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On camera model conversions

Eva Goichon, Guillaume Caron, Pascal Vasseur, Fumio Kanehiro

Abstract— On the one hand, cameras of conventional field-of-
view usually considered in computer vision and robotics are
very often modeled as a pinhole plus possibly a distortion
model. On the other hand, there is a large variety of models for
panoramic cameras. Many camera models have been proposed
for fisheye cameras, catadioptric cameras, and super fisheye
cameras. But in both cases, few models offer the possibility of
converting them into another model.
This paper contributes to filling this gap in, to allow an algo-
rithm designed with a projection model to accept data of a cam-
era calibrated with another model. So, a pre-existing data set
can be used without having to recalibrate the camera. We pro-
vide the methodology and mathematical developments for three
conversions considering three different types of cameras that
are evaluated with respect to calibration and within a visual Si-
multaneous Localization And Mapping benchmark. The source
code of the camera model conversions studied in this paper is
shared within the libPeR library for Perception in Robotics:
https://github.com/PerceptionRobotique/libPeR base.

I. INTRODUCTION

As soon as geometry computation from images is concerned,
projection models describing the geometrical image forma-
tion of the camera that captures the image are to be consid-
ered [1]. They can be implicitly hidden in the layers of neural
networks in computer vision [2] or explicitly appearing in
the equations of model-based 3D reconstruction methods
in photogrammetry [3] and Simultaneous Localization And
Mapping (SLAM) in robotics [4].
Most of the time, the cameras considered are of conventional
field-of-view (FoV), designed by the manufacturer to fit the
pinhole camera model within the depth-of-field, the part
of captured volumes by the camera appearing sharp in the
image. To account for misalignments of lens and sensor or
poor lens quality, a distortion model is generally considered
in addition to the pinhole. Distortion models are many in
the literature but they are almost always a variation around
a mix of tangential distortions and a rational polynomial
model of radial distortions [5], often simplified as either a
polynomial [6] or division [7] model. Indeed, the former
involves more parameters than both latter that are easier to
calibrate.
Less classical is the use of panoramic cameras such as those
using a fisheye lens [8] or a catadioptric lens involving a
curved mirror [9]. Many camera models have been proposed
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for describing the image formation with the latter lenses [10]
because they capture a horizontal FoV of 180 degrees or
more that leads the pinhole model to a singularity. The most
often encountered projection models for fisheye cameras are
those to which the manufacturers are trying to fit such as
equidistant and equisolid models [8] but also those more
general such as the angular polynomial model [11]. Cata-
dioptric camera models are relying on the shape of the mirror
used, such as the paraboloidal ad hoc model [12], or, for the
set of camera-mirror pairs implementing a single viewpoint,
the Unified Central projection Model (UCM) [13], [14].
When the mirror shape or the position of the camera with
respect to the mirror is not accurate, the UCM is extended
with the same polynomial distortion models than for the
pinhole camera [15]. But the latter extension makes a two
steps model so, in the same idea as the angular polynomial
model designed for fisheye cameras, the Cartesian polyno-
mial model has been expressed to account simultaneously for
the geometry of the mirror and the distortions [16]. It can
actually also be used to model some fisheye cameras, even
though super-fisheye cameras (FoV beyond 200 degrees) are
more accurately modeled with the double sphere projection
model [17] or even generic models [18], though harder to
calibrate than parametric models [19].
To summarize, the landscape of camera models is very large
and rich but rarely the newly introduced models came with
the way to formulate them from previous models and vice
versa, except for the UCM that showed its equivalence
to ad hoc models of catadioptric cameras [13], [14]. The
only work we found tackling the camera model conversion
issue [20] lies in the remote sensing field and expresses
the photogrammetric model [21] used for computing digital
terrain models from the CAHVOR camera model [22] used
for machine vision and vice versa. However, the robotics
field considers other camera models for which the lack
of conversion tools prevents to easily use a vision-based
method, e.g. a visual SLAM for robot localization, that
implements a camera model to use images captured with a
camera calibrated with a different model, either at the factory
or provided together with a dataset. The practical solution is
to recalibrate the camera, but if the data used does not contain
the calibration images, this is not possible. Moreover, it is
sometimes difficult to obtain a calibration as accurate as the
one done at the factory. In any case, recalibrating the camera
takes time and requires expertise in setting the calibration
targets in the camera FoV [23].
We contribute to avoid camera recalibration as follows:

