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Nonlinear stability for active suspensions

Michele Coti Zelati, Helge Dietert, and David Gérard-Varet

ABSTRACT. This paper is devoted to the nonlinear analysis of a kinetic model introduced by Saintillan and
Shelley to describe suspensions of active rodlike particles in viscous flows. We investigate the stability of
the constant state Ψ(t, x, p) = 1

4π
corresponding to a distribution of particles that is homogeneous in space

(variable x ∈ T3) and uniform in orientation (variable p ∈ S2). We prove its nonlinear stability under the
optimal condition of linearized spectral stability, without any addition of spatial diffusion. The mathematical
novelty and difficulty compared to previous linear studies comes from the presence of a quasilinear term in x
due to nonlinear convection. A key feature of our work, which we hope to be of independent interest, is an
analysis of enhanced dissipation and mixing properties of the advection diffusion operator

∂t + (p+ u(t, x)) · ∇x − ν∆p

on T3 × S2 for a given appropriately small vector field u.
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1. The model and main results

Microswimmers are organisms (e.g. bacteria) or objects operating in a fluid at the microscale. They
exhibit inherent self-propulsion driven by mechanisms such as flagellar motion, cilia beating, or synthetic
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fluid flow inducers. Beyond understanding the individual behaviour of microswimmers [14], special at-
tention was paid recently to their collective motion, with impact on fluid mixing, rheological properties or
self-organization of biological active matter [9, 11, 17, 18, 20].

We focus in this paper on one popular model, due to Saintillan and Shelley [19], describing dilute
suspensions of self-propelled rodlike particles. This model, relevant to the dynamical behavior of bacteria,
is a coupled fluid-kinetic model, detailing the interaction of the particles with the surrounding fluid medium
and encapsulating the propulsion mechanisms governing their motion. It reads

∂tΨ+ (U0 p+ u) · ∇xΨ+∇p ·
(
Pp⊥ [(γE(u) +W (u))p] Ψ

)
= ν∆pΨ,

−∆xu+∇xq = ι∇x ·
∫
S2
Ψ(t, x, p) p⊗ p dp,

∇x · u = 0,

(1.1)

where

E(u) =
1

2

[
∇xu+ (∇xu)

T
]

and W (u) =
1

2

[
∇xu− (∇xu)

T
]

(1.2)

are the symmetric and skew-symmetric parts of ∇xu, respectively. The unknowns of the model are Ψ =
Ψ(t, x, p), the distribution of rodlike particles in space and orientation, and u = u(t, x), q = q(t, x) the
fluid velocity and pressure. The space variable x is taken in a periodic box TL := (R/LZ)3 of size L > 0,
while the orientation of the particles is given by p ∈ S2. The first equation in (1.1) describes the evolution
of Ψ under three effects:

• transport by the fluid velocity u(t, x) and by the self-propulsion U0 p with velocity U0 > 0.
• rotation by angular velocity Pp⊥ [(γE(u) +W (u))p], where Pp⊥ denotes projection tangentially

to the sphere. This expression for the angular velocity is due to Jeffery [13] and corresponds to the
angular velocity of a slender particle in a Stokes flow: interactions are neglected as the suspension
is assumed to be dilute. The constant γ ∈ [−1, 1] is related to the geometric properties of the
particle.

• rotational diffusion, with small coefficient ν > 0.

Finally, the last two equations in (1.1) are Stokes equations for the fluid flow. They incorporate an additional
stress Σ, where

Σ = ι∇x ·
∫
S2
Ψ(t, x, p) p⊗ p dp

reflects the constraint exerted by the particles on the flow. It is obtained by a continuous approximation of
the sum of all single particle contributions, modeled as dipoles of opposite forces along p. Parameter ι ̸= 0
distinguishes between two types of swimmers: pullers (resp. pushers) correspond to ι > 0 (resp. ι < 0).
We refer to [19] or to the introduction in [8] for more on the derivation of the model.

Of special interest is the stability of the constant state equilibrium Ψiso = 1/4π, which corresponds
to a distribution of particles homogeneous in space and uniform in orientation. In particular, physicists are
interested in loss of stability, with possible emergence of collective patterns and rheological changes. It is
therefore natural to work with

ψ = Ψ−Ψiso = Ψ− 1

4π
.

Moreover, one can put the system in dimensionless form, introducing

t :=
U0t

L
, x :=

x

L
, u :=

u

U0
, q :=

qL

U0
, ν :=

νL

U0
, ι :=

ιL

U0
.
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Then, for x ∈ T, p ∈ S2,

∂tψ + (p+ u) · ∇xψ − 3γ

4π
(p⊗ p) : E(u) +∇p ·

(
Pp⊥ [(γE(u) +W (u))p]ψ

)
= ν∆pψ, (1.3a)

−∆xu+∇xq = ι∇x ·
∫
S2
ψ(t, x, p) p⊗ p dp, (1.3b)

∇x · u = 0. (1.3c)

Since the seminal paper [19], system (1.3) has been the matter of several numerical and theoretical
studies. In particular, simulations align well with experimental observations of suspensions of bacteria.

• For ι > 0 (pullers), no coherent behaviour is observed, which can be interpreted as stability of
Ψiso.

• For ι < 0 (pushers), one observes formation of patterns when hydrodynamic interactions are
increased.

Such observations are valid for small rotational diffusion. They were confirmed analytically in [19], in the
special case ν = 0, for the linearization of (1.3) around ψ = 0 (that is the linearization of (1.1) around
Ψ = Ψiso). Spectral stability was studied, through a mode by mode Fourier analysis in variable x and
refined in subsequent works [12, 16]. Specifically, all perturbations located at mode k ∈ 2πZ3

∗ decay if and
only if

γ|ι|
|k|

< Γc

where the threshold Γc is given by:

• if ι > 0, Γc = +∞ (unconditional stability)
• if ι < 0, Γc =

4
3πb2c(1−b2c)

with bc ≈ 0.623 the unique positive root of the function

s(b) = 2b3 − 4

3
b+ (b4 − b2) ln

1− b

1 + b
.

In particular, all modes decay under the condition

γ|ι|
2π

< Γc. (1.4)

In the recent work [1], such linear stability for Γ < Γc in the non-diffusive case ν = 0 was revisited and
linked to a mixing phenomenon, that is a transfer from low to high frequencies in p. This phenomenon is
related to the free-transport operator ∂t+ p · ∇x, itself related to the self-propulsion of the particles. It leads
to the decay of integral quantities in p, notably to the decay of the right-hand side of the Stokes equation in
(1.1) and from there to the decay of the velocity field u. As ν = 0, explicit computations are possible, and
the stability analysis comes down to the decay of Fourier transforms on the sphere (as the orientation p ∈ S2
substitutes to the usual velocity variable v ∈ Rd in other kinetic models). One key feature is that the decay
of such Fourier transforms is limited, leading to a weaker mixing than in classical kinetic models, where the
orientation variable p ∈ S2 is replaced by a usual velocity variable v ∈ Rd.

In our recent paper [8], we carried a sharp stability study of the linearized version of (1.3) for both
ν = 0 and 0 < ν ≪ 1. We provided slightly more accurate stability results in the case ν = 0, but more
importantly, were able to show that the linear stability criterion (1.4) is still the right one for small ν > 0.
The introduction of rotational diffusion makes the analysis much harder, as all explicit expressions are lost.
We will recall elements of this analysis below.

The purpose of this paper is to extend the linear stability result of [8] to the full nonlinear model (1.3).
We present in the next paragraph our main result, explain the main difficulties, notably in comparison to
previous linear results. We also provide the general strategy of proof.
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1.1. Statement and sketch of proof. Our main result can be stated as follows.

THEOREM 1. Let s > 7
2 . Assume (1.4). There exists C0, ν0, δ0 > 0 depending on γ and ι such that for

all ν ≤ ν0, for all initial data ψin satisfying

∥ψin∥Hs
xL

2
p
≤ δ0ν

3
2 (1.5)

system (1.3) has a unique global in time solution ψ that satisfies

sup
t≥0

∥ψ(t)∥2Hs
xL

2
p
+ ν

∫ ∞

0
∥∇pψ(t)∥2Hs

xL
2
p
dt ≤ C0 ν

−1∥ψin∥2Hs
xL

2
p
. (1.6)

This theorem shows nonlinear stability of the solution Ψiso of (1.1) (or equivalently of the solution ψ =
0 of (1.3)), under a smallness condition on the initial datum that is explicit in terms of ν. In other words, the
nonlinear stability threshold (1.5) provides an estimate of the basin of attraction of the uniform equilibrium
Ψiso, depending on the strength of rotational diffusion. To determine the optimal threshold is an interesting
open problem, that was resolved recently in other contexts, such as the stability of Couette flow in the
Navier-Stokes equations (see [3, 15, 23] and references therein) or the stability of global Maxwellians in the
Vlasov-Poisson-Landau system [4]. See also [22] for an optimal stability criterion for nematic suspensions
through an entropy method.

Theorem 1 has two main features. First, it shows stability under condition (1.4), which is optimal in
view of the linear analysis carried in [1, 8, 19]. Second, it does not require any spatial diffusion κ∆xψ to be
added to the evolution equation in (1.3). One could as well include such term and prove stability under the
same stability threshold (1.5), independently of κ. From this perspective, our result is quite different from
the ones appeared recently in [1], where such translational diffusion is added to the right-hand side of (1.3a).
In the case of pullers (ι > 0), the authors prove the nonlinear stability of the incoherent state Ψiso, both for
x ∈ Td and x ∈ Rd, under the condition

∥ψin∥H2
xL

2
p
≪ min(ν, κ).

Second, in the case of pushers (ι < 0), they prove nonlinear stability of the incoherent state under the
stringent assumption Γ = o(ν1/2) instead of Γ < Γc, and under the initial constraint

∥ψin∥H2
xL

2
p
≪ ν1/2min(ν1/2, κ1/2).

These restrictions allow to put the terms u · ∇xψ and 3γ
4π (p⊗ p) : E(u) at the right-hand side of (1.3a) and

to treat the model as a perturbation of the advection-diffusion equation

∂tψ + p · ∇xψ − ν∆ψ = 0.

Relaxing these smallness requirements forces us to adopt another strategy, that we now explain.
The general scheme of our stability proof is based on a classical bootstrap argument. We introduce the

maximal time T on which various smallness assumptions on u and ψ are satisfied (see (BA0)-(BA1)-(BA2)
in Section 4.1), and we show that improved smallness conditions hold up to time T , see Section 4.3. This
automatically implies that T must be infinite, and that the stability estimate holds. To show improvement of
these bootstrap assumptions, the key idea is to deduce from (1.3) an infinite-dimensional Volterra equation

u(t) +

∫ t

0
K(t, τ)u(τ) dτ = f(t)

where the kernel K(t, τ) ∈ L(Hs
x, H

s
x) and the source term f(t) ∈ Hs

x are defined by integral quantities
(with respect to p), which involve the operator solution Su(t, τ) associated with the operator

∂t + (p+ u) · ∇x − ν∆p

on T3 × S2. This reformulation through a Volterra equation, and expressions for K and f , are detailed in
Section 4.2. From there, one proceeds in four steps:
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• The first main step, interesting in its own right and further described in the next Section 1.2,
establishes enhanced dissipation and mixing decay estimates for the solution of the advection-
diffusion equation

∂tg + (v + p) · ∇xg = ν∆pg, g|t=0 = gin

under appropriate smallness assumption on v (to be replaced by u afterwards). Mixing estimates
are notably based on the use of the vector field method.

• Once these estimates are obtained, decay in time estimates for the kernelK and for the source term
F in the Volterra equation are deduced, see for instance Proposition 4.1.

• Then, by an analysis of the Volterra equation above, still under the bootstrap assumptions on u and
ψ, one can improve the smallness on u and show integrable decay for it.

• Finally, with decay and smallness of u at hand, one finally goes back to the equation satisfied by ψ
to improve the smallness conditions on ψ.

We stress that this strategy based on the Volterra equation for u and a sharp analysis of the advection-
diffusion operator was already implemented in our linear analysis [8]. However, in the linear case, only
the case u = 0 is considered, which allows a Fourier in x mode-by-mode analysis. Inclusion of the extra
advection term requires to couple all modes, which induces several mathematical difficulties. In particular,
this change is critical to the mixing estimates by the vector field method. These estimates are based on
a family of fields indexed by Fourier modes k, of the form χk(p)Jk(t,∇p) where the localization χ is
compactly supported away from p = −k/|k|. This localization through χk is ruined by the coupling of
modes.

The estimates for the advection-diffusion are independent of the active suspension model and will be
explained in more detail in the next paragraph. They are hopefully of independent interest and will be proved
separately in Sections 2 and 3. The remaining steps of the proof of Theorem 1 for the active suspension
model will be performed in Section 4.

1.2. Advection-diffusion equations on the sphere. An important and independent part of our analysis
are the mixing and enhanced dissipation properties on the sphere. These are the properties of solutions
g = g(t, x, p) for x ∈ T3 and p ∈ S2 solving the advection-diffusion equation

∂tg + (v + p) · ∇xg = ν∆pg, g|t=0 = gin, (1.7)

where gin is the assigned initial datum, ν ∈ (0, 1) is a diffusivity parameter, and v = v(t, x) is a divergence
free vector-field satisfying adequate smallness and decay assumptions. We are interested in semigroup-type
estimates for (1.7) that describe enhanced dissipation, as well as mixing estimates for integrated quantities.

To state our results, we expand g and v in Fourier series in x, calling k ∈ Z3 the corresponding Fourier
variable. For k ̸= 0, (1.7) becomes

∂tgk + ip · k gk = ν∆pgk + |k|V gk, V gk := −i
∑
ℓ∈Z3

k̂ · vk−ℓgℓ, (1.8)

where k̂ := k/|k|. Without loss of generality, we will assume g0 = 0 initially, as this mode simply satisfies
the standard heat equation

∂tg0 = ν∆pg0 (1.9)
and hence such condition is preserved by the evolution. Besides providing estimates on g, we are interested
in integrals of the form

Vk[g] :=

∫
S2
gk(p)Zk(p)∇(p · k̂) dp, (1.10)

for an arbitrary family {Zk}k ̸=0 of smooth, possibly vector-valued, functions. Our main result is based on
the assumption that

sup
t≥0

∥v(t)∥Hs +

(∫ ∞

0
∥v(t)∥2Hsdt

) 1
2

≤ εν
5
4 , (H)
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for some s > 5
2 and ε ∈ (0, 1) small enough.

THEOREM 2. Let s > 5
2 . There exists absolute constantsC0, ε, ν0, η1 > 0 with the following properties.

