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Abstract
DNA replication stands as one of the fundamental biological processes crucial for cellular

functioning. Recent experimental developments enable the study of replication dynamics at
the single-molecule level for complete genomes, facilitating a deeper understanding of its main
parameters. In these new data, replication dynamics is reported by the incorporation of an
exogenous chemical, whose intra-cellular concentration follows a nonlinear function. The anal-
ysis of replication traces thus gives rise to a nonlinear inverse problem, presenting a nonconvex
optimization challenge. We demonstrate that under noiseless conditions, the replication dy-
namics can be uniquely identified by the proposed model. Computing a global solution to this
optimization problem is specially challenging because of its multiple local minima. We present
the DNA-inverse optimization method that is capable of finding this global solution even in
the presence of noise. Comparative analysis against state-of-the-art optimization methods high-
lights the superior computational efficiency of our approach. DNA-inverse enables the automatic
recovery of all configurations of the replication dynamics, which was not possible with previous
methods.

1 Introduction.
Context DNA replication is the cellular process by which a cell makes an identical copy of all its
chromosomes. It is a highly parallelized DNA synthesis process under strong biological regulation.
Its successful completion at each cell cycle is crucial to ensure that genetic information is accurately
passed on from one generation to the next. Genetic diseases can appear from replication errors in
the germline while genetic instabilities associated to perturbations of the replication dynamic is a
recurrent pattern in the appearance and progression of cancer [1]. Hence, the characterization of
the so-called DNA replication program is not only of fundamental interest but also as implication
on human health.

The replication program for one cell can be described by the replication time versus chromo-
some position curve: τpxq (Figure 1A). Single-molecule experimental characterization techniques
(i) submit the cells to a pulse of a modified nucleotide called BrdU so that the intracellular BrdU
concentration follows a time pulse ψptq (Figure 1C) and (ii) measure a posteriori the resulting BrdU
incorporation profile zpxq along single DNA molecules (Figure 1B). The task of characterizing the
DNA replication program thus consists in inferring τpxq from zpxq given ψptq by solving the inverse
problem zpxq “ ψpτpxqq. Following previous work in the field, we assume that the rate of DNA syn-
thesis is locally constant, i.e., that τpxq is piecewise linear. This configurations results in a non-linear
inverse problem defined over the set of function with sparse second derivative.

Nonlinear inverse problems are a field in expansion and with significant applications in imagery,
optics, and tomography. [2, 3, 4, 5, 6]. In contrast to linear inverse problems, there is no optimization
method capable of providing global solutions to large classes of problems [7, 8]. On the other hand,
recent works have successfully adapted methods used in linear inverse problems, such as proximal
methods and ADMM, to find local solutions in a nonlinear framework [9, 5]. The difficulty of
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transitioning from a local solution to a global one stems from the fact that a nonlinear measurement
operator, as in the case of DNA replication, often corresponds to a nonconvex optimization problem.
In this work, we propose to tackle a nonlinear inverse problem by an approximation that yields
a mixed-integer nonlinear programming problem (MINLP). The approach of solving nonconvex
optimization problems by introducing integer variables is present in recent literature, particularly in
the context of nonconvex machine learning problems [10, 11] and to replace non-convex constraints
[12]. In our case study, the integer variable enables us to decompose a nonconvex problem into a
family of convex problems.

State-of-the-art The replication timing profile τpxq depends on the location and time of acti-
vation of the so-called replication origins and the speed of the replication forks (Figure 1A). The
experimental signals obtained by FORK-seq [13, 14] captures the DNA synthesis by measuring the
variation of the concentration of BrdU, a modified nucleotide that incorporates in replacement of
thymidines along a fragment of chromosome, called a read (Figure 1). Typical examples of experi-
mental signals are illustrated in Figure 2. The signal resulting from one fork is an atom having the
shape of the BrdU time pulse ψptq with a spatial dilatation depending on the local replication veloc-
ity (Figure 2F). In previous studies [14, 13, 15, 16], signal processing methods applied to FORK-seq
data enabled to estimate the position, orientation, and speed of DNA replication forks, but only in
replication fork configurations where fork atoms are sufficiently isolated (Figure 2A,D). In [14], the
numerical approach involves a piecewise linear approximation of the BrdU vs. space signal. In [15,
16] the function ψ is used as a reference atom in a dictionary composed by translation and rescaling
of ψ (Figure 2F) leading to a sparse coding approach. According to [15], the most effective numerical
method for sparse coding in signals with high noise is Matching Pursuit [17].

While successful in accurately estimating fork speed, these approaches fail to characterize replica-
tion motifs involving truncated atoms that appears in the vicinity of replication origins and termini
(Figure 1B). Indeed, since fork progression start at origins and ends when converging forks merge
(each loci is replicated once and only once), the significant particularity of the BrdU incorporation
signals is that the contributions of distinct forks never overlap and add up, fork atoms being trun-
cated at replication origins and termini (Figure 1B). Therefore, there is a need for an alternative
approach capable of robustly extracting these diverging or converging fork configurations (see Fig-
ure 2B,E). In this context, we move away from the additive atom approach and instead focus on a
method that can determine the time profile directly by specifying a nonlinear inverse problem.

Contribution and outline The contribution of this article is twofold. We introduce, for the first
time, a nonlinear inverse problem that accurately models the biological configuration of FORK-seq
data. We thoroughly investigate the theoretical aspects of the model and demonstrate that the
optimization problem yields a unique solution under specific assumptions. On the other side, we
propose an original numerical method capable of globally solving this problem, a task that is recent
investigated in the existing literature [18, 4, 6].

The article is divided as follows: In Section 2 we introduce the DNA-inverse model that is able
to capture the main aspects of the biological configuration that results in FORK-seq data as well as
the nonlinear inverse problem that provides the timing profile associated to a signal. The theoretical
analysis of this problem is provided in Section 3, where we study conditions for a unique solution.
In Section 4, we reformulate the optimization problem to propose a numerical method capable of
finding a global solution. The development of this numerical method and algorithm is presented in
Section 5. Finally, Section 6 presents the numerical results and compares it with results obtained
using a state-of-the-art method.
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Figure 1: The DNA replication program and its characterization by pulse labeling. (A) Replication timing
profile τpxq capturing the time of replication during one replication cycle of each loci along a chromosome.
DNA replication initiates at multiple sites (black dots), called replication origins; from each site two diverg-
ing replication forks emerge ensuring sequential DNA synthesis; replication terminates by the mergers of
converging forks originating from neighboring origins at replication termini (black squares). In this example,
each replication fork have a constant speed so that the timing profile between origins and termini is linear.
(B) Profile zpxq of the rate of BrdU incorporation along the newly synthesized DNA molecule during the
replication program presented in (A) in the presence of the time pulse of BrdU ψptq shown in (C); in the
absence of noise, it is a simple composition ψ and τ : zpxq “ ψpτpxqq. (C) Intracellular BrdU concentration
along time, ψ : R Ñ R`; the orange dashed line indicates the beginning of the external BrdU pulse resulting
in the progressive increase of the intracellular BrdU concentration, the pulse phase; the blue dashed line
indicates the end time of the external pulse (dilution of the external media) resulting in the decrease of the
internal BrdU concentration, the chase phase. The pink dashed line represents the limit of ψ as t approaches
infinity. The background color in (A) and the curve color in (B) correspond to the pulse (orange) and chase
(blue) phase, respectively.