• the formulation of several state-of-the-art projection
models in a unified notation

https://github.com/PerceptionRobotique/libPeR_base


• the methodology to convert from a camera model to
another, developed for three conversions

• the programs within an open-source library to perform
the conversions easily

The three model conversions are applied for three cameras:
a 185 degrees fisheye camera, a 180 degrees catadioptric
camera and a conventional camera with distortions. The
conversion accuracy is evaluated with respect to calibrations
with the destination models. The third camera is used within
visual SLAM to compare the accuracy of estimated trajec-
tories with converted and calibrated models.
The rest of the paper is organized as follows. Section II
related the camera models considered in the paper with a
unified notation. Section III introduces the camera models
conversion method developed to three conversions. After
that, Section IV reports the conversion results obtained, their
evaluation and the use and evaluation of one of them in visual
SLAM, before conclusion (Sec. V).

II. RELATED WORKS
This section recalls quickly the camera projection models
considered in this paper with a unified writing: three wide
FoV camera projection models (Sec. II-A, Sec. II-B, and II-
D) and distortion models (Sec. II-C).

A. Unified central camera model

Central omnidirectional cameras leverage the unified central
camera projection model (UCM) [14] instead of the pinhole
one classically used. Considering intrinsic parameters αu ∈
R∗, αv ∈ R∗ as the generalized focal length, u0 ∈ R,
v0 ∈ R as the principal point coordinates and ξ ∈ R
a parameter associated to the lens shape (or mirror shape
in case of catadioptric lens), the UCM projects 3D points
X = [X,Y, Z]⊤ ∈ R3 to digital image points u =
[u, v]⊤ ∈ R2 with three steps. First, X is projected as
XS = [XS , YS , ZS ]

⊤ ∈ R3 on a unit sphere centered at
the camera origin such that:

XS = X/ρ and YS = Y/ρ and ZS = Z/ρ, (1)

with ρ =
√
X2 + Y 2 + Z2. Second, XS is projected as x =

[x, y]⊤ ∈ R2 on the normalized image plane thanks to a
second projection center distant of ξ from the sphere center:

x = XS/(ZS + ξ) and y = YS/(ZS + ξ). (2)

Third, x is transformed to the digital image plane as u:

u = αux+ u0 and v = αvy + v0. (3)

As a recall, setting ξ = 0 in (2) allows one to retrieve the
classical pinhole projection model.

B. Equidistant fisheye model

This model assumes symmetric radial distortions in the
image and implements a regular radial resolution of angle
ϕ ∈ R, the elevation with respect to the camera optical axis
Zc ∈ R3. Writing θ ∈ R the azimuth angle, these angles can
be expressed from unit spherical Cartesian coordinates (1):

ϕ = arccos(ZS) and θ = arctan(YS/XS). (4)

The equidistant fisheye model [8] maps the azimuth and
elevation angles to normalized image plane coordinates by:

x = ϕ cos(θ) and y = ϕ sin(θ). (5)

With f ∈ R+ the focal length of the fisheye lens and
k ∈ R+ the pixel pitch (square pixels assumed), the point x
coordinates in the digital image are:

u =
f

k
x+ u0 and v =

f

k
y + v0. (6)

C. Distortions model

Camera projection models are often extended with a model
of distortions to account for residual distortions of lenses
or misalignment of lenses and the image sensor. The so
called Brown-Conrady’s distortion model [6] considers a
polynomial model of radial and tangential distortions applied
to a 2D point x, which coordinates are expressed in the
normalized image plane, to obtain their distorted counterparts
xd = (xd, yd)

⊤ ∈ R2. The radial distortions coefficient
dB ∈ R is a polynomial of ρx =

√
x2 + y2 such as:

dB = 1 + kB1
ρ2x + kB2

ρ4x + kB3
ρ6x, (7)

leading to the expression of xd:{
xd = dBx+ 2p1xy + p2(ρ

2
x + 2x2)

yd = dBy + p1(ρ
2
x + 2y2) + 2p2xy

. (8)

More recent distortion models extend (7) to a rational poly-
nomial model [5] for the radial distortions:

dR =
1 + kR1

ρ2x + kR2
ρ4x + kR3

ρ6x
1 + kR4

ρ2x + kR5
ρ4x + kR6

ρ6x
, (9)

to use instead of dB in (8).
Finally, the distorted digital image coordinates u are com-
puted by substituting x and y in (3) with xd and yd of (8).

