DVFS. Thus, the probability
of success for a task on a hardware component with fault rate
λ(f) within the time interval t is e−λ(f)×t.

Considering the homogeneity of the NoC platform, we set the
fault rates of cores and links as λP (f) and λL(f), respectively.
The probability of success for task τi with the frequency fp,k
on core Ps can be calculated as rPi,k = e−λP (fp,k)×tPi,k , where
tPi,k = ωi

fp,k
denotes the execution time of task τi with V/F level

(vp,k, fp,k). Similarly, the probability of successful transmission
over one unit link for edge ei,j with the frequency fl,g can
be given by rULi,j,g = e−λL(fl,g)×tUL

i,j,g . In Fig. 1(a), when tasks
τi and τj are assigned to cores Ps and Pd, respectively, the
probability of success for edge ei,j along route Ls,d with the
frequency fl,g is rLi,j,g =

∑
s∈M

∑
d∈M xi,sxj,d(r

UL
i,j,g)

hs,d ,
where (rULi,j,g)

hs,d represents the reliability probability of route
Ls,d containing hs,d links. On this basis, the joint reliability
probability of task τj can be calculated as

Rj = rPj,k × rLi,j,g × rLv,j,g = rPj,k
∏

eu,j∈E
rLu,j,g, (10)

where
∏
eu,j∈E r

L
u,j,g denotes the probability of successful trans-

mission between task τj and its predecessors with the frequency
fl,g. If a task does not have any predecessors, e.g., task τa in
Fig. 1(a), we consider only the faults on cores, and thus, the
reliability probability of task τa is Ra = rPa,k. To maintain the
desired system reliability, each task τj must satisfy its reliability
constraints [21], which means the task reliability Rj is greater
than the reliability threshold Rth.

B. Problem Formulation

This section presents the Mixed-Integer Nonlinear Program-
ming (MINLP) formulation of the contention- and reliability-
aware mapping problem. Our goal is to schedule and route
each task such that real-time and reliability constraints are
satisfied and the system performance (i.e., communication effi-
ciency, energy consumption, and core utilization) is improved.
Therefore, we must determine 1) task allocation, 2) frequency
assignment, 3) edge scheduling, and 4) communication con-
tention management. To formulate the task mapping problem,
we introduce a set of binary and continuous variables, as
summarized in Table II. For the sake of paper presentation,
let N , {1, . . . , N}, M , {1, . . . ,M}, Np , {1, . . . , Np},
Nl , {1, . . . , Nl}. The constraint descriptions are as follows:

1) Task Allocation Constraints: The task allocation variable
xi,s is bounded by∑

s∈M
xi,s = 1, ∀i ∈ N , (11)

where (11) ensures that each task τi is assigned to a core.
2) Frequency Assignment Constraints: Since all cores and

links in the target platform support DVFS, for each core and
link, we have ∑

k∈Np

cPi,k = 1, ∀i ∈ N , (12)∑
g∈Nl

cLi,j,g = 1, ∀ei,j ∈ E , (13)

where (12) ensures that a task τi is executed with one V/F core
level (vp,k, fp,k), and (13) restricts that the message of edge
ei,j is transmitted with one V/F link level (vl,g, fl,g).

3) Communication Start Time Constraints: The message
transmission for edges should consider the precedence relations.
For example, in Fig. 1(b), when the message for edge ei,j is
transmitted from task τi to τj , the communication start time
tsi,j is not earlier than the finish time of the predecessor τi.
Therefore, we have

tei ≤ tsi,j , ∀ei,j ∈ E . (14)

4) Communication End Time Constraints: Taking task allo-
cation and DVFS on links during task scheduling into account,
the communication time of message ei,j is represented as

tLi,j =
(∑

s∈M

∑
d∈M

hs,dxi,sxj,d

)∑
g∈Nl

cLi,j,gt
UL
i,j,g,

(15)
where

∑
g∈Nl

cLi,j,gt
UL
i,j,g represents the transmission time over

one unit link with DVFS, and
∑
s∈M

∑
d∈M hs,dxi,sxj,d is the

number of links when transmitting the message for edge ei,j .
If the message transmits from τi to τj through ei,j , the com-

munication end time tei,j is equal to the sum of communication
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TABLE II
MAIN NOTATIONS USED IN PROBLEM FORMULATIONS

Related Parameters

N number of tasks in set T , {τi, . . . , τN}.
M number of cores in set P , {P1, . . . , PM}.
R router sets, where R , {R1, . . . , RM}.
ls,d physical link between cores Ps and Pd.
Ls,d routing set between cores Ps and Pd.
hs,d Manhattan distance between core Ps and Pd.
(vp,k, fp,k) the kth V/F level of core.
(vl,g, fl,g) the gth V/F level of link.
Np (Nl) number of V/F levels in cores (links).
bω link bandwidth.
ei,j dependency between tasks τi and τj , where ei,j ∈ E .
si,j size of communication data between tasks τi and τj .
ωi execution cycles of task τi.
Di task deadline of task τi.
αi = 1 if task τi has no predecessors, else αi = 0.
λ0, d average fault rate and transient fault sensitivity.
Rth reliability threshold.
µ weight in the objective function.

Binary Variables

xi,s = 1 if task τi is assigned to core Ps, else xi,s = 0.

cPi,k
= 1 if task τi is executed with V/F level (vp,k, fp,k),
else cPi,k = 0.

cLi,j,g
= 1 if the message for edge ei,j is transmitted with
the level V/F (vl,g, fl,g), else cLi,j,g = 0.

oi,j
= 1 if task τi starts execution before τj is completed,
else oi,j = 0.

ηi,j,m,n
= 1 if edge ei,j starts transmitting messages
before em,n completes, else ηi,j,m,n = 0.

Continuous Variables

tsi (tei) start (end) time of executing τi.
tsi,j (tei,j) start (end) time of message transmission for edge ei,j .
tslacki,j slack time for edge ei,j .
Umax maximum core utilization rate.

Auxiliary Variables

βi,s,k binary variable, and βi,s,k = xi,sc
P
i,k.

γi,j,s,d binary variable, and γi,j,s,d = xi,sxj,d.
δi,j,s,d,g binary variable, and δi,j,s,d,g = γi,j,s,dc

L
i,j,g .

start time tsi,j , communication time tLi,j , and slack time tslacki,j .
The value of tei,j is not earlier than the start time of the
successor τj . Thus, we have

tei,j = tsi,j + tLi,j + tslacki,j ≤ tsj , ∀ei,j ∈ E . (16)

5) Real-time Constraints: For the real-time tasks, since each
task τj must be completed within the deadline Dj , we have

tej = tsj +
∑

k∈Np

cPj,kt
P
j,k ≤ Dj , ∀j ∈ N , (17)

where
∑
k∈Np

cPj,kt
P
j,k is the execution time of τj with DVFS.

6) Task Non-overlapping Constraints: If tasks are assigned
to the same core, their execution sequence should be determined
since one core cannot execute multiple tasks at the same time.
Hence, we have the following constraints:

(tej − tsi)/Z ≤ oi,j ≤ (tej − tsi)/Z + 1, (18)

oi,j + oj,i + xi,s + xj,s ≤ 3, ∀ei,j /∈ E , ∀s ∈M. (19)

If task τi starts the execution before the completion of task
τj , i.e., tsi ≤ tej , (18) is transformed to oi,j = 1, otherwise,
we get oi,j = 0. If the execution time of τi and τj overlaps,
and there is no dependency between τi and τj , tsj ≤ tei and
tsi ≤ tej hold. We get oi,j = oj,i = 1 from (18). Therefore,
(19) is transformed to xi,s + xj,s ≤ 1, which means τi and τj
cannot be assigned to the same core.

