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AE-RED: A Hyperspectral Unmixing Framework
Powered by Deep Autoencoder and

Regularization by Denoising
Min Zhao, Student Member, IEEE, Jie Chen, Senior Member, IEEE

and Nicolas Dobigeon, Senior Member, IEEE

Abstract—Spectral unmixing has been extensively studied with
a variety of methods and used in many applications. Recently,
data-driven techniques with deep learning methods have obtained
great attention to spectral unmixing for its superior learning
ability to automatically learn the structure information. In par-
ticular, autoencoder based architectures are elaborately designed
to solve blind unmixing and model complex nonlinear mixtures.
Nevertheless, these methods perform unmixing task as black-
boxes and lack interpretability. On the other hand, conventional
unmixing methods carefully design the regularizer to add explicit
information, in which algorithms such as plug-and-play (PnP)
strategies utilize off-the-shelf denoisers to plug powerful priors.
In this paper, we propose a generic unmixing framework to
integrate the autoencoder network with regularization by de-
noising (RED), named AE-RED. More specially, we decompose
the unmixing optimized problem into two subproblems. The first
one is solved using deep autoencoders to implicitly regularize the
estimates and model the mixture mechanism. The second one
leverages the denoiser to bring in the explicit information. In
this way, both the characteristics of the deep autoencoder based
unmixing methods and priors provided by denoisers are merged
into our well-designed framework to enhance the unmixing
performance. Experiment results on both synthetic and real data
sets show the superiority of our proposed framework compared
with state-of-the-art unmixing approaches.

Index Terms—Hyperspectral unmixing, deep learning, autoen-
coder, plug-and-play, image denoising, RED.

I. INTRODUCTION

HYperspectral imaging has been a widely explored imag-
ing technique during recent years and is still receiving

a growing attention in various applicative fields [1], [2]. Ben-
efiting from a rich spectral information, hyperspectral images
enable the analysis of fine materials in the observed scenes to
tackle various challenging tasks such as target detection and
classification [3], [4]. However, due to the limitations of the
imaging acquisition devices, there is an insurmountable trade-
off between the collected spectral and spatial information,

M. Zhao and J. Chen are with School of Marine Science and Technol-
ogy, Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
minzhao@mail.nwpu.edu.cn; dr.jie.chen@ieee.org).

N. Dobigeon is with University of Toulouse, IRIT/INP-ENSEEIHT, CNRS,
2 rue Charles Camichel, BP 7122, 31071 Toulouse Cedex 7, France (e-mail:
Nicolas.Dobigeon@enseeiht.fr).

The work of Jie Chen was supported in part by Shenzhen Science
and Technology Program under Grant JCYJ20220530161606014 and Grant
JCYJ20230807145600001, in part by the Department of Natural Resources of
Guangdong Province under Grant GDNRC[2023]47, and in part by the TCL
Science and Technology Innovation Fund. The work of Nicolas Dobigeon was
supported by the Artificial Natural Intelligence Toulouse Institute (ANITI)
under Grant ANR-19-PI3A-0004.

TABLE I
NOTATIONS.

x, X scalar
x column vector
X matrix
B number of spectral bands
N number of pixels
R number of endmembers
yi ∈ RB spectrum of the ith observed pixel
Y ∈ RB×N an observed hyperspectral image
ai ∈ RR abundance vector of the ith pixel
A ∈ RR×N abundance matrix of all pixels
S ∈ RB×R endmember matrix with R spectral signatures
1 all one vector or matrix
0 all zero vector or matrix
· ≥ · elementwise inequality between vectors or matrices

which limits the spatial resolution of the hyperspectral sensors.
As a consequence, a pixel observed by a hyperspectral sensor
may encompass several materials. In particular when observ-
ing complex scenes, the spectrum is assumed to be a mixture
of several elementary spectral signatures. To overcome this
limitation, hyperspectral unmixing (HU) aims at decomposing
the ith observed pixel spectrum yi ∈ RB into a set of
R spectral signatures of so-called endmembers collected in
the matrix S = [s1, . . . , sR] ∈ RB×R and their associated
fractions or abundances ai ∈ RR [5]–[7]. For the sake of
physical interpretability, the abundances are subject to two
constraints, namely abundance sum-to-one constraint (ASC),
1⊤
Rai = 1, and abundance nonnegativity constraint (ANC),

ai ≥ 0. The endmember spectral signatures are constrained to
be nonnegative (ENC), S ≥ 0.

Many methods have been proposed in the literature to
address the HU problem [8]–[12]. Considering a set of N
observed pixels Y = [y1, . . . ,yN ] ∈ RB×N sharing the
same endmembers, the canonical formulation of HU is written
as an optimization problem, which aims at estimating the
endmembers S and the abundances A jointly, i.e.,

min
S,A

N∑
i=1

D
[
yi

∣∣∣∣M(
S,ai)

)]
+R

(
S,A

)
s.t. 1⊤

RA = 1⊤
N , A ≥ 0, and S ≥ 0

(1)

where

• D[·, ·] stands for a discrepancy measure (e.g., divergence),
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• MΘ(·, ·) describes the mixture model which relates the
endmembers and the abundances to the measurements,

• R(·, ·) acts as a regularization term that encodes prior
information regarding the endmembers S and the abun-
dances A.

The regularization R(·, ·) is often designed to be separable
with respect to the abundances and endmembers,

R(S,A) = Re(S) +Ra(A), (2)

where the endmember and abundance prior information is
encoded in Re(·) and Ra(·), respectively. For instance,
geometry-based penalizations, such as minimum volume [13],
are often chosen as endmember regularizers. Sparsity-
based [14], low-rankness [15] or spatial regularizers, such
as total variation (TV) [16], are usually utilized to promote
expected properties of the abundances. This work specifically
focuses on the design of the abundance regularization.

As for the mixing process, typical methods rely on an
explicit mathematical expression for M(·, ·) to describe the
mixture mechanism. For example, the linear mixing model
(LMM) is by far the most used in the literature since it
provides a generally admissible first-order approximation of
the mixing processes, and assumes that the incident light
comes in and only reflects once on the ground before reaching
the hyperspectral sensor. Besides, bilinear models consider
second-order reflections, for instance in the case of multiple
vegetation layers [1], [17]. These explicit models are usually
designed by describing the path of the light, along with its
scattering and the interaction mechanisms among the mate-
rials. They are thus generally referred to as physics-based
models. However, in some acquisition scenarios, they may
fail to accurately account for real complex scenes. Data-
driven methods have been thus proposed to implicitly learn
the mixing mechanism from the observed data. Nevertheless,
if not carefully designed, a data-driven method may overlook
the physical mixing process and require abundant training
data [18].