D. Cartesian Polynomial model

This model was designed for catadioptric and fisheye cam-
eras of FoV of 180 degrees and more [16]. This model maps
the scene to the digital image by considering a radial model
of distortions depending on the Cartesian expression of 3D
lines of sight. By considering a single α = αu = αv , it
expresses the line of sight from u′ = u − [u0, v0]

⊤ to the
3D point X of norm ρ by:

ρ

α
[u′, v′, r(ρu′)] = X, (10)

where ρu′ = ||u′|| and the radial distortions function:

r(ρu′) = a0 + a1ρu′ + a2ρ
2
u′ + . . .+ anρ

n
u′ . (11)

In practice, the degree n is at most n = 4 and a1 is set to
0, shrinking the radial distortions function to 4 parameters
at most.

III. CONVERTING CAMERA MODELS

This section develops the method to convert a camera pro-
jection model to another for two conversions of wide-angle
camera projection models (Sec. III-A and III-B) and one
conversion between distortion models (Sec. III-C).



A. Equidistant to Unified Central Model

Focusing on coordinates expressed on the horizontal axis
(θ = 0), we can state that (3) and (6) should be equal, i.e.
after substitutions with (2), resp. 5:

αu
XS

ZS + ξ
+ u0 =

f

k
ϕ cos(θ) + u0. (12)

Above, u0 is directly identified and the rest simplifies to:

αu
XS

ZS + ξ
=

f

k
ϕ, (13)

that is rewritten to show an equation linear in the unknowns
αu and ξ:

αuXS = (ZS + ξ)
f

k
ϕ (14)

XS

f/k ϕ
αu = ZS + ξ (15)

XS

f/k ϕ
αu − ξ = ZS . (16)

As θ = 0, (4) leads to sin(ϕ), resp. cos(ϕ), substituting XS ,
resp. ZS :

sin(ϕ)

f/k ϕ
αu − ξ = cos(ϕ). (17)

Then, a minimum of two instances i ∈ N \ {1} of (17) with
ϕi ̸= 0 is necessary to solve for the two unknowns. In matrix
form, we rewrite the above equation as:

...
...

sinc(ϕi)
f/k −1

...
...

[
αu

ξ

]
=


...

cos(ϕi)
...

 , (18)

solved with the matricial inverse, or pseudo-inverse if i > 2.

B. Unified Central Model to Cartesian Polynomial

Following a similar methodology than in Sec. III-A, we focus
on coordinates expressed on the horizontal axis (Y = 0). We
can thus simplify the Cartesian Polynomial model (10) as:{

ρ
α (u− u0) = X
ρ
αr(ρu′) = Z

, (19)

which the ratio of the second over the first equation of the
above system removes factor ρ

α :

r(ρu′)

u′ =
Z

X
. (20)

Then, by substituting u′ in (20) with its expression from the
Unified Central Model (2):

u′ = αu
XS

ZS + ξ
, (21)

and noting ρu′ = |u′| lead to:

r(|u′|)
u′ =

Z

X
=

ZS

XS
, (22)

that we develop and re-organize to obtain:

a0 + |u′|2a2 + |u′|3a3 + |u′|4a4 = αu
XS

ZS+ξ
ZS

XS

= αu
ZS

ZS+ξ

(23)

Considering a second degree polynomial for more compact-
ness, a minimum of two instances (X ̸= 0) of the above
equation is necessary to solve for the two unknowns. We
rewrite the above equation for degree two with matrices as:

...
...

1
(
αu

XSi

ZSi
+ξ

)2

...
...


[
a0
a2

]
=


...

αu
ZSi

ZSi
+ξ

...