7) Reliability Constraints: Note that we consider transient
faults on both cores and links. On the one hand, we consider
only faults on cores for the task without predecessors, as there
is no communication between this task and its predecessors. Let
parameter αj = 1 denote task τj does not have predecessors,
otherwise, αj = 0. With αj = 1 and DVFS, the reliability
probability of task τj is given by

Rj =
∑

k∈Np

cPj,kr
P
j,k, ∀j ∈ N , αj = 1. (20)

On the other hand, if task τj has predecessors, i.e., αj = 0,
we consider the reliability on both cores and links. Since the
reliability of each link is related to the V/F, the reliability proba-
bility of links transmitting ei,j with DVFS is

∑
g∈Nl

cLi,j,gr
L
i,j,g .

Therefore, the reliability probability of task τj is calculated as

Rj =

(∑
k∈Np

cPj,kr
P
j,k

)∏
ei,j∈E

(∑
g∈Nl

cLi,j,gr
L
i,j,g

)
,

∀j ∈ N , αj = 0. (21)

Combining (20) and (21), the reliability probability of task τj ,
including computation and communication, is formulated as:

Rj =


∑

k∈Np

cPj,kr
P
j,k, ∀j ∈ N , αj = 1,(∑

k∈Np

cPj,kr
P
j,k

)∏
ei,j∈E

(∑
g∈Nl

cLi,j,gr
L
i,j,g

)
,

∀j ∈ N , αj = 0.
(22)

To run applications successfully, we must consider the re-
liability requirements of scheduling and routing for all tasks.
Thus, the joint reliability probability of each task τj should be
larger than reliability threshold Rth, and we have

Rj ≥ Rth, ∀j ∈ N . (23)

8) Utilization Balance Constraints: Imbalanced mapping of
tasks harms system reliability since the cores with heavy tasks
assigned have high circuit activities, which raises the average
fault rate λ0 and decreases system reliability [22]. Moreover,
load imbalance may cause local congestion in NoC, and the
increased transmission delay will degrade communication effi-
ciency. To improve system performance, we consider a load-
balanced task mapping to minimize the maximum core utiliza-
tion rate Umax. To restrict the maximum core utilization rate
among the cores, we have the following constraints:

Us =

(∑
i∈N

∑
k∈Np

xi,sc
P
i,kt

P
i,k

)
︸ ︷︷ ︸

(a)

/H ≤ Umax, ∀s ∈M,

(24)
where Us denotes the core utilization rate of Ps, given by the
ratio of the total task execution time on core Ps (i.e., (24)-(a))
to the scheduling horizon H .
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9) Objective Function: We aim to minimize the weighted
core utilization rate and total energy consumption. The objective
function can be formulated as follows:

min µEtotal/Emax + (1− µ)Umax. (25)

where µ ∈ [0, 1] is a weighted factor, Etotal is the total energy
consumption, and Emax is an upper bound of Etotal.

Etotal =
∑

ei,j∈E

∑
s∈M

∑
d∈M

xi,sxj,dsi,j [(hs,d + 1)ERbit

+ hs,d
∑

g∈Nl

cLi,j,gELbit,g] +
∑

i∈N

∑
k∈Np

cPi,kP
comp
k tPi,k.

(26)

10) Primal Problem: Based on the above constraints and
objective function, the contention- and reliability-aware task
mapping problem is formulated as follows:

PP : min
x,cP ,cL,o,η,

tsP ,tsL,t,u

µEtotal/Emax + (1− µ)Umax (27)

s.t.


(5)− (7), (11)− (19), (22)− (24),
xi,s, c

P
i,k, c

L
i,j,g, oi,j , ηi,j,m,n ∈ {0, 1}, 0 ≤ tsi, tsi,j ≤ H,

∀i, j,m, n ∈ N , ∀s ∈M, ∀k ∈ Np, ∀g ∈ Nl,

where we have x = [xi,s]N×M , cP = [cPi,k]N×Np
, cL =

[cLi,j,g]N×N×Nl
, o = [oi,j ]N×N , η = [ηi,j,m,n]N×N×N×N ,

tsP = [tsi]1×N , tsL = [tsi,j ]N×N , t = [tslacki,j ]N×N , and
u = Umax. Note that x, cP , cL, o, and η are binary variables,
while tsP , tsL, t, and u are continuous variables. Moreover,
the nonlinear terms e−λt, xi,scPi,k, and xi,sxj,dcLi,j,g are included
in (15), (23), (24) and (26). Thus, (27) is an MINLP problem.

Remark 3.1: DVFS switching overheads are mainly influ-
enced by the V/F levels before and after transition [37]. The
time overhead is tswitch(fs, fe) = ttrans×(fe−fs)/fe, and the
energy overhead is Eswitch(fs, fe) = P switchs ×tswitch(fs, fe),
where ttrans is a time transition parameter, fs and fe are
the frequencies before and after transition, respectively, and
P switchs is the power before frequency transition. Based on
the parameters of the NoC platform, we can get switching
overheads regarding the links and the cores, e.g., tLswitchi,j

and ELswitchi,j for data transmission among the edge ei,j , and
tPswitchi and EPswitchi for execution of task τi. Considering the
DVFS switching overhead in PP, the extra time (tLswitchi,j and
tPswitchi ) and energy (ELswitchi,j and EPswitchi ) should be added
to constraints (16), (17), and (26).

Remark 3.2: In (2), the leakage current Isub is affected by
temperature T . The relationship between them can be described
by a complex nonlinear function [38]. To reduce complexity, the
leakage current can be linearized with the temperature within a
given acceptable accuracy [16], [20], [27]. Specifically, the static
power working at the V/F level (vp,k, fp,k) can be modeled as
P compsta,k = (γs + ηsT ) × vp,k, where γs and ηs are constants
depending on core Ps. Let T (t) denote the temperature at time t.
In (26), the energy consumed by the static power can be updated
to
∑
s∈M

∑
i∈N

∑
k∈Np

xi,sc
P
i,kt

P
i,kvp,k(γs + ηs

∫H
0
T (t)dt).

Remark 3.3: The above problem can be extended to hetero-
geneous platforms by modifying the constraints (12), (17), (22),
(24), and (26). In addition, we can replace the frequency assign-
ment variable cPi,k with cPi,s,k, where cPi,s,k = 1 denotes that task

τi assigned to core Ps is executed with V/F level (vPs,k, f
P
s,k).

Similarly, the execution time of τi on Ps with (vPs,k, f
P
s,k) is

updated as tPi,s,k = ωi/f
P
s,k, and the reliability of executing τi on

Ps with (vPs,k, f
P
s,k) is represented as rPi,s,k = e−λP×fP

s,k×t
P
i,s,k .

C. Problem Linearization

The MINLP problem has been proven to be an NP-Hard [39],
which is hard to solve within polynomial time. To find the
optimal solution to PP, we propose a linearization method,
which can equivalently convert PP into an MILP problem.

1) Nonlinear terms caused by exponential terms: We intro-
duce the following lemma to linearize the product of binary
variables and exponential terms in (23).