A. Motivation

Numerous methods cope with the HU problem by carefully
designing the data-fitting and regularization terms [19], [20].
To reduce the computational complexity, most HU methods
are based on the LMM. It may be not sufficient to account for
spectral variability and endmember nonlinearity. On the other
hand, designing a relevant regularizer is not always trivial and
is generally driven by an empirical yet limited knowledge.
For these reasons, research works have been devoted to
the design of deep learning based HU approaches. Among
them, autoencoders (AEs) become increasingly popular for
unsupervised HU, which exhibit several advantages: i) they
can embed a physical-based mixing model into the structure
of the decoder, ii) they implicitly incorporate data-driven
image priors and iii) the unmixing procedure can benefit
from powerful optimizers, such as Adam [21] and SGD [22].
However, these deep architectures behave as black boxes, and
the results lack interpretation. Motivated by these findings, this
paper attempts to answer the following question: is it possible

to design an unsupervised HU framework which combines the
advantages of AE-based unmixing while leveraging on explicit
priors?

B. Contributions

This paper derives a novel HU framework which answers
this question affirmatively. More precisely, it introduces an
AE-based unmixing strategy while incorporating an explicit
regularization of the form of RED. To solve the resulting
optimization problem, an alternating direction method of mul-
tiplier (ADMM) is implemented with the great advantages
of decomposing the initial problem into several simpler sub-
problems. One of these subproblems can be interpretated as
a standard training task associated with an AE. Another is
a standard denoising problem. The main advantages of the
proposed frameworks are threefold:

• This framework combines the deep AE with RED pri-
ors for unsupervised HU. By leveraging the benefits of
these two ingredients, the framework provides accurate
unmixing results.

• The optimization procedure splits the unmixing task into
two main subtasks. The first subtask involves training an
AE to learn the mixing process and estimate a latent
representation of the image as abundance maps and
the weights of a specific layer as endmembers. In the
second subtask, a denoising step is applied to improve
the estimation of the latent representation.

• The proposed framework is highly versatile and can
accommodate various architectures for the encoder, and
the decoder can be tailored to mimic any physics-based
mixing model, such as the LMM, nonlinear mixing
models, and spectral variability-aware mixing models.

This paper is organized as follows. Section II provides a
concise overview of related HU algorithms, with a partic-
ular focus on the design of regularizations and AE-based
unmixing methods. It also describes some technical ingredients
necessary to build the proposed framework. In Section III,
the proposed generic framework is derived, and details about
particular instances of this framework are given. Section IV
reports the results obtained from extensive experiments con-
ducted on synthetic and real datasets to demonstrate the
superiority of the proposed framework. Finally, Section V
concludes the paper.

II. RELATED WORKS AND BACKGROUND

This section first draws brief literature overviews on two
aspects related to this work, namely regularization designs in
HU and AE-based unmixing. Then it provides the technical
background on which the proposed framework is built.

A. Related works

1) Regularization design: Efficient algorithms for HU often
require effective regularizations that incorporate prior knowl-
edge about the abundances and constrain the range of the
admissible solutions. Traditional model-based regularizations
can be roughly divided into two main families. Some promote
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expected spatial properties of the abundance maps. Others
exploit the fact that only a few materials generally contribute to
the mixture in a given pixel to derive sparsity-based regulariz-
ers. In [16], TV is combined with an ℓ1-norm regularization to
simultaneously promote similarity between neighboring pixels
while ensuring sparse representations of the measured spectral
signatures. Since the ℓ1-norm is inconsistent with the ASC,
ℓp-norms with 0 < p < 1 [23] and reweighting strategies
[24] have been also considered as alternatives to promote
sparse estimates. In [25], a weighted average is applied to
all pixels to exploit non-local spatial information. Sparsity-
based spatial regularizations informed by image segmentation
such as SLIC have been designed in [26] and [27]. In [28], a
cofactorization model is used to jointly exploit spectral and
spatial information, while the work of [29] introduces an
adaptive graph to automatically determine the best neighbor
points of pixels and assign corresponding weights. However,
these traditional model-based regularizations are generally
motivated by empirical choices, which may hardly capture
the complexities of spatial contents inherent to most remote
sensing images. Moreover, they all require to derive and
implement dedicated optimization algorithms which can be
computationally intensive when handling large images.

More recently, the idea of PnP has been introduced to
exploit the intrinsic properties of hyperspectral images. These
methods use generic denoisers that act as implicit or explicit
regularizers. In [30], an HU method based on ADMM is
introduced to plug denoising priors. The work of [31] proposes
a nonlinear unmixing method with prior information provided
by denoisers. However, these methods have been designed to
handle only one fixed specific mixing model. Generalizing
these methods to handle other mixing models would require to
completely redesign the overall resolution algorithmic scheme.
Conversely, the work reported in this paper introduces a
general framework whose AE can learn the mixing process
and leverages an RED approach, which has been shown to
outperform PnP.

2) Deep AE-based unmixing methods: Elegant neural net-
work structures have been proposed to formulate the HU task
as a simple training process. Early works used fully connected
layers to design the network, such as [12] and [32]. However,
these networks process the pixels independently and ignore
the spatial correlation intrinsic to the image. To overcome this
limitation, some AE-based methods include spatial regulariza-
tions, such as TV, in the loss function [33]. More recently,
convolutional neural networks (CNNs) have been used to
perform HU and have shown promising performance. CNNs
convolve the input data with filter kernels to capture spatial
information [10], [34]. Recurrent neural networks (RNNs),
which embed memory cells, implement a sequential process
with hidden states that depend on the previous states [33].
Hyperspectral images are often corrupted by noise or outliers,
which can dramatically decrease the unmixing performance.
To address this issue, denoising-oriented architectures have
been proposed [32]. Some works have also proposed variants
of encoders. In [35], a dual-branch AE network is designed to
leverage multiscale spatial contextual information.

Most AE-based HU methods use a fully connected linear

layer in the decoder to mimic the LMM. However, considering
the physical interactions between multiple materials and the
ability of deep networks to model nonlinear processes, some
works have focused on the design of structured decoders to
ensure the interpretability of the nonlinear model inherent in
the mixing process [33], [34], [36], [37]. The work of [36]
introduces a nonlinear decoder. The decoder contains two
parts: the linear part is considered as a rough approximation
of the mixture and then it is complemented by the nonlinear
part. However, this post-nonlinear model-based decoder may
not be sufficient to represent complex nonlinear cases. Some
works have investigated the nonlinear fluctuation part of the
decoder [33], [34], [37]. For example, the method in [37]
designs a special layer to capture the second-order interac-
tion, similar to the bilinear models [38]. Moreover, spectral
variability can also be addressed by using deep generative
decoders [39], [40].