 , (24)

that is solved with the matricial inverse or pseudo-inverse if
more than two points [XSi , YSi , ZSi ]

⊤ are considered.

C. Rational polynomial distortion model to Brown-
Conrady’s
Using Brown-Conrady’s distortion model (7), (8) and apply-
ing (3), we obtain the full expression of distorted coordinates
udB

= (udB
, vdB

)⊤ ∈ R2 in the digital image plane:{
udB

= αu

(
dBx+ 2p1xy + p2(ρ

2
x + 2x2)

)
+ u0

vdB
= αv

(
dBy + p1(ρ

2
x + 2y2) + 2p2xy

)
+ v0

. (25)

The distorted coordinates udR
= (udR

, vdR
)⊤ ∈ R2 in the

digital image plane are obtained with the rational polynomial
model (9) similarly to (25) but with dR instead of dB .
Then, with either coordinate, we solve for udB

= udR
or

vdB
= vdR

, leading to the direct identification of parameters
αu, αv , u0, v0, p1 and p2, the same for both the Brown-
Conrady and the rational polynomial model. Thus, the re-
maining equation is dB = dR, that is:

1+kB1ρ
2
x+kB2ρ

4
x+kB3ρ

6
x =

1 + kR1
ρ2x + kR2

ρ4x + kR3
ρ6x

1 + kR4
ρ2x + kR5

ρ4x + kR6
ρ6x

,

that we re-organise as a linear equation in the unknowns kB1 ,
kB2 , kB3 :

ρ2xkB1
+ ρ4xkB2

+ ρ6xkB3
= dR − 1. (26)

Following a similar solving methodology than in Section III-
A, one can solve for the three parameters of (26) by a
minimum of three non-distorted normalized image point
instances j ∈ N \ {1, 2}, each leading to a unique ρxj

, by
stacking instances of (26):

...
...

...
ρ2xj

ρ4xj
ρ6xj

...
...

...


kB1

kB2

kB3

 =


...

dRj − 1
...

 , (27)

and using the matricial inverse, or pseudo-inverse if j > 3.

IV. RESULTS
This section reports first the results of camera projection
model conversions (Sec. IV-A) obtained using the methods
developed in Section III and then, an application to visual
SLAM with a color-depth camera, which distortion param-
eters are the result of a conversion, onboard a robot with
ground truth captured with motion capture (Sec. IV-B).



A. Conversions

In this section, we evaluate first for a fisheye camera the
conversion from the equidistant projection model to the
UCM (Sec. IV-A.1), then for a catadioptric camera the
conversion from the UCM to the Cartesian polynomial model
(Sec. IV-A.2), and finally for the conversion of the distor-
tion model of a conventional FoV color-depth camera from
the rational polynomial to the polynomial distortion model
(Sec. IV-A.3). All these camera model conversion methods
are implemented within the libPeR library open-sourced at:
https://github.com/PerceptionRobotique/libPeR base.
To evaluate the model conversion results, we compare
them with the calibration results considering the
destination camera model. To calibrate cameras with
either the UCM or the pinhole model with polynomial
distortions, we use the latest version of [24], named
MIXEDVISION, which source code is available at:
https://github.com/PerceptionRobotique/MIXEDVISION.
On the other hand, to calibrate a camera with the Cartesian
polynomial model, we used the OCamCalib calibration
toolbox1 for Matlab that shipped with the seminal Cartesian
polynomial model calibration method [16].
1) Equidistant to UCM: We used a Prophesee Gen3.1 event
camera of 640 × 480 pixels with k = 15 µm pixel pitch.
The lens is a Fujinon FE185C086HA-1 equidistant fisheye
lens of ff = 2.7 mm focal length. Its FoV is 185 degrees.
In our experiments, we solve (24) by arbitrarily computing
N = 2 × ⌊ 185/2 ⌋ = 184 angles ϕi, hence leading (24) to
be solved with the pseudo-inverse. Hence, the approximate
mapping to the UCM, leads to αu = αv ≈ 499.4629 and
ξ = 1.7841. u0 and v0 are the same for both models (if the
optical axis is perfectly perpendicular at the exact center of
the image, we would have u0 = 320, v0 = 240 pixels). On
the 184 ϕi, the average residual error in the digital image
plane is 0.06 pixels, with most of the errors on the outer
ring of the 185 degrees FoV (Fig. 1).
Of course, in practice the optical axis of the lens is rarely
perfectly aligned with the exact center of the image. For
instance, Fig. 2a highlights the outer ring of the fisheye event
camera FoV in the digital image which center uc = 308,
vc = 234 pixels is obviously shifted by several pixels from
the exact image center. Thus, assuming the perpendicularity
of the lens optical axis to the image plane, the principal
point u0, v0 would tend to uc, vc. This is confirmed by
calibrating the fisheye event camera with the UCM using
MIXEDVISION that lead to the optimal intrinsic parameters
α̂u = 489.0459, α̂v = 490.3241, û0 = 307.1954, v̂0 =
228.9119 and ξ̂ = 1.7665 (the hat denotes the optimum). û0