For all ν ≤ ν0, if (H) holds, then the solution to (1.7) satisfies the enhanced dissipation estimate

∥g(t)∥Hs
xL

2
p
≤ C0e

−η1ν
1
2 t∥gin∥Hs

xL
2
p
, (1.11)

and the mixing estimate∑
k ̸=0

|k|2s+
1
2
− |Vk[gk(t)]|2 ≤ C0

(
ν

1
2

min{1, ν
1
2 t}

)3

sup
k

(
∥Zk∥2W 1,∞

p
+ ∥Zk∥2H2

p

)
∥gin,∇pg

in,∇2
pg

in∥2Hs
xL

2
p
,

(1.12)

for all t ≥ 0.

Remark 1.1. A look at the proof of the theorem shows that only the weaker condition

sup
t≥0

∥v(t)∥Hs ≤ εν
3
4

is needed for the enhanced dissipation estimate (1.11). We remind that the expression enhanced dissipation
refers to the fact that the typical timescale of exponential decay (in our case ν−1/2) is much shorter than
the usual time scale ν−1 of the heat equation (see [5, 7]). This is related to mixing, which transfers low
frequencies to high frequencies in p, on which the viscous dissipation −ν∆p acts more efficiently.

The proof of Theorem 2 is quite involved and is not using special properties of the sphere S2. The two
basic ingredients are the derivation of hypocoercive estimates, inspired by [2, 21], and the use of the vector
field method, inspired by [4, 6].

Regarding hypocoercivity, the key estimate, related to the simple advection-diffusion operator

Lν = ∂t + p · ∇x − ν∆p

(that is with u = 0), is established in Section 2. Compared to the linear analysis in [8], we provide a more
general version of this hypocoercive estimate, where

• the function g is replaced by a general tensor Y (which will later be g or Jg or J2g for some good
vector field J)

• a source term is included. This source term will later come either from the convection (−v · ∇xg
or −J(v · ∇xg) or −J2(v · ∇xg)), or from commutators between J and Lν .

This hypocoercive estimate will reveal better decay properties for the quantity ∇(p · k)Y , which vanishes at
p = ±k̂.

Actually, considering Y = g and the source term −v · ∇xg would be enough for the exponential
decay (1.11). However, the derivation of polynomial decay estimates for integral quantities, uniformly in ν,
requires appropriate vector fields.

Introduction of such vector fields and subsequent estimates are developed in Section 3. Like in [8], after
Fourier transform in x, the vector field takes the form

Jk = αk∇p + i

(
|k|
ν

)1/2

βk∇p(p · k̂)

where
(αk, βk) = (αk,ν , βk,ν)(t) = (α, β)(ν1/2|k|1/2t)

for well-chosen functions α, β (with a slightly different and slightly better choice than the one in [8]). The
evolution of the coefficients αk, βk is chosen to have a better commutator with Lν . More precisely, one
key feature is that the most annoying term in this commutator vanishes near p = k̂. This helps, as the
hypocoercive estimate yields better decay properties for quantities that vanish at p = ±k̂. Still, this implies
to introduce an additional cut-off χk(p), where χ is localized away from p = −k̂.
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The problem is that such localization is partly destroyed by the convection term, which is non-local in
Fourier. This forces to conduct two types of estimates, suboptimal non-localized ones and optimal localized
ones. This process is carried in Paragraphs 3.1 and 3.2. The suboptimal nonlocal bounds are the main
limitation in the stability threshold (1.5).

Once this analysis is done, the abstract source term F is replaced by the convection term (−u·∇x)g. Due
to coupling of Fourier modes, only summation over modes yields closed estimates, as seen in Paragraph 3.3.
Finally, mixing estimates for integral quantities are given in Paragraph 3.4.

1.3. Notation. We write a ≲ b if a ≤ Cb for a constant C only depending on the constants γ and ι,
and write a ∼ b if a ≲ b and b ≲ a. Note that in Sections 2 and 3 which only deal with equation (1.7) and
variations around it, notation a ≲ b will refer to a ≤ Cb for an absolute constant C. For any s, we also
denote Hs = Hs

x(T3), Hs = Hs
x(T3;L2

p(S2)), and finally Z3
∗ = Z3 \ {0}.

2. Advection-diffusion with forcing: hypocoercivity

Equation (1.8) can be seen as a forced advection-diffusion equation, as long as we impose mild as-
sumptions on the right-hand side. In this section, we derive energy estimates for a slight generalization of
(1.8).

2.1. A general hypocoercivity setup and enhanced dissipation. The basic starting block is to find
the hypocoercive dissipation functional for a tensor Y solving the advection-diffusion equation (1.8). We
will then first apply this estimate with Y = g and then later with some vector fields Y = Jg, Y = JJg, for
a suitable J . As a small generalization of (1.8), we study a family of (0, n)-tensors (Yk)k∈Z3

∗
evolving as

(∂t + ip · k − ν∆p)Yk = |k|Fk, (2.1)

for some forcing term Fk. From the analysis in [8], we expect enhanced dissipation on the time-scale
O(ν−

1
2 |k|−

1
2 ) so that we set h = ν

1
2 |k|

1
2 t and define the time-dependent weights

(ak, bk, ck) := (a, b, c)(h), (a′k, b
′
k, c

′
k) := (a′, b′, c′)(h)

for non-negative functions a, b, c to be specified below. Denoting by ⟨·, ·⟩ and ∥ · ∥ the L2 inner product and
norm, for any smooth non-negative function χ = χ(p), we define the sesquilinear form

Eχ,k(Yk, Ỹk) := ⟨Ykχ, Ỹkχ⟩+
(
ν

|k|

) 1
2

ak⟨∇pYkχ,∇pỸkχ⟩

+ bk⟨i∇p(p · k̂)Ykχ,∇pỸkχ⟩+ bk⟨∇pYkχ, i∇p(p · k̂)Ỹkχ⟩

+

(
ν

|k|

)− 1
2

ck⟨∇p(p · k̂)Ykχ,∇p(p · k̂)Ỹkχ⟩ (2.2)

and the corresponding energy functional

Eχ,k(Yk) := Eχ,k(Yk, Yk) = ∥Ykχ∥2 +
(
ν

|k|

) 1
2

ak∥∇pYkχ∥2

+ 2bk Re⟨i∇p(p · k̂)Ykχ,∇pYkχ⟩+
(
ν

|k|

)− 1
2

ck∥∇p(p · k̂)Ykχ∥2.

(2.3)

We also define the dissipation functional

Dχ,k(Yk) :=
ν

|k|
∥∇pYkχ∥2 +

ν

|k|
ak

(
ν

|k|

) 1
2

∥∇2
pYkχ∥2

+ bk∥∇p(p · k̂)Ykχ∥2 +
ν

|k|
ck

(
ν

|k|

)− 1
2

∥∇p

(
∇p(p · k̂)Yk

)
χ∥2.

(2.4)

The first lemma shows that for a good choice of a, b, c, these functionals provide a good estimate.
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Lemma 2.1. Let χ = χ(p) a smooth cut-off and set

a(h) = Amin(h, 1), b(h) = Bmin(h2, 1), c = Cmin(h3, 1)

for positive constants A,B,C. There exist constants ν0, B0,M > 0 such that for ν ≤ ν0, B < B0 and

A = B2/3, C =
100B2

A
(2.5)

any (0, n)-tensor solution Yk of (2.1) satisfies

1

2

d

dt
Eχ,k(Yk) +

3

4
|k|Dχ,k(Yk)− |k|ReEχ,k(Yk, Fk)

≤ |k|Mck

(
ν

|k|

) 1
2

∥Ykχ∥2

+ |k|M

[
ν

|k|
∥Yk∇χ∥2 +

(
ν

|k|

) 3
2

ak∥∇Yk∇χ∥2 +
(
ν

|k|

) 1
2

ck∥∇(p · k̂)Yk∇χ∥2
]
.

Remark 2.2. As we shall see, a, b, c satisfy the condition that b2k <
1
2akck. This makes the quadratic form

Eχ,k is coercive, in the sense that

∥Ykχ∥2 +
(
ν

|k|

) 1
2

ak∥∇pYkχ∥2 +
(
ν

|k|

)− 1
2

ck∥∇p(p · k̂)Ykχ∥2 ≲ Eχ,k(Yk).

Remark 2.3. The statement of the lemma would still be true on any Riemannian manifold for which (0, n)-
tensors Z satisfy |[∇,∆]Z| ≲ |∇Z|. To illustrate this, we will not use the fact that on S2, [∇p,∆p]Z =
−∇pZ has some extra coercivity property.

PROOF OF LEMMA 2.1. Through the change of variables

ν ′ :=
ν

|k|
, t′ := |k|t, k′ :=

k

|k|
, (2.6)

we can restrict to the case |k| = 1, so that k = k̂. To lighten notations, we drop the subscript k, writing Y
instead of Yk, F instead of Fk, and so on, as well as the subscript p on the various differential operators. We
find through standard estimates that

1

2

d

dt
∥Y χ∥2 + ν∥∇Y χ∥2 ≤ Re⟨Y χ, Fχ⟩+ 2ν∥∇Y χ∥ ∥Y∇χ∥. (2.7)

Similarly, as

∂t∇Y + ip · kY − ν∆∇Y = ∇Fk − i∇(p · k)Y + ν[∇,∆]Y,

we get

1

2

d

dt
∥∇Y χ∥2 + ν∥∇∇Y χ∥2 ≤ Re⟨∇Y χ,∇Fχ⟩+ 2ν∥∇∇Y χ∥ ∥∇Y∇χ∥

+ ∥∇Y χ∥ ∥∇(p · k)Y χ∥+ ν∥[∇,∆]Y χ∥∥∇Y χ∥.
(2.8)

Also, using

∂t(i∇(p · k)Y ) + ip · k(i∇(p · k)Y )− νi∇(p · k)∆Y = i∇(p · k)F,
∂t∇Y + ip · k∇Y − ν∇∆Y = ∇F − i∇(p · k)Y,
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we find

d

dt
Re⟨i∇(p · k)Y χ,∇Y χ⟩+ ∥∇(p · k)Y χ∥2

≤ ν⟨i∇(p · k)∆Y χ,∇Y χ⟩+ ν⟨i∇(p · k)Y χ,∇∆Y χ⟩
+Re⟨i∇(p · k)Fχ,∇Y χ⟩+Re⟨i∇(p · k)Y χ,∇Fχ⟩

≤ ν∥∇∇Y χ∥ [2∥∇(∇(p · k)Y )χ∥+ ∥Y χ∥+ 2∥∇(p · k)Y∇χ∥]
+ Re⟨i∇(p · k)Fχ,∇Y χ⟩+Re⟨i∇(p · k)Y χ,∇Fχ⟩.

Finally using

∂t(i∇(p · k)Y ) + ip · k(i∇(p · k)Y )− ν∆(i∇(p · k)Y ) = i∇(p · k)F + ν[i∇(p · k),∆]Y

together with the commutator formula (see [8])

∆(∇(p · e)⊗ Y ) = −∇(p · e)⊗ Y − 2(p · e)∇Y +∇(p · e)⊗∆Y, (2.9)

we get

1

2

d

dt
∥∇(p · k)Y χ∥2 + ν∥∇(∇(p · k)Y )χ∥2 + ν∥∇(p · k)Y χ∥2

≤ 2ν∥∇(∇(p · k)Y )χ∥ ∥∇(p · k)Y∇χ∥+Re⟨∇(p · k)Y χ,∇(p · k)Fχ⟩
+ 2ν∥∇(p · k)Y χ∥ ∥∇Y χ∥

Hence, gathering these estimates leads to:

1

2

d

dt
Eχ(Y ) +Dχ(Y )− ReEχ(Y, F )

≤ νa′∥∇Y χ∥2 + ν
1
2a∥∇Y χ∥ ∥∇(p · k)Y χ∥+ ν

3
2a∥[∇,∆]Y χ∥∥∇Y χ∥

+ ν
1
2 b′Re⟨i∇(p · k)Y χ,∇Y χ⟩+ 2νb∥∇∇Y χ∥(∥∇(∇(p · k)Y )χ∥+ ∥Y χ∥+ ∥∇(p · k)Y∇χ∥)

+ c′∥∇(p · k)Y χ∥2 + 2ν
1
2 c∥∇(p · k)Y χ∥ ∥∇Y χ∥

+ 2ν∥∇Y χ∥ ∥Y∇χ∥+ 2ν
3
2a∥∇∇Y χ∥ ∥∇Y∇χ∥+ 2ν

1
2 c∥∇(∇(p · k)Y )χ∥ ∥∇(p · k)Y∇χ∥.

We are now ready to list the constraints on the coefficients a, b, c in order to absorb most of the terms of the
right-hand side. It is suffices that

• a′ ≤ 1
100 to absorb the first term at the right-hand side by the term ν∥∇Y χ∥2 in the dissipation

functional Dχ(Y ) at the left-hand side.
• a2 ≤ b

100 to absorb the second term by the term ν∥∇Y χ∥2 + b∥∇(p · k)Y χ∥2.
• a ≤ 1 and ν small to absorb the third term by ν∥∇Y χ∥2.
• (b′)2 ≤ b

100 to absorb the fourth term by ν∥∇Y χ∥2 + b∥∇(p · k)Y χ∥2.

• b2 ν
1
2

a ≤ ν
1
2 c

100 to bound the fifth term by

1

10

(
ν

3
2a∥∇2Y χ∥2 + ν

1
2 c∥∇ (∇(p · k)Y χ) ∥2 + ν

1
2 c∥Y χ∥2 + ν

1
2 c∥∇(p · k)Y∇χ∥2

)
the first two terms being absorbed by Dχ(Y ) at the left-hand side.

• c′ ≤ b
100 to absorb the sixth term by b∥∇(p · k)Y χ∥2.

• c2 ≤ b
100 to absorb the seven term by ν∥∇Y χ∥2 + b∥∇(p · k)Y χ∥2.

These conditions are satisfied with our choice of a, b, c. The last three terms involving ∇χ can be treated
classically using Young’s inequality, without further constraints on a, b, c. □
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2.2. The energy inequality for g. As a first application of Lemma 2.1, we deduce an energy inequality
for the solution g to (2.1). For the trivial cutoff χ ≡ 1, we use the shorthand notation Ek = Eχ,k and
Dk = Dχ,k. By the previous lemma, taking Yk = gk, we get:

Lemma 2.4. Assume that the scalar function g satisfies (2.1). Then with the same functions as in Lemma 2.1
we find (for possible smaller ν0 and B0) that

1

2

d

dt
Ek(gk) + |k|ak

(
ν

|k|

) 1
2

∥gk∥2 +
5

8
|k|Dk(gk)− |k|ReEk(gk, Fk) ≤ 0. (2.10)

For the proof, we first recall the following interpolation result, see [8, Lemma 4.2].

Lemma 2.5. For all σ ∈ (0, 1], all vectors e ∈ S2 and all complex-valued g ∈ H1(S2), the following
inequality holds

σ
1
2 ∥g∥2 ≤ σ

2
∥∇g∥2 + 2∥∇(p · e) g∥2. (2.11)

We now can perform the proof.