Recently, deep unfolding techniques have been used to
unroll iterative unmixing algorithms into deep networks. This
approach allows physically grounded and interpretable find-
ings to be invoked when designing the network layers. They
can also avoid the painful tuning of some hyperparameters
by learning them from the data [41]. In [42], an itera-
tive shrinkage-thresholding algorithm (ISTA)-inspired network
layer is applied to build an AE-based unmixing architecture.
The work of [43] unrolls a sparse non-negative matrix factor-
ization (NMF)-based algorithm with an ℓp-norm regularizer
to integrate prior knowledge into the unmixing network. An
ADMM solver with a sparse regularizer is also unrolled to
build an AE-like unmixing architecture. However, these meth-
ods do not utilize spatial consistency information in the design
of the network, which may limit their unmixing performance.

B. Background

1) Autoencoder-based unmixing: As highlighted in the pre-
vious section, AEs have demonstrated to be a powerful tool to
conduct unsupervised unmixing. An AE typically consists of
an encoder and a decoder. The encoder, represented by EΘE

(·),
aims at learning a nonlinear mapping from input data, denoted
as wi, to their corresponding latent representations, denoted
as vi. This can be expressed as follows:

vi = EΘE
(wi), (3)

where ΘE gathers all parameters of the encoder. The input
W = [w1, . . . ,wN ] depends on the architecture chosen
for the encoder network. For instance, when dealing with
the specific task of HU, the input can be chosen as the
image pixels Y = [y1, . . . ,yN ] or random noise realizations
Z = [z1, . . . , zN ] with zi ∼ N (0, I). The decoder, denoted by
DΘD

(·), is responsible for reconstructing the data, or at least
an approximation ŷi, from the latent feature vi provided by
the encoder. This can be expressed as follows:

ŷi = DΘD
(vi), (4)

where ΘD parameterizes the decoder. Under this paradigm,
adjusting the encoder and decoder parameters ΘE and ΘD is
generally achieved by minimizing the empirical expectation of
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Fig. 1. Framework of the proposed AE-RED. (a) The scheme of the proposed framework. (b) Flowchart of the (k+1)th ADMM step: the denoising operator
is applied in parallel to the update of Θ to speed up calculations. (c) An overview and some instances of AE-based unmixing networks, where the encoder
embeds deep priors for abundance estimation, and the decoder can model the mixture mechanism and extract the endmembers. The choice of the encoder
and decoder is let to the end-user.

a discrepancy measure between the input data y1, . . . ,yN and
their corresponding approximation ŷ1, . . . , ŷN , i.e.,

L(ΘE,ΘD) =
1

N

N∑
i=1

D [yi||ŷi] (5)

with ŷi = DΘD
(EΘE

(wi)). This reconstruction loss function
can be complemented with additional terms to account for any
desired properties regarding the network parameters and the
latent representation.

Drawing a straightforward analogy with the problem (1),
AE-based unmixing frameworks generally assume that the
latent variable V = [v1, . . . ,vN ] is an estimate of the
abundance matrix A. The encoder can thus be considered as a
regularization for abundance estimation. Its architecture should
be chosen to be able to extract key spatial features from the
input data. Several choices are possible and will be discussed
as archetypal examples later in Section III-B. The decoder
can then be designed to mimic the mixing process M(·, ·) in
(1). The endmember signatures to be recovered are part of
the decoder parameters, i.e., ΘD =

{
Θ̃D,S

}
where Θ̃D are

intrinsic network parameters. For instance, when the decoder
is designed according to a physics-based nonlinear mixing
model prescribed beforehand, Θ̃D gathers the nonlinearity
parameters. In the simplistic assumption of the LMM, the
decoder does not depend on any additional intrinsic parameters
and ΘD = S.

2) Regularization by denoising priors: Various model-free
regularizers have been considered to design the term Ra(·).
Among them, a powerful strategy consists in resorting to
off-the-shelf denoisers to implicitly or explicitly regularize
inverse problems. The first approach, referred to as PnP, is
a flexible and generic framework that naturally emerges when
resorting to splitting-based optimization procedures, such as
half-quadratic splitting or ADMM. After augmenting the initial
optimization problem with auxiliary variables, the resolution

algorithmic scheme can be decomposed into several steps. The
only step which depends on the regularization boils down to
performing a denoising task, which can be achieved by any
denoiser. This strategy has been effectively used when tackling
many imaging inverse problems, such as super-resolution and
inpainting [44], [45]. Under this PnP paradigm, the regulariza-
tion never needs to be specified and is only implicitly defined
through the use of the denoiser. More recently, a second
approach, referred to as RED, also leverages the genericity of
denoising but with an explicit image-adaptive Laplacian-based
regularization defined as

Ra(A) =
1

2
A⊤ (A− C (A)) , (6)

where C(·) is a denoiser [46]. This framework has demon-
strated superior performance with respect to the original PnP
approach.

Both PnP and RED share some similarities: i) they allow
an inverse problem to be regularized without resorting to an
image-flavored model-based penalization, ii) they finally rely
on the use of an off-the-shelf denoiser whose choice can be
let to the end-user. However, their respective foundations are
significantly different. Within the PnP framework, the regu-
larization Ra(·) can be not specified explicitly. Instead, this
denoising step implicitly arises in the optimization scheme.
Conversely, RED exploits the expected properties of any
denoiser to explicitly define the regularization. Indeed, it relies
on the inner-product between the solution A and its post-
denoising residual A − C (A). Interestingly, this definition
makes the regularization to be small when the solution or the
corresponding residual follow two expected behaviors. First,
the regularization is small when the residual as well, i.e., the
solution can be considered as a fixed-point of the denoiser (the
solution does not need to be denoised further). Second, the
regularization is small when the (empirical) cross-correlation
of the residual to the image is small, i.e., when the residual
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is decorrelated from the noise-free image [47]. Besides, RED
exhibits several key advantages. First, similar to PnP, it does
not need to prescribe a particular model-based prior of the
image. Instead, it only relies on the ability of performing an
image denoising task. Second, any existing denoiser available
from the literature can be implemented. In particular, it can
embed any data-informed denoiser which has been trained
on an appropriate training set beforehand. Third, under some
reasonable and mild assumptions on C(·), its derivative with
respect to A is simple and given as the denoising residual,
i.e., ∇Ra(A) = A−C (A) [46], which avoids differentiating
the denoiser function. Finally, for a large class of denoisers,
it is a convex function. It can be readily utilized in first-
order optimization solvers, e.g., gradient descent and fixed-
point strategies.