2 DNA-Inverse Model
Model: Let X be the discrete set of positions in a certain DNA fragment of size n. Then X :“
tx1, ..., xnu Ă R, where xi`1 “ xi`∆x, for i P t1, ..., n´1u, and ∆x ą 0 is fixed as a certain distance
in the chromosome scale. Assuming a locally constant speed, the motion of the molecular motor
can be characterized by a piecewise linear function τ : R Ñ R, that assigns to each position of the
DNA fragment, the time, starting from the beginning of the experiment, at which this position have
been replicated. Negative values of τpxiq mean that the correspondent region of the DNA fragment
have been replicated before the beginning of the experiment. When restricted to positions in X , the
function τ is associated with the vector τ “ pτ1, . . . , τnq, where τi :“ τpxiq, for i P t1, ..., nu. The
vector τ is referred as a timing profile and is illustrated in Figure 1 A.

The measurement Ψ is defined as the coordinatewise composition of a nonlinear function ψ,
which measures the concentration of BrdU in time, and the timing profile:

Ψ : Rn ÝÑ Rn`
τ “ pτ1, ..., τnq ÞÑ Ψpτ q “ pψpτ1q, ..., ψpτnqq.

Denoting z a signal provided by FORK-seq, we suppose that there exists a timing profile sτ P Rn
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such that:
z « Ψpsτ q,

and that sτ is in the set of piecewise linear vectors with a maximum of C breakpoints. This set can
be expressed using the ℓ0 pseudo-norm and a linear operator L that represents a discrete second
derivative: Lτ “ ℓ ˚ τ , with ℓ “ r1,´2, 1s, where L : Rn Ñ Rn´2 does not consider derivatives from
the borders. We denote:

PC :“ tτ : }Lτ }0 ď Cu (1)

for some fixed C P R`. The non-negativity constraint reflects the fact that the operator Ψ returns
zero for negative components of τ . In these conditions, a natural way to estimate τ̄ is to solve the
following optimization problem:

pτ :“ arg min
τ PPC

}z ´ Ψpτ q}2
2, (P1)

Nonlinear sparse coding problem: Problem (P1) is a nonlinear sparse coding problem. Non-
linear sparse coding problems appear in different application contexts such as partial differential
equations, quantization and problems with large application field such as phase-retrieval [19, 20, 21,
3, 18]. When Ψ is a linear transform, problem (P1) can be relaxed and solved approximately by
ℓ1 regularization. The resulting optimization problem is known as the generalized lasso [22, 23]. In
the general case, the ℓ1 regularized version of (P1) fits the primal dual formulation for non-convex
optimization and can be solved by a primal-dual proximal method or a generalized Alternating Di-
rection Method of Multipliers (ADMM) for nonlinear operators Ψ [19, 24]. However, the solution
proposed by these methods, as a solution to a non-convex problem, is a local solution. Additionally,
these algorithms may have a high runtime depending on the difficulty in calculating the necessary
proximal operators for the iterations.

Particularities of DNA-Inverse: In our case study, we present some specificities of the non-
linearity of operator Ψ. We note that the structure of the function Ψ is given coordinate-wise by
the function ψ, that represents the BrdU concentration. Despite not being invertible, ψ has at most
two possible antecedents (“inverses”) for each point b P ψpR`q. In addition, any element of R´ is
mapped to 0.

A.1 : #ψ´1pbq “ #tτ : ψpτ q “ bu ď 2, @b P R` and ψ|r´8,0s “ 0.

The hypothesis A.1 is employed to develop the DNA-Inverse model (Section 4). However, to
ensure uniqueness in the detected timing profile, an additional hypothesis regarding the function ψ :
is necessary:

A.2 : D τ0 ą 0 such that ψ0 :“ ψ|r0,τ0s is convex and ψ1 :“ ψ|rτ0,8q is concave (or the
opposite), and the convexity or concavity of ψ0 or ψ1 is strict. In addition, both ψ0, ψ1 are
injective.

These properties will guide the study of problem (P1). The existence of at most two possible
inverses for ψ implies that there will be at most 2n inverses for Ψ. In this work, we aim to narrow
down the possibilities of inverses by investigating other important characteristics of the problem.
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Figure 2: (A,B,D,E): examples of experimental yeast FORK-seq signals for different replication configu-
rations. C: function ψptq which has been experimentally determined in yeast cells [14, Section Methods].
The BrdU is injected in the medium at time t “ 0 , leading to a progressive increase of the intra-cellular
concentration of BrdU, called pulse phase. After a short period (2 min) the chemical is removed from the
medium by dilution resulting in a decrease of the intra-cellular concentration until a certain residual BrdU
level, called chase phase. For signals in A and D the replication starts after the start of the BrdU injection,
resulting in a pattern that reproduces the function ψ with a spatial dilatation depending on the local fork
speed (F). Signals in B and E capture an initiation than happened before the injection start (truncated
diverging fork atoms) and a termination during the pulse phase (truncated converging fork atoms), respec-
tively. These two configurations can not be recognized by the dictionary model [16]

3 Injectivity of Ψ
In this section, we establish the uniqueness of the solution to problem (P1) by introducing additional
constraints in the available set. In other words, we prove the injectivity of Ψ in the set of piecewise
linear signals with extra constraints specified in this section. These additional constraints are divided
in two types: one for analyzing the simple case of linear signals, as detailed in Section 3.1, and the
second one in the general case of piecewise linear signals, addressed in Section 3.2. The constraints
will be further justified in the context of the DNA replication problem, Section 3.3. This result
allows us to demonstrate that the proposed model can uniquely define a timing profile pτ that better
fits the DNA replication signal z.

We begin by presenting a Lemma that facilitates the manipulation of the set PC within a con-
tinuous framework.

Lemma 1 (Continuous form of the set PC). Let τ P PC and X :“ tx1, ..., xnu Ă R, be a set such
that xi`1 ´ xi “ ∆x ą 0, for all i P t1, ..., n´ 1u. Define fτ : rx1, xns Ñ R`, by fτ pxiq :“ τi, for all
i P t1, ..., nu, and let fτ be linear in Ii :“ rxi, xi`1s, for i P t1, ..., n ´ 1u. Then, fτ is a continuous
piecewise linear function on rx1, xns with p ď C breakpoints in px1, xnq. In addition, the breakpoints
of fτ form a subset txi1 , ..., xip u Ă X , and the indices ti1, ..., ipu Ă t1, ..., n ´ 1u do not depend on
X .

Proof. Clearly fτ is continuous and piecewise linear. We will verify that if τ P PC , fτ has p “ }Lτ }0
breakpoints. First, we note that there is no breakpoint in the interior of Ii, for all i P t1, ..., n ´ 1u

because fτ is linear by definition. Then, all breakpoints are contained in the set tx2, ..., xn´1u. For
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i P t2, ..., n´ 1u, denote pi :“ pxi, τiq P R2. The proof is based on the following observation:

pLτ qi “ 0 ô pi´1, pi, pi`1 are colinear ô xi is not a breakpoint of fτ .

To see the implication pñq, note that pLτ qi “ 0 means, by definition: τi´1 ´ 2τi ` τi`1 “ 0, which
implies

τi´1 ´ τi “ τi ´ τi`1. (2)

Then define m :“ τi´τi´1
∆x , and c :“ τi´1 ´mxi´1. It is easy to see that pi´1, pi, pi`1 are in the graph

of ypxq “ mx` c, and then are colinear. We conclude that xi can not be a breakpoint. To see pðq,
let i P t2, ..., n ´ 1u be such that pi´1, pi, pi`1 are colinear. Therefore, there exists ypxq “ mx ` c
such that pi´1, pi, pi`1 are in the graph of y. In this case, it is then easy to verify that (2) holds,
which means that pLτ qi “ 0.