and v̂0 are way closer to the fisheye FoV circle than the exact
image center as expected. However, the other parameters α̂u,
α̂v and ξ̂ are close to the ones computed by converting the
theoretical equidistant model to the UCM, which confirms
the interest of the approach.
To get rid of a possible bias related to a single calibration
example, we ran 8 distinct calibration procedure by detach-

1https://rpg.ifi.uzh.ch/software datasets.html (accessed in Sept. 2023)
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Fig. 1: Equidistant fisheye to UCM conversion: in digital
image plane residual errors.

ing and re-attaching the fisheye lens to the event camera,
capturing each time new calibration targets at different poses
and running the optimization of the intrinsic parameters. Fur-
thermore, 4 calibrations among the 8 done were conducted
after dismounting the image sensor itself from the camera
box to highlight the principal point can change significantly
depending on the camera assembling. As a statistical result,
the mean µ and standard deviations σ of optimal intrinsic
parameters α̂u, α̂v , û0, v̂0 and ξ̂ are reported in Table I.
Interestingly, û0 is very stable (less than 1% of deviation). v̂0
is also very stable before (1.4% deviation) or after (0.2% de-
viation) dismounting/re-assembling the image sensor even if
the computed v̂0 before and after dismounting/re-assembling
the image sensor highlights the sensor is not exactly at the
same location in the camera box. Another interesting thing is
that always α̂u ≈ α̂v with, on average, less than 3% different
from the converted ones. Similarly, ξ̂ (computed for the 8
calibrations) deviates of less than 3% from the converted
ξ. Ignoring the global v̂0, one may note α̂u, α̂v and ξ̂ show
greater standard deviations than other parameters. This is not
surprising since these parameters are known to be coupled
leading to various (to some extent) possible correct solutions

(a) (b)

Fig. 2: Examples of calibration images used for evaluating
projection model conversions. (a) Image of a fisheye event
camera accumulating events while a monitor is blinking,
displaying a calibration chessboard. The green circle shows
an approximation of the fisheye FoV in the image plane. (b)
Image of a catadioptric camera from the OCamCalib [16]
dataset, superimposed with detected (yellow disks) and
reprojected (green crosses) calibration target corners after
calibration with MIXEDVISION [24].

https://github.com/PerceptionRobotique/libPeR_base
https://github.com/PerceptionRobotique/MIXEDVISION
https://rpg.ifi.uzh.ch/software_datasets.html


TABLE I: Mean µ, standard deviation σ and their ratio σ/µ
(given as percentage) of intrinsic parameters calibrated for
two sets of four calibration procedures: 1-4 before and 5-8
after disassembling/reassembling the image sensor, each one
with dismounting/mounting the fisheye lens (all gathers 1-8).