III. PROPOSED METHOD

A. Generic framework

The generic unmixing framework proposed in this paper,
referred to as AE-RED hereafter, formulates the HU problem
as the training of an AE while leveraging the RED paradigm.
Adopting a conventional Euclidean divergence for D(·, ·), the
HU problem (1) is now specified as

min
Θ

∥Y − DΘD
(EΘE

(W))∥2F
+ λEΘE

(W)⊤ (EΘE
(W)− C (EΘE

(W)))

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0 and S ≥ 0

(7)

with Θ = {ΘE,ΘD}. As stated in the previous section,
the endmembers are part of the set of decoder parameters,
and A = EΘE

(W). This formulation of the unmixing task
leverages a combination of the AE modeling and RED, pro-
viding two main benefits. First, the AE is effective in handling
the mixture mechanism and learning underlying information.
Second, RED provides a flexible and efficient way to encode
image priors.

Solving the minimization problem (7) with deep learning-
flavored black-box optimizers is challenging if not infeasible,
in particular because back-propagating ΘE would require
differentiating the denoising function C(·). For most denoisers,
this differentiation is not straightforward and may need a huge
amount of computations. However, it is worth noting that one
of the great advantages of RED is that its derivative can be
directly calculated. To benefit from this property, one simple
strategy consists in reintroducing the abundance matrix A
explicitly as an auxiliary variable and then reformulating (7)
as a constrained problem

min
Θ,A

∥Y − DΘD
(EΘE

(W))∥2F + λA⊤ (A− C (A))

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0, S ≥ 0

and A = EΘE
(W).

(8)

To solve (8), a common yet efficient strategy boils down to
splitting the initial problems into several simpler subproblems
following an ADMM.

The main steps of the resulting ADMM algorithmic scheme
write

Θ(k+1) = argmin
Θ

∥Y − DΘD
(EΘE

(W)) ∥2F (9)

+ µ∥A(k) − EΘE
(W)−G(k)∥2F

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0 and S ≥ 0

A(k+1) = argmin
A

λA⊤ (A− C (A)) (10)

+ µ∥A− E
(k+1)
ΘE

(W)−G(k)∥2F
G(k+1) = G−A(k+1) + E

(k+1)
ΘE

(W) (11)

where µ is a penalty parameter and G is the dual variable. The
framework of the proposed AE-RED is summarized in Fig. 1.
It embeds a data-driven AE with a model-free RED. The
algorithmic scheme is shown to be a convenient way to fuse
the respective advantages of these two approaches. Note that,
since the AE-based formulation is nonlinear, providing con-
vergence guarantees about the resulting optimization scheme
is not trivial. However, the experimental results reported in
Section IV show that the proposed method is able to provide
consistent performance. Finally, without loss of generality,
detailed technical implementations of the first two steps (9)
and (10) are discussed in the following paragraphs for specific
architectures of the AE.

B. Updating Θ

At each iteration, the set of parameters Θ of the AE is
updated through the rule (9). This can be achieved by training
the network with the criterion in (9) as the loss function. The
first term measures the data fit while the second acts as a
regularization to enforce the representation EΘE

(W) in the
latent space to be close to a corrected version A −G of the
abundance. Regarding the ASC, ANC and ENC constraints,
they can be ensured by an appropriate design of the network.
In practice, Adam is used to train the AE.

Various AE architectures can be envisioned and the en-
coder and the decoder can be chosen by the end-user with
respect to the targeted applicative context. Some archetypal
examples of possible elements composing these architectures
(non-exhaustively) are listed in Fig. 1(c). The encoder EΘE

(·)
aims at extracting relevant features to be incorporated into
the estimated abundances. Training a network based on a
single spectrum at a time ignores the spatial information.
Therefore, patch-wise or cube-wise encoders are generally
preferred to jointly capture the information across the image
dimensions. A popular choice consists in adopting a CNN-
based architecture where the input is the observed image.
Another promising approach leverages on the more recent
concept of deep image prior (DIP) with a random noise as
input. These two particular choices will be discussed later
in this section. Regarding the decoder DΘD

(·), it generally
mimics the mixing process and the endmembers usually define
the weights of one specially designed linear layer. Again, the
proposed AE-RED framework is sufficiently flexible to host
various architectures and to handle various spectral mixing
models. A popular strategy is to design the decoder such
that it combines physics-based and data-driven strategies to
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Fig. 2. Left: the architectures of CNN-based and DIP-based networks used as particular instances of the proposed method. Right: particular instance of the
decoder to mimic the LMM.

account for complex nonlinearities or spectral variabilities.
For instance, additive nonlinear and post-nonlinear models
have been extensively investigated [33], [34], [37] as well as
spectral variability-aware endmember generators [39], [40].

In the main body of this paper, for illustration purpose
but without loss of generality, two particular architectures are
discussed and then instantiated, as shown in Fig. 2. Both
consider an LMM-based decoder composed of a convolutional
layer with a filter size of 1×1×B. For this particular instance
of LMM-based decoder, the optimization problem (9) can be
rewritten as

{ΘE,S} ∈ arg min
ΘE,S

∥Y − SEΘE
(W)∥2F (12)

+ µ∥A− EΘE
(W)−G∥2F

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0 and S ≥ 0.

However, it is worth noting that Appendix A considers the
case of a nonlinear model-based decoder to demonstrate the
flexibility of the proposed. The two examples of AE consid-
ered in what follows differ by the architecture of the encoder.
They have been chosen because they have been often used
to perform unmixing. The first network is composed of a
CNN-based encoder, which mainly consists of convolutional
filters to extract and thus exploit the spatial features of the
hyperspectral image. The second network is a DIP-based
encoder. By generating output maps from an input noise, the
image prior is implicitly encoded in the network parameters.
More details about these two choices are given below.

1) CNN-based encoder: The architecture of the CNN-based
encoder is shown in Fig. 2. The whole image Y is used

here as the input to extract the structure information from
the hyperspectral image. Another choice would consist in
considering over-lapping patches as the input. The encoder is
composed of 5 blocks. The first two blocks implement 3× 3
convolution filters to learn the spatial consistency information.
The next two blocks apply 1 × 1 convolution operators (i.e.,
fully connected layers) to model the spectral priors. Moreover,
to satisfy the ANC and ASC, the conventional LeakyReLU
activation function of the last block is replaced by a Softmax
function. The output dimensions of each block are narrowly
diminished to compress the input pixels into the abundance
domain. Considering the optimization function defined in (12),
the objective function to train this model is expressed as

LAE(Θ) = ∥Y−SEΘE
(Y)∥2F+µ∥A−EΘE

(Y)−G∥2F+α∥Θ∥2F.
(13)

An ℓ2-norm is introduced in the loss function to penalize
model weights and thereby reduce overfitting, and α is the
penalty parameter. The resulting unmixing method will be
denoted as AE-RED-C in the sequel.