Thus, the set of breakpoints of fτ writes ti1, ..., ipu Ă t1, ..., nu, and pLτ qij ‰ 0, for j P t1, ..., pu.
This set does not depend on the choice of X . Clearly, p “ }Lτ }0 ď C.

Equipped with Lemma 1, we can transition between the vector τ and its continuous counterpart
fτ . This lemma will be important in the proof of the main results in this section.

To investigate the injectivity of Ψ, we consider Assumption (A.2) and two observations: First,
since ψr´8,0q “ 0, timing profiles cannot be differentiated for negative values τi, i.e., before the
beginning of the experiment. To obtain injectivity we must consider non-negative timing profiles τ .
We also observe that ψ is not injective. Particularly, there exists t P r0, τ0q and t1 P pτ0,8q, such
that u :“ ψptq “ ψ0ptq “ ψ1pt1q “ ψpt1q. Consequently, the constant vector z “ u P Rn has two
different optimal constant solutions: τ “ t P Rn, and τ “ t1 P Rn. For this reason, to obtain a
unique solution, we need to restrict the solution set to non-constant vectors:

P‰
C “ tτ P PC : τ ě 0, τi ‰ τi`1 for all i P t1, ..., n´ 1uu Ă Rn`.

In the next section, we show that if τ ‰ τ 1 are non-constant linear vectors in P‰
0 , then Ψpτ q ‰ Ψpτ 1q.

3.1 Injectivity of Ψ when τ is linear
We begin by analyzing the case C “ 0, where the feasible set of (P1) is the set of non-negative
linear vectors. Later, we will extend this argument to non constant piecewise linear vectors.

Lemma 2 (Injectivity of Ψ for C “ 0). Assume (A.2). Then, if n ě 6, the function Ψ : P‰
0 Ñ Rn

is injective.

Proof. Consider τ , τ 1 P P‰
0 such that Ψpτ q “ Ψpτ 1q. We will prove that τ “ τ 1.

Since τ , τ 1 are linear and non-constant, by lemma 1, there exists m,m1, c, c1 P R, with m,m1 ‰ 0,
such that τi “ mxi`c, τ

1
i “ m1xi`c

1 for each xi P X , for i P I :“ t1, ..., nu. We begin by partitioning
the set I into three disjoint parts:

I` “
␣

i P I : τi, τ 1
i ě τ0u, I´ “ ti P I : τ , τ 1 ď τ0

(

, I`´ “ Iz pI` Y I´q .

Observe that for i P I` we have Ψpτ qi “ ψ1pτiq and similarly with τ 1. Since Ψpτq “ Ψpτ 1q and ψ1
is injective because of (A.2), we deduce that

τi “ τ 1
i , @i P I`.

The same result holds for i P I´, by the injectivity of ψ0. Since both τ and τ 1 are linear vectors,
they are equal as soon as they coincide at two points, hence if #pI` Y I´q ě 2 then τ “ τ 1. To
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complete the proof, it is thus enough to verify that #I`´ ď 4. To establish this fact, we proceed
by contradiction, and observe first that for each i P I`´ we have

τi ă τ0 ă τ 1
i , or τ 1

i ă τ0 ă τi.

Suppose that I`´ has 5 elements. By the pigeonhole principle, at least one of the two above
inequalities must be satisfied by at least 3 elements i P I`´ as illustrated on Figure 3. Without loss
of generality (up to interchanging the role of τ and τ 1) we can assume that this inequality writes
τi ă τ0 ă τ 1

i , and holds for i P ti1, i2, i3u Ă I`´ such that i1 ă i2 ă i3, implying xi1 ă xi2 ă xi3 .
Consider t P p0, 1q be such that: xi2 “ txi1 ` p1 ´ tqxi3 Consider the notation of Assumption (A.2),
where ψ0 is strictly concave and ψ1 is convex (the other possibilities where ψ0 and ψ1 exibit different
combinations of convexity and concavity can be analyzed similarly). Since ψ0 is strictly concave and
ψ1 is convex, the functions and m,m1 ‰ 0: φ0, φ1 : rxi1 , xi3 s Ñ R defined as:

φ0pxq “ ψ0pmx` cq, and φ1pxq “ ψ1pm1x` c1q,

are strictly concave and convex respectively. Since Ψpτ q “ Ψpτ 1q the functions φ0 and φ1 coincide
in three points xi1 , xi2 and xi3 . As φ0 is strictly concave, we get:

φ1pxi2 q “ φ0pxi2 q ă tφ0pxi1 q ` p1 ´ tqφ0pxi3 q “ tφ1pxi1 q ` p1 ´ tqφ1pxi3 q,

which contradicts the convexity of φ1. We conclude that #I`´ ď 4 consequently #pI` Y I´q ě 2
and τ “ τ 1.

Corollary 1 (Extension to the continuous case). Let I Ă R be an interval. Consider two linear and
non-constant functions f1, f2 : I Ñ R`, and the compositions φp1q, φp2q : I Ñ R, φp1qpxq “ ψpf1pxqq

and φp2qpxq “ ψpf2pxqq. Let X “ tx1, x2, ..., xnu be a set of equidistant points, and n ě 6. Suppose
that φp1qpxiq “ φp2qpxiq, for i P t1, ..., nu, then f1 “ f2.

Proof. Consider τ 1, τ 2 P Rn defined by: τ1
i :“ f1pxiq and τ2

i “ f2pxiq. Then, by assumption,
τ 1 “ τ 2 and Ψpτ 1qi “ ψpτ1

i q “ ψpτ2
i q “ Ψpτ 2qi, for all i P t1, ..., nu, implying Ψpτ 1q “ Ψpτ 2q. Since

f1, f2 are linear non-constant, τ 1, τ 2 do not have constant parts, implying that τ 1, τ 2 P P‰
0 . By

Lemma 2, τ 1 “ τ 2, and since f1, f2 coincide in more than two points, they define the same line and
f1 “ f2.

3.2 The injectivity of Ψ when τ is piecewise linear
In the case where C ą 0, the feasible set of problem (P1) consists of piecewise linear vectors with
less than C breaks. In this case, in addition to the constraint that prevents constant vectors in
P‰

0 , we need to investigate the distance between two consecutive breaks of τ . The intuition of
this investigation is that if arbitrarily close breaks are allowed, it is possible to oscillate around τ0
obtaining the same image.

Definition 1 (Vector of breaks iτ ). Let τ P Rn, consider the indexes ti1, ..., ipu for p ď C defined
in Lemma 1. Then we define the vector of breaks of τ by: iτ :“ pi0, i1, ..., ip, ip`1q , where i0 “ 1
and ip`1 “ n.

Proposition 1 (Injectivity of Ψ for C ą 0). Let ψ be as in Assumption (A.2). Consider:

Pě
C “

␣

τ P P‰
C : iτ

k`1 ´ iτ
k ě 12, for all k P t1, ..., p` 1u, p “ |iτ

|
(

, (3)

where iτ is defined in Definition 1. Then Ψ : Pě
C Ñ Rn is injective.
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Proof. Consider τ , τ 1 P Pě
C , and a set of equidistant points X “ tx1, ..., xnu. Then by Lemma 1

there exists piecewise linear functions fτ , fτ 1 : rx1, xns Ñ R`, where fτ pxiq “ τi, and fτ 1 pxiq “ τ 1
i ,

for all i P t1, ..., nu. To demonstrate that τ “ τ 1, it is sufficient to show that fτ “ fτ 1

By Lemma 1, breakpoints of fτ and fτ 1 are given by X τ :“ txi2 , ..., xip u and X τ 1 :“ txi12 , ..., xi1p1
u

for p, p1 ď C. Consider the vector b, which aggregates and sorts all breakpoints in X τ Y X τ 1

. We
divide the interval rx1, xns into intervals Bl “ rbl, bl`1s, for l P t1, ..., L ´ 1u. Note that fτ |Bl

and
fτ 1 |Bl

are both linear by the definition of b. Consider Il :“ Bl X X . Then, by Corollary 1, for all
l P t1, ..., Lu:

#Il ě 6 ñ fτ |Bl
“ fτ 1 |Bl

, (4)

Note that, according to the structure of Pě
C , since iτ , iτ 1

contains the borders t1, nu, the first and
last breakpoints of fτ and fτ 1 can not appear before 12 points, implying that #I1,#IL ą 6. We
proceed by investigating the case #Il ă 6. Define:

L “ tl P t2, ..., L´ 1u : #Il ă 6u .