# α̂u α̂v û0 v̂0 ξ̂
µ 487.67 487.88 307.01 220.78 1.73

all σ 18.81 19.04 1.11 13.39 0.08
σ
µ

3.9% 3.9% 0.4% 6.1% 4.4%
µ 481.04 481.21 306.91 233.15 1.71

1-4 σ 8.62 8.88 1.51 3.20 0.05
σ
µ

1.8% 1.8% 0.5% 1.4% 2.9%
µ 494.30 494.55 307.11 208.41 1.75

5-8 σ 25.18 25.48 0.77 0.33 0.10
σ
µ

5.0% 5.0% 0.3% 0.2% 5.5%

to the calibration problem [17].
2) UCM to Cartesian polynomial: For this camera model
conversion evaluation, we use the images set provided with
OCamCalib. There are 10 images provided, captured with a
catadioptric lens by moving a checkerboard around to cover
the whole FoV of approximately 180 degrees (Fig. 2b). Using
OCamCalib to calibrate the camera with a Cartesian polyno-
mial model of order 2, refining several times the locations of
checkerboard corners, the principal point and the whole set
of intrinsic and extrinsic parameters, we obtain the results,
considered as reference (hence the star): a∗0 = 131.0074,
a∗2 = -0.0018, u∗

0 = 516.4379 and v∗0 = 383.0140, for an
average reprojection error of 0.39 pixels.
On the other hand, we used the same images to calibrate the
camera with the UCM using MIXEDVISION. This time the
average reprojection error is 0.31 pixels and optimal intrinsic
parameters are: α̂u = 259.889, α̂v = 259.335, û0 = 514.168,
v̂0 = 382.797, ξ̂ = 0.975. The reprojection error reached with
the UCM compared to the Cartesian polynomial is slightly
lower but it is not surprising since MIXEDVISION optimizes
all the UCM parameters simultaneously whereas OCamCalib
optimizes separately for a0 and a2 on the one hand and for
u0 and v0 on the other hand.
Then, we apply our conversion method from the UCM to
the Cartesian polynomial model and obtain: â0 = 131.4600,
â2 = -0.0018 (û0 and v̂0 do not change). Clearly â2 = a∗2
and â0 ≈ a∗0 (less than half a percent of difference)
which validate our approach that easily allows to use cameras
calibrated with the UCM with vision software considering
the Cartesian polynomial model.
3) Rational polynomial model to Brown-Conrady’s: We
used an Azure Kinect DK color-depth (RGBD) camera
which the color camera image capture resolution is set to
2048×1536 pixels for a FoV of 90°×74.3°. It has four
depth modes: a narrow FoV of 75°×65° (NFOV) and a
wide FoV of 120°×120° (WFOV), each with two possible
resolutions, either 640×576 pixels (Unbinned) or 320×288
pixels (Binned) for NFOV and either 1024×1024 pixels (Un-
binned) or 512×512 (Binned) pixels for WFOV. Whatever
depth mode, the depth image is always transformed to the
color image space such that a pixel has matching color and

TABLE II: Intrinsic parameters of an Azure Kinect RGBD
camera implementing the pinhole and distortion models:
rational polynomial distortions model for the factory pa-
rameters; polynomial distortion model for the converted and
calibrated parameters. In Section IV-B, parameters with a †
are set to 0 for the factory 4 parameters tests and those with
a ‡ are set to 0 for the factory 6 parameters tests.

Parameters Factory Calibrated Converted
αu 967.548 975.605 967.548
αv 967.409 975.408 967.409
u0 1025.603 1031.959 1025.603
v0 777.720 776.158 777.720
k1 0.399†,‡ 0.117 0.112
k2 -2.589†,‡ -0.113 -0.110
p1 -1.526e-6† 3.343e-4 -1.526e-06
p2 -3.088e-4† 1.791e-3 -3.088e-4
k3 1.528†,‡ 5.000e-2 5.145e-2
k4 0.276†,‡ - -
k5 -2.402†,‡ - -
k6 1.448†,‡ - -

depth data (if the depth could be measured). So, in this paper,
we consider only the calibration of the color camera.
The Azure Kinect DK is comes from the factory with the
parameters of a pinhole camera extended with the rational
polynomial distortion model (Sec. II-C). We thus consider its
conversion to the Brown-Conrady model and its calibration
with the same model for comparison. We repeated the
calibration procedure three times and kept the parameters
with lowest residual error for fair comparison. Every intrinsic
parameter are summarized in Table II.
Recall that the converted αu, αv , u0, v0 and p1 and p2
parameters are identical to the factory values (Sec. III-C).
The calibrated αu, αv , u0, v0 are also very close to those
obtained at the factory, the former deviating from the latter
by 0.2% to 0.8%. Parameters k1 to k3 obtained at the factory
are not comparable to those converted or calibrated because
the distortion models are different. But, on the one hand, the
converted and the calibrated k1, k2, k3 are very close to each
other, though this time deviating by 3.3% on average. On the
other hand, the calibrated tangential distortion parameters p1
and p2 are however very different. Since all these parameters
are linked, the best way to evaluate their relevance is to
use them for a vision-based application, that we chose to
be visual SLAM due to its broad interest in robotics.