Lemma 3.1: Assume that zi is a binary variable, and the
constant ai > 0 for each i ∈ N . When

∑
i∈N zi = 1, the

equation ln(
∑
i∈N aizi) =

∑
i∈N zi ln ai holds.

Proof: Considering the case when binary variable zm = 1,
while the other binary variable zn = 0 (∀n 6= m ∈ N ) due to∑
i∈N zi = 1. Therefore, we have ln(

∑
i∈N aizi) = ln(a1 ×

0 + · · · + amzm + · · · + aN × 0) = ln amzm = ln am. On the
other hand, we get

∑
i∈N zi ln ai = 0× ln a1 + · · ·+zm ln am+

· · ·+ 0× aN = zm ln am = ln am. Therefore, it is proved that
ln(
∑
i∈N aizi) =

∑
i∈N zi ln ai when

∑
i∈N zi = 1.

Since logarithm is a monotonically increasing function, the
relation between left and right parts in (23) remains unchanged
when logarithm operation is performed on both sides of (23).
According to Lemma 3.1, (23) can be linearized as follows:

lnRj ≥ lnRth, ∀j ∈ N , (28)

where

lnRj =
∑

k∈Np

cPj,k ln rPj,k, αj = 1,∑
ei,j∈E

∑
g∈Nl

cLi,j,g ln rLi,j,g +
∑

k∈Np

cPj,k ln rPj,k, αj = 0,

ln rPj,k = ln e−λP (fp,k)×tPj,k = −ωjλP (fp,k)

fp,k
,

ln rLi,j,g =
∑

s∈M

∑
d∈M

xi,sxj,dhs,d ln rULi,j,g

= −
∑

s∈M

∑
d∈M

xi,sxj,d
hs,dsi,jλL(fl,g)

bωfl,g
.

Taking the value of αj in the above equations into account,
(28) can be reformulated as follows:

lnRj = (1− αj)
∑

ei,j∈E

∑
g∈Nl

cLi,j,g ln rLi,j,g

+
∑

k∈Np

cPj,k ln rPj,k ≥ lnRth, ∀j ∈ N . (29)

2) Nonlinear terms caused by the products of binary vari-
ables: We propose the following lemma to tackle the nonlinear
items xi,scPi,k and xi,sxj,dcLi,j,g in (15), (24), (26), and (29).

Lemma 3.2: Assume that x1 and x2 are binary variables. The
nonlinear term x1x2 can be replaced by an auxiliary (binary)
variable y, where y = x1x2, and the additional constraints y ≤
x1, y ≤ x2 and y ≥ x1 + x2 − 1.

Proof: When binary variables x1 = 1 and x2 = 1, the
additional constraint is transformed to 1 ≤ y ≤ 1, i.e., y = 1
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holds. Similarly, for the cases 1) x1 = 0 and x2 = 0; 2) x1 = 1
and x2 = 0; 3) x1 = 0 and x2 = 1, we have y = x1x2 = 0.

Based on Lemma 3.2, we introduce auxiliary (binary) vari-
ables βi,s,k, γi,j,s,d and δi,j,s,d,g to replace the nonlinear items,
where βi,s,k = xi,sc

P
i,k, γi,j,s,d = xi,sxj,d, and δi,j,s,d,g =

γi,j,s,dc
L
i,j,g , and add the following constraints into (27).

∀i, j ∈ N , ∀s, d ∈M, ∀k ∈ Np, ∀g ∈ Nl,
βi,s,k ≤ xi,s, βi,s,k ≤ cPi,k, βi,s,k ≥ xi,s + cPi,k − 1, (30)

γi,j,s,d ≤ xi,s, γi,j,s,d ≤ xj,d, γi,j,s,d ≥ xi,s + xj,d − 1, (31)

δi,j,s,d,g ≤ γi,j,s,d, δi,j,s,d,g ≤ cLi,j,g,
δi,j,s,d,g ≥ γi,j,s,d + cLi,j,g − 1. (32)

Thus, the primal problem (27) can be converted into the fol-
lowing MILP problem through the above linearization method.

PP1 : min
x,cP ,cL,o,η,tsP ,

tsL,t,u,β,γ,δ

µEtotal/Emax + (1− µ)Umax (33)

s.t.



(5)− (7), (11)− (14), (16)− (19), (29)− (32),
tLi,j =

∑
s∈M

∑
d∈M

∑
g∈Nl

hs,dδi,j,s,d,gt
UL
i,j,g,

Us =
(∑

i∈N
∑
k∈Np

βi,s,kt
P
i,k

)
/H ≤ Umax,

xi,s, c
P
i,k, c

L
i,j,g, oi,j , ηi,j,m,n, βi,s,k, γi,j,s,d,

δi,j,s,d,g ∈ {0, 1}, 0 ≤ tsi, tsi,j ≤ H,
∀i, j,m, n ∈ N , ∀s, d ∈M, ∀k ∈ Np, ∀g ∈ Nl,

where we set β = [βi,s,k]N×M×Np
, γ = [γi,j,s,d]N×N×M×M ,

and δ = [δi,j,s,d,g]N×N×M×M×Nl
, and the total energy con-

sumption Etotal in the objective function of (33) is given by
Etotal =

∑
ei,j∈E

∑
s∈M

∑
d∈M si,j [(hs,d + 1)γi,j,s,dERbit +

hs,d
∑
g∈Nl

δi,j,s,d,gELbit,g] +
∑
i∈N

∑
k∈Np

cPi,kP
comp
k tPi,k.

IV. HEURISTIC TASK MAPPING APPROACH

The proposed contention- and reliability-aware task mapping
problem can be transformed into an MILP problem using the
linearization methods presented in Section III-C. However, only
small-scale problems can be solved efficiently by optimization
solvers, such as Gurobi and CPLEX. The problem with large
scale will lead to excessive time consumption and memory
overflow problems. Hence, we proposed a novel three-step
Contention- and Reliability-Aware Task Mapping and Schedul-
ing (CRATMS) heuristic to perform 1) task-to-core assignment,
2) frequency scaling and edge scheduling, and 3) communi-
cation contention management, so as to provide better system
performance. The structure of CRATMS is shown in Fig. 2.

A. Task Allocation Scheme

Since the tasks are dependent, the task-to-core assignment
directly affects task scheduling and communication on NoC. In
addition, the task allocation variable x exists in all the con-
straints of PP except the frequency assignment constraints (12)
and (13), and thus, we consider x at the first step. The
optimization processes are summarized in Algorithm 1.

Communication Contention Management

Calculate 

Slack Time Extra Slot 

Time
Adjust Variables

Frequency Level Candidate

Real-time Constraints

Reliability Constraints

Estimated Slack Time
Energy Reduction?

Yes.No.

Frequency Scaling and 

Edge Scheduling

Construct the 

Distance Function

Solve LP Problem

Find Solution

LP Problem Relaxation

Solve LP Problem

Rounding Solution

Dependent DAG
Task Priority

Task-to-core Assignment

Task Allocation Decision

Calculate Cost Function

Task-to-core Assignment

Sorted Tasks

Fig. 2. The structure of the proposed CRATMS scheme.