The objective is to show that for all l P L, fτ |Bl
“ fτ 1 |Bl

. We begin by proving that l P L implies
l´ 1 R L and l` 1 R L and we proceed by contradiction. By definition of Il, a breakpoint for either
fτ or fτ 1 occurs in l and in l`1. If l`1 P L, an additional breakpoint emerges in l`2. Consequently,
fτ or fτ 1 would accumulate two breakpoints in an interval of length less then 12 which means that
τ or τ 1 is not in the set Pě

C . The same argument applies for the adjacent interval Il´1. We conclude
that l ´ 1 and l ` 1 are not in L. To complete the proof we demonstrate that:

If l ´ 1, l ` 1 R L, then fτ |Bl
“ fτ 1 |Bl

.

Note that adjacent intervals share boundaries, thus for every l P t1, ..., L´ 1u, bl`1 P Bl X Bl`1 and
bl P Bl X Bl´1. If l ´ 1, l ` 1 R L, applying (4), we have that: fτ |tbl,bl`1u “ fτ 1 |tbl,bl`1u. Since fτ |Bl

and fτ 1 |Bl
are linear and coincide in two points, we conclude that fτ |Bl

“ fτ 1 |Bl
.

3.3 Constraints in the set PC and the DNA replication context
In this section, we discuss how the constraints of the set PC of Proposition 1 can be interpreted from
the perspective of their application to the DNA analysis problem. In the context of DNA replication
analysis, constant parts in vector τ means that an interval of the DNA fragment X was replicated
simultaneously, which is not in the physical hypothesis of the real problem. On the other hand, the
spacing between break-points in the context of the application corresponds to the distance between
two initiation to termination events. If these two events are very close, it is not possible for biologists
to extract information from the BrdU signal, which makes this hypothesis reasonable. The spacing
suggested by Proposition 1 is 12 space units, which corresponds to 1.2 kb in the actual signal. The
non negativeness proposed in (1) also arises from the applied intuition to the problem.

4 DNA-inverse optimization
Existing numerical methods for nonlinear inverse problems provide local solutions to problem (P1)
[5, 24]. However this appraoch faces two major limitations: (i) They are not able to provide a global
solution, which is a major challenge in the DNA-inverse model; and (ii) They are not fast enough

8



Figure 3: Illustration of the injectivity of Ψ for C “ 0. (left) Purple dots represent the vector τ “

pτ1, τ2, τ3, ..., τnq and green dots τ 1
“ pτ 1

1, τ
1
2, τ

1
3, ...., τ

1
nq. Note that τ , τ 1

P P0. The dashed lines represent
the linear functions that support vectors τ , τ 1 as stated in Lemma 1. We note that ψ is injective for vector
components in the blue and orange regions. The main challenge in verifying Ψ injectivity is then to consider
vectors τ , τ 1 with components in different sides of the line rpxq “ τ0, as those in the figure. (right) Dashed
lines represent the images by Ψ of the lines that support vectors τ (purple) and τ 1 (green). The images
coincide at only three coordinates: 1, 2 and n. However, τ and τ 1 have different images. For example, in the
case of component 3 : Ψpτ q3 “ ψ0pτ3q ‰ ψ1pτ3q “ Ψpτ 1

q3. This case illustrates the proof of Lemma 2. In
this lemma, we show that the set I`´, that consists on indexes for which components of τ, τ 1 are in different
sides of the line rpxq “ τ0, can not have three elements with coincident images.

to allow the exploration of different starting points. In this section, we reformulate problem (P1) in
order to provide a numerical method able to achieve global solutions .

Employing the notation of Assumption (A.2), the inverse set ψ´1pbq, for any b P R`, can be
written as:

ψ´1pbq “ ψ´1
0 pbq Y ψ´1

1 pbq,

where ψ´1
0 pbq and ψ´1

1 pbq are inverse sets of ψ0 and ψ1 respectively. Because of pA.2q, these sets
consist in single elements or are empty. Consider a signal z P Rn. Each d P t0, 1un is associated to
a part of the inverse set Ψ´1pzq, given by:

Ψ´1pz; dq :“ ψ´1
d0

pz0q ˆ ...ˆ ψ´1
dn

pznq Ă Rn,

where some of the inverse sets on the right hand side can be empty. The set Kpzq Ă t0, 1un select
elements for which all inverse sets are composed by a single element:

Kpzq “
␣

d : ψ´1
di

pziq ‰ ∅
(

Ă t0, 1un.

For elements d P K, Ψ´1pz; dq can be identified as a vector in Rn. Using this abuse of notation, we
denote Ψ´1

d pzq a vector in Rn when d P K :

d “ pd0, ..., dnq P Kpzq ñ Ψ´1
d pzq :“ pψ´1

d1
pz1q, ..., ψ´1

dn
pznqq P Rn. (5)

In this case, it is possible to develop a Taylor expansion of the function ψ, which is also a coordi-
natewise expansion of the function Ψ.*
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Taylor expansion Consider a signal z P Rn, and any coordinate i P t1, ..., nu. Let d P Kpzq Ă t0, 1un,
and τ P Rn`. Note that for all i P t1, ..., nu : zi “ ψdi

pψ´1
di

pziqq “ ψpψ´1
di

pziqq. Then, if ψ is con-
tinuously differentiable, by Taylor’s theorem applied in the point ψ´1

di
pziq, for all i P t1, ..., nu, we

have:
zi ´ ψpτiq “ ψ

1

pψ´1
di

pziqq
`

ψ´1
di

pziq ´ τi
˘

` hpτiq
`

ψ´1
di

pziq ´ τi
˘

where limτi ÞÑψ´1
di

pziq
hpτiq “ 0. Define: wd,i :“ ψ

1

pψ´1
di

pziqq P R, for all i P t1, ..., nu. Then, if
|ψ´1
di

pziq ´ τi| is small for all i P t1, ..., nu :

}z ´ Ψpτ q}2
2 «

n
ÿ

i“1
w2

d,i

`

Ψ´1
d pzq ´ τ

˘2
i
. (6)

The right hand side of (6) is a distance between Ψ´1
d pzq and τ, that depends on d. The variable d

adjusts this distance to the local behavior of Ψ. To formalize this intuition, we define a pseudo-norm
that coincide with this notion of distance for d P Kpzq.

Definition 2 (weighted norm). Given a vector w P Rn and any v P Rn, the weighted norm }v}w

with respect to the vector w is defined as:

}v}w :“

g

f

f

e

n
ÿ

i“1
w2
i v

2
i .