2) Deep image prior-based encoder: Another architecture
considered in this paper exploits the DIP strategy to implicitly
learn the priors of hyperspectral image. Unlike conventional
AE-based unmixing methods which use spectral signatures
as input for training, this network applies a Gaussian noise
image Z of size of the abundance matrix A as input to
generate the hyperspectral image. The encoder can be a U-
net like architecture to extract the features from different
levels. In this work the encoder has been designed with an
encoder-decoder structure for abundance estimation. The inner
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encoder is composed of 4 down-sampling to compress the
features. Each down-sampling block consists of three layers,
namely a convolution layer with a filter of size 3 × 3, a
batch normalization layer, and an ReLU nonlinear activation
layer. The inner decoder is composed of 5 up-sampling blocks.
Each of the first 4 blocks has 4 layers: a bilinear up-sampling
layer, a convolution layer, a batch normalization layer and an
ReLU nonlinear activation layer. The last block has two layers,
namely a convolution layer and a Softmax nonlinear activation
layer to generate the estimated abundances while satisfying
the ANC and ASC. Skip connections relate the encoder and
decoder which are used to fuse the low-level and high-level
features and to obtain multiscale information. The objective
function to train this deep model is also defined as (13) where
EΘE

(Y) is replaced by EΘE
(Z). The proposed method with

this architecture is denoted as AE-RED-U.

Remark (On the choice of the AE block number). The detailed
design of any network architecture generally follows some
empirical principles, subsequently validated by the reached
performance face to a given task. Thus there is no univer-
sal rules to determine the number of blocks composing an
encoder, as it depends on a variety of external factors, such as
the size and the complexity of the input data. For the proposed
architectures, adjusting the number of blocks can be guided
by monitoring the unmixing performance as a function of the
number of blocks.

Remark (On possible overfitting issues). During the numerical
validation of the proposed approach, no overfitting issue has
been experienced. This may be explained by the following
four aspects which tend to prevent such shortcomings: i)
during the training stage, the weights of the networks follow
a weight decay strategy, i.e., they are granted with an ℓ2-norm
regularization, ii) the RED prior contributes to reducing the
influence of the noise into the model, iii) by design, the pro-
posed framework embeds various constraints imposed to the
abundances (i.e., ASC and ANC) and the endmembers (ENC),
which directly reduces the range of admissible solutions and
iv) as in [48], training an AE-based unmixing network follows
an iterative process which does not rely on a training set
but rather considers a fixed input and iteratively adjusts the
weights by assessing the quality of the network output.

C. Updating A

The abundance matrix A is updated by solving (10). This
problem is a standard RED objective function and can be
interpreted as a denoising of EΘE

(W) + G. The seminal
paper [46] discusses two algorithmic schemes to solve this
problem, namely fixed-point and gradient-descent strategies.
In this work we derive a fixed-point algorithm by setting the
gradient of the objective function to 0,

λ (A− C (A)) + µ (A− EΘE
(W)−G) = 0. (14)

Algorithm 1 The proposed unmixing framework AE-RED
Input: Hyperspectal image Y; Regularization parameter λ;

ADMM coefficient µ; Denoiser C(·); Outer and inner
iteration numbers K and J ; Training parameters (learning
rate, epochs, batch size, α).

Initialization: Θ randomly, A and G with 0, S with VCA.
% ADMM iterations

1: for k = 1, · · · ,K do
% Updating Θ

2: for i = 1, · · · , epochs do
3: Update EΘE

(W) via forward propagation,
4: Compute the loss function by (13),
5: Update Θ(k) via retropropagation,
6: end for

% Updating A
7: Set A(k−1,0) = A(k−1)

8: for j = 1, · · · , J do
9: Update A(k−1,j) with (15),

10: end for
11: Set A(k) = A(k−1,J)

% Updating G
12: Update G(k) with (11);
13: end for
Output: Estimated abundances A and endmembers S.

Then, at the (k + 1)th iteration of the ADMM, the jth inner
iteration of the fixed-point algorithm can be summarized as

A(k+1,j+1)

=
1

λ+ µ

[
λC

(
A(k+1,j)

)
+ µ

(
E
(k+1)
ΘE

(W) +G(k)
)]

.

(15)

For illustration, we consider two particular denoisers C (·),
namely nonlocal means (NLM) [49] and block-matching and
4-D filtering (BM4D) [50]. NLM is a 2D denoiser and should
be applied on each spectral bands independently, while BM4D
is a 3D-cube based denoiser. Depending on the architecture
chosen for the encoder (see Section III-B), the corresponding
instances of the proposed framework are named as AE-RED-
CNLM, AE-RED-CBM4D, AE-RED-UNLM and AE-RED-
UBM4D, respectively. It is worth noting that the two denoisers
considered in this work do not require any training procedure.
Conversely, they are described by explicit parametric models
to leverage the universal property of image self-similarity.
However, the proposed framework is sufficiently flexible to
embed other denoisers, in particular pretrained models de-
scribed by deep neural networks [30], [31]. Simultaneously
training a deep denoiser alongside the unmixing process would
significantly increase the computational complexity of the
proposed algorithm, without bringing noticeable performance
improvements. In practical scenarios, various factors such as
the available computing time and resources can heavily guide
the choice of a denoiser. The end-user should take all the
factors into consideration to make informed decisions.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 8

TABLE II
SYNTHETIC DATA: PERFORMANCE OF ABUNDANCE AND ENDMEMBER ESTIMATIONS IN TERMS OF RMSES (×10−2) AND MSADS (×10−2),

RESPECTIVELY. BEST RESULTS ARE REPORTED IN BOLD AND UNDERLINED NUMBERS DENOTE THE SECOND BEST RESULTS.