PROOF OF LEMMA 2.4. Applying Lemma 2.1 yields

1

2

d

dt
Ek(gk) +

3

4
|k|Dk(gk)− |k|ReEk(gk, Fk) ≤ |k|Mck

(
ν

|k|

) 1
2

∥gkχ∥2. (2.12)

By the change of variables (2.6), we can again restrict to |k| = 1. We distinguish between long times and
short times. First, for long times t such that ν ≤ bk = b(ν

1
2 t), we apply the interpolation result with σ = ν

bk
.

It gives

Dk(gk) ≥ ν∥∇gk∥2 + bk∥∇(p · k)gk∥2 ≥
1

2
ν

1
2 b

1
2
k ∥gk∥

2.

As b
1
2
k ≫ ak ≫ ck this gives the claimed control and allows the absorption of the right-hand side in (2.12).
For the smaller times t such that ν ≥ bk, we find by Poincaré inequality that

ckν
1
2 ∥gk∥2 ≲ ckν

1
2 ∥∇gk∥2 + ckν

1
2 ∥∇(p · k)gk∥2.

As for such times ck ≪ ν
1
2 and ck ≪ bk, we can also absorb it in the dissipation and control the right-hand

side of (2.12). □

3. Advection-diffusion with forcing: vector fields

To deduce mixing estimates for (1.7) that are uniform in the diffusivity parameter ν, we make use
of vector fields adopting the strategy in [8]. Proving enhanced dissipation for g essentially relies on the
energy inequality of Lemma 2.4 together with a suitable treatment of the forcing term given by advection
(see Section 3.3), as done in Section 3.3.2. However, the proof of uniform-in-ν mixing estimates is more
involved: the use of vector fields requires cut-offs to localize and improve basic L2 estimates near the south
pole p = −k̂, see Remark 3.2 and Lemma 3.4.

To treat the convection term in a sharp way, we need to introduce two hypocoercivity schemes in Section
3.3.3: a non-localized version (Lemma 3.5), without losses with respect to the convection term, and a
localized one (Lemma 3.6), allowing the derivation of a sharp energy inequality. These results are then
applied in Section 3.4 to obtain mixing estimates that are uniform in ν.

Our goal is to construct vector fields that have good commutation properties with the advection-diffusion
equation (1.7). We look for vector fields of the form

Jk = αk∇p + i

(
|k|
ν

) 1
2

βk∇(p · k̂) (3.1)
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where we again introduce the good time-scale h = ν
1
2 |k|

1
2 t

αk(t) = α(h), βk(t) = β(h)

for functions α, β to be specified. The factor in front of βk is inspired by the fact that as ν → 0, we want to

recover αk ≡ 1 and
(
|k|
ν

) 1
2
βk ≡ |k|t. The reason is that the vector field ∇p + i|k|t∇(p · k̂) commutes to

the free transport part. For the full operator in (1.7) we find the commutators

[∂t + ip · k − ν∆p, αk∇p] = ν
1
2 |k|

1
2α′∇p − i|k|α∇(p · k̂)− αν[∆p,∇p]

and [
∂t + ip · k − ν∆p, i

(
|k|
ν

) 1
2

βk∇(p · k̂)

]
= i|k|β′∇(p · k̂)− iν

1
2 |k|

1
2β∇(p · k̂) + 2iν

1
2 |k|

1
2β∇

[
(p · k̂)·

]
so that

(∂t + ip · k − ν∆p)JkYk = −i|k|(α− β′)∇(p · k̂)Yk + ν
1
2 |k|

1
2 (α′ + 2iβp · k̂)∇pYk

− αν[∆p,∇p]Yk + iν
1
2 |k|

1
2β∇(p · k̂)Yk.

Clearly, for the O(1) term at the right-hand side to disappear, the condition α = β′ is necessary. A key idea
from [8] is to complete this condition in such a way that the second term at the right-hand side vanishes at
the north pole p = k̂. The goal is to benefit from estimates for quantities ∇(p · k̂)Yk or ∇(∇(p · k̂)Yk) better
than those for Yk or ∇Yk alone. In [8], we achieve this by imposing

β′(h) = α(h), α′(h) = −2iβ(h).

Together with the initial data α(0) = 1, β(0) = 0, this provides

α(h) = cosh((1− i)h), β(h) =
1 + i

2
sinh((1− i)h).

This is a good choice up to the critical time ν−
1
2 |k|−

1
2 . However, afterwards both terms behave asymptoti-

cally with the factor e(1−i)h, which is growing fast. Hence, we rather consider here

α(h) = e−(1−i)h cosh((1− i)h) =
1

2

(
1 + e−2he2ih

)
(3.2)

and

β(h) = e−(1−i)h 1 + i

2
sinh((1− i)h) =

(1 + i)

4

(
1− e−2he2ih

)
. (3.3)

Remark 3.1. With this new choice of α and β, we have the important property that

α ∼ 1, β2 ∼ b

where b is the function appearing in Lemma 2.1 (and now fixed).

In light of (3.2)-(3.3), we compute the commutator between Jk and the advection-diffusion equation as

[∂t + ip · k − ν∆p, Jk] + |k|(1− i)

(
ν

|k|

) 1
2

= |k|2iβ
(
ν

|k|

) 1
2

∇p

[
(p · k̂ − 1)·

]
+ |k|

[
− ν

|k|
α[∆p,∇p]− i

(
ν

|k|

) 1
2

β∇(p · k̂)

]
.

Hence we find for a tensor Yk solution of (2.1) that JkYk satisfies

(∂t + ip · k −∆p)JkYk + |k|(1− i)

(
ν

|k|

) 1
2

JkYk = |k|JkFk + |k|RkYk, (3.4)
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where

RkYk = 2iβk

(
ν

|k|

) 1
2

∇p[(p · k̂ − 1)Yk]−
ν

|k|
αk[∆p,∇p]Yk − i

(
ν

|k|

) 1
2

βk∇(p · k̂)Yk (3.5)

is a remainder term.

Remark 3.2. We insist that through our choice of vector field Jk, the worst term at the right-hand side of

(3.5), namely 2iβk

(
ν
|k|

) 1
2 ∇p[(p · k̂− 1)Yk], vanishes at p = k̂. This will allow us to benefit from the better

controls that we have on ∇(p · k)Yk or ∇(∇(p · k)Yk), see the dissipation functional (2.4). Still, this better
control will only be achieved away from the south pole p = −k̂. Indeed, near the south pole, ∇(p · k̂)Yk
vanishes while our term at the right-hand side does not, so that the former cannot control the latter. Namely,
we will achieve optimal estimates only for Jkgkχk, where χk is zero near the south pole p = −k̂. To
obtain control near this south pole, we would need to define another vector field Hk, replacing the relation
α′ ≈ −2iβ which was our starting point for Jk by α′ ≈ +2iβ. All the estimates we obtain for JkYkχk, with
χk = 0 near the south pole, would readily extend to HkYkgk, with gk = 0 near the north pole.

3.1. L2 estimates. We start with a basic estimate for JkYk.

Lemma 3.3. There exists M > 0 such that for all k ̸= 0 it holds that

1

2

d

dt
∥JkYk∥2 + |k|3

4

ν

|k|
∥∇JkYk∥2 + |k|3

4

(
ν

|k|

) 1
2

∥JkYk∥2 − |k|Re⟨JkYkχ, JkFk⟩

≤ |k|M
[
bk∥Yk∥2 +Dk(Yk)

]
.

(3.6)

PROOF. As before, we can take the time rescaling from (2.6) and assume |k| = 1. We also get rid of
the subscript k in the notation when no confusion arises. Performing an L2 estimate on (3.4), we find

1

2

d

dt
∥JY ∥2 + ν∥∇JY ∥2 + ν

1
2 ∥JY ∥2 − Re⟨JY, JF ⟩ ≤ Re⟨JY,RY ⟩.

To bound the right-hand side, we integrate by parts the first term in the definition (3.5) of R, and get

Re⟨JY,RY ⟩ ≲ |β|ν
1
2 ∥∇JY ∥∥(p · k − 1)Y ∥+ ν|α|∥JY ∥∥∇Y ∥+ |β|ν

1
2 ∥JY ∥∥∇(p · k)Y ∥

≲ ν
1
2 |b|

1
2 ∥∇JY ∥∥Y ∥+ ν∥JY ∥∥∇Y ∥+ ν

1
2 |b|

1
2 ∥JY ∥∥∇(p · k)Y ∥,

where we used Remark 3.1 for the last bound. The result follows then classically from Young’s inequality.
□

We now show an improved L2 bound, when localized away from the south pole p = −k̂.

Lemma 3.4. Let k ̸= 0, let χk = χk(p), χ̃k = χ̃k(p) be two smooth functions, which are zero near p = −k̂,
and such that |χk|+ |∇χk| ≲ χ̃k. Then, for some M > 0 independent of k, we have

1

2

d

dt
∥JkYkχk∥2 + |k|3

4

ν

|k|
∥∇JkYkχk∥2 + |k|3

4

(
ν

|k|

) 1
2

∥JkYkχk∥2 − |k|⟨JkYkχk, JkFkχk⟩

≤ |k|M
[
ν

|k|
∥Y χ̃k∥2 +Dχ̃k,k(Yk)

]
.

PROOF. As before, we can through (2.6) assume that |k| = 1. We further omit the subscript k from our
notations. The localized L2 estimate yields
1

2

d

dt
∥JY χ∥2 + ν∥∇JY χ∥2 + ν

1
2 ∥JY χ∥2 − ⟨JY χ, JFχ⟩ ≤ 2ν∥∇JY χ∥∥JY∇χ∥+Re⟨JY χ,RY χ⟩.

Thanks to the definition of J and Remark 3.1, we find that

∥JY∇χ∥2 ≲ |α|2∥∇Y∇χ∥2 + ν−1|β|2∥∇(p · k)Y∇χ∥2 ≲ ∥∇Y χ̃∥2 + ν−1b∥∇(p · k)Y χ̃∥2.
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It follows that the first term at the right-hand side satisfies for some M > 0:

2ν∥∇JY χ∥∥JY∇χ∥ ≤ 1

8
ν∥∇JY χ∥2 +M

(
ν∥∇Y χ̃∥2 + b∥∇(p · k)Y χ̃∥2

)
.

For the second term, we integrate by parts the first term at the right-hand side of (3.5), and find

Re⟨JY χ,RY χ⟩ ≲ |β|ν
1
2 ∥∇JY χ∥∥(p · k − 1)Y χ∥+ |β|ν

1
2 ∥JY χ∥∥(p · k − 1)Y∇χ∥

+ ν|α|∥JY χ∥∥∇Y χ∥+ |β|ν
1
2 ∥JY χ∥∥∇(p · k)Y χ∥

≲ (∥∇JY χ∥+ ∥JY χ∥)
(
b
1
2 ν

1
2 ∥∇(p · k)Y χ̃∥+ ν∥∇Y χ∥

)
.

Note that besides Remark 3.1, we have used crucially that |(p · k − 1)| ≲ |∇(p · k)| on the support of χ̃, a
property that was missing in the proof of Lemma 3.3. One can conclude using Young’s inequality that for
some M > 0:

Re⟨JY χ,RY χ⟩ ≲ 1

8
ν∥∇JY χ∥2 + 1

8
ν∥JY χ∥2 +M

(
ν∥∇Y χ̃∥2 + b∥∇(p · k)Y χ̃∥2

)
.

The lemma follows. □

3.2. Hypocoercive estimates. To control JY in the hypocoercivity functional, we first show a non-
localized bound, where we do not benefit from the localization and thus lose in terms of scaling in ν.

Lemma 3.5. Assume the setup of Lemma 2.1. For possibly smaller ν0, B0 and a new constant M we find
that

1

2

d

dt
Ek(JkYk) +

5

8
|k|Dk(JkYk) +

3

4
|k|
(
ν

|k|

) 1
2

Ek(JkYk)− |k|ReEk(JkYk, JFk)

≤ |k|M
(
ν

|k|

)− 1
2

[
Dk(Yk) +

(
ν

|k|

) 1
2 c2k
bk

∥Yk∥2
]
.

PROOF. By the change of variables (2.6), we can restrict to |k| = 1. We omit as before the subscript k.
Then, (3.4) and Lemma 2.1 imply (taking into account the extra term (1− i)ν

1
2JY )

1

2

d

dt
E(JY ) +

3

4
D(JY ) + ν

1
2E(JY )− ReE(JY, JF ) ≤ ReE(RY, JY ) +Mcν

1
2 ∥JY ∥2.

The last term on the right-hand side can directly be absorbed by the third term at the left-hand side, as c≪ 1.
For ReE(RY, JY ), first note that

|RY |2 ≲ (ν|β|2 + ν2|α|2)|∇Y |2 + ν|β|2|∇(p · k)Y |2 ≲ ν|∇Y |2 + νb|∇(p · k)Y |2, (3.7)

where we used Remark 3.1 for the last bound. Then split ReEk(RY, JY ) as

ReEk(RY, JY ) = I0 + Ia + Ib + Ic,

where

I0 = Re⟨RY, JY ⟩,

Ia = aν
1
2 Re⟨∇RY,∇JY ⟩,

Ib = bRe⟨i∇(p · k)RY,∇JY ⟩+ bRe⟨i∇(p · k)JY,∇RY ⟩,

Ic = cν−
1
2 Re⟨∇(p · k)RY,∇(p · k)JY ⟩.

Clearly
I0 ≤ ∥RY ∥ ∥JY ∥,

so that for a constant δ > 0 it holds that

I0 − δν
1
2 ∥JY ∥2 ≲ δ−1ν−

1
2 ∥RY ∥2 ≲ δ−1ν−

1
2
(
ν∥∇Y ∥2 + bν∥∇(p · k)Y ∥2

)
≲ δ−1ν−

1
2D(Y ).
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For Ia we find after an integration by parts that

Ia − δaν
3
2 ∥∇2JY ∥2 ≲ δ−1aν−

1
2 ∥RY ∥2 ≲ δ−1ν−

1
2 ∥RY ∥2 ≲ δ−1ν−

1
2D(Y ).

For Ib we get

Ib − δν
1
2 c
[
∥∇(∇(p · k)JY )∥2 + ∥JY ∥2

]
≲ δ−1 b

2

c
ν−

1
2 ∥RY ∥2 ≲ δ−1ν−

1
2 ∥RY ∥2 ≲ δ−1ν−

1
2D(Y ).

Finally, we need to bound Ic. We find that

Ic − δb∥∇(p · k)JY ∥2 ≲ δ−1ν−1 c
2

b
∥∇(p · k)RY ∥2

≲ δ−1 c
2

b

(
∥∇(p · k)∇Y ∥2 + b∥∇(p · k)Y ∥2

)
≲ δ−1ν−

1
2

(
c2

b
ν

1
2 ∥∇(∇(p · k)Y )∥2 + c2

b
ν

1
2 ∥Y ∥2 + b∥∇(p · k)Y ∥2

)
≲ δ−1ν−

1
2

(
c2

b
ν

1
2 ∥Y ∥2 +D(Y )

)
.