Definition 3 (} ¨ }wd
). Let z P Rn`, and d P t0, 1un. For any v P Rn, we define: }v}wd

, the weighted
norm with respect to the vector wd, where:

wd,i :“ di d w0,i ` p1 ´ diq d w1,i, for all i P t1, ..., nu, (7)

and

w0,i :“
#

ψ
1

pψ´1
0 pziqq ψ´1

0 pziq ‰ ∅
0 ψ´1

0 pziq “ ∅,
w1,i :“

#

ψ
1

pψ´1
1 pziqq ψ´1

1 pziq ‰ ∅
0 ψ´1

1 pziq “ ∅.

The definition 3 is illustrated in Figure 6. Note that when d P Kpzq, the definition of wd coincides
with the weights of the Taylor approximation (6). In Section 4.2, we discuss this definition to other
values of d P t0, 1un.

4.1 Noiseless signal
The Taylor expansion suggests that Problem (P1), defined using the Euclidean metric in Rn, can
be approximated by a problem that employs an alternative notion of distance given by } ¨ }wd

.

Alternative optimization problem in the noiseless case: Consider z P Rn`, and the following
optimization problem:

pτ ˚,d˚
q :“ arg min

tpτ ,dqPPC ˆKpzqu

}τ ´ Ψ´1
d pzq}2

wd
, (P2)

where } ¨ }wd
is defined in Definition 3 and Ψ´1

d pzq is defined as in (5).
In Figure 4, we observe possible different positions of the groundtruth timing profile τ̄ , and the

solutions pτ ˚, d˚q of (P2) and pτ of (P1).
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Figure 4: Illustration of formulation (P1) and (P2). Elements in red are in the set PC , the set of
piecewise linear vectors with at most C breakpoints. On the right, we observe the set where Problem (P1)
is formulated, with the Euclidean distance defining the fidelity term. With formulation (P2’), we transfer
the optimization problem to the domain of Ψ using an auxiliary integer variable d P t0, 1u

n. Depending on
d, the inverse Ψ´1

d pzq is situated in different parts of the domain, justifying the introduction of } ¨ }wd to
account for the local behavior of Ψ

Proposition 2 (Noiseless case). Given any τ̄ P Pě
C defined in (3), consider z “ Ψpτ̄ q. Then (P1)

and (P2) both admit the same unique solution in Pě
C , which is precisely τ .

Proof. Clearly pτ “ τ̄ is a solution for (P1). On the other hand, consider d̄ P t0, 1un defined as:
d̄i “ 0, if τ̄i ď τ0 and d̄i “ 1, if τ̄i ą τ0, for all i P t1, ..., nu. Then τ̄ “ Ψ´1

d̄
pzq, and d P Kpzq,

implying that pτ̄ , d̄q is a solution for problem (P2). Because of Proposition 1, if τ̄ P Pě
C , this

solution is unique on this set.

4.2 Noisy signal
In the case of a noisy signal z P Rn, there is no guarantee that the optimal solution d˚ of (P2)
will be in the set Kpzq. To see that, write z “ Ψpτ̄ q ` ϵ, where τ̄ P PC and ϵ is a random vector
of dimension n. Let z̄ “ Ψpτ̄ q. If ϵ is small enough, we expect the solution of problem (P2) to be
pτ ˚,d˚

q, where τ ˚ “ τ̄ , and d˚ is such that τ̄ “ τ ˚ “ Ψ´1
d˚ pz̄q. Clearly d˚

P Kpz̄q. On the other
hand, there is no reason for d˚

P Kpzq. To extend Problem (P2) to a noisy signal, we need to define
the vector Ψ´1

d pzq when d R Kpzq. In this extension, we take into account indices i P t1, ..., nu for
which ψ´1pziq “ ∅.

Definition 4 (Ψ´1
d pzq and } ¨ }wd

). Let z P Rn`, and d P t0, 1un. We extend the definition of Ψ´1
d pzq

11



for all d P t0, 1un. For i P t1, ..., nu:

Ψ´1
d pzqi :“

#

ψ´1
di

pziq, If ψ´1
di

pziq ‰ ∅
8, If ψ´1

di
pziq “ ∅,

where the notation ψ´1
di

pziq is used both for the inverse set and inverse function. Denote R̄ “ RYt8u,

and wd defined in Definition 3. For any v P R̄n, we define:

}v}wd
“

d

ÿ

tiPrns:vi‰8u

w2
d,iv

2
i .

In practice, Definition 4 extends the definition of } ¨ }wd to values where d R Kpzq, but considers
only indices i where ψ´1

di
pziq is a singleton. Two reasons can motivate this definition. First, in the

noiseless case, weights extend continuously to zero in the region where ψ is not surjective. Observing
Figure 1 C, and defining a :“ limtÑ8 ψ1, we note that ψ1 becomes indefinitely close to a constant
function as t tends to infinity, causing the corresponding weight w1,i to tend to zero for indices
i P t1, ..., nu where zi is close, but above, a. In this context, a natural extension to the weights for
indices i P t1, ..., nu where zi is below a is zero. In the noisy case, d R Kpzq can also be the effect
of noise, for example, in regions where z is above the maximum ψmax :“ maxtPr0,8q ψptq. In these
cases, the choice of not taking into account these indices in } ¨ }wd

is motivated by the numerical
results presented in Section 6.

Alternative optimization problem for the noisy case: The extension of problem (P2) for a
noisy signal z reads:

pτ ˚,d˚
q :“ arg min

tpτ ,dqPPC ˆt0,1unu

}τ ´ Ψ´1
d pzq}2

wd
, (P2’)

where } ¨ }wd
and Ψ´1

d pzq are defined in Definition 4.

5 Numerical approach
Note that the mixed integer nonlinear problem (P2’) can be reformulated as follows:

min
τ ,d

1
2 }d d pτ ´ z1q}2

w1
` 1

2 }p1 ´ dq d pτ ´ z0q}2
w0

s.t. τ P Rn, }Lτ }0 ď C
d P t0, 1un,

(8)

where the operator d represents the coordinatewise multiplication. 1,0 P t0, 1un are constant
vectors, z1 :“ Ψ´1

1 pzq and z0 :“ Ψ´1
0 pzq. w1 and w0, are defined in (7).

The advantages of this reformulation are twofold: First, for each fixed d, problem (8) has a
quadratic objective function with a non-convex constraint. This optimization problem can be ap-
proximately solved by ℓ1 regularization, in a formulation similar to generalized lasso [22]. On the
other hand, even if the available set in (8) contains a large set of integer variables, we can attempt to
reduce this set based on observations about the nature of solutions of problem (P2’). This analysis
will be developed in Section 5.2.
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5.1 Combinatorial method for DNA-Inverse
In this section, we present a methodology to address problem (8). Our approach involves solving this
problem iteratively for each fixed d, while comparing the obtained optimal values. Clearly, directly
applying this method to the entire set t0, 1un would be not tractable due to its exponential size. To
mitigate this problem, we introduce a subset D Ă t0, 1un in which the optimal solution d˚

P D. The
specific computation of this subset will be discussed in Section 5.3.

For each d P D, we propose to relax the optimization problem:

min
τ

1
2}d d pτ ´ z1q}2

w1
`

1
2}p1 ´ dq d pτ ´ z0q}2

w0

s.t. τ P Rn, }Lτ }0 ď C
(9)

into the l1 regularized problem:

τ ˚
d :“ argmin

τ

1
2}d d pτ ´ z1q}2

w1
`

1
2}pI ´ dq d pτ ´ z0q}2

w0
` λ}Lτ }1 (10)

The solutions τ ˚
d, for d P D will be compared using the objective function criterion (9):

τ ˚ :“ min
tdPDu

F pτ ˚
dq, where F pτ ˚

dq :“ 1
2}d d pτ ˚

d ´ z1q}2
w1

`
1
2}p1 ´ dq d pτ ˚

d ´ z0q}2
w0

(11)

Dual of Generalized-lasso: Note that problem (10) can be written as a generalized-lasso problem
such as in [22, Equation (2)]:

argmin
τ

1
2}w d pτ ´ zdq}2

2 ` λ}Lτ }1 (12)

where zd “ d d z1 ` p1 ´ dq d z0, and w P Rn is defined by:

wi “

"

diw1,i ` p1 ´ diqw0,i, if w1,i or w0,i ‰ 0
0, if w1,i “ 0 and w0,i “ 0.