B. Application to RGB and RGBD visual SLAM

To be able to compare the impact of the different sets
of RGBD camera distorsion parameters (Sec. IV-A.3), we
compare the trajectories resulting from visual SLAM using
the open-source software2 StellaVSLAM [25] applied to our
new CD-MaJ dataset (Color-Depth vision dataset of MIS and
JRL laboratories), publicly shared at: https://extra.u-picardie.
fr/nextcloud/index.php/s/yLG72QH46tsSiea (15 GB).
StellaVSLAM, close to ORB-SLAM2 [26], can use monoc-
ular, stereo, RGBD and equirectangular cameras. StellaVS-
LAM considers RGB and RGBD cameras follow the pinhole

2https://github.com/stella-cv/stella vslam

https://extra.u-picardie.fr/nextcloud/index.php/s/yLG72QH46tsSiea
https://extra.u-picardie.fr/nextcloud/index.php/s/yLG72QH46tsSiea
https://github.com/stella-cv/stella_vslam


TABLE III: Average values of relative and absolute errors in translation (Trans in mm) and rotation (Rot in degree) of
trajectories. In bold, the smallest absolute (A stands for APE) and relative (R stands for RPE) rotation and translation error
values for each trajectory. F-4 stands for factory-4p, F-6 for factory-6p, Con for converted-9p and Cal for calibrated-9p.

NFOV Binned 15Hz NFOV Binned 30Hz NFOV Unbinned 15Hz NFOV Unbinned 30Hz WFOV Binned 15Hz WFOV Binned 30Hz WFOV Unbinned 15Hz
Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot

A R A R A R A R A R A R A R A R A R A R A R A R A R A R
RGB
align
and
scale

F 4 168 17 9.3 2.8 100 10 9.2 2.1 132 8 8.9 2.4 100 13 9.0 3.0 97 13 8.6 2.8 84 15 9.0 3.0 85 26 8.1 3.1
F 6 112 13 8.7 2.8 111 13 9.1 2.1 108 7 7.4 2.2 155 13 9.1 3.0 69 16 9.0 2.6 67 16 9.5 2.7 70 25 7.8 2.3
Con 22 8 7.9 3.1 21 7 6.7 2.2 21 7 6.9 2.6 24 9 6.8 2.7 20 8 6.6 2.9 22 8 6.8 2.8 28 11 6.3 3.0
Cal 24 9 7.7 3.5 28 6 6.4 2.0 31 6 7.3 2.2 22 9 6.5 3.1 23 9 5.8 2.9 22 9 6.3 2.8 20 12 5.4 3.2

RGBD
align
and
scale

F 4 89 10 10.8 3.1 60 8 9.7 2.2 106 8 7.0 2.8 81 10 9.1 3.1 68 8 9.1 2.7 114 10 7.8 3.0 106 14 9.1 3.7
F 6 93 10 10.2 3.0 68 8 9.8 2.3 154 10 8.3 2.4 100 11 9.5 2.9 76 8 9.3 2.6 80 10 8.9 2.8 70 16 9.1 3.1
Con 23 8 7.7 1.9 19 7 7.2 2.3 19 7 7.3 2.8 21 8 7.0 3.3 19 8 6.9 3.2 22 8 6.5 2.8 21 4 4.8 3.5
Cal 19 7 7.1 1.8 22 7 6.8 2.4 19 7 6.4 2.4 22 8 6.9 3.1 20 8 6.5 3.1 22 9 6.2 2.9 25 12 5.5 3.1