1) Task Priority: We introduce the concept of task level to
sort the dependent tasks in DAG. The task level of task τi is
defined as the largest number of edges from itself to the entry
node: rl(τj) = max∀ei,j∈E{rl(τi)} + 1, and we set the task
level of entry nodes as zero. For example, in Fig. 1(a), we have
rl(τa) = 0, rl(τb) = 1, rl(τv) = 1, rl(τm) = 1, rl(τi) = 2,
rl(τj) = 3, rl(τn) = 3, rl(τu) = 4, and rl(τw) = 5. Therefore,
the tasks in the set T can be sorted in ascending order according
to their task levels, and we can get a new task set T̂ (Line 2).

2) Task-to-core Assignment: To reduce the routing costs
while balancing the task workloads among the cores, we con-
sider the cost function of task τj assigned to core Pd as follows:

F (τj , Pd) =

(
µ
∑

ei,j∈E

∑
s∈M

xi,shs,d

)
/hmax︸ ︷︷ ︸

(a)

+ (1− µ)
(
Ud + tPj,min/H

)︸ ︷︷ ︸
(b)

(34)

where hmax is the maximum Manhattan distance on NoC
through the XY routing, and tPj,min is the execution time of task
τj on core Pd with the minimum frequency fp,min. Hence, (34)-
(a) is the ratio of routing distances between the cores executing
tasks τi and τj to the maximum distance hmax, and (34)-(b) is
the core utilization of Pd. To reduce the cost of task assignment,
for each non-entry task τj , they are assigned to the core Pd∗ with
the minimum cost function, i.e., d∗ = arg mind∈M F (τj , Pd)
(Line 5). However, since the entry tasks do not have predeces-
sors, we assume that these tasks are assigned to core P1, i.e.,
d∗ = 1 (Line 7). After completing the assignment of task τj ,
we can update the task assignment decision xj,d∗ = 1 (Line 9)
and core utilization rate Ud = Ud + tPj,min/H (Line 10). The
decision regarding task allocation x∗ is determined by applying
the above method for each task.

B. Frequency Scaling and Edge Scheduling

Under the given task allocation decision, the frequencies of
cores and links relate to energy consumption, task reliability,
and real-time constraints, affecting the starting and ending time
of task execution and edge communication. Therefore, the vari-
ables regarding core frequency assignment cP , link frequency
assignment cL, task sequence o, start time of task execution
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Algorithm 1: Task Allocation Scheme
Input : Task graph TG and 2D-mesh NoC with M cores
Output: Task allocation variable x∗

1 Initialize xj,d = 0 and Ud = 0 (∀j ∈ N , ∀d ∈M) ;
2 Sort tasks in T by ascending task levels, and get T̂ ;
3 for each task τj in T̂ do
4 if rl(τj) 6= 0 then
5 Get d∗ = arg mind∈M F (τj , Pd) through (34) ;
6 else
7 Set d∗ = 1;
8 end
9 Assign task τj to core Pd∗ , and set xj,d∗ = 1 ;

10 Update Ud∗ = Ud∗ + tPj,min/H ;
11 end

tsP and start time of message transmission tsL are determined
at this step concurrently. However, according to (7), the coupling
between the slack time t and other variables, e.g., x, cL,
tsP , and tsL makes it challenging to solve the problem of
frequency scaling and edge scheduling. To handle this problem,
we assume that the slack time t has a predetermined value t̂,
which is calculated from (7) in the worst case. In this case, the
communication contention constraints for any two edges, e.g.,
ei,j and em,n in time are satisfied (ηi,j,m,n = ηm,n,i,j = 1), and
the link frequencies are set to the minimum frequency fl,min.
Moreover, the objective function of (27) can be transformed
to minimize the energy consumption on NoC since the core
utilization rate has been determined in the first step. Thus,
substituting x∗i,s and t̂slacki,j into (27), the problem of frequency
scaling and edge scheduling is given by

SP1 : min
cP ,cL,o,tsP ,tsL

Etotal (35)

s.t.


(12)− (19), (29),
cPi,k, c

L
i,j,g, oi,j ∈ {0, 1}, 0 ≤ tsi, tsi,j ≤ H,

∀i, j ∈ N , ∀k ∈ Np, ∀g ∈ Nl.

Since (35) is an MILP problem with a smaller scale than
(27), based on the structure of the problem, we proposed a
novel Feasibility-Pump (FP) based method to solve it. The
implementation details are summarized in Algorithm 2.

1) Let Φ = {cP , cL,o, tsP , tsL} denote the set of the
variables in SP1, and we set I = {j|φj ∈ {0, 1}}, where φj is
the jth element in the set Φ. To make problem (35) easier to
solve, we relax it into a Linear Program (LP) problem SP2 by
replacing the binary variables {cP , cL,o} with the continuous
variables within the range [0, 1] (Line 1). When SP2 is solved,
we get the initial solution Φ(0)∗ = {cP , cL,o, tsP , tsL} ∈ Z
(Line 1), where Z denotes the set of the feasible region of SP2.

2) We initialize the iteration number n = 0 (Line 2). Since
the values of {cP , cL,o} in Φ(0)∗ may not be integer, we
round the values of {cP , cL,o} to the nearest integers (Line 3).
When considering the task-level DVFS, each task τi is executed
with only one V/F level on each core. Based on the ith

row of cP , we can find the maximum one among the values
{cPi,1, . . . , cPi,Np

}, and denote it as k∗ = arg maxk∈Np{cPi,k}.
For task τi, we assign the V/F level (vp,k∗ , fp,k∗) to execute
this task. Therefore, we have ĉPi,k = 1 (k = k∗) and ĉPi,k = 0

(∀k 6= k∗ ∈ Np). Similarly, we can handle the cL and o.

Algorithm 2: Frequency Scaling and Edge Scheduling
Input : Task allocation x and the predetermined slack time t̂
Output: Frequency assignment cP ∗ and cL

∗, and the start time of
execution (communication) tsP ∗ (tsL∗)

1 Relax SP1 to a LP problem and get the initial solution Φ(0)∗;
2 Initialize iteration number n = 0;
3 Round {cP , cL,o} in Φ(0)∗ to {ĉP , ĉL, ô}, and update the

solution Φ̂(0) = {ĉP , ĉL, ô, tsP , tsL};
4 while ∆(Φ(n), Φ̂(n)) > 0 and n < nmax do
5 Solve Φ(n)∗ = arg minΦ(n){∆(Φ(n), Φ̂(n)) : Φ(n) ∈ Z};
6 if ∆(Φ(n), Φ̂(n)) = 0 then
7 Find the solution to SP1 and return Φ(n)∗;
8 else
9 Round {cP , cL,o} in Φ(n)∗ to {ĉP , ĉL, ô}, and get

Φ̂(n)∗ = {ĉP , ĉL, ô, tsP , tsL};
10 Set Φ̂(n+1) = Φ̂(n)∗ for the next iteration;
11 if Φ̂(n+1) = Φ̂(n) then
12 Select nf variables φ̂j (j ∈ I) in Φ̂(n+1) to flip their

values, and update Φ̂(n+1);
13 end
14 Update iteration number n→ n+ 1;
15 end
16 end
17 if n = nmax + 1 and ∆(Φ(n), Φ̂(n)) > 0 then
18 Solve SP1 after substituting {cP , cL,o} with the corresponding

values in Φ̂(n), and get Φ(n+1)∗ ;
19 while Φ(n+1)∗ = ∅ do
20 Update frequency levels with cPi,k = 1→ cPi,k+1 = 1 and

cLi,j,g = 1→ cLi,j,g+1 = 1 ;
21 Solve SP1 after substituting {cP , cL} with the updated

values, and update Φ(n+1)∗ ;
22 end
23 end

Specially, the rounding of oi,j is given by ôi,j = [oi,j ], where
[·] represents the rounding operation. Therefore, the rounding
processes of {cP , cL,o} are as follows:

ĉPi,k = 1, if k = arg max{cPi,k}, else, ĉPi,k = 0,

ĉLi,j,g = 1, if g = arg max{cLi,j,g}, else, ĉLi,j,g = 0,

ôi,j = [oi,j ], ∀i, j ∈ N , ∀k ∈ Np, ∀g ∈ Nl.
(36)

According to (36), the values of {cP , cL,o} are trans-
formed to {ĉP , ĉL, ô}, and the rounding result is Φ̂ =
{ĉP , ĉP , ô, tsP , tsL} (Line 3). Note that there is no need
to round the values of tsP and tsL as they are continuous.
Therefore, we obtain Φ̂(0) = {ĉP , ĉP , ô, tsP , tsL}.