In Theorem [22, Section 4], a quadratic expression for the dual of the generalized-lasso is presented
for the case w “ 1. We aim to extend this result to the scenario where w is any vector. To facilitate
this extension, we introduce the following notation:

I` “ ti : wi ą 0u, I0 “ ti : wi “ 0u

Proposition 3. Let w´1 defined by: w´1
i :“ 1

wi
, for all i P I` and w´1

i :“ 0, for i P I0. Let u˚ be
the solution of the following optimization problem:

u˚ “

argmin
u

1
2 }w d pLJuq}2 ´ xLzd,uy

s.t. }u}8 ď λ
pLJuqi “ 0, for i P I0

(13)

Then, τ ˚ defined by:
"

τ˚
i “ zd ´ pw2q´1 d pLJu˚q, i P I`

pLτ ˚qi “ 0 i P I0

is a solution of problem (12).
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Proof. Denote fpτq “ 1
2 }w d pτ ´ zdq}2

2 ` λ}Lτ }1 the convex objective function of problem (12). A
solution τ ˚ must satisfy:

0 P Bfpτ ˚q.

Note that this equation can be written componentwisely and when i P I0, this implies that:

pLτ ˚qi “ 0, for i P I0 (14)

On the other hand, problem (12) can be expressed through its dual problem:

max
u

min
τ

1
2}w d pτ ´ zdq}2

2 ` xτ ,LJuy

s.t. }u}8 ď λ.
(15)

The minimization in τ has the optimal conditions:

τi “ zd
i ´ ppw2q´1 d pLJuqqi, i P I`

ŁJui “ 0, i P I0 (16)

replacing these conditions in problem (15), we obtain the dual variable u˚ as a solution of problem
(13). Joining conditions in (14) and (16) we have:

"

τ˚
i “ zd ´ pw2q´1 d pLJu˚q, i P I`

pLτ ˚qi “ 0 i P I0

5.2 Constraints of the set D
In this section, we discuss how to reduce the set of integer variables in problem (8). User In principle,
the solution d˚ could be any element of t0, 1un. A more detailed examination of the problem will
show that additional constraints can be incorporated in the available set of (8) without changing its
solution. This analysis will be conducted in two parts: In the first part, we will identify indices for
which d is allowed to oscillate, that is, when di “ 0 and di`1 “ 1 (or the opposite). In the second
part, we will consider the values where the signal z “ 0 and its impact on the variable d P t0, 1un.
We aim defining a subset D Ă t0, 1un of the form:

D “ td : Bd “ 0b, Ad “ 0au, (17)

where the linear constraints are defined by matrices A P Rn,a, and B P Rn,b, and 0a P Ra and 0b P Rb
are constant vectors.

Oscillations on d : Consider a noiseless signal z “ Ψpτ̄ q, such that τ̄ P PC . Then there exists
d̄ P t0, 1un, such that τ̄ “ Ψ´1

d̄
pzq. Suppose that pτ̄ , d̄q is unknown. We aim to define the smallest

possible set D such that d̄ P D.
For τ̄ P PC , the number of indices for which τ̄ crosses τ0 is bounded by C :

#ti : τ̄i ď τ0 ď τ̄i`1 or τ̄i`1 ď τ0 ď τ̄iu ď C.

On the other hand, for i P t1, ..., nu :

τ̄i “ Ψ´1
d̄

pzqi “

#

ψ´1
0 pziq P r0, τ0s, if d̄i “ 0

ψ´1
1 pziq P rτ0,8q, if d̄i “ 1.

14



Then, indices where d̄ change between 0 and 1 and indices where τ̄ passes through τ0 are the same,
as illustrated in Figure 5. For example:

d̄i “ 0 and d̄i`1 “ 1 ñ τ̄i ď τ0 ď τ̄i`1.

Then, we define the set of transitions on d by:

IA :“ ti : d̄i ` d̄i`1 “ 1u “ ti : τ̄i ď τ0 ď τ̄i`1 or τ̄i`1 ď τ0 ď τ̄iu.

From this characterization, we aim computing IA using only the known signal z and the function
Ψ. To achieve this, we draw inspiration from the case where the signal z is defined continuously.
Let z : I Ă R Ñ R be a continuous function, where I is an interval. Consider the functions
ψ´1

1 pzq : I Ñ rτ0,8q, ψ´1
0 pzq : I Ñ r0, τ0s and d̄ : I Ñ t0, 1u. Let τ̄ be defined as:

τ̄pxq “

#

ψ´1
0 pzpxqq P r0, τ0s, if d̄pxq “ 0

ψ´1
1 pzpxqq P rτ0,8q, if d̄pxq “ 1.

Denote f :“ ψ´1
1 pzq ´ ψ´1

0 pzq. Then, if τ̄ crosses τ0, it exists x̄ P I such that τpx̄q “ τ0, implying
fpx̄q “ 0. Since f ě 0, x̄ is a local minima of f. The reasoning is illustrated in Figure 5. We will
employ this continuous intuition in a vectorial context, i.e, detect indices in IA as local minima of
the vector:

Ψ´1
0 pzq ´ Ψ´1

1 pzq.

note that only the input signal z is necessary to compute this vector. Then:

D “ td P t0, 1un, di “ di`1 for i P IAu

This strategy is interesting since we can extract a priori information about the indices where the
solution d̄ can oscillate between 0 and 1. Considering that we are able to detect IA “ ti1, ..., iJu,
we define a matrix A P Rnˆa in such a way that for j P t1, ..., Ju :

Ari, js “ 1, for i “ ij

Ari, js “ ´1, for i “ ij ` 1
Ari, js “ 0, for i ‰ ij , ij ` 1.

If d P t0, 1un is a solution of problem (8), it implies that Ad “ 0m P Rm.

Zeros of z : Another source of information are indices where the signal z “ 0. Note that for any
i P t1, ..., nu zi “ 0 implies τi “ 0, which implies d “ 0. Then the set: IB “ ti : zi “ 0u, is also
important. The set D is defined by:

D “ td P t0, 1un : di “ di`1 for i P IA, di “ 0 for i P IBu, (18)

The matrix B has as columns canonical vectors for indices in IB . The set D can be written as in
(17). In Section 5.3, we discuss how the noise in z impacts the definition of D for real data.

5.3 Algorithm
In this section, we discuss the algorithm that provides a numerical solution for Problem (P2’). The
initialization of the algorithm accounts for the high presence of noise in the real DNA replication
data, and occurs in two steps: 1. The computation of the weights wd defined (7); 2. The computation
of the set D defined in (18). The algorithm is described in Algorithm 1.
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Figure 5: Illustration of possible oscillations of d̄ P D. (left) Noiseless signal z “ Ψpτ̄ q for τ̄ P PC . (right)
Inverses Ψ´1

1 pzq (blue) and Ψ´1
0 pzq (orange). The piecewise linear τ̄ can be observed by the dashed lines.