The lemma follows. □

Using a cutoff, we can obtain a sharp estimate.

Lemma 3.6. Assume the setup of Lemma 2.1 and χk, χ̃k as in Lemma 3.4. For possible smaller ν0, B0 and
a new constant M we find that

1

2

d

dt
Eχk,k(JkYk) +

5

8
|k|Dχk,k(JkYk) +

3

4
|k|
(
ν

|k|

) 1
2

Eχk,k(JkYk)− |k|ReEχk,k(JkYk, JFk)

≤ |k|M

[(
ν

|k|

)
c2k
bk

∥Ykχ̃∥2 +Dχ̃k,k(Yk) +

(
ν

|k|

) 1
2

ck∥∇(p · k̂)JkYk∇χ∥2
]
.

PROOF. Again, we can make the change of variables (2.6) as in the proof of Lemma 2.1, and assume
that |k| = 1. Starting from Lemma 2.1, we find that (omitting as before the subscript k)

1

2

d

dt
Eχ(JY ) +

3

4
Dχ(JY ) + ν

1
2Eχ(JY )− ReEχ(JY, JF )

≤ ReEχ(RY, JY ) +Mcν
1
2 ∥JY χ∥2

+M
[
ν∥JY∇χ∥2 + ν

3
2a∥∇JY∇χ∥2 + ν

1
2 c∥∇(p · k)JY∇χ∥2

]
.

(3.8)

We first treat the term ReEχ(RY, JY ). A preliminary remark is that |p ·k− 1| ∼ |∇(p ·k)|2 on the support
of χ̃, from where it is easily deduced that, pointwise in the support of χ̃:

|RY |2 ≲ ν|β|2
[
|∇(∇(p · k)Y )|2 + |∇(p · k)Y |2

]
+ ν2|α|2|∇Y |2

≲ νb
[
|∇(∇(p · k)Y )|2 + |∇(p · k)Y |2

]
+ ν2|∇Y |2.

(3.9)

The first term splits as
ReEχ(RY, JY ) = I0 + Ia + Ib + Ic,

where

I0 = Re⟨RY χ, JY χ⟩,

Ia = aν
1
2 Re⟨∇RY χ,∇JY χ⟩,

Ib = bRe⟨i∇(p · k)RY χ,∇JY χ⟩+ bRe⟨i∇(p · k)JY χ,∇RY χ⟩,

Ic = cν−
1
2 Re⟨∇(p · k)RY χ,∇(p · k)JY χ⟩.
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For I0, after integration by parts of the first term in the definition (3.5) of RY , we get

|I0| ≤ 2|β|ν
1
2 {∥∇JY χ∥ ∥(p · k − 1)Y χ∥+ 2∥JY χ∥ ∥(p · k − 1)Y∇χ∥}

+ ν|α|∥JY χ∥ ∥[∆,∇]Y χ∥+ ν
1
2 |β|∥JY χ∥ ∥∇(p · k)Y χ∥.

Hence we find for a constant δ > 0 that

|I0| − δν∥∇JY χ∥2 − δν
1
2 ∥JY χ∥2

≲ δ−1
{
|β|2∥∇(p · k)Y χ∥2 + |β|2ν

1
2 ∥∇(p · k)Y∇χ∥2 + ν

3
2 ∥∇Y χ∥2

}
≲ δ−1Dχ̃(Y ),

taking into account that |β|2 ∼ b. For Ia note that

|Ia| ≤ aν
1
2 [∥∇∇JY χ∥ ∥RY χ∥+ 2∥∇JY χ∥ ∥RY∇χ∥] .

so that

|Ia| − δν
3
2a∥∇∇JY χ∥2 − δν∥∇JY χ∥2 ≲ δ−1ν−

1
2a∥RY χ∥2 + δ−1a2∥RY∇χ∥2.

Hence, from (3.9), we find (taking into account that ab ∼ c):

|Ia| − δν
3
2a∥∇∇JY χ∥2 − δν∥∇JY χ∥2 ≲ δ−1Dχ̃(Y ).

For Ib note that

|Ib| ≤ b∥RY χ∥ [2∥∇(∇(p · k)JY )χ∥+ ∥JY χ∥] + 2b∥RY∇χ∥ ∥∇(p · k)JY χ∥,
so that

|Ib| − δν
1
2 c∥∇(∇(p · k)JY )χ∥2 − δν

1
2 ∥JY χ∥2 − δb∥∇(p · k)JY χ∥2

≲ δ−1ν−
1
2
b2

c
∥RY χ∥2 + δ−1b∥RY∇χ∥2 ≲ δ−1Dχ̃(Y ),

where the last inequality comes again from (3.9) (note that b2

c ∼ a, b ∼ a2, so that the right-hand side is
similar to the one for Ia). For Ic, the treatment is more involved. Note that

∇(p · k)R = 2ν∇p [(p · k − 1)(JY − α∇Y )]− 2iβν
1
2∇∇(p · k)(p · k − 1)Y

− να∇(p · k)[∆,∇]Y − iν
1
2β∇(p · k)∇(p · k)Y.

We remind that on the support of χ̃, |p · k − 1| ∼ |∇(p · k)|2 so that

|(p · k − 1)∇Y | ≲ |∇(∇(p · k)Y )|+ |∇(p · k)Y |.
Hence, we find that

|Ic| ≲ ν
1
2 c∥∇(∇(p · k)JY )χ∥ {∥∇(p · k)JY χ∥+ ∥∇(∇(p · k)Y )χ∥+ ∥∇(p · k)Y χ∥}

+ ν
1
2 c∥∇(p · k)JY χ∥ {∥∇(p · k)JY∇χ∥+ ∥∇(∇(p · k)Y )∇χ∥+ ∥∇(p · k)Y∇χ∥}

+ ν−
1
2 c∥∇(p · k)JY χ∥

{
βν

1
2 ∥∇(p · k)Y χ∥+ ν∥∇(∇(p · k)Y )χ∥+ ν∥Y χ∥

}
.

Hence we can bound Ic as

|Ic| − δν
1
2 c∥∇(∇(p · k)JY )χ∥2 − δb∥∇(p · k)JY χ∥2

≲ δ−1ν
1
2 c
{
∥∇(p · k)JY χ∥2 + ∥∇(∇(p · k)Y )χ∥2 + ∥∇(p · k)Y χ∥2

}
+ δ−1ν

c2

b

{
∥∇(p · k)JY∇χ∥2 + ∥∇(∇(p · k)Y )∇χ∥2 + ∥∇(p · k)Y∇χ∥2

}
+ δ−1 c

2|β|2

b
∥∇(p · k)Y χ∥2 + δ−1ν

c2

b

{
∥∇(∇(p · k)Y )χ∥2 + ∥Y χ∥2

}
≲ δ−1ν

1
2 c∥∇(p · k)JY χ∥2 + δ−1Dχ̃(Y ) + δ−1ν

c2

b
∥∇(p · k)JY∇χ∥2 + δ−1ν

c2

b
∥Y χ∥2.
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The first term at the right-hand side can be absorbed by Dχ(JY ) at the left-hand side As regards the third
term, note that by the definition (3.1) we can estimate directly

ν
c2

b
∥∇(p · k)JY∇χ∥2 ≲ ν

c2

b

(
∥∇(∇(p · k)Y )∇χ∥2 + ∥Y∇χ∥2

)
+
c2

b
|β|2∥∇(p · k)Y∇χ∥2

≲ Dχ̃(Y ) + ν
c2

b
∥Y∇χ∥2.

The last step of the proof is to control the second to fourth term in the right-hand side of (3.8). The second
one can be absorbed by the term ν

1
2Eχ(JY ) at the left-hand side, as c ≪ 1. For the next one, we note that

by definition (3.1):

ν∥JY∇χ∥2 ≲ ν∥∇Y∇χ∥2 + bk∥∇(p · k)Y∇χ∥2 ≲ Dχ̃(Y ).

For the fourth term, again by (3.1):

ν
3
2a∥∇JY∇χ∥2 ≲ ν

3
2a∥∇∇Y∇χ∥2 + ν

1
2ab∥∇(∇(p · k)Y )∇χ∥2 ≲ Dχ̃(Y ).

Putting all the above estimates together, we conclude the proof. □

3.3. The role of convection. In this section, we now specialize the discussion to the case in which the
forcing term Fk is of the form

V Yk = −ik̂
∑
ℓ

vk−ℓYℓ, (3.10)

for a divergence-free velocity field v. This is precisely the setting in (1.8). As we do not have a strong
enough gain of regularization in x, we cannot neglect the gains arising from the divergence-free property.
This translates into losing the possibility of working mode-by-mode in k, as all the x-modes are coupled,
and instead we work with energy functionals that include all the non-zero x-modes.

Therefore, we look at
Eχ,s(Y ) =

∑
k

|k|2sEχk,k(Yk) (3.11)

for a family of cutoffs (χk)k ̸=0 (that we can think of as χk = χ(p · k̂)). The divergence-free cancellations
can be seen through the following lemma.

Lemma 3.7. Consider a divergence free velocity field v, so that
∑

k k · vk = 0, and weights W : R3 → R+

and W̃ : R3 → X for some normed space X satisfying

∀x, y, |y| ≥ |x|
2

⇒ W (x) ≲W (y), ∥W̃ (x)∥X ≲ ∥W̃ (y)∥X ,

∀x, y, ∥W̃ (x)− W̃ (y)∥X ≲

(
∥W̃ (x)∥X

|x|
+

∥W̃ (y)∥X
|y|

)
|x− y|.

Then for any non-negative sequences {Hk}k∈Z3 , {Gk}k∈Z3 , we have∑
k,ℓ

W (k)∥W̃ (k)− W̃ (l)∥X |vk−ℓ · ℓ|HℓGk

≲
(∑

k

|k|Hk

)(∑
k

W (k)∥W̃ (k)∥X |vk|2
) 1

2
(∑

k

W (k)∥W̃ (k)∥XG2
k

) 1
2

+
(∑

k

|k|Gk

)(∑
k

W (k)∥W̃ (k)∥X |vk|2
) 1

2
(∑

k

W (k)∥W̃ (k)∥XH2
k

) 1
2

+
(∑

k

|k||vk|
)(∑

k

W (k)∥W̃ (k)∥XH2
k

) 1
2
(∑

k

W (k)∥W̃ (k)∥XG2
k

) 1
2
.
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PROOF. We split the sum in three:∑
k,ℓ

=
∑

|k|≥2|ℓ|

+
∑

|ℓ|≥2|k|

+
∑

|ℓ|/2≤|k|≤2|ℓ|

.

We find ∑
|k|≥2|ℓ|

W (k)∥W̃ (k)− W̃ (ℓ)∥X |vk−ℓ · ℓ|HℓGk

≲
∑

|k|≥2|ℓ|

(√
W (k − ℓ)∥W̃ (k − ℓ)∥X |vk−ℓ|

) (√
W (k)∥W̃ (k)∥X Gk

)
|ℓHℓ|

≲
(∑

k

|k|Hk

)(∑
k

W (k)∥W̃ (k)∥X |vk|2
) 1

2
(∑

k

W (k)∥W̃ (k)∥XG2
k

) 1
2
.

Similarly, as vk−ℓ · ℓ = vk−ℓ · k,∑
|ℓ|≥2|k|

W (k)∥W̃ (k)− W̃ (ℓ)∥X |vk−ℓ · ℓ|HℓGk

≲
∑

|ℓ|≥2|k|

W (ℓ)∥W̃ (k)− W̃ (ℓ)∥X |vk−ℓ · k|HℓGk

≲
(∑

k

|k|Gk

)(∑
k

W (k)∥W̃ (k)∥X |vk|2
) 1

2
(∑

k

W (k)∥W̃ (k)∥XH2
k

) 1
2
.

Eventually, ∑
|ℓ|/2≤|k|≤2|ℓ|

W (k)∥W̃ (k)− W̃ (ℓ)∥X |vk−ℓ · ℓ|HkGℓ

≲
∑

|l|/2≤|k|≤2|l|

W (k)
(∥W̃ (k)∥X

|k|
+

∥W̃ (ℓ)∥X
|ℓ|

)
|k − ℓ||vk−ℓ · ℓ|HkGℓ

≲
∑

|ℓ|/2≤|k|≤2|ℓ|

√
|W (k)|∥W̃ (k)∥X

√
|W (ℓ)|∥W̃ (ℓ)∥X |k − ℓ||vk−ℓ|HkGℓ

≲
(∑

k

|k||vk|
)(∑

k

W (k)∥W̃ (k)∥XH2
k

) 1
2
(∑

k

W (k)∥W̃ (k)∥XG2
k

) 1
2
.

The proof is over. □

Using the cancellation from the divergence-free condition, we control the error in the hypoelliptic esti-
mate by the following bound.

Lemma 3.8. Assume the setup of Lemma 2.1, and let (χk)k ̸=0 a family of smooth functions. Then, the
convection operator defined in (3.10) obeys the following estimate, for all s > 5

2 , for all δ > 0:∑
k

|k|2s+1ReEχk,k(V Yk, Yk)− δν
1
2

∑
|k|2s∥Ykχk∥2 − δν

∑
|k|2s∥∇kYkχk∥2

− δν
1
2

∑
|k|2sb2k∥∇(∇(p · k̂)Yk)χk∥2 − (δ + ∥v∥Hsν−

1
2 )
∑

|k|2s+1ck∥∇(p · k̂)Ykχk∥2

≲ δ−1ν−1∥v∥2Hs

∑
|k|2s∥Yk∥2 + δ−1∥v∥2Hs

∑
|k|2s∥∇Yk∥2.

Remark 3.9. Note that the localisation through a cut-off is lost in the last two terms. This will be the main
constraint on the size of v. Note also that the requirement s > 5

2 ensures that
∑

k∈2πZ3 |k||vk| ≲ ∥v∥Hs , an
inequality that will be used implicitly each time we apply Lemma 3.7.
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PROOF OF LEMMA 3.8. We use for short notation Vk instead of V Yk. We decompose∑
k

|k|2s+1ReEχk,k(Vk, Yk) = I0 + Ia + Ib + Ic,

where

I0 =
∑
k

|k|2s+1Re⟨Vkχk, Ykχk⟩,

Ia = ν
1
2

∑
k

|k|2s−
1
2ak Re⟨∇pVkχk,∇pYkχk⟩,

Ib =
∑
k

|k|2s+1bk

[
Re⟨i∇(p · k̂)Vkχk,∇Ykχk⟩+Re⟨i∇(p · k̂)Ykχk,∇Vkχk⟩

]
,

Ic = ν−
1
2

∑
k

|k|2s+
3
2 ck Re⟨∇(p · k̂)Vkχk,∇(p · k̂)Ykχk⟩.