3) Note that Φ(0)∗ = {cP , cL,o, tsP , tsL} is the solution to
LP-based SP2. However, the values of {cP , cL,o} may not be
integer. Although the values of {ĉP , ĉL, ô} in Φ̂(0) are integer,
Φ̂(0) may not be the solution to SP2 as the constraints may be
violated. Since SP2 is relaxed from SP1, they have the same set
of constraints. If the values of {cP , cL,o} in Φ(0)∗ are integer,
SP1 and SP2 have the same solution. For the solution to SP1,
besides the constraints in SP2 must be satisfied, the values of
{cP , cL,o} should be the integer. To find the solution to SP1,
based on the given rounding solution Φ̂, we construct a L1-norm
distance between the solutions Φ∗ ∈ Z and Φ̂, and we define it
as ∆(Φ∗, Φ̂) =

∑
j∈I,φ̂j=1(1−φ∗j ) +

∑
j∈I,φ̂j=0 φ

∗
j , where φ̂j

and φ∗j are the jth elements in Φ̂ and Φ∗, respectively. Since
∆(Φ∗, Φ̂) ≥ 0, we have the following two cases:
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Algorithm 3: Communication Contention Management
Input : The predetermined slack time t̂ and the outputs of

Algorithms 1 and 2
Output: Core frequency assignment cP ∗, the start time of executing

tasks tsP
∗, and the precise slack time t∗

1 Update slack time tslacki,j
∗ (∀ei,j ∈ E) based on (5)-(7);

2 Calculate time slot ∆ti,j = t̂slacki,j − tslacki,j
∗ (∀ei,j ∈ E);

3 for each edge ei,j in E do
4 Initialize kinit

j = k for task τj if cPj,k
∗

= 1;
5 Calculate feasible frequency level k̂j = max{kRj , kTj }

through (38) and (39) for task τj ;
6 if Ecomp

j (fp,k̂j
) < Ecomp

j (fp,kinit
j

) then

7 Update cPj,k
∗

= 1 (k = k̂j ) and cPj,k
∗

= 0 (k 6= k̂j ∈ Np);
8 end
9 Calculate task start time ts∗j by (17);

10 end

a). If ∆(Φ∗, Φ̂) = 0, φ∗j (∀j ∈ I) is integer and φ∗j = φ̂j , and
thus, Φ∗ is a solution to SP1.

b). If ∆(Φ∗, Φ̂) > 0, we round Φ∗ and update Φ̂ with
the rounding result. On this basis, to reduce the distance
∆(Φ∗, Φ̂), we update the values of Φ∗ and Φ̂ iteratively
until the distance ∆(Φ∗, Φ̂) = 0.

In the nth iteration, to minimize ∆(Φ(n), Φ̂(n)) through Φ(n),
we construct a new problem SP3 as follows:

SP3 : min
Φ(n)

∆(Φ(n), Φ̂(n)) (37)

s.t.


(12)− (19), (29),
cPi,k, c

L
i,j,g, oi,j ∈ [0, 1], 0 ≤ tsi, tsi,j ≤ H,

∀i, j ∈ N , ∀k ∈ Np, ∀g ∈ Nl,

where Φ(n) and Φ̂(n) denote the sets of variables and the
rounding solution in the nth iteration, respectively. Note that
SP3 has the same form as SP2 except for the objective function.
In the nth iteration, we fix Φ̂(n) and solve SP3 to obtain
the solution Φ(n)∗ ∈ Z , so as to reduce the current distance
∆(Φ(n), Φ̂(n)) (Line 5). If ∆(Φ(n), Φ̂(n)) = 0, Φ(n)∗ is the
solution to SP1, and the iteration stops (Lines 6-7). Otherwise,
we round the values of {cP , cL,o} in Φ(n)∗ through (36),
and get a rounding solution Φ̂(n)∗ , which is the given solution
Φ̂(n+1) = Φ̂(n)∗ in the (n+ 1)th iteration (Lines 9-10).

Specially, if Φ̂(n+1) = Φ̂(n), the solution to SP3 stays
unchanged in the (n+ 1)

th iteration, which means the distance
∆(Φ(n+1), Φ̂(n+1)) is unchanged as well. To avoid endless loop,
we randomly select nf elements, e.g., φ̂j ∈ Φ̂(n+1) (j ∈ I),
and flip their values (Lines 11-13), where nf ∈ [NF /2, 3NF /4],
and NF is a positive integer related to flipping number. During
the flipping process, the value of φ̂j is reset to 1 if φ̂j = 0,
otherwise, φ̂j is reset to 0. Therefore, we can update Φ̂(n+1)

to avoid cycling issue (Line 12). Then, we update the iteration
number n → n + 1 (Line 14), and the iteration continues if
∆(Φ(n), Φ̂(n)) > 0 or n < nmax.

After iteration stops, we have n = nmax + 1. If the distance
∆(Φ(n), Φ̂(n)) > 0, the solution to SP1 is not founded, and we
only get the rounding solution Φ̂(n). This solution cannot satisfy
all constraints in SP1, especially the real-time and reliability
constraints. Note that frequency assignment variables {cP , cL}
have an influence on real-time constraints (17) and reliability

constraints (29). We iteratively adjust variables {cP , cL} based
on the rounding solution Φ̂(n) until the constraints in SP1 are
satisfied (Lines 17-23). The details are as follows.
a). Since the rounding solution Φ̂(n) cannot satisfy the con-

straints in SP1, we solve SP1 by substituting {cP , cL,o}
with the corresponding values in Φ̂(n). If this problem
is feasible, we get a feasible solution Φ(n+1)∗ (Line 18),
i.e., the solution to SP1 is found, and the algorithm stops.
Otherwise, we set the solution to SP1 as Φ(n+1)∗ = ∅.

b). When SP1 does not have a feasible solution, we increase
the V/F levels of each core and link to find a feasible
solution, e.g., cPi,k = 1 → cPi,k+1 = 1 and cLi,j,g = 1 →
cLi,j,g+1 = 1 (Line 20). That is because increased operation
frequencies on cores and links can reduce task completion
time and improve task reliability to satisfy real-time and
reliability constraints.

c). We update the values of {cP , cL} in SP1, and solve this
problem to find the feasible solution Φ(n+1)∗ (Line 21).
Similarly, if SP1 dose not have a feasible solution, the
solution Φ(n+1)∗ is set to ∅.

d). We check whether Φ(n+1)∗ = ∅, in which case there is
no feasible solution to SP1. We repeat Step b). and c). to
adjust the frequencies on cores and links until the feasible
solution Φ(n+1)∗ is found, i.e., Φ(n+1)∗ 6= ∅ (Lines 19-22).