5dB 10dB 20dB 30dB

RMSE mSAD RMSE mSAD RMSE mSAD RMSE mSAD

SUnSAL-TV 11.12 ± 0.45 10.13 ± 0.31 8.04 ± 0.38 6.23 ± 0.21 2.84 ± 0.17 1.73 ± 0.08 1.04 ± 0.06 0.52 ± 0.03

PnP-NMF 10.29 ± 0.81 8.55 ± 0.62 7.11 ± 0.36 5.33 ± 0.19 3.11 ± 0.16 1.81 ± 0.09 1.17 ± 0.05 0.83 ± 0.03

CNNAE 10.78 ± 0.63 8.11 ± 0.51 6.82 ± 0.42 4.81 ± 0.28 2.92 ± 0.28 1.62 ± 0.11 1.27 ± 0.07 0.45 ± 0.03

UnDIP 14.69 ± 1.45 9.77 ± 0.20 8.54 ± 0.73 6.85 ± 0.16 2.80 ± 0.33 1.93 ± 0.13 1.00 ± 0.04 0.57 ± 0.03

SNMF 12.07 ± 1.32 8.52 ± 0.67 9.06 ± 0.96 5.95 ± 0.39 3.13 ± 0.42 1.13 ± 0.11 1.12 ± 0.11 0.43 ± 0.06

CyCU-Net 11.50 ± 0.83 8.26 ± 0.51 7.08 ± 0.74 5.69 ± 0.43 2.96 ± 0.69 1.46 ± 0.13 1.39 ± 0.58 0.69 ± 0.05

AE-RED-CNLM 9.43 ± 0.49 7.69 ± 0.23 6.40 ± 0.24 4.37 ± 0.19 2.61 ± 0.13 1.03 ± 0.09 0.97 ± 0.05 0.41 ± 0.01

AE-RED-CBM4D 10.09 ± 0.60 7.70 ± 0.26 6.65 ± 0.29 4.30 ± 0.16 2.35 ± 0.14 1.05 ± 0.08 0.93 ± 0.04 0.42 ± 0.03

AE-RED-UNLM 9.19 ± 0.40 7.67 ± 0.20 6.02 ± 0.31 4.34 ± 0.17 2.41 ± 0.19 1.08 ± 0.08 0.95 ± 0.06 0.40 ± 0.02

AE-RED-UBM4D 9.72 ± 0.35 7.68 ± 0.27 5.85 ± 0.32 4.33 ± 0.18 2.51 ± 0.14 1.07 ± 0.09 0.94 ± 0.05 0.39 ± 0.01

TABLE III
SYNTHETIC DATA: PERFORMANCE OF ENDMEMBER ESTIMATION AND IMAGE RECONSTRUCTION IN TERMS OF MSIDS (×10−2) AND PSNR,

RESPECTIVELY. BEST RESULTS ARE REPORTED IN BOLD AND UNDERLINED NUMBERS DENOTE THE SECOND BEST RESULTS.

5dB 10dB 20dB 30dB

mSID PSNR mSID PSNR mSID PSNR mSID PSNR

SUnSAL-TV 3.91 ± 0.14 30.83 ± 2.17 1.20 ± 0.07 35.35 ± 0.94 0.13 ± 0.02 43.94 ± 0.63 0.02 ± 0.00 54.43 ± 0.34

PnP-NMF 1.95 ± 0.13 31.68 ± 1.60 1.00 ± 0.07 36.29 ± 0.95 0.11 ± 0.02 44.35 ± 0.57 0.02 ± 0.00 54.65 ± 0.61

CNNAE 4.32 ± 0.16 31.45 ± 1.62 0.69 ± 0.08 35.25 ± 1.22 0.13 ± 0.02 43.35 ± 0.60 0.03 ± 0.00 50.94 ± 0.47

UnDIP 6.50 ± 0.32 30.30 ± 1.63 1.30 ± 0.14 34.82 ± 1.27 0.23 ± 0.04 44.31 ± 0.92 0.01 ± 0.00 54.70 ± 0.25

SNMF 13.69 ± 0.66 28.14 ± 2.67 1.12 ± 0.29 32.22 ± 1.89 0.07 ± 0.02 41.25 ± 0.81 0.01 ± 0.00 51.40 ± 0.41

CyCU-Net 4.47 ± 0.21 30.82 ± 2.50 0.52 ± 0.16 35.48 ± 1.97 0.14 ± 0.05 42.69 ± 0.93 0.03 ± 0.00 50.15 ± 0.53

AE-RED-CNLM 1.84 ± 0.15 32.49 ± 1.69 0.38 ± 0.04 36.89 ± 0.92 0.05 ± 0.01 44.41 ± 0.37 0.01 ± 0.00 54.70 ± 0.15

AE-RED-CBM4D 1.89 ± 0.10 31.71 ± 1.21 0.36 ± 0.03 36.13 ± 0.73 0.06 ± 0.02 45.32 ± 0.34 0.01 ± 0.00 54.82 ± 0.16

AE-RED-UNLM 1.95 ± 0.13 32.02 ± 1.48 0.37 ± 0.04 36.68 ± 0.87 0.07 ± 0.01 44.49 ± 0.40 0.01 ± 0.00 55.03 ± 0.21

AE-RED-UBM4D 1.87 ± 0.14 32.28 ± 1.98 0.37 ± 0.05 36.90 ± 0.93 0.06 ± 0.02 44.53 ± 0.37 0.01 ± 0.00 55.24 ± 0.17

IV. EXPERIMENTAL RESULTS

This section presents experiments conducted to evaluate
the effectiveness of the proposed unmixing framework. These
experiments have been conducted on synthetic and real
data sets to quantitatively assess the unmixing results and
to demonstrate the effectiveness of our proposed method
in real applications, respectively (see Sections IV-A and IV-B).

Compared methods – Several state-of-the-art methods
have been compared. A first family of unmixing algorithms
are conventional methods. SUnSAL-TV [16] leverages
on a handcrafted TV-term to regularize the optimization
function. PnP-NMF [9] is an NMF-based unmixing method,
and denoisers are embedded as PnP to introduce prior
information. A second family of compared methods is based
on deep learning. CNNAE [10] is a deep AE-based unmixing
method where convolutional filters capture spatial information.
UnDIP [48] is a DIP-based unmixing method which uses a
convolutional network. A geometric endmember extraction
method is applied to estimate endmembers. SNMF [43] is
a deep unrolling algorithm, which unfolds the ℓp-sparsity
constrained NMF model into trainable deep architectures.

CyCU-Net [11] proposes a cascaded AEs for unmixing with a
cycle-consistency loss to enhance the unmixing performance.
For all methods, the endmembers have been initialized with
the signatures extracted by a popular dedicated algorithm,
namely vertex component analysis (VCA) [51], since it has
empirically shown to provide the most consistent results. The
other network parameters have been initialized randomly,
while the abundance matrix A and the dual variables G have
been initialized with zeros.

Hyperparameter settings – Regarding the experiments
conducted on synthetic data, the hyperparameters have been
adjusted following a grid search strategy to obtain the best un-
mixing results and to conduct fair comparisons. For example,
the number of blocks of the encoder has been progressively
increased to reach the best unmixing performance. Regarding
the experiments on real data sets, due to the absence of avail-
able ground truth, these hyperparameters have been adjusted
in the same ranges of values obtained on the synthetic data
by empirically inspecting the unmixing results. The values are
reported in Appendix B.