RGBD
align

F 4 87 10 10.8 3.0 59 8 9.7 2.2 118 8 7.0 2.8 79 10 9.0 3.1 86 8 9.1 2.7 140 10 7.8 3.0 114 14 9.1 3.7
F 6 92 10 10.2 3.0 68 8 9.8 2.3 117 8 6.2 2.7 100 11 9.5 2.9 88 8 9.3 2.6 85 10 8.9 2.8 108 16 9.1 3.1
Con 45 9 8.3 3.2 41 7 7.2 2.3 42 7 7.3 2.8 44 8 7.0 3.3 38 8 6.9 3.2 43 8 6.5 2.8 33 14 6.3 3.5
Cal 66 9 7.6 3.1 54 7 6.8 2.4 59 7 6.4 2.4 55 8 6.9 3.1 50 8 6.5 3.1 67 9 6.2 2.8 60 12 5.5 3.1

and Brown-Conrady’s distorsion models. Hence, conversion
is needed for the Azure Kinect that comes calibrated from
the factory with the rational polynomial distortions model.
Our dataset is created using a Pioneer 3 AT mobile robot
equipped with an Azure Kinect camera using a mast (height
to the ground: 122 cm). Approximately circular trajectories
of roughly 12 m length are carried out by manual control
in the measurement volume of an Optitrack motion capture
system in order to obtain precise ground truth and to compare
the localization results of StellaVSLAM. All necessary data
is saved via ROS as a rosbag file. A trajectory is created for
each depth mode, available at 15Hz and 30Hz each, except
for the WFOV Unbinned mode that only runs at 15Hz. The
dataset is therefore composed of 7 distinct trajectories.
StellaVSLAM is run with 4 intrinsic parameter sets:
factory-4p (factory’s αu, αv , u0, v0, the rest set to zero),
factory-6p (factory-4p’s parameters and factory’s p1 and p2,
the rest set to zero), calibrated-9p (calibrated pinhole and
polynomial distortion parameters) and convert-9p (converted
pinhole and polynomial distortion parameters). Each of the
latter four sets is used within StellaVSLAM with RGB only
and with RGBD data. factory 4p and factory 6p are of course
doomed to fail but they are reported as very naive use of
the Azure Kinect factory parameters in StellaVSLAM for
comparison purpose. Every estimated trajectory are aligned
and scaled to the motion capture ground truth, though
the estimations with the RGBD data are also considered
non-scaled for the sake of generality. Example estimated
trajectories with the four parameter sets considering the RGB
data of the Azure Kinect in NFOV, Binned, 15Hz mode for a
single real trajectory are shown in Figure 3. The trajectories
obtained with convert 9p and calibrated 9p parameters are
way closer to the ground truth than the other two.
The average absolute pose errors (APE) and the per image
relative pose errors (RPE) in translation and rotation for all
the trajectories are reported in Table III. On the one hand,
the example of Figure 3 is confirmed since every estimation
error with parameter sets factory-4p and factory-6p are
always significantly greater than those with the converted
and calibrated parameters (average APE: +80mm on RGB
trajectories; +70mm on scaled RGBD trajectories). On the
other hand, converted-9p and calibrated-9p always show
very similar estimation errors: on average, considering the

scaled trajectories, the difference in APE is approximately
3 mm in translation and 0.5 degree in rotation. Actually,
converted-9p even leads 18 times over 21 to lower error esti-
mates than calibrated-9p. By showing trajectories the closest
to the ground truth, these results show the effectiveness of the
proposed conversion from the rational polynomial distortions
model to Brown-Conrady’s model.

V. CONCLUSION

This paper has formulated several state-of-the-art projection
models in a unified notation. It also presents an efficient
methodology and mathematical developments for converting
camera models for three conversions involving three different
camera types. Experimental results obtained with calibration
datasets and visual SLAM confirm the efficiency and interest
of these conversions, enabling to avoid camera recalibration
when this is not possible or difficult.

Fig. 3: Camera trajectories estimated with StellaVSLAM
using the Azure Kinect (mode NFOV-Binned-15Hz) for the
four sets of intrinsic parameters. The trajectories are aligned
and scaled to the motion capture system. The trajectory is
plotted using the EVO python package [27].
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