By the above FP method, we get the solution to SP1, i.e.,
{cP ∗, cL∗,o∗, tsP ∗, tsL∗}, but slack time t̂ is predetermined.

C. Communication Contention Management

We apply Algorithm 2 to solve the problem of frequency
scaling and edge scheduling and get the decisions regarding
the core frequency assignment cP ∗, link frequency assignment
cL
∗, task sequence o∗, task scheduling time tsP

∗
, and edge

scheduling time tsL
∗
. In the worst case, they are based on

the given slack time t̂. During this process, we assume that
the communication contention constraints in time are always
satisfied, and the slack time t̂ is calculated with the minimum
link frequency fmin. Based on {x∗, cL∗, tsL∗}, we can update
the slack time t∗ through (5)-(7), and get the extra time slot
∆ti,j = t̂slacki,j − tslacki,j

∗, (t̂slacki,j ∈ t̂, tslacki,j
∗ ∈ t∗). Since

∆ti,j is a non-negative value, this time slot can execute task
τj or transmit data for the edge ei,j . Lowering the operating
frequency of the core/link, the system energy consumption can
be further reduced. However, when ∆ti,j is used to transmit task
data for the edge ei,j , the start and end time of communication,
i.e., tsi,j and tei,j will be changed. Thus, the slack time tslacki,j

is changed as well due to (5)-(7), which makes the problem
difficult to solve. For problem-solving, we use time slot ∆ti,j
for task execution. The details are summarized in Algorithm 3.
a). We calculate the flexible slack time tslacki,j

∗ according to
{x∗, cL∗, tsL∗} for each edge ei,j ∈ E through (5)-(7)
(Line 1). Based on the calculated slack time tslacki,j

∗ and
the predetermined slack time t̂slacki,j , we can use extra slot
time ∆ti,j = t̂slacki,j − tslacki,j

∗ to execute task τj (Line 2).
b). After completing the communication for edge ei,j , task

τj starts its execution. The initial frequency level used to
execute τj is set to kinitj = k since cPj,k

∗
= 1 (Line 4).
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c). Since ∆ti,j ≥ 0 is only used for task execution, the execu-
tion time of τj is extended from tP

j,kinit
j

to tP
j,kinit

j
+ ∆ti,j .

To satisfy the real-time constraints, the task start time tsj
can be ahead using the extra slot time ∆ti,j , while the task
end time tej remains unchanged. Considering the constraint
of execution time for task τj , the candidate of frequency
level can be given by

kTj = arg max
k∈Np

{tPj,k : tPj,k ≤ tPj,kinit
j

+ ∆ti,j}, (38)

where tP
j,kinit

j
denotes the execution time of task τj with the

frequency fp,kinit
j

. Besides task execution time, operated
frequencies also influence task reliability due to (29). To
satisfy the reliability constraints, the candidate frequency
level can be set to

kRj = arg min
k∈Np

{ln rPj,k : ln rPj,k + lnRLj ≥ lnRth}, (39)

where RLj =
∏
ei,j∈E(

∑
g∈Nl

cLi,j,g
∗
rLi,j,g) denotes the

reliability probability of communication between τj and
its predecessors, and rPj,k denotes the reliability probability
of executing τj with the frequency fp,k. Therefore, to
concurrently satisfy the constraints of task execution time
and task reliability, the feasible frequency level for task τj
is set to k̂j = max{kRj , kTj } (Line 5).

d). To minimize energy consumption, we determine whether
the update of execution frequency is necessary (Line 6).
Under the given frequency fp,k, the computation energy is
Ecompj (fp,k) = P compk tPj,k. For task τj , if Ecompj (fp,k̂j ) <

Ecompj (fp,kinit
j

), we set the execution frequency level as

k̂j . Therefore, we update cPj,k
∗

= 1 (k = k̂j) and cPj,k
∗

= 0

(k 6= k̂j ∈ Np) (Line 7). On this basis, we can calculate
task start time ts∗j based on (17) (Line 9). However, if
Ecompj (fp,k̂j ) ≥ Ecompj (fp,kinit

j
), the frequency of τj is

unchanged since we aim to reduce energy consumption.
e). We apply the above method for each edge ei,j ∈ E

to update task execution frequency. Therefore, we can
obtain the core frequency assignment cP ∗, the start time
of executing tasks tsP ∗, and the flexible slack time t∗.

To sum up, through the above three algorithms: Task Allo-
cation Algorithm 1, Frequency Scaling and Edge Scheduling
Algorithm 2, and Communication Contention Algorithm 3, we
can solve this task mapping and scheduling problem and obtain
the solution {x∗, cP ∗, cL∗,o∗, tsP ∗, tsL∗, t∗}.

D. Algorithm Complexity

CRATMS contains Algorithm 1-Algorithm 3, and the details
of their computational complexities are as follows.
a). Task Allocation: A heuristic based on dynamic program-

ming is applied in Algorithm 1 to solve the task allocation
problem. Firstly, tasks are sorted according to their depen-
dencies through the bubble method. The time complexity
is O(N2) when sorting N tasks [40]. Then, task-to-core
assignment is conducted by the dynamic programming
method. The number of sub-problems influences the time
complexity. Since N tasks are assigned to processors for
execution, the task assignment requires N iterations, and

TABLE III
EXPERIMENTAL SET-UP

Platform Model
Platform Size M : 2× 2→ 5× 5 V/F Levels: Np = 5, Nl = 5

Processor Parameters
Voltage vp,k (V ) 0.75, 1.0, 1.3, 1.6, 1.8

Frequency fp,k (MHz) 150, 400, 600, 800, 1000
Power P comp

k (mW ) 80, 170, 400, 900, 1600
Link Parameters

Frequency fl,k (MHz) 200, 400, 600, 800, 1000

Power P link
k (mW ) 160, 180, 520, 880, 1600

Bandwidth bω = 32 bps Router Energy Consumption ERbit = 0.01 nJ

Task Model
Task Set LU, GE, FFT, LE, MW, MDC, and randomly generated task sets
Task Number N ∈ [5, 100] Execution Cycles ωi ∈ [4× 107, 6× 108]

Scheduling Horizon H Deadline Di = δ(Dmax −Dmin,i) +Dmin,i

Dmax = H Dmin,i = ωi
fp,max

+
∑

ej,i∈E
sj,i

bωfl,max

Tuned Parameters
Task Reliability: d = {2, 3, 4, 5, 6, 7, 8}, Rth = {0.9, 0.95, 0.99, 0.9999}

Task Deadline Factor δ Weight Factor µ
Min/Max/Step 0/1.2/0.1 0/1/0.1

the time complexity is O(N). Thus, the time complexity
of Algorithm 1 is O(N2 +N).

b). Frequency Scaling and Edge Scheduling: Algorithm 2
performs rounding operations iteratively to improve SP1.
The rounding operation is based on the FP method. In
the worst case, it needs nmax iterations. If no feasible
solution is found within the iterations, we adjust the so-
lution of frequency assignment to obtain a feasible solu-
tion. Considering the dimensions of variables in frequency
assignment cP = [cPi,k]N×Np

and cL = [cLi,j,g]N×N×Nl
,

the adjustments of frequency assignment require at most
NpN +NlN

2 times. Hence, the time complexity of Algo-
rithm 2 is O(nmax +NpN +NlN

2).
c). Communication Contention Management: Algorithm 3 is

applied to calculate the precise slack time for each edge
(task communication). Since the number of edges is |E|,
the slack time calculation needs to perform |E| times, and
thus, the time complexity of Algorithm 3 is |E|.