Using that v is real, we find from the definition that

I0 =
∑
k,ℓ

|k|2sRe⟨ikvk−ℓYℓχk, Ykχk⟩

=
1

2

∑
k,ℓ

Re
〈
i
(
|k|2skχ2

k − |ℓ|2sℓχ2
ℓ

)
· vk−ℓYℓ, Yk

〉
=

1

2

∑
k,ℓ

Re
〈
i
(
|k|2sχ2

k − |ℓ|2sχ2
ℓ

)
vk−ℓ · ℓYℓ, Yk

〉
,

where the last equality comes from the divergence-free property: vk−ℓ · k = vk−ℓ · ℓ. We can split the
difference as

|k|2sχ2
k − |ℓ|2sχ2

ℓ = |k|2sχk(χk − χℓ) +
(
|k|2s − |ℓ|2s

)
χkχℓ + |ℓ|2sχℓ(χk − χℓ).

Hence, using the symmetry in k and ℓ,

I0 ≤
∑

|k|2s∥χk − χℓ∥∞|vk−ℓ · ℓ|∥Yℓ∥ ∥Ykχk∥+
1

2

∑[
|k|2s − |ℓ|2s

]
|vk−ℓ · ℓ|∥Yℓχℓ∥ ∥Ykχk∥.

We apply Lemma 3.7, taking W = |k|2s and W̃ (k) = χk for the first sum, and W = 1, W̃ (k) = |k|2s for
the second sum. We get

I0 ≲ ∥v∥Hs

(∑
|k|2s∥Yk∥2

) 1
2
(∑

|k|2s∥Ykχk∥2
) 1

2
.

For Ia we find in the same way (that is replacing χk(p), function of p, by χk(p)a(ν
1|k|

1
2 t), function of p

and t) that

Ia =
ν

1
2

2

∑
Re⟨i

[
|k|2s−

1
2akχ

2
k − |ℓ|2s−

1
2aℓχ

2
ℓ

]
vk−ℓ · ℓ∇Yℓ,∇Yk⟩

≤ ν
1
2

∑
|k|2s−

1
2 ∥a

1
2
k χk − a

1
2
ℓ χℓ∥∞|vk−ℓ · ℓ|∥∇Yℓ∥ a

1
2
k ∥∇Y χk∥

+
ν

1
2

2

∑∣∣∣|k|2s− 1
2 − |ℓ|2s−

1
2

∣∣∣ |vk−ℓ · ℓ|a
1
2
ℓ ∥∇Yℓχℓ∥ a

1
2
k ∥∇Y χk∥.

Hence we find that

Ia ≲ ν
1
2 ∥v∥Hs

(∑
|k|2s−

1
2 ∥∇Yk∥2

) 1
2
(∑

|k|2s−
1
2ak∥∇Ykχk∥2

) 1
2
.

For Ib, we find by the definition

Ib =
∑

Re
〈
i
[
bk|k|2s∇(p · k̂)χ2

k − bℓ|ℓ|2s∇(p · ℓ̂)χ2
ℓ

]
vk−ℓ · ℓYℓ,∇Yk

〉
,
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where we split the bracket as

bk|k|2s∇(p · k̂)χ2
k − bℓ|ℓ|2s∇(p · ℓ̂)χ2

ℓ

= |k|2s∇(p · k̂)bkχk(χk − χℓ) +
[
|k|2s∇(p · k̂)bk − |ℓ|2s∇(p · ℓ̂)bℓ

]
χkχℓ

+ |ℓ|2s∇(p · ℓ̂)bℓχℓ(χk − χℓ).

Hence we find that

Ib ≤
∑

|k|2s∥χk − χℓ∥∞|vk−ℓ · ℓ| ∥Yℓ∥ bk∥∇(p · k̂)∇Ykχk∥

+
∑

∥|k|2s∇(p · k̂)bk − |ℓ|2s∇(p · ℓ̂)bℓ∥∞|vk−ℓ · ℓ| ∥Yℓχℓ∥ ∥∇Ykχk∥

+
∑

|k|2s∥χk − χℓ∥∞|vk−ℓ · ℓ| ∥∇Yℓ∥ bk∥∇(p · k̂)Ykχk∥.

This yields that

Ib ≲ ∥v∥Hs

(∑
k

|k|2s∥Yk∥2
) 1

2
(∑

k

|k|2sb2k∥∇(p · k̂)∇Ykχk∥2
) 1

2

+ ∥v∥Hs

(∑
k

|k|2s∥Ykχk∥2
) 1

2
(∑

k

|k|2s∥∇Ykχk∥2
) 1

2

+ ∥v∥Hs

(∑
k

|k|2s∥∇Yk∥2
) 1

2
(∑

k

|k|2sb2k∥∇(p · k̂)Ykχk∥2
) 1

2

.

For Ic we find

Ic =
ν−

1
2

2

∑
Re
〈
i
[
|k|2s+

1
2 ck∇(p · k̂)∇(p · k̂)χ2

k − |ℓ|2s+
1
2 cℓ∇(p · ℓ̂)∇(p · ℓ̂)χ2

ℓ

]
vk−ℓ · ℓYℓ, Yk

〉
.

We split the difference as

|k|2s+
1
2 ck∇(p · k̂)∇(p · k̂)χ2

k − |ℓ|2s+
1
2 cℓ∇(p · ℓ̂)∇(p · ℓ̂)χ2

ℓ

= |k|2s−
1
2 c

1
2
k |k|

1
2∇(p · k̂)

[
c
1
2
k |k|

1
2∇(p · k̂)χk − c

1
2
ℓ |ℓ|

1
2∇(p · ℓ̂)χl

]
χk

+
[
|k|2s−

1
2 − |ℓ|2s−

1
2

]
c
1
2
k |k|

1
2∇(p · k̂)χkc

1
2
ℓ |ℓ|

1
2∇(p · ℓ̂)χℓ

+ |ℓ|2s−
1
2 c

1
2
ℓ |ℓ|

1
2∇(p · ℓ̂)

[
c
1
2
k |k|

1
2∇(p · k̂)χk − c

1
2
ℓ |ℓ|

1
2∇(p · ℓ̂)χℓ

]
χℓ.

Hence we find that

Ic ≤ ν−
1
2

∑
|k|2s−

1
2

∥∥∥∥c 1
2
k |k|

1
2∇(p · k̂)− c

1
2
ℓ |ℓ|

1
2∇(p · ℓ̂)

∥∥∥∥
∞
|vk−ℓ · ℓ|∥Yℓ∥c

1
2
k |k|

1
2 ∥∇(p · k̂)Ykχk∥

+
ν−

1
2

2

∑∣∣∣|k|2s− 1
2 − |ℓ|2s−

1
2

∣∣∣ |vk−ℓ · ℓ|c
1
2
ℓ |ℓ|

1
2 ∥∇(p · ℓ̂)Yℓχℓ∥c

1
2
k |k|

1
2 ∥∇(p · k̂)Ykχk∥.

Applying Lemma 3.7, we obtain that

Ic ≲ ν−
1
2 ∥v∥Hs

(∑
|k|2s∥Yk∥2

) 1
2
(∑

|k|2s+1ck∥∇(p · k̂)Ykχk∥2
) 1

2

+ ν−
1
2 ∥v∥Hs

(∑
|k|2s+

1
2 ck∥∇(p · k̂)Ykχk∥2

)
.
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Collecting the estimates, we therefore find∑
k

|k|2s+1ReEχk,k(Vk, Yk) ≲ ∥v∥Hs

(∑
|k|2s∥Yk∥2

) 1
2
(∑

|k|2s∥Ykχk∥2
) 1

2

+ ν
1
2 ∥v∥Hs

(∑
|k|2s−

1
2 ∥∇Yk∥2

) 1
2
(∑

|k|2s−
1
2ak∥∇Ykχk∥2

) 1
2

+ ∥v∥Hs

(∑
k

|k|2s∥Yk∥2
) 1

2
(∑

k

|k|2sb2k∥∇(p · k̂)∇Ykχk∥2
) 1

2

+ ∥v∥Hs

(∑
k

|k|2s∥Ykχk∥2
) 1

2
(∑

k

|k|2s∥∇Ykχk∥2
) 1

2

+ ∥v∥Hs

(∑
k

|k|2s∥∇Yk∥2
) 1

2
(∑

k

|k|2sb2k∥∇(p · k̂)Ykχk∥2
) 1

2

+ ν−
1
2 ∥v∥Hs

(∑
k

|k|2s∥Yk∥2
) 1

2
(∑

k

|k|2s+1ck∥∇(p · k̂)Ykχk∥2
) 1

2

+ ν−
1
2 ∥v∥Hs

(∑
k

|k|2s+
1
2 ck∥∇(p · k̂)Ykχk∥2

)
.

Splitting the right-hand side with Young’s inequality then gives the claimed control. □

Using the cancellation from the divergence-free condition, we control the error for the energy by the
following estimate.

Lemma 3.10. Let (χk = χk(p))k ̸=0 a family of smooth functions. Then, the convection operator defined in
(3.10) obeys the following estimate, for all s > 5

2 :

∑
k

|k|2s+1Re⟨V Y χk, Y χk⟩ ≲ ∥v∥Hs

(∑
|k|2s∥Yk∥2

) 1
2
(∑

|k|2s∥Ykχk∥2
) 1

2
.

PROOF. See the computation for I0 in the previous lemma. □

3.3.1. Commutator with the vector fields. In order to control Jg and JJg, we need to understand the
commutator with the convection term, that is we need to understand the influence of

SYk =
∑
ℓ

Jk(−ik̂vk−ℓ)Yℓ −
∑
ℓ

(−ik̂vk−ℓ)JℓYℓ. (3.12)

To control Jg in L2, we prove a first commutator estimate.

Lemma 3.11. Let (χk)k ̸=0 a family of smooth functions. We find∑
|k|2s+1Re⟨SYkχk, JkYkχk⟩ − δν

1
2

∑
k

|k|2s+
1
2 ∥JkYkχk∥2

≲ ∥v∥Hs

(∑
k

|k|2s∥∇Yk∥2
) 1

2
(∑

k

|k|2s∥JkYkχk∥2
) 1

2

+ δ−1ν−
3
2 ∥v∥2

Hs+1
4

∑
k

|k|2s+
1
2 ∥Yk∥2.
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PROOF. We estimate the α term in SY as∑
|k|2sRe⟨(αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓχk, JkYkχk⟩

≲
∑

|k|2s∥αk − αℓ∥∞|vk−ℓ · ℓ|∥∇Yℓ∥∥JYkχk∥

≲ ∥v∥Hs

(∑
|k|2s∥∇Yk∥2

) 1
2
(∑

|k|2s∥JkYkχk∥2
) 1

2
.

For the β term we find

ν−
1
2

∑
|k|2s⟨(βk|k|

1
2∇(p · k̂)− βℓ|ℓ|

1
2∇(p · ℓ̂)ivk−ℓ · ℓYℓχk, JkYkχk⟩

≲ ν−
1
2

∑
|k|2s∥βk|k|

1
2∇(p · k̂)− βℓ|ℓ|

1
2∇(p · ℓ̂)∥∞|vk−ℓ · ℓ|∥Yℓ∥∥JkYkχk∥

≲ ν−
1
2 ∥v∥

Hs+1
4

(
|k|2s+

1
2 ∥Yk∥2

) 1
2
(
|k|2s+

1
2 ∥JkYkχk∥

) 1
2
.

Splitting gives the required estimate. □

Remark 3.12. By a slight modification, the β term can also be bounded by

ν−
1
2 ∥v∥

Hs+1
2

(
|k|2s+1∥Yk∥2

) 1
2
(
|k|2s∥JkYkχk∥

) 1
2 .

For the hypoelliptic functional, we control the commutator by the following estimate.

Lemma 3.13. Let (χk)k ̸=0 a family of smooth functions. Then,∑
|k|2s+1ReEχk,k(SYk, JkYk)− δ

[∑
|k|2s+1Dχk,k(JkYk) + ν

1
2

∑
|k|2s+

1
2 ∥JkYkχk∥2

]
≲ δ−1∥v∥2

Hs+1
2

[
ν−1

∑
|k|2s+1∥∇Yk∥2 + ν−2

∑
|k|2s+1∥Yk∥2

]
.

PROOF. From the definition we find that∑
|k|2s+1ReEχk,k (SYk, JkYk)

=
∑

|k|2sReEχk,k ((αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓ, JkYk)

+ ν−
1
2

∑
|k|2sReEχk,k

(
i(βk|k|

1
2∇(p · k̂)− βℓ|l|

1
2∇(p · ℓ̂))(−ivk−ℓ · ℓ)Yℓ, JkYk

)
.

We split as before the contributions in I0, Ia, Ib and Ic. For I0 we find

I0 =
∑

|k|2sRe⟨(αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓχk, JkYkχk⟩

+ ν−
1
2

∑
|k|2sRe⟨(βk|k|

1
2∇(p · k̂)− βℓ|ℓ|

1
2∇(p · ℓ̂))(vk−ℓ · ℓ)Yℓχk, JkYkχk⟩.

The first sum can directly be estimated by Lemma 3.7 as∑
|k|2sRe⟨(αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓχk, JkYkχk⟩

≲ ∥v∥Hs

(∑
|k|2s∥∇Yk∥2

) 1
2
(∑

|k|2s∥JkYkχk∥2
) 1

2
.

For the second sum, we find by Lemma 3.7 that

ν−
1
2

∑
|k|2sRe⟨(βk|k|

1
2∇(p · k̂)− βℓ|ℓ|

1
2∇(p · ℓ̂))(vk−ℓ · ℓ)Yℓχk, JkYkχk⟩

≲ ν−
1
2 ∥v∥

Hs+1
4

(∑
|k|2s+

1
2 ∥Yk∥2

) 1
2
(∑

|k|2s+
1
2 ∥JkYkχk∥

) 1
2
.

For Ia, we find

Ia = ν
1
2

∑
|k|2s−

1
2 Re ak⟨(αk − αℓ)(−ivk−ℓ · ℓ)∇∇Yℓχk,∇JkYkχk⟩

+
∑

|k|2s−
1
2 Re ak⟨∇(iβk|k|

1
2∇(p · k̂)− iβℓ|ℓ|

1
2∇(p · ℓ̂))(−ivk−ℓ · ℓ)Yℓχk,∇JkYkχk⟩.
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In the first term, we integrate by parts and then find by Lemma 3.7 that

Ia ≲ ν
1
2 ∥v∥

Hs− 1
4

(∑
|k|2s−

1
2 ∥∇Yk∥2

) 1
2
(∑

|k|2s−
1
2a2k∥∇∇JkYkχk∥2

) 1
2

+ ∥v∥Hs

(∑
|k|2s

(
∥∇Yk∥2 + ∥Yk∥2

)) 1
2
(∑

|k|2s∥∇JkYkχk∥2
) 1

2
.