The learning rate to train the deep networks is set to
1 × 10−3, and set to 1 × 10−4 when fine-tuning the decoder
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weights. For the proposed CNN-based encoder, the number K
of ADMM iterations is set to 15, the number of epochs is set
to 250 and the number of inner iterations when updating the
abundances is set to J = 1. As for the proposed DIP-based
encoder, K, the number of epochs and J are respectively set
to 10, 2300 and 1.

Performance metrics – The root mean square error (RMSE) is
used to evaluate the abundance estimation performance, which
can be expressed by

RMSE =

√√√√ 1

NR

N∑
i=1

∥ai − âi∥2, (16)

where ai is the actual abundance of the ith pixel, and âi is the
corresponding estimate. The lower the RMSE, the better the
abundance estimates. The endmember estimation is assessed
by computing the mean spectral angle distance (mSAD) and
the mean spectral information divergence (mSID) given by

mSAD =
1

R

R∑
r=1

arccos

(
s⊤r ŝr

∥sr∥∥ŝr∥

)
(17)

and

mSID =
1

R

R∑
r=1

pr log

(
pr

p̂r

)
, (18)

where sr and ŝr are the actual and estimate of the rth
endmember, respectively, pr = sr/1

⊤sr and p̂r = ŝr/1
⊤ŝr.

The smaller the mSAD and mSID, the better the endmember
estimates. Finally, the peak signal-to-noise ratio (PSNR) is
used to evaluate the image denoising and reconstruction, which
is defined by

PSNR = 10× log10

(
MAX2

MSE

)
(19)

where MAX is the maximum pixel value of the reconstructed
image Ŷ and MSE is the mean square error between the
reconstructed image and the noise-free image. The higher the
PSNR, the better the reconstruction.

To assess the statistical significance of the reported exper-
imental results, these metrics have been averaged over 10
Monte Carlo runs.

A. Experiments on synthetic data sets

Data description – The synthetic images are composed
of 100 × 100 pixels. Abundance maps are generated using
the method of the Hyperspectral Imagery Synthesis tools1

to mimic the spatial content exhibited by remote sensing
hyperspectral images. The ground-truth abundance maps are
shown in Fig. 3 (1st column). Sets of R = 5 endmembers
are randomly selected from the U.S. Geological Survey
(USGS) spectral library with a number of spectral bands of
B = 224. These endmembers are mixed according to the
LMM and an additive zero-mean Gaussian noise is considered
with variances adjusted according to 4 signal-to-noise ratios

1http://www.ehu.es/ccwintco/index.php/Hyperspectral Imagery Synthesis
tools for MATLAB

(SNRs), i.e., SNR ∈ {5dB, 10dB, 20dB, 30dB}.

Results – Tables II-III report the estimation results
obtained by the compared algorithms in terms of RMSE
for the abundance estimation, mSAD and mSID for the
endmember estimation and PSNR for the reconstruction.
Conventional unmixing methods, such as SUnSAL-TV and
PnP-NMF, achieve good unmixing results, demonstrating
the usefulness of the explicit prior provided by manually
designed regularization. Deep learning-based methods, such
as CNNAE, SNMF and CyCU-Net, they can obtain suitable
unmixing results and better endmember estimation results
compared with the conventional methods, illustrating the
ability of deep networks to embed prior information. These
results also show that the proposed AE-RED framework
outperforms the compared state-of-the-art methods, across
all performance metrics and the noise levels. Fig. 3 depicts
the estimated abundance maps associated with the synthetic
data set with SNR= 10dB. It can be observed that the
abundance maps estimated by the AE-RED framework
exhibit better agreement with the ground-truth, whatever the
implementations (architectures and denoisers). Fig. 4 shows
the endmembers estimated by the proposed framework on the
synthetic data set with SNR = 10 dB, which are close to the
ground-truth.

Sensitivity analysis – Fig. 5 shows how the parameters
λ, µ, learning rate and epoch impact the performance of
AE-RED-CNLM with synthetic data (SNR = 10dB).

Ablation study – An ablation study has been conducted to
evaluate the effectiveness of each component of the proposed
framework. First, counterparts of AE-RED-CNLM and AE-
RED-UNLM, referred to as AE-C and AE-U, respectively,
do not include RED as a regularization. Second, the two
proposed methods are instantiated without deep AEs but only
RED as regularization, and directly optimize abundances
and endmembers with gradient descent algorithm, with the
denoiser chosen as NLM (method referred to as RED-NLM)
or BM4D (method referred to as RED-BM4D). Table IV
provides the performance of abundance and endmember
estimations in terms of RMSE and mSAD provided by these
four depreciated methods. These results are significantly
worse than those initially reported in Table II corresponding
to the proposed methods combining both RED and deep AEs.
This demonstrates the relevance of the adopted strategy.

Convergence analysis – Because of the use of highly
nonlinear operators (i.e., deep AEs), the convergence of
the proposed method can be hardly assessed theoretically.
Instead, this convergence has been empirically monitored by
evaluating RMSEs as functions of the algorithm iterations.
Fig. 6 depicts the curves obtained by the four proposed
methods when analysis the synthetic data with SNR = 10dB.
These curves confirm appropriate behaviors of the algorithms.

Complexity analysis – The overall computational complexity
of the proposed method can be analyzed with respect to
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Fig. 3. Synthetic data, SNR = 10dB: estimated abundance maps.

TABLE IV
SYNTHETIC DATA, ABLATION STUDY: PERFORMANCE OF ABUNDANCE AND ENDMEMBER ESTIMATIONS IN TERMS OF RMSES (×10−2) AND MSADS

(×10−2), RESPECTIVELY.

5dB 10dB 20dB 30dB

RMSE mSAD RMSE mSAD RMSE mSAD RMSE mSAD

AE-C 11.12± 0.62 8.86± 0.27 6.86± 0.34 5.66± 0.26 3.00± 0.21 1.32± 0.08 1.05± 0.05 0.43± 0.03

AE-U 11.67± 0.60 9.22± 0.26 6.94± 0.35 5.83± 0.21 2.82± 0.15 1.95± 0.08 1.01± 0.05 0.44± 0.03

RED-NLM 10.24± 0.71 9.18± 0.32 6.84± 0.36 5.50± 0.20 3.10± 0.24 1.34± 0.09 1.11± 0.05 0.48± 0.02

RED-BM4D 10.15± 0.64 8.93± 0.21 6.81± 0.29 5.36± 0.20 3.03± 0.23 1.65± 0.08 1.09± 0.05 0.42± 0.02

two essential building blocks, namely the AE and the RED
components. Regarding the complexity of the AEs, because
of the independence between the samples, their training can
be globally evaluated with respect to the number of samples.
During the inference step (i.e., once trained), their computa-
tional burden depends on the architecture and can be evaluated
by forward inference floating point operations (FLOPs), 9.62G
for CNN-based network and 8.22G for DIP-based network.
Regarding the use of RED, when the number of inner loop is
fixed to J = 1, its complexity is the same as the one imposed
by conventional PnP frameworks [46].