Therefore, the time complexity of CRATMS is O((Nl+1)N2+
(Np + 1)N + nmax + |E|). Note that task number N is usually
much larger than the numbers of V/F levels for cores and links
(Np and Nl), i.e., N � Np and N � Nl. The total time
complexity can be simplified as O(N2 +N + nmax + |E|).

V. SIMULATION RESULTS

In this section, we perform extensive experiments to eval-
uate the performance of the proposed heuristics (CRATMS),
compared to the state-of-the-art methods, such as Con-
tention and Energy-aware Task Mapping and Edge Scheduling
scheme (CA-TMES) [13], ILP-based heuristics (ILP-HEU) [27],
Link Contention-aware Allocation and Scheduling (LCAS)
scheme [6], and Task Duplication and Path Selection-based
(TDPS) scheme [21]. Specifically, CA-TMES minimizes the
makespan and considers the network contention on NoC but
ignores the system reliability. ILP-HEU is an energy-aware
task mapping scheme without considering system reliability and
network contention. LCAS is a link-contention-aware heuristic,
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Fig. 3. Task allocation and scheduling of LU application when using CRATMS, LCAS, and TDPS in a 3× 3 NoC.

which minimizes the contention metrics to reduce commu-
nication latency through task mapping, and TDPS is a task
duplication-based reliability-aware task deployment scheme.

1) Simulation set-up: We deploy the proposed CRATMS
and the other aforementioned methods on a 2D mesh NoC
platform with DVFS technology. The NoC parameters are
adopted from [14]. We conduct simulations on both randomly
generated DAGs (the number of tasks N is changed within
the range [5, 100]) and realistic application DAGs, such as LU
Decomposition (LU) [41], Gaussian Elimination (GE) [41], Fast
Fourier Transform (FFT) [41], Laplace Equation (LE) [42],
Montage Workflows (MW) [43], and Molecular Dynamic Code
(MDC) [41]. For the above DAGs, the number of the worst-
case execution cycles ωi for each task τi is assumed within the
range [4×107, 6×108] [44]. In addition, the system parameters
during the simulations are considered as follows: the size of
NoC platforms (M ) is changed from 2× 2 to 5× 5; the weight
of the objective function in problem (27) is set to µ ∈ [0, 1];
the task deadline is Di = δ(Dmax − Dmin,i) + Dmin,i [45],
where Dmax = H is the maximum task deadline (scheduling
horizon), Dmin,i is the minimum execution and communication
time of task τi, and δ ∈ [0, 1.2] is a tuned deadline factor;
the transient fault sensitivity and the reliable threshold are set
to d = {2, 3, 4, 5, 6, 7, 8} and Rth = {0.9, 0.95, 0.99, 0.9999},
respectively; the fault-tolerant model follows Poisson Distribu-
tion with the average fault rate λ0 = 10−6 [17], [35], [36].
The system parameters are summarized in Table III. Note that
the values of these parameters do not affect the structure of the
task mapping problem. Therefore, our proposed method is still
applicable to other system parameters. The simulation is carried
out on a computer with an Intel i7 processor operating at 2.30
GHz, and the algorithms are implemented in Matlab R2021b.

2) Simulation Results: Firstly, we illustrate the effectiveness
of our method in terms of the joint optimization of energy,
reliability, and network contention, compared with LCAS and
TDPS. We set δ = 0.5, µ = 0.5, d = 6, and Rth = 0.99.
Fig. 3 shows the task mapping results of CRATMS, LCAS, and
TDPS when executing a realistic application, LU Decomposi-
tion (N = 9), on a 3×3 NoC platform. From it, we can see that
under the real-time and reliability constraints, the total energy
consumption of CRATMS (Etotal = 3.9 J) is less than LCAS
and TDPS, which are 5.1 J and 4.6 J , respectively. This is
because LCAS sets all the cores/routers that operate at the same
frequency level, while TDPS duplicates all the tasks to improve
reliability, and thus, more energy is consumed to execute the
tasks. As the results shown in Fig. 3(a) and Fig. 3(b), there is
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(d) Montage Workflow.

Fig. 4. Evaluations of CRATMS with flexible and fixed V/F levels: effects of
deadline parameter δ.

no network contention using CRATMS and LCAS. To alleviate
network contention, CRATMS considers both flexible slack time
tslacki,j in (7) and task mapping from the aspects of time and
space to optimize task and edge scheduling. However, LCAS
only uses task mapping to reduce network contention, and thus,
it consumes more energy than CRATMS. On the other hand,
Fig. 3(c) shows that there exists network contention during the
task mapping process of TDPS, which is due to task duplication,
e.g., the contentions among the tasks τ1 → τ2, τ1 → τ ′2,
τ1 → τ3, τ1 → τ ′3, τ1 → τ4, and τ1 → τ ′4, where τ ′i represents
the duplication of τi. The above results show that the proposed
CRATMS can simultaneously reduce energy consumption and
network contention under reliability and real-time constraints.

Fig. 4 evaluates the influence of time factor δ on energy con-
sumption and problem feasibility using the CRATMS method.
We schedule the LU (N = 9), GE (N = 14), LE (N = 16),
and MW (N = 24) applications with flexible and fixed V/F
levels, such as (vmax, fmax) and (vmin, fmin), on a 3× 3 NoC
platform. In addition, the parameters are set to µ = 0.5,
d = 6, Rth = 0.99, and δ is varied from 0.2 to 1.2 with
the step of 0.2. As shown in Fig. 4, CRATMS with flexible
V/F level can lower the operation frequency to reduce energy
consumption while still satisfying the real-time and reliability
constraints. Therefore, under the given time factor δ, it has a
smaller energy consumption, compared to CRATMS with the
fixed V/F level (vmax, fmax). In addition, with the value of
δ increasing, the energy consumption of CRATMS decreases.
This is because tasks with tight deadlines need to be executed
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(b) Rth = 0.95.
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Fig. 5. Evaluation of CRATMS and TDPS under the Montage Workflow
application: effects of reliability parameters d and Rth.

with a high V/F level to satisfy deadline constraints, which
increases energy consumption. In Fig. 4, the symbol × denotes
no feasible solution to the task mapping problem, and the energy
consumption is set to zero. When the V/F levels are set to small
values, CRATMS cannot meet real-time constraints for all tasks.