For Ib we find

Ib =
∑

|k|2sRe⟨i(αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓχk, bk∇(p · k̂)∇JkYkχk⟩

+
∑

|k|2sRe⟨∇(αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓχk, ibk∇(p · k̂)JkYkχk⟩

+ ν−
1
2

∑
|k|2s+

1
2 Re⟨i(iβk|k|

1
2∇(p · k̂)− iβℓ|ℓ|

1
2∇(p · ℓ̂))(−ivk−ℓ · ℓ)Yℓχk, bk|k|−

1
2∇(p · k̂)∇JkYkχk⟩

+ ν−
1
2

∑
|k|2s+

1
2 Re⟨∇(iβk|k|

1
2∇(p · k̂)− iβℓ|ℓ|

1
2∇(p · ℓ̂))(−ivk−ℓ · ℓ)Yℓχk, i∇(p · k̂)bk|k|−

1
2JkYkχk⟩.

so that we find (after integration by parts of the second and fourth terms)

Ib ≲ ∥v∥Hs

(∑
|k|2s∥∇Yk∥2

) 1
2
(∑

|k|2sb2k
(
∥∇(∇(p · k̂)JkYk)χk∥2 + ∥JYkχk∥2

)) 1
2

+ ν−
1
2 ∥v∥

Hs+1
2

(∑
|k|2s+1∥Yk∥2

) 1
2
(∑

|k|2sb2k
(
∥∇(∇(p · k̂)JYk)χk∥2 + ∥JkYkχk∥2

)) 1
2
.

For Ic we find

Ic = ν−
1
2

∑
|k|2sRe⟨∇(p · k̂)(αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓχk, ck|k|

1
2∇(p · k̂)JkYkχk⟩

+ ν−1
∑

|k|2s+
1
2 Re⟨∇(p · k̂)(βk|k|

1
2∇(p · k̂)− βℓ|ℓ|

1
2∇(p · ℓ̂))(−ivk−ℓ · ℓ)Yℓχk, ck∇(p · k̂)JkYkχk⟩.

Hence we find that

Ic ≲ ν−
1
2 ∥v∥Hs

(∑
|k|2s∥∇Yk∥2

) 1
2
(∑

|k|2s+1c2k∥∇(p · k̂)JkYkχk∥2
) 1

2

+ ν−1∥v∥
Hs+1

2

(∑
|k|2s+1∥Yk∥2

) 1
2
(∑

|k|2s+1c2k∥∇(p · k̂)JkYkχk∥2
) 1

2
,

where the first term comes from the α-term and the second from the β-term.
The inequality of the lemma can then be established as in the proof of Lemma 3.8, through splitting and

Young’s inequality. □

To control JkJkg, we need the following estimate.

Lemma 3.14. Let (χk)k ̸=0 a family of smooth functions.

∑
k

|k|2s+1Re⟨JkSYkχk, JkJkYkχk⟩ − δν
1
2

∑
k

|k|2s+
1
2 ∥JkJkYkχk∥2 − δν

∑
k

|k|2s∥∇JkJkYkχk∥2

≲ ν−
5
2 ∥v∥2

Hs+3
4

∑
k

|k|2s+
3
2 ∥Yk∥2 + ν−

3
2 ∥v∥2

Hs+1
4

∑
k

|k|2s+
1
2 ∥∇Yk∥2.
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PROOF. Expanding the definition of JkSYk we find

|k|JkSYk =
∑
ℓ

αk(αk − αℓ)(−ivk−ℓ · ℓ)∇∇Yℓ

+ ν−
1
2

∑
ℓ

αk∇
(
(iβk|k|

1
2∇(p · k̂)− iβℓ|ℓ|

1
2∇(p · ℓ̂))(−ivk−ℓ · ℓ)Yℓ

)
+ ν−

1
2

∑
ℓ

iβk|k|
1
2∇(p · k̂)(αk − αℓ)(−ivk−ℓ · ℓ)∇Yℓ

+ ν−1
∑
ℓ

iβk|k|
1
2∇(p · k̂)(iβk|k|

1
2∇(p · k̂)− iβℓ|ℓ|

1
2∇(p · ℓ̂))(−ivk−ℓ · ℓ)Yℓ.

The contribution of the first term can be bounded, after integration by parts, by∑
|k|2s∥αk − αℓ∥∞|vk−ℓ · ℓ| ∥∇Yℓ∥

(
∥∇JkJkYkχ2

k∥+ 2∥JkJkYkχk|∇χk|∥
)

≲ ∥v∥Hs

(∑
k

|k|2s∥∇Yk∥2
) 1

2
(∑

k

|k|2s(∥∇JkJkYkχk∥2 + ∥JkJkYkχk∥2)

) 1
2

.

The contribution of the second term can be bounded by∑
|k|2sν−

1
2 ∥βk|k|

1
2∇(p · k̂)− βℓ|ℓ|

1
2∇(p · ℓ̂)∥∞ |vk−ℓ · ℓ| ∥∇Yℓ∥ ∥JkJkYkχ2

k∥

+
∑

|k|2sν−
1
2 ∥βk|k|

1
2∇2(p · k̂)− βℓ|ℓ|

1
2∇2(p · ℓ̂)∥∞ |vk−ℓ · ℓ| ∥Yℓ∥ ∥JkJkYkχ2

k∥

≲ ν−
1
2 ∥v∥

Hs+1
4

(∑
k

|k|2s+
1
2 (∥∇Yk∥2 + ∥Yk∥2)

) 1
2
(∑

k

|k|2s+
3
2 ∥JkJkYkχk∥2

) 1
2

.

The contribution of the third term can be bounded by∑
|k|2s+

1
2 ν−

1
2 ∥αk − αℓ∥∞ |vk−ℓ · ℓ| ∥∇Yℓ∥ ∥JkJkYkχ2

k∥

≲ ν−
1
2 ∥v∥

Hs+1
4

(∑
k

|k|2s+
1
2 ∥∇Yk∥2

) 1
2
(∑

k

|k|2s+
1
2 ∥JkJkYkχk∥2

) 1
2

.

The last term can be bounded by∑
|k|2s+1ν−1∥βk|k|

1
2∇(p · k̂)− βℓ|ℓ|

1
2∇(p · ℓ̂)∥∞ |vk−ℓ · ℓ| ∥Yℓ∥ |k|−

1
2 ∥JkJkYkχk∥

≲ ν−1∥v∥
Hs+3

4

(∑
k

|k|2s+
3
2 ∥Yk∥2

) 1
2
(∑

k

|k|2s+
1
2 ∥JkJkYkχk∥2

) 1
2

.

The result follows from all these bounds and Young’s inequality. □

3.3.2. Application to the density g. Under suitable assumptions on the velocity field v, we can now
obtain controls on g and its vector-fields. Notice that we request something less stringent than (H). We
begin from g.

PROPOSITION 3.15. There exists ε0 > 0 with the following property: if ε ∈ (0, ε0) and

sup
t≥0

∥v(t)∥Hs +
(∫ +∞

0
∥v(t)∥2Hsdt

) 1
2 ≤ εν

1
2

then for any T > 0 there holds

sup
0≤t≤T

∑
k

|k|2sEk(gk) + ν
1
2

∫ T

0

∑
k

|k|2s+
1
2ak∥gk∥2 +

∫ T

0

∑
k

|k|2s+1Dk(gk) ≲ ∥gin∥2Hs
xL

2
p
.
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As a consequence, (1.11) holds.

PROOF. We start from the inequality in Lemma 2.4: we take Fk = V gk, multiply by |k|2s and sum over
k. To bound the term

∑
|k|2sReEk(gk, V gk), we apply Lemma 3.8 with Yk = gk, χ = 1. We find

d

dt

∑
k

|k|2sEk(gk) + ν
1
2

∑
|k|2s+

1
2ak∥gk∥2 +

∑
k

|k|2s+1Dk(gk)

≲ (δν
1
2 + δ−1ν−1∥v∥2Hs)

∑
|k|2s∥gk∥2 + (δν + δ−1∥v∥2Hs)

∑
|k|2s∥∇kgk∥2

+ δν
1
2

∑
|k|2sb2k∥∇(∇(p · k̂)gk)∥2 + (δ + ∥v∥Hsν−

1
2 )
∑

|k|2s+1ck∥∇(p · k̂)gk∥2,

for any δ > 0. We take δ = ε. If ε0 ∈ (0, 1) is small enough, most terms at the right-hand side can be
absorbed in the dissipation functional, and we end up with

d

dt

∑
k

|k|2sEk(gk) +
∑
k

|k|2s+1ak

(
ν

|k|

) 1
2

∥gk∥2 +
∑
k

|k|2s+1Dk(gk)

≲
(
εν

1
2 + ε−1ν−1∥v∥2Hs

)
∥g∥2Hs

xL
2
p
.

(3.13)

In particular,
d

dt
∥g∥Hs

xL
2
p
≲
(
εν

1
2 + ε−1ν−1∥v∥2Hs

)
∥g∥Hs

xL
2
p

(3.14)

so that our assumptions and Gronwall lemma yield

∥g(t)∥Hs
xL

2
p
≤MeMεν

1
2 t∥gin∥Hs

xL
2
p
, ∀t ≥ 0

for an absolute constant M > 0. If t ≤ ν−
1
2 , injecting this bound in the right-hand side of (3.13) and

integrating on (0, T ) proves the lemma. If t ≥ ν−
1
2 , we first integrate (3.13) on (0, ν−

1
2 ), resulting in∑

k

|k|2sEk(gk)|
t=ν−

1
2
≤ eMε∥gin∥2Hs

xL
2
p
.

Using again the interpolation inequality (2.11) with σ = 4νak
|k|ck , we deduce that at time t = ν−

1
2 (time for

which σ ≤ 1 if ν is small enough):

Ek(gk) ≥ ∥gk∥2 +
1

2
akν

1
2 |k|−

1
2 ∥∇pgk∥2 +

1

2
ckν

− 1
2 |k|

1
2 ∥∇p(p · k̂)gk∥2

≥
(
1 +

1

2
(akck)

1
2

)
∥gk∥2 =

(
1 +

1

2
(AC)

1
2

)
∥gk∥2,

and eventually

∥g(ν−
1
2 )∥Hs

xL
2
p
≤ λ∥gin∥2Hs

xL
2
p
, λ :=

eMε0

1 + 1
2(AC)

1
2

< 1

taking ε < ε0 small enough. Iterating this bound gives exactly (1.11) and concludes the proof. □

3.3.3. Application to the vector fields. The analogous of Proposition 3.15 for vector fields is contained
in Lemma 3.17 (estimate without cut-off) and Lemma 3.18 (estimate with cut-off) below. We start with an
L2 estimate.

Lemma 3.16. Let (χk)k ̸=0 a family of smooth functions with χk = 0 near p = −k̂. There exists ε0 > 0
with the following property: if ε ∈ (0, ε0) and

sup
t≥0

∥v(t)∥Hs +

(∫ ∞

0
∥v(t)∥2Hsdt

) 1
2

≤ εν
3
4



NONLINEAR STABILITY FOR ACTIVE SUSPENSIONS 25

then for any T > 0 there holds

sup
0≤t≤T

∑
k

|k|2s−
1
2 ∥Jkgkχk∥2 +

∫ T

0
ν
∑
k

|k|2s−
1
2 ∥∇Jkgkχk∥2 + ν

1
2

∑
k

|k|2s∥Jkgkχk∥2

≲ ∥gin∥2Hs
xL

2
p
+ ∥∇gin∥2Hs

xL
2
p
.

PROOF. We first establish an estimate without cut-off, starting from Lemma 3.3. We take Yk = gk,
Fk = V Yk = V Jkgk, multiply by |k|2s−

1
2 and sum over k. We find

d

dt

∑
|k|2s−

1
2 ∥Jkgk∥2 + ν

∑
|k|2s−

1
2 ∥∇Jkgk∥2 + ν

1
2

∑
|k|2s∥Jkgk∥2

≲
∑

|k|2s+
1
2 ⟨Jkgk, V Jkgk⟩+

∑
|k|2s+

1
2 ⟨Jkgk, Sgk⟩+

∑
k

|k|2s+
1
2 bk∥gk∥2 +

∑
k

|k|2s+
1
2Dk(gk).

(3.15)
The first term at the right-hand side is bounded thanks to Lemma 3.10 (applied with Y = Jg, χ = 1):∑

k

|k|2s+
1
2 Re⟨V Jkgk, Jkgk⟩ ≲ ∥v∥Hs

∑
|k|2s−

1
2 ∥Jkgk∥2.

It can be absorbed by the left-hand side, as ∥v∥Hs ≪ ν
1
2 . The second term in the right-hand side is estimated

thanks to Lemma 3.11 (applied with Y = g, χ = 1):∑
|k|2s+

1
2 Re⟨SJkgk, Jkgk⟩ − δν

1
2

∑
k

|k|2s∥Jkgk∥2

≲ ∥v∥
Hs− 1

4

(∑
k

|k|2s−
1
2 ∥∇gk∥2

) 1
2
(∑

k

|k|2s−
1
2 ∥Jkgk∥2

) 1
2

+ δ−1ν−
3
2 ∥v∥2Hs

∑
k

|k|2s∥gk∥2

≲ δν
1
2

∑
k

|k|2s−
1
2 ∥Jkgk∥2 + δ−1∥v∥2

Hs− 1
4
ν−

1
2

∑
k

|k|2s−
1
2 ∥∇gk∥2 + δ−1ν−

3
2 ∥v∥2Hs

∑
k

|k|2s∥gk∥2.

We take δ = ε. For ε < ε0 small enough, the first term can be absorbed in the left-hand side, while the
second term can be included in

∑
k |k|

2s+ 1
2Dk(gk). We end up with

d

dt

∑
|k|2s−

1
2 ∥Jkgk∥2 + ν

∑
|k|2s−

1
2 ∥∇Jkgk∥2 + ν

1
2

∑
|k|2s∥Jkgk∥2

≲
∑
k

|k|2s+
1
2 bk∥gk∥2 +

∑
k

|k|2s+
1
2Dk(gk) + ε−1ν−

3
2 ∥v∥2Hs∥g∥2Hs

xL
2
p
.

The time integral of the second term at the right-hand side. could be controlled directly thanks to Proposi-
tion 3.15. Similarly, the time integral of the last term could be controlled thanks to the assumption on v and
(1.11). But the limiting term, due to the absence of cut-off, is

∑
k |k|

2s+ 1
2 bk∥gk∥2 ≲

∑
k |k|

2s+ 1
2ak∥gk∥2,

where we could not squeeze a factor ∇(p · k). This forces us to multiply the previous inequality by ν
1
2 . We

get, with Proposition 3.15 that

sup
0≤t≤T

ν
1
2

∑
|k|2s−

1
2 ∥Jkgk∥2 +

∫ T

0
ν

3
2

∑
|k|2s−

1
2 ∥∇Jkgk∥2 +

∫ T

0
ν
∑

|k|2s∥Jkgk∥2

≲ ∥gin∥2Hs
xL

2
p
+ ν

1
2 ∥∇pg

in∥2Hs
xL

2
p
.