The computational burdens of the compared method have
been also evaluated in terms of execution times, reported in
Table V. For all deep learning-based methods, they correspond
to both training and test stages. The execution time required
by the proposed framework is shown to depend on the chosen
deep architecture. More precisely, when using CNN-based
encoders, the execution times of the proposed framework are
of the same order as those of UnDIP or SNMF. These times
are significantly longer when using DIP as encoders.

To conclude, it is fair noting that the versatility and the
accuracy of the proposed framework come at the price of
a heavier computational burden. However some strategies
have been deployed to make the proposed methods scalable.
First, the optimization strategy detailed in Section III follows
a variable splitting scheme (i.e., ADMM), which is known
to converge significantly faster than first-order methods.
Second, thanks to this splitting scheme, updating the encoder
parameters ΘE and applying the denoiser C(·) have been
achieved in parallel by exploiting a multi-core processing
strategy, as already suggested in Fig. 1(b). Finally, as for
most deep learning-based numerical solutions, the use of
GPUs to train the AEs is a true asset.

B. Experiments on real data sets

Data description – Finally, experiments conducted on two
real data sets are discussed. Firstly, one considers the Samson
data set, which was acquired by the SAMSON observer and
contains B = 156 spectral channels ranging from 400nm to
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TABLE V
SYNTHETIC DATA, SNR = 10DB: COMPUTATIONAL TIMES (S).

SUnSAL-TV PnP-NMF CNNAE UnDIP SNMF CyCU-Net AE-RED-CNLM AE-RED-CBM4D AE-RED-UNLM AE-RED-UBM4D

10.7 7.33 33.78 218.53 61.57 29.56 117.53 113.24 553.11 587.51
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Fig. 4. Synthetic data, SNR = 10dB: estimated endmembers.

889nm. The original image is of size of 952×952 pixels, and
a subimage of 95× 95 pixels is cropped for the experiments.
This image contains three endmembers, namely “water”,
“tree” and “soil”. The second real data set used in these
experiments is known as the Jasper Ridge image. It was
acquired by Analytical Imaging and Geophysics (AIG) in
1999 with B = 224 spectral bands covering a spectral range
from 380nm to 2500nm. One considers a subimage of size
of 100 × 100 pixels and B = 198 channels after removing
the bands affected by water vapor and atmospheric effects. It
contains R = 4 endmembers, namely “water”, “soil”, “tree”
and “road”.

Results – As there is no available ground-truth for these
real data sets, a quantitative evaluation of abundance and
endmember estimations cannot be provided. One alternative
consists in conducting qualitative evaluation by visual in-
spection. Fig. 7 shows the abundance maps estimated by the
compared methods for the Samson data set. The proposed
AE-RED framework can successfully separate the materials
and provide sharp abundance estimates. Fig. 8 depicts the
abundance maps estimated by all compared methods for the
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Fig. 5. Synthetic data, SNR = 10dB: RMSE as functions of the regulariza-
tion parameters λ, µ, learning rate and epoch for AE-RED-CNLM.
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Fig. 6. Synthetic data, SNR = 10dB: RMSEs as functions of iterations.

Jasper Ridge data set. Some of them, such as UnDIP, fail to
recover the road. Due to the learning ability of deep networks,
most deep learning based methods are able to distinguish the
individual materials. Finally the proposed AE-RED framework
provides abundance maps with more detailed information and
sharper boundaries.

V. CONCLUSION

This paper proposed a generic unmixing framework to
embed RED within an AE. By carefully designing the encoder
and the decoder, the AE was able to provide estimated
abundance maps and endmember spectra. In particular, for
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Fig. 7. Samson data set: estimated abundance maps.
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Fig. 8. Jasper Ridge data set: estimated abundance maps.

illustration purpose, two different encoder architectures are
considered, namely a CNN and a DIP. Moreover the decoder
could be chosen according to a particular mixture model.
Leveraging ADMM scheme, the resulting optimization prob-
lem was split into simpler subproblems. The first one was
described by an objective function composed of a data-fitting
term and a quadratic regularization. It was solved through the
training of an AE. The second subproblem was a standard
RED objective function and solved by a fixed-point strategy.
Two denoisers were considered, namely NLM and BM4D.
The effectiveness of the proposed framework was evaluated
through experiments conducted on synthetic and real data sets.
The results showed that the proposed framework outperformed
state-of-the-art methods. Future works include considering
explicit endmember priors within the proposed framework,
automatically selecting mixing model, and deriving some
online learning strategies to extend the proposed framework
for real-time processing.

APPENDIX A
HANDLING NONLINEAR MIXING MODELS

To illustrate the versatility of the proposed framework, it has
been instantiated to handle nonlinear mixtures. More precisely,
the LMM-based decoder initially considered in Section III-B
has been replaced by the additive post-nonlinear decoder
proposed in [33]. A synthetic data set has been generated using
the bilinear model and post-nonlinear mixture model (PPNM)
defined as

y = Sa+

R−1∑
i=1

R∑
j=i+1

aiaj (si ⊙ sj) + n (20)

and
y = Sa+ Sa⊙ Sa+ n. (21)

The endmembers and abundances are set as the same as
those used in the experiments described in Section IV-A, with
SNR = 10dB. The proposed PPNM-based instance of the
AE-RED framework has been compared to two state-of-the-
art methods. The first method is the robust NMF (rNMF)
proposed in [52]. It is a standard matrix factorization model
complemented with an additional spatially sparse term to fit



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 13

any nonlinearities, here considered as outliers. The second
compared method, referred to as LSTM-DNN, is an AE-based
nonlinear unmixing method with recurrent neural network
layers as encoder and a PPNM-based decoder [33].

The unmixing results obtained by the compared methods are
reported in Table VI. They show that the proposed method is
able to handle nonlinearly mixed pixels successfully. Again,
compared to rNMF, deep learning-based unmixing methods
achieve better results, which shows the ability of deep net-
works to learn image features. It is worth noting that the
proposed and LSTM-DNN share the same decoder structure.
However, the former gets better results, which indicates the
interest of combining AE and RED priors.

APPENDIX B
HYPERPARAMETER SETTING

The values of the hyperparameters adjusted for the ex-
periments conducted on the synthetic and real data sets are
reported in Tables VII and VIII, respectively.
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