For each index i P t1, ..., nu, when τ̄i is blue, d̄i “ 1. When τ̄i is orange, d̄i “ 0. When d oscillates, τ
crosses the gray dashed line rpxq “ τ0 “ 2. Note the oscillations of d̄, illustrated by transitions in shades of
green, coincide with indices where Ψ´1

1 pzq “ Ψ´1
0 pzq. In addition: Ψ´1

1 pzq ´ Ψ´1
0 pzq ě 0. We conclude that

oscilations in d are local minima of the vector Ψ´1
1 pzq ´ Ψ´1

0 pzq.

Weights: The weights wd are computed from weights w0 and w1, for 0,1 P Rn in the following
way: wd “ d d w1 ` p1 ´ dq d w0. The calculus of weights w0,w1 is done following Definition
3. For stability reasons, a smoother version rz of the signal z replaces the original signal in this
calculus. This computation uses the Savitzky-Golay Smoothing Filter that results in rz such that for
each i P t1, ..., nu: rzi “

ř2
i“´2 cnzi, where cn “ 1{5. The weights w0,w1 are illustrated in Figure 6

for a noisy signal z.

Set D: The set D, defined in (18) depends on the set of indices IB and IA. For the noiseless case,
the indices in IB are the indices where the signal z is equal to zero. In the noisy case, this detection
stills simple, since the zeros of the signal z are subjected to considerably less noise then the rest of
the signal (see Figure 2). Then:

IB “ ti : zi “ 0 and zi`1 “ 0u.

and b :“ #IB . In the case of the set IA, as discussed in Section 5.2, the computation involves the
vector:

h :“ Ψ´1
0 pzq ´ Ψ´1

1 pzq. (19)
The indices of local minima of h indicate possible oscillations on d (from 0 to 1 or the opposite).
In python, many packages are available to compute this local minima. Since this vector have the
same size of the signal z, which ranges from 100 to 1000, the time required for this computation is
negligible. Due to noise, the local minima of h are treated as the centers of intervals with a certain
size: sA (an input parameter) in which d is allowed to oscillate. Denote M “ tih1 , ..., i

h
k u the indices

of local minimima of h. Denote Ih
1 , ..., I

h
k , the correspondent intervals of size sA centered on the

correspondent elements of M. Then the set IA is defined as:

IA “ ti P t1, ..., nu : i R Ih
j for j P t1, ..., kuu.
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Figure 6: Illustration of Ψ´1
d pzq and wd in the noisy case, for d “ 0,1 P Rn. (left) Noisy read. (right)

Vectors Ψ´1
1 pzq and Ψ´1

0 pzq. The vector Ψ´1
1 pzq is not represented in indices where Ψ´1

1 pzq “ 8. We observe
that the local behavior of Ψ expands or contracts the noise present in the signal. For this reason, to compare
the precision of a piecewise linear approximation of these curves, it is necessary to define } ¨ }wd . The weights
in w0,w1 are represented by the intensity of the pink background for Ψ´1

1 pzq and Ψ´1
0 pzq respectively. The

more intense the background, the greater the value of w0,w1 associated with this part of the signal. We
note that more significant noise requires smaller weights.

Then a :“ n ´ ksA. Clearly, the set D is capable of drastically reducing the possible solutions
d P t0, 1un. Nevertheless, the best upper bound for D cardinality is: #D ď psAqk which stills
large. Therefore, we consider a representative subset of D̃ Ă D. It work as follows: we divide
each interval Ih

i into mA (an input parameter) equal parts, and consider the possible combinations
for i P t1, ..., ku. Thus, the set #D̃ ď pmAqk elements. In general, for DNA replication signals
considered in the application, k varies between 2 and 5.

Choice of parameters: The parameter sA is choose as 60 units, or 0.6kb. The parameter m is
chose as 3. These choices aim to balance good results with low computation time. Higher values of
m directly impact the computation time as they increase the number of elements in D̃. The value of
sA is more associated with the amount of noise and uncertainty regarding the local minima of the
vector h in (19). The parameter λ is empirically fixed as 8.

Algorithm: According to Section 5.1, the DNA-inverse algorithm loops as follows:

6 Numerical results
The numerical results presented in this section utilize real data obtained from yeast DNA [14]. We
opt for real data due to the challenge of fully replicating the type of noise present in this dataset.
The signals vary in size from 50 to 1000, and a total of 300 reads are analyzed with an average
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Algorithm 1: DNA-Inverse
Data: Input data: z. Parameters: sA and mA.
Initialization:
Compute weights wd. Compute the sets D̃ Ă D. Set: Dpast “ H;
Main Loop:
for d P D̃ do

Step 0: Dpast Ð Dpast Y tdu;
Step 1: Solve the optimization problem (10) by its dual formulation (13) (quadratic
optimization), obtaining a solution τ ˚

d ;
Step 2: Compute the objective of problem (8) for τ ˚

d (without ℓ1 regularization) and
compare with objective values of previous d P Dpast :

d˚ :“ arg min
dPDpast

F pτ ˚
dq, τ ˚ :“ τ˚

d˚ ,

F is defined in (11).
Output: τ˚, d˚

of 2.3 detected forks by read. Biologists, with their trained eye, are capable of recognizing the
replication events associated with each of these reads. The objective of this test is to detect these
events automatically. The FORQ-seq technique [13] has enabled scientists to significantly increase
the amount of data available for analysis. The challenge now is to develop methods that do not rely
on individual analysis of each sample, allowing for a considerable increase in the amount of analyzed
data.

The numerical results from the DNA-Inverse method will be divided into two parts: Section 6.1
compares DNA-Inverse with an state-of-the-art proximal method capable of providing local minima
to (P1). In Section 6.2, we explore the advantages of this method and discuss its relevance for DNA
replication analysis.

6.1 Comparison with state-of-the-art method
When Ψ is non-linear, the resulting optimization problem (P1) is generally non-convex, which is a
major challenge in optimization. Recent theoretical and numerical advancements have significantly
improved the treatment of problems of type (P1), showing remarkable flexibility concerning the
types of operators Ψ and regularization terms [19, 5, 25, 9]. However, a key limitation of these
methods lies in their pursuit of local solutions, due to the non-convex nature of the problem. In
relevant applications, such as DNA replication analysis, attaining only local solutions do not provide
substantial progress towards achieving the overall objective. In these cases, numerical methods
should focus on special applications.

The numerical methods proposed in [19, 24] address problems of type (P1) considering the ℓ1
regularization to impose piecewise linear solutions [19, 22]:

min
τ PRn

}z ´ Ψpτ q}2
2 ` γ}Lτ }1, (20)

for some γ ą 0. In this section, we adopt the primal-dual formulation with the PDPS algorithm
[5, Algorithm 1]. The reason for this choice is that this numerical method is treated specially in
the case of non-linear inverse problems such as (P1), including the choice of parameters involved in
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iterations. In this context, consider the convex conjugate formula applied to the fidelity term:

Gpuq “ }u ´ z}2
2, G˚pyq “ sup

uPRn

xu,yy ´Gpuq.