Fig. 5 and Fig. 6 compare the energy consumption of
CRATMS and TDPS with the different transient fault sensi-
tivities d and reliability thresholds Rth. In Fig. 5, we execute
the MW application (N = 24) on a 3 × 3 NoC platform,
and we set δ = 0.5, µ = 0.5, d = {2, 3, 4, 5, 6, 7, 8},
and Rth = {0.9, 0.95, 0.99, 0.9999}. Note that with param-
eter d increasing, the reliabilities of task execution and data
transmission decrease. Therefore, the NoC platform needs to
increase the V/F level to enhance task reliability with the
high values of d and Rth, increasing energy consumption. In
Fig. 6, we compare CRATMS and TDPS under different d and
Rth parameters. During this process, we randomly generate
50 sets of DAGs, where the number of tasks N is varied
within the range [5, 50]. The energy saving ratio is defined as
(ETDPStotal − ECRATMS

total )/ETDPStotal × 100%, where ETDPStotal and
ECRATMS
total are the total energy consumptions of TDPS and

CRATMS, respectively. Since TDPS mainly uses task duplica-
tion to improve reliability, compared to TDPS, CRATMS has
52.17%, 48.23%, 39.43%, and 18.55% average lower energy
consumption with d = 2, 4, 6, 8. When the value of parameter d
is small, the system reliability is high. Therefore, CRATMS ap-
plies a low V/F level to satisfy reliability constraints and reduce
energy consumption. However, with the values of parameters d
and Rth increasing, the system reliability will become lower and
the reliability requirement will increase. To satisfy the reliability
constraints, CRATMS needs to increase the V/F levels, leading
to a decline in the energy-saving ratio.

Fig. 7 evaluates the effectiveness of reducing network con-
tention using CRATMS under different NoC scales. We consider
GE (N = 14), LE (N = 16), FFT (N = 15), MW (N = 24),
and MDC (N = 41) applications, and the NoC size is changed
from 2 to 5 × 5. Moreover, we set δ = 0.5, µ = 0.5,
d = 6, and Rth = 0.99. To evaluate the communication
contention on the target platform, we introduce an average

Fig. 6. Average energy saving ratio comparison of CRATMS and TDPS under
different reliability parameters d and Rth.

Route Utilization Factor (RUF) for the tasks [6]. For the edge
ei,j between tasks τi and τj , the RUF is defined as RUF (ei,j) =

1
|Ls,d|

∑
lm,n∈Ls,d

|LOT
ei,j
lm,n

∩Zlm,n |

|LOT
ei,j
lm,n

|
, where LOT ei,jlm,n

is the oc-

cupation time of link lm,n during the data transferring of the
edge ei,j , and Zlm,n

is the set of time slots when the link lm,n is
occupied during the communication. Note that LOT ei,jlm,n

∩Zlm,n

indicates the slot of contention time of the link lm,n, when data
transmission of edge ei,j conflicts with other edges. RUF (ei,j)
represents the average ratio of the total contention time to
the transmission time for the edge ei,j . The lower the RUF,
the less contention of the edge ei,j . As the results depicted
in Fig. 7, under the given application and NoC platform, the
average RUF of CRATMS is the minimum and is close to zero.
This is because CRATMS introduces flexible slack time and
assigns the tasks to the cores with less route overlap, leading
to reducing communication contention as much as possible. In
contrast, ILP-HEU and TDPS omit communication contention.
Moreover, CA-TMES mainly focuses on fixed slack time, which
increases the communication time for the edges and makes real-
time constraints hard to satisfy. At the same time, LCAS did
not take slack time into account and only used task mapping to
reduce task overlapping on routing links.

Fig. 8 compares the solution quality (e.g., objective function
value, energy consumption, and computation time) achieved by
the CRATMS and optimal method. Since task mapping problem
(27) can be transformed into an MILP problem, the optimization
solver, such as Gurobi, can be used to solve this problem and get
the optimal solution. The parameters are set to δ = 0.5, µ = 0.5,
d = 6, and Rth = 0.99. In Fig. 8, we perform LU (N = 9), GE
(N = 14), FFT (N = 15), LE (N = 16) and MW (N = 24)
applications on a 3 × 3 NoC platform. The results show that
compared to the optimal solution, CRATMS has 24.8% higher
energy consumption and 18.7% higher objective function value
on average. However, the computation time of CRATMS is
much less than that of the optimal method and almost varies
linearly with the number of tasks. Therefore, CRATMS can
achieve a trade-off between result quality and runtime.

Fig. 9(a)–Fig. 9(c) evaluate the energy consumption, relia-
bility, and network contention of CRATMS, compared to ILP-
HEU, TDPS, CA-TMES, and LCAS. We randomly generate
ten DAGs, where the number of tasks N is changed from 10
to 100 with a step of 10. Compared to ILP-HEU and CA-
TMES, CRATMS has an average 140% and 138% higher energy
consumption, respectively. However, the reliabilities of ILP-
HEU and CA-TMES are lower than the threshold Rth = 0.99,
and ILP-HEU and CA-TMES have higher average RUF than
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Fig. 7. Comparison of the average RUF of different task mapping methods
with the different NoC platform scale.

CRATMS. This is because ILP-HEU did not consider system
reliability and network contention, while CA-TMES uses fixed
slack time to alleviate the contention and ignore system reli-
ability. Moreover, compared to LCAS and TDPS, where the
reliability constraints are satisfied, CRATMS has 31.6% and
21.7% lower energy consumption, and 95.5% and 98.6% lower
RUF on average, respectively. This is because LCAS minimizes
the contention metric RUF through task-to-core allocation. It
only considers the overlapping of routing links and omits the
improvement of energy efficiency. In addition, TDPS uses task
duplication to improve system reliability, leading to increased
energy consumption and network contention. Since the flexible
slack time and DVFS are optimized in task mapping, CRATMS
has higher energy efficiency and lower network contention.
Therefore, it is more suitable for large-scale and complex task
scenarios. Fig. 9(d) evaluates the performances of CRATMS
with and without DVFS switching overheads, and the parame-
ters of switching overheads are adopted from [14]. The incre-
ment ratio of energy consumption is (Eswitchtotal −Etotal)/Etotal,
where Eswitchtotal and Etotal are the total energy consumption with
and without switching overhead, respectively. Similarly, we can
get the increment ratio of the objective function value in PP (27).
Fig. 9(d) shows that the increment ratios of energy consumption
and objective function value are 0.1‰ and 0.09‰ on average,
respectively. Moreover, the ratio of switching time to task exe-
cution and communication time is 0.09‰ on average. Therefore,
the energy and time overheads of frequency switching are much
smaller than that of task execution and communication. This
result is in line with the overhead analysis in [6], [29], [34].
Thus, the switching overhead can be omitted.

VI. CONCLUSION

To minimize energy consumption, while balancing workload
under real-time and reliability constraints, we formulate the task
mapping problem on the NoC-based MPSoCs platform as an
MINLP problem. On the one hand, the frequency scalings of
both cores and links are considered simultaneously to improve
task reliability and energy efficiency. On the other hand, load

(a) Energy consumption and ob-
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Fig. 8. Energy consumption, objective function value, and running time
comparison of MILP-based method and CRATMS.

balancing and flexible slack time are introduced into the task al-
location and scheduling process to alleviate network contention
and increase communication efficiency while satisfying real-
time constraints. Based on the structure of the task mapping
problem, we propose three-step heuristics (CRATMS), includ-
ing task allocation, frequency scaling and edge scheduling,
and network contention management, to solve this problem
efficiently. Finally, we compare CRATMS with the existing
contention-aware and reliability-aware methods, and the results
show that the proposed method can reduce energy consumption
and network contention under multiple constraints. Therefore,
CRATMS can be applied to applications with high energy
efficiency, fault-tolerant, and real-time requirements. In future
work, we will extend our method to heterogeneous NoC plat-
forms considering both permanent and transient faults.
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