(3.16)
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We can then obtain a better bound using the cut-off χ, replacing our starting point (3.6) by the improved
Lemma 3.4. After similar manipulations, we get

d

dt

∑
|k|2s−

1
2 ∥Jkgkχk∥2 + ν

∑
|k|2s−

1
2 ∥∇Jkgkχk∥2 + ν

1
2

∑
|k|2s∥Jkgkχk∥2

≲ ∥v∥
Hs− 1

4

(∑
|k|2s−

1
2 ∥Jkgk∥2

) 1
2
(∑

|k|2s−
1
2 ∥Jkgkχk∥2

) 1
2

+ ∥v∥
Hs− 1

4

(∑
k

|k|2s−
1
2 ∥∇gk∥2

) 1
2
(∑

k

|k|2s−
1
2 ∥Jkgkχk∥2

) 1
2

+
∑
k

|k|2s+
1
2Dk(gk) + ν

∑
k

|k|2s−
1
2 ∥gkχ̃k∥2 + ε−1ν−

3
2 ∥v∥2Hs∥g∥2Hs

xL
2
p

which implies, using the smallness assumption on v:

d

dt

∑
|k|2s−

1
2 ∥Jkgkχk∥2 + ν

∑
|k|2s−

1
2 ∥∇Jkgkχk∥2 + ν

1
2

∑
|k|2s∥Jkgkχk∥2

≲ ν−
1
2 ∥v∥2

Hs− 1
4

∑
|k|2s−

1
2 ∥Jkgk∥2 +

∑
k

|k|2s+
1
2Dk(gk) + (ν + ε−1ν−

3
2 ∥v∥2Hs)∥g∥2Hs

xL
2
p
.

Using Proposition 3.15, (3.16) and (1.11) concludes the proof of the lemma. □

For the control of the hypocoercive functional of JkY , we first show an estimate with a loss in ν, but
without localisation. This is

Lemma 3.17. There exists ε0 > 0 with the following property: if ε ∈ (0, ε0) and

sup
t≥0

∥v(t)∥Hs +

(∫ +∞

0
∥v(t)∥2Hsdt

) 1
2

≤ εν
3
4

then for any T > 0 there holds

ν
1
2

[
sup

0≤t≤T

∑
k

|k|2s−1Ek(Jkgk) +

∫ T

0

∑
k

|k|2sDk(Jkgk) + ν
1
2

∑
k

|k|2s−
1
2Ek(Jkgk)

]
≲ ∥gin,∇pg

in∥2Hs
xL

2
p
.

PROOF. The proof is very close to proof of (3.16). One starts from Lemma 3.5, that is applied with
Yk = gk, Fk = V gk. One multiplies by |k|2s−1, and sum over k. The nonlinear term∑

|k|2s−1ReEk(Jkgk, JkV gk) =
∑

|k|2s−1ReEk(Jkgk, V Jkgk) +
∑

|k|2s−1ReEk(Jkgk, Sgk)

is then treated with Lemma 3.8 and Lemma 3.13. We leave the details to the reader. □

We then get an improved estimate with cut-off.

Lemma 3.18. Let (χk)k ̸=0 as in Lemma 3.16. There exists ε0 > 0 with the following property: if ε ∈ (0, ε0)
and

sup
t≥0

∥v(t)∥Hs +
(∫ +∞

0
∥v(t)∥2Hsdt

) 1
2 ≤ εν

then for any T > 0 there holds

sup
0≤t≤T

∑
k

|k|2s−1Eχk,k(Jkgk) +

∫ T

0

∑
k

|k|2sDχk,k(Jkgk) + ν
1
2

∫ T

0

∑
k

|k|2s−
1
2Eχk,k(Jkgk)

≲ ∥gin,∇pg
in∥2Hs

xL
2
p
.
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PROOF. The proof is again very close to the one of Lemma 3.16, once the estimate without cut-off has
been established. One needs to combine Lemma 3.6, Lemma 3.17 as well as Lemma 3.8 and Lemma 3.13
to control the convection term. □

The last control that we will need to prove mixing estimates is an Hs− 3
4 estimate on JJg.

Lemma 3.19. Let χ, χk as in Lemma 3.16. There exists ε0 > 0 with the following property: if ε ∈ (0, ε0)
and

sup
t≥0

∥v(t)∥Hs +
(∫ +∞

0
∥v(t)∥2Hsdt

) 1
2 ≤ εν

5
4

then for any T > 0 there holds

sup
0≤t≤T

∑
k

|k|2s−
3
2 ∥JkJkgkχk∥2 +

∫ T

0
ν
∑
k

|k|2s−
3
2 ∥∇JkJkgkχk∥2 + ν

1
2

∑
k

|k|2s−1∥JkJkgkχk∥2

≲ ∥gin,∇pg
in,∇2

pg
in∥2Hs

xL
2
p
.

PROOF. The starting point is Lemma 3.4 applied with Y = Jg, F = JV g. We find.

1

2

d

dt

∑
|k|2s−

3
2 ∥JkJkgkχk∥2 +

3

4
ν
∑

|k|2s−
3
2 ∥∇JkJkgkχk∥2 +

3

4
ν

1
2

∑
|k|2s−1∥JkJkgχk∥2

≲
∑

|k|2s−
1
2 |⟨JkYkχ, JkJkV gkχ⟩|+ ν

∑
|k|2s−

3
2 ∥Jkgkχ̃k∥2 +

∑
|k|2s−

1
2Dχ̃k,k(Jkgk).

The last two terms are controlled thanks to Lemma 3.18, replacing χ by χ̃, after integration in time. The
convection term is decomposed into∑

|k|2s−
1
2 ⟨JkJkgkχ, JkJkV gkχ⟩ =

∑
|k|2s−

1
2 ⟨JkJkgkχk, JkSgkχk⟩

+
∑

|k|2s−
1
2 ⟨JkJkgkχk, SJkgkχ⟩

+
∑

|k|2s−
1
2 ⟨JkJkgkχk, V JkJkgkχk⟩.

We use Lemma 3.10 to write∑
k

|k|2s−
1
2 Re⟨JkJkgkχk, V JkJkgkχk⟩

≲ ∥v∥
Hs− 3

4

(∑
|k|2s−

3
2 ∥JkJkgk∥2

) 1
2
(∑

|k|2s−
3
2 ∥JkJkgkχk∥2

) 1
2

≲ δν
1
2

∑
|k|2s−

3
2 ∥JkJkgkχk∥2 + δ−1∥v∥2

Hs− 3
4
ν−

1
2

∑
|k|2s−

3
2 ∥JkJkgk∥2.

Replacing the first operator Jk by its definition, we get

∥v∥2
Hs− 3

4
ν−

1
2

∑
|k|2s−

3
2 ∥JkJkgk∥2

≲ ∥v∥2
Hs− 3

4
ν−

3
2

(
ν
∑

|k|2s−
3
2 ∥∇pJkgk∥2 +

∑
|k|2s−

1
2 bk∥∇(p · k̂)Jkgk∥2

)
.

The right-hand side can be controlled thanks to Lemma 3.17, after integration in time. The term∑
|k|2s−

1
2 ⟨JkJkgkχk, SJkgkχk⟩

can be controlled in an easier way with Lemma 3.11 and Lemma 3.17. Finally, the term∑
|k|2s−

1
2 ⟨JkJkgkχk, JkSgkχk⟩

can be controlled thanks to Lemma 3.14. This concludes the proof. □
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3.4. Mixing estimates. We now consider integral quantities of the form (1.10), namely

Vk[g] =

∫
S2
gk(p)Zk(p)∇(p · k̂)dp, (3.17)

and establish decay estimates as a consequence of orientation mixing.

PROPOSITION 3.20. Let k ̸= 0, Zk = Zk(p) a smooth function, and χk = χk(p) a smooth function
which is 1 on the support of Zk. Then, for any g ∈ H1, we have

|Vk[g]| ≲
ν

1
2

|k|
1
2βk

[∥Jkgkχk∥+ ∥gkχk∥] ∥Zk∥H1 . (3.18)

PROOF. We use the identity ∇(p · k̂)gk = 1
i

ν
1
2

|k|
1
2 βk

(Jkgk − αk∇gk), so that

|Vk[g]| ≤
ν

1
2

|k|
1
2 |βk|

(∣∣∣∣∫
S2
JkgkZk(p)

∣∣∣∣+ ∣∣∣∣∫
S2
αk∇gkZk(p)

∣∣∣∣)

≤ ν
1
2

|k|
1
2 |βk|

(∣∣∣∣∫
S2
JkgkZk(p)

∣∣∣∣+ ∣∣∣∣∫
S2
αkgk∇ · Zk(p)

∣∣∣∣)

≲
ν

1
2

|k|
1
2 |βk|

(∫
S2
|JkgkχkZk(p)|+

∫
S2
|gkχk∇ · Zk(p)|

)
.

The result follows from Cauchy-Schwarz inequality. □

When g is the solution of the advection-diffusion equation (1.7), suitable norms of the the functions
{Vk}k∈Z can be estimated in terms of the vector field J as follows.

PROPOSITION 3.21. Assume

sup
t≥0

∥v(t)∥Hs +

(∫ ∞

0
∥v(t)∥2Hsdt

) 1
2

≤ εν
3
4 .

Then, for ε < ε0 small enough, we find∑
k

|k|2s+
1
2 |Vk[g(t)]|2 ≲

ν

|β(ν
1
2 t)|2

∑
k

|k|2s
(
∥gin

k ∥2 + ∥∇gin
k ∥2

)(
sup
ℓ

∥Zℓ∥2H1

)
.

PROOF. For all k ̸= 0, we introduce χk, ψk a smooth partition of unity on the sphere (χk + ψk ≡ 1)
such that χk = 0 near p = −k̂ and ψk = 0 near p = k̂. We can decompose

Vk[g(t)] =

∫
S2
gk(t)(Zkχk)(p)∇(p · k̂) +

∫
S2
gk(t)(Zkψk)(p)∇(p · k̂).

It is enough to prove that∑
k

|k|2s+
1
2

∣∣∣ ∫
S2
gk(t)(Zkχk)(p)∇(p · k̂)

∣∣∣2 ≲ ν

β(ν
1
2 t)2

∑
k

|k|2s(∥gin
k ∥2 + ∥∇gin

k ∥2)
(
sup
ℓ

∥Zℓ∥2H1

)
.

as the other integral could be treated similarly, by exchanging the roles of the north and south poles, see
Remark 3.2. We then introduce another family (χ̃k)k ̸=0 which is still zero near p = −k̂, with χ̃k = 1 on the
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support of χk. It follows from Proposition 3.20 that∑
k

|k|2s+
1
2

∣∣∣ ∫
S2
gk(t)(Zkχk)(p)∇(p · k̂)

∣∣∣2
≲
∑
k

|k|2s−
1
2

ν

|βk|2
[
∥Jkgk(t)χ̃k∥2 + ∥gk(t)χ̃k∥2

]
∥Zk∥2H1

≲
ν

|β(ν
1
2 t)|2

∑
k

|k|2s−
1
2
[
∥Jkgk(t)χk∥2 + ∥gk(t)χk∥2

](
sup
ℓ

∥Zℓ∥2H1

)
.

The result then follows from Proposition 3.15 and Lemma 3.16. □

When dealing with JJg, we note the following bound.

PROPOSITION 3.22. Let k ̸= 0; Zk = Zk(p) a smooth function, and χk = χk(p) a smooth function
which is 1 on the support of Zk. Then, for all r = rk(t), the following bound holds

|Vk[g]| ≲
(
Ar,k∥gkχk∥+Br,k∥Jkgkχk∥+ Cr,k∥JkJkgkχk∥

)(
∥Zk∥H2 + ∥Zk∥W 1,∞

)
,

where

Ar,k :=
ν

1
2

|k|
1
2 |βk|

(
r + r−1 ν

1
2

|k|
1
2 |βk|

)
,

Br,k :=
ν

1
2

|k|
1
2 |βk|

(
r + (r−1 + | ln r|

1
2 )

ν
1
2

|k|
1
2 |βk|

)
,

Cr,k :=
ν

|k||βk|2
| ln(r)|

1
2 .

PROOF. As a preliminary step, we introduce χr = χr(p) a smooth function with χr = 1 on an r-
neighborhood of k̂, and χr = 0 outside a 2r-neighborhood of k̂. We then consider, for any smooth G with
G = 0 near p = −k̂ and χk = 1 on the support of G, and for any tensor Yk:∣∣∣∣∫

S2
YkG

∣∣∣∣ ≤ ∣∣∣∣∫
S2
YkχrG

∣∣∣∣+ ∣∣∣∣∫
S2
Yk(1− χr)G

∣∣∣∣ =: I1 + I2.

We find directly by Cauchy-Schwarz
I1 ≲ ∥Ykχk∥ r∥G∥L∞ .

Then,

I2 =
1

iβk

(
ν

|k|

) 1
2
∫
S2
∇(p · k̂) · JkYk

G

|∇p(p · k̂)|2
(1− χr)

+
αk

iβk

(
ν

|k|

) 1
2
∫
S2
Yk∇p ·

(
∇(p · k̂) G

|∇p(p · k̂)|2
(1− χr)

)
,

from where

I2 ≲
1

|βk|

(
ν

|k|

) 1
2

∥G∥L∞∥JkYkχk∥| ln(r)|
1
2 +

|αk|
|βk|

(
ν

|k|

) 1
2

∥Ykχk∥
1

r
(∥G∥L∞ + ∥G∥H1) .

We conclude that∣∣∣∣∫
S2
YkG

∣∣∣∣ ≲
((

1

|βk|

(
ν

|k|

) 1
2 1

r
+ r

)
∥Ykχk∥+

1

|βk|

(
ν

|k|

) 1
2

| ln(r)|
1
2 ∥JkYkχk∥

)
(∥G∥L∞ + ∥G∥H1) .

(3.19)
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We then turn to

|V[gk(t)]| ≤

∣∣∣∣∣ 1

iβk

(
ν

|k|

) 1
2
∫
S2
ZkJkgk

∣∣∣∣∣+
∣∣∣∣∣ αk

iβk

(
ν

|k|

) 1
2
∫
S2
(∇p · Zk)gk

∣∣∣∣∣ .
Applying the previous formula, we end up with

|V[gk(t)]| ≲
1

|βk|

(
ν

|k|

) 1
2

(( 1

|βk|

(
ν

|k|

) 1
2 1

r
+ r
)
∥Jkgkχk∥

+
1

|β|

(
ν

|k|

) 1
2

| ln(r)|
1
2 ∥JkJkgkχk∥

)
(∥Zk∥L∞ + ∥Zk∥H1)

+
1

|βk|

(
ν

|k|

) 1
2

(( 1

|βk|

(
ν

|k|

) 1
2 1

r
+ r
)
∥gkχk∥

+
1

|βk|

(
ν

|k|

) 1
2

| ln(r)|
1
2 ∥Jkgkχk∥

)
(∥∇Zk∥L∞ + ∥∇Zk∥H1) .