Replacing the variable u by Ψpτ q, we obtain an equivalent minmax formulation of problem (20):

min
τ PRn

max
yPRn

γ}Lτ }1 ` xΨpτ q,yy ´G˚pyq. (21)

The PDPS algorithm proposes to solve (21) using the same principle of proximal point methods.
This algorithm iterates over k P N:

#

τ k`1 “ proxσ1γ}¨}1 pτ k ´ σ1Ψ1pτ kqykq

yk`1 “ proxσ2pG˚´2xΨpτ kq,¨yqpyk ´ σ2Ψpτ kqq,
(22)

for σ1, σ2 ą 0. In order to ensure the weak convergence of this algorithm [19, Theorem 1], σ1 and σ2
might respect the following inequality established in [19, Example 6]:

σ1 ď
1

σ2L2
Ψ ` LΨ1ρy{2

where LΨ, LΨ1 represent the Lipschitz contants of Ψ and Ψ1 respectively. And ρy the radius of the
ball where the iterative sequence (22) converges. We can easily estimate LΨ, LΨ1 ď 1 by computing
the derivative of order 1 and 2 of Ψ. In the following example we compute ρy “ 1 by estimating the
norm of variable y empirically. We also set γ “ 1 by studying the parameter for which the provided
solution τ is piecewise linear.

Experiment with noiseless signal and local minima: Consider a noiseless read: z “ Ψpτ̄ q,
where z and τ̄ are illustrated in Figure 7. Problem (20) is non-convex, implying that a local minimum
can not be generalized as a global minimum. For each initial point pτ initial,yinitialq, scheme (22) find
a local solution of problem (20). In Figure 8, we analyze the dependence of PDPS solution with
respect to these initial points. Let τ iInitial, for i P t1, 2, 3, 4u be possible initial points described as
follows: τ 1

initial and τ 2
initial are constant vectors with values 0.2 and 5 respectively. τ 3

initial is generated
by an uniform distribution between 0 and 5, and τ 4

initial is a perturbation of the ground truth τ̄ . In
Table 1 we compare the objective value of different local minima and the correspondent execution
time. We observe that only τ 4

initial is capable to provide the optimal global solution provided by
DNA-inverse. In addition, the runtime time of DNA-Inverse is considerably lower then PDPS. In
Figure 7, we observe that the DNA-Inverse method closely approximates the original timing profile
τ̄ . Note that an initial point is not necessary for Algorithm 1.

Experiment with different initiation points: When applying the PDPS method, we find local
solutions. These solutions are not arbitrary, they depend on the inverses Ψ´1

d defined in Section 5.
More specifically, for an initial point τ initial, consider dinitial defined by:

dinitial “ arg min
dPt0,1un

}τ initial ´ Ψ´1
d pzq}2

2.

Results exposed in Figure 8 indicate that the PDPS algorithm results in a piecewise vector that
approximates Ψ´1

dinitial
pzq. This fact suggests that we can adapt the initialization of DNA-Inverse,

Algorithm 1, for the PDPS. The adapted algorithm loops as follows: Step 1 - For each d P rD, we set

19



Figure 7: (left) Simulated read z “ Ψpτ̄ q. (right) Solution τ ˚ obtained via the DNA-Inverse method (in
pink) compared to ground truth τ̄ (in green). In orange, Ψ´1

0 pzq, and in blue, Ψ1
Ipzq. We observe a close

resemblance between the piecewise linear vectors τ̄ and τ ˚.

Method τ initial Objective value of local minima Execution time
PDPS τ 1

initial 0.18 45s
PDPS τ 2

initial 0.58 45s
PDPS τ 3

initial 0.12 46s
PDPS τ 4

initial 0.073 40s
DNA-Inverse ´´ 0.073 7s

Table 1: Comparison between objective value and execution time for different initiation points in the case
of a noiseless signal z illustrated in Figure 7. The convergence criterion for PDPS limits distance between
two consecutive iterates: }τk ´ τk`1} ď 1e´5.

as initial point the vector Ψ´1
d pzq; Step 2 - Compare the objective values for each d P rD and chose

the smaller one. We call this strategy Adapted PDPS and its output: pτ˚
PDPS, d

˚
PDPSq. In Figure 9

we observe the similarity between solutions for three different elements of the real data-set of yeast
reads. For all these cases, the optimal d˚

PDPS “ d˚
DNA-Inverse and τ˚

PDPS « τ˚
DNA-Inverse.

As illustrated in Figure 9, the Adapted PDPS has shown to be efficient in providing a global
solution to problem (20). Nevertheless, the main drawback of this adaptation is the execution time.
The convergence of the proximal algorithm is slow, resulting in a significantly high total execution
time, as displayed in the Figure 10 and in Table 2.

Method Mean execution time Median execution time
DNA-Inverse 42s 10s

PDPS 272s 163s
Table 2: Comparison of execution time between DNA-Inverse and Adapted PDPS
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Figure 8: Illustration of the results of PDPS algorithm for different initial points. (above): different values
of τ i

initial for i P t1, 2, 3, 4u. (below): solutions of the PDPS algorithm with the correspondent initial points.
In orange we observe z0

“ Ψ´1
0 pzq and in blue z1

“ Ψ´1
1 pzq.

6.2 Advantages of DNA-Inverse with respect to other methods:
The primary advantage of the DNA-Inverse algorithm over previous works [14, 15, 16] is its ability to
detect any replication event. Unlike previous methods, which only detected replication origins that
had been activated before the beginning of the experiment, the DNA-Inverse algorithm is capable
of detecting all replication events. In this context, various cases of interest, which are prevalent in
the database, were previously excluded from the statistics, as illustrated in Figure 11.

The effect of ℓ1 regularization in (10) is to introduce a bias that tends to yield lower speed values
because it affects the angular coefficient of lines [26]. To mitigate this drawback, the DNA-Inverse
method enables an enhancement of estimation at low cost. Note that after correctly detecting the
variable d˚, the problem of finding the time profile τ ˚ consists in fitting a piecewise linear function in
a noisy data, a task for which various methods can be applied [27, 28]. This possibility is promising
for achieving velocity estimation with unprecedented accuracy in future studies.

7 Conclusion
In this work, we analyzed DNA replication in single-molecule from the perspective of a nonlinear
and non-convex inverse problem. We developed the model called DNA-Inverse, which effectively
integrates different possibilities of local solutions, eliminating the necessity to solve the problem with
multiple initial points. We studied theoretical results demonstrating the coherence of the proposed
inverse problem and compare its results with state-of-the-art methods, highlighting its advantage in
terms of execution time. Additionally, we showed how the results from this formulation outperform
previous works, expanding the amount of data and replication events that can be analyzed by
biologists.
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Figure 9: (Top) Different reads in blue representing the following events: A. Progression of a fork to the
right; B. Initiation; C. Termination. (Bottom) Solution τ ˚

DNA-Inverse (in pink) and τ ˚
PDPS (in black) for the

different reads. Colored points are selected by the the solution d˚ that is the same for both methods. For
i P t1, ..., nu, points in blue are the inverse ψ´1

0 pziq where d˚
i “ 0, and points in orange are the inverse

ψ´1
1 pziq when d˚

i “ 1. Black points are those not selected for the solution d˚. We emphasize the similarity
of the time profiles for PDPS and DNA-Inverse, and the fact that the solutions in variable d are the same.

Figure 10: Comparison between execution time distribution for DNA-Inverse (pink) and Adapted PDPS
(black). The median execution time of DNA-Inverse is 16 times smaller than that of PDPS.
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Figure 11: (Top) Different reads in blue representing the following events: A. (left) Termination (right) fork
progresses to the right; B. Initiation; C. Initiation. The line in pink represent the approximation Ψd˚ pτ˚

q

given by the optimal solution of the DNA-Inverse method. (Bottom) Solution τ ˚ for DNA-Inverse (in pink).
Colored points are selected by the the solution d˚. For i P t1, ..., nu, points in blue are the inverse ψ´1

0 pziq

where d˚
i “ 0, and points in orange are the inverse ψ´1

1 pziq when d˚
i “ 1. Black points are inverses not

selected by the optimal d˚. All these events could not be detected in previous works.
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