(3.20)

The result follows. □

We can now conclude this linear analysis, proving Theorem 2.

PROOF OF THEOREM 2. For t ≤ 1, the result follows easily from Proposition 3.21. For t ≥ 1, we use
Proposition 3.22 with the special choice

r = rk(t) =

(
ν

1
2

|k|
1
2 |βk|

) 1
2

≲ 1

for which

Ar,k, Br,k, Cr,k ≲

(
ν

1
2

|k|
1
2 |βk|

) 3
2

.

The proof is over. □

4. Nonlinear stability

The proof of the nonlinear stability Theorem 1 relies on two main ingredients: the analysis of a Volterra
equation that allows the computation of u from ψ through the relations specified in (1.3), and the use of the
linear estimates of Theorem 2, via a proper bootstrapping scheme. These two points will be carried out in
Sections 4.2 and 4.3, respectively.

For notational convenience, we will prove Theorem 1 with shifted index s− 1 instead of s. As u has one
more degree of regularity than ψ in x, u will then have Hs regularity in x.

Let s > 9
2 , T ∈ (0,∞], and a field v defined on [0, T ) and satisfying

sup
0≤t≤T

∥v(t)∥Hs +
(∫ T

0
∥v(t)∥2Hsdt

) 1
2 ≤ εν

5
4 . (H’)

We introduce
Sv(t, τ) : L

2 → L2, 0 ≤ τ ≤ t < T (4.1)
the linear two-parameter process arising as the solution operator of the (non-autonomous) advection-diffusion
equation in (1.7), considered on (0, T ). Namely, for 0 ≤ τ ≤ t < T we set Sv(t, τ)gin = gτ (t) where gτ is
the solution on [τ, T ) of

∂tgτ + (v + p) · ∇xgτ − ν∆pgτ = 0, gτ |t=τ = gin.
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The results in Theorem 2 were stated under (H) for the time interval (0,∞) but extend straightforwardly
under (H’) to an arbitrary interval (τ, T ). In particular, there exist absolute constants C0, ε, ν0, η1 > 0 such
that for all ν ≤ ν0 the condition (H’) implies

∥(Sv(t, τ)gin)̸=0∥Hs
xL

2
p
≤ C0e

−η1ν
1
2 (t−τ)∥gin̸=0∥Hs

xL
2
p

(4.2)

and ∑
k ̸=0

|k|2s+
1
2
− ∣∣Vk[Sv(t, τ)g

in]
∣∣2

≤ C0

(
ν

1
2

min{1, ν
1
2 (t− τ)}

)3

sup
k

(
∥Zk∥2W 1,∞

p
+ ∥Zk∥2H2

p

)
∥gin̸=0,∇pg

in
̸=0,∇2

pg
in
̸=0∥2Hs

xL
2
p
,

(4.3)

for all t ∈ [0, T ). We will now focus on the analysis of the full system (1.3).

4.1. Bootstrap assumptions. Let ψin ∈ Hs−1. Existence and uniqueness of a local in time solution to
(1.3) satisfying

ψ ∈ L∞
loc([0, T∗),Hs−1), ∇pψ ∈ L2

loc([0, T∗),Hs−1)

is standard. Moreover, if T∗ is the maximal time of existence, one has

lim sup
t→T∗

∥u(t)∥Hs = ∞.

Let η0 = η1
10 , with η1 the absolute constant in (4.2). Let δ, δ′, δ′′ positive constants to be specified later, only

depending on γ and ι. For each ν, let T = T (ν, γ, ι) > 0 the maximal time upon which the following three
bootstrap assumptions hold:

sup
0≤t≤T

∥u(t)∥Hs ≤ δν
3
2 e−η0ν

1
2 t, (BA0)∫ T

0
∥∇pψ(t)∥2Hs−1dt ≤ δ′2ν

1
2 , (BA1)

sup
0≤t≤T

∥ψ(t)∥Hs−1 ≤ δ′′ν
1
2 . (BA2)

For any δ, δ′, δ′′, the existence of a positive T is guaranteed by the smallness assumption on ψin, taking δ0
small enough compared to δ, δ′, δ′′. Note also that (BA0) implies (H’), for δ ≤ min

(
ε

η
1/4
0

, 1
)
. The point is

to show that there exists ν0 such that for all ν ≤ ν0, all three bounds are satisfied with improved constants
δ/2, δ′/2, δ′′/2 instead of δ, δ′, δ′′, and that moreover, on (0, T ):

sup
0≤t<T

∥ψ∥2Hs
xL

2
p
+ ν

∫ T

0
∥∇pψ∥2Hs

xL
2
p
dt ≲ ν−1∥ψin∥2. (4.4)

Improvement of the constants will imply that T = T∗ = ∞, which combined with (4.4) will conclude the
proof of Theorem 1.

4.2. Analysis of the Volterra equation. From (1.3), we can deduce a Volterra-like equation for u. On
one hand, from the second relation in (1.3), u is obtained from ψ through application of the linear operator
U defined by

Uψ = ιSt−1∇x ·
∫
S2
p⊗ pψ

where St is the Stokes operator −P∆ on T (with P the Leray projector). On the other hand, the solution ψ
to the first relation in (1.3) obeys the Duhamel’s formula

ψ(t) = Su(t, 0)ψ
in +

∫ t

0
Su(t, τ)F (τ) dτ
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with

F (t) =
3γ

4π
(p⊗ p) : E(u)−∇p ·

(
Pp⊥ [(γE(u) +W (u))p]ψ

)
.

Applying operator U to both sides of this Duhamel’s formula, we get

u(t) +

∫ t

0
K(t, τ)u(τ)dτ = f(t)

where

K(t, τ)u0 = −3γι

4π
St−1∇x ·

∫
S2
p⊗ pSu(t, τ)(p⊗ p : E(u0)) (4.5)

f(t) = ιSt−1∇x ·
∫
S2
p⊗ pSu(t, 0)ψ

in

− ιSt−1∇x ·
∫
S2
p⊗ p

∫ t

0
Su(t, τ)∇p ·

(
Pp⊥ [(γE(u(τ)) +W (u(τ)))p]ψ(τ)

)
dτ. (4.6)

Our first result concerns the integrability properties of the kernel K and only requires the bootstrap assump-
tion (H’).

PROPOSITION 4.1. There exists an absolute constant ν0 such that for ν ≤ ν0 the condition (H’) implies
that kernel K satisfies the following estimates

(a) ∥K(t, τ)∥L(Hs,Hs) ≲ 1 for all τ ≤ t with t− τ ≤ 1.

(b) ∥K(t, τ)∥L(Hs,Hs) ≲ e−η1ν
1
2 (t−τ), for all τ ≤ t, with η1 the rate given in the hypocoercive

estimate (4.2).
(c) ∥K(t, τ)∥L(Hs,Hr) ≲

1

(t−τ)
3
2
+ ν

3
4 , for all τ < t, for any r < s+ 1

4 .

PROOF. We can restrict to the case τ = 0, as all the arguments that we will use are translation invariant.
Given u0 ∈ Hs, We denote by ψ0 the solution of

∂tψ0 + (u+ p) · ∇xψ0 − ν∆pψ0 = 0, ψ0|t=0 = −3γι

4π
p⊗ p : E(u0).

Note that the initial data is mean-free in x, a property that is propagated through time: ψ0 = ψ0,̸=0. From
the definition of ψ0,

K(t, 0)u0 = St−1∇x ·
∫
S2
p⊗ pψ0

By a standard energy estimate on ψ0 in Hs−1, under (H’) for u we find

∥ψ0(t)∥Hs−1 ≲ ∥ψ0(0)∥Hs−1 ≲ ∥u0∥Hs , ∀t ≤ 1

Hence,
∥K(t, 0)u0∥Hs ≲ ∥ψ0(t)∥Hs−1 ≲ ∥u0∥Hs , ∀t ≤ 1

and estimate (a) follows. Also, the hypocoercive estimate (4.2), which is valid under (H’), implies for δ
small enough that

∥ψ0(t)∥Hs−1 ≲ e−η1ν
1
2 t∥ψ0(0)∥Hs−1 ≲ e−η1ν

1
2 t∥u0∥Hs , ∀t ≥ 0,

which implies estimate (b). It remains to prove estimate (c). Expressing the operator St−1∇x· in Fourier,
one checks that

∥K(t, 0)u0∥2Hr =
∑
k ̸=0

|k|2r−2

∣∣∣∣∫
S2
(p · k̂)Pk̂⊥pψ0,k

∣∣∣∣2 .
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To a given k, we can associate a cartesian frame (ex, ey, ez := k̂) and spherical coordinates (θ, φ) with θ
the colatitude and φ the longitude. In particular, p = sin θ cosφex + sin θ sinφey + cos θk̂. We compute

p · k̂ = cos θ, ∇(p · k̂) = − sin θeθ = − sin θ(cos θ cosϕex + cos θ sinϕey − sin θk̂),

Pk̂⊥p = p− (p · k̂)k̂ = sin θ cosϕex + sin θ sinϕey,

so that
(p · k̂)Pk̂⊥p = −Pk̂⊥∇(p · k̂).

Hence

∥K(t, 0)u0∥2Hr =
∑
k ̸=0

|k|2r−2

∣∣∣∣∫
S2
Pk̂⊥∇(p · k̂)ψ0,k

∣∣∣∣2 .
From there, we apply inequality (4.3) (see (1.10) for the definition of Vk), with Z = Zk = Pk̂⊥ and
s = r − 5

4+ to get

∥K(t, 0)u0∥2Hr ≲

(
ν

1
2

min(1, ν
1
2 t)

)3 (
∥ψ0(0)∥2

Hr− 5
4+

+ ∥∇pψ0(0)∥2
Hr− 5

4+
+ ∥∇2

pψ0(0)∥2
Hr− 5

4+

)
≲
( 1

t3
+ ν

3
2

)
∥u0∥2

Hr− 1
4+
.

The result follows. □

We can now state a stability estimate for u.

PROPOSITION 4.2. Assume (1.4). Let η0 =
η1
10 , with η1 the absolute constant given in (4.2). There exists

ν0 > 0 depending on γ and ι such that for ν ≤ ν0 the condition (H’) implies

sup
0≤t≤T

eη0ν
1
2 t∥u(t)∥Hs ≲ sup

0≤t≤T
eη0ν

1
2 t∥f(t)∥Hs .

PROOF. The proof is an adaptation of the reasoning in [8, Section 5.2]. We first extend K(t, τ) by zero
for t ≥ T or τ > t, and extend u(t) and f(t) by zero for t ≥ T . Setting

k(t, τ) = eη0ν
1
2 (t−τ)K(t, τ), ũ(t) = eη0ν

1
2 tu(t), f̃(t) = eη0ν

1
2 tf(t),

the Volterra equation is equivalent to

ũ(t) +

∫ ∞

0
k(t, τ) ũ(τ) dτ = f̃(τ) for all t ∈ R+ (4.7)

and the point is to show that supt≥0 ∥ũ(t)∥Hs ≲ supt≥0 ∥f̃(t)∥Hs . We introduce

Ks :=

{
k : R+ × R+ → L(Hs, Hs), k(t, τ) = 0 for τ ≤ t, sup

t∈R+

∫ ∞

0
|k(t, τ)| dτ < +∞

}
equipped with ∥k∥Ks := supt

∫
R+

|k(t, τ)|dτ . This space is an analogue of the space of Volterra kernels of
bounded type introduced in [10], replacing kernels with values in Cn by kernels with values in L(Hs, Hs).
One can show exactly as in [10] that Ks is a Banach algebra for the product

(k1 ⋆ k2)(t, τ) :=

∫ ∞

0
k1(t, τ

′) k2(τ
′, τ) dτ ′.

Moreover, as in any Banach algebra, there is a notion of resolvent: we say that k ∈ Ks has resolvent r ∈ Ks

if
r + k ⋆ r = r + r ⋆ k = k.

One can show that
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Lemma 4.3. (Direct adaptation of [10, Chapter 9, Lemma 3.4]) If k ∈ Ks has a resolvent r ∈ Ks then, for
any f̃ ∈ L∞(R+, H

s), equation (4.7) has a unique solution ũ ∈ L∞(R+, H
s), given by

ũ(t) = ṽ(t)−
∫
R+

r(t, τ) ṽ(τ) dτ.

In particular, ∥ũ∥L∞(R+,Hs) ≤ (1 + ∥r∥Ks)∥ṽ∥L∞(R+,Hs).

Moreover, the set of kernels having a resolvent is open, which can be proved through a Von Neumann
series argument. Namely,

PROPOSITION 4.4. (Direct adaptation of [10, Chapter 9, Theorem 3.9])

If k = k1 + k2 is the sum of two elements of Ks, if k1 has a resolvent r1 and if

∥k2∥Ks <
1

1 + ∥r1∥Ks

then k has a resolvent r, given by r =
∑+∞

n=0(−1)n
(
(k2 − r1 ⋆ k2) ⋆

)n
(k − r1 ⋆ k).

Following [8], we decompose

k(t, τ) = K(t, τ) +
(
eη0ν

1
2 (t−τ) − 1

)
K(t, τ) =: k1(t, τ) + k2(t, τ).

It is easily seen that k ∈ Ks. Moreover, we shall prove below:

Lemma 4.5. Assume (1.4). There exists ν0 > 0 depending on γ and ι such that: for all ν ≤ ν0, if (H’)
holds, then the kernel (t, τ) 7→ K(t, τ) has a resolvent R = R(t, τ), and

∥K(t, τ)∥Ks ≲ 1, ∥R(t, τ)∥Ks ≲ 1.

Assuming for the moment that this lemma is satisfied, we now prove that ∥k2∥KS
→ 0 as ν → 0. Let

a ∈ (0, 1) to be specified, b := 1
8η0

, and decompose:

∥k2∥KS
≤ sup

t∈R+

∫ ∞

0

(
eη0ν

1
2 τ − 1

)
∥K(t, t− τ)∥L(Hs,Hs)dτ

≤ sup
t∈R+

(∫ aν−
1
2

0
+

∫ b| ln ν|ν−
1
2

aν−
1
2

+

∫ ∞

b| ln ν|ν−
1
2

)(
eη0ν

1
2 τ − 1

)
∥K(t, t− τ)∥L(Hs,Hs)dτ

=: sup
t∈R+

I1(t) + I2(t) + I3(t).

Let κ > 0. Using the bound ∥K(t, t− τ)∥L(Hs,Hs) ≲ ⟨τ⟩−
3
2 for τ ≤ aν−

1
2 , see Proposition 4.1, we find

I1(t) ≲ (eη0a − 1) ≤ κ for a small enough.

This a being fixed, using the bound ∥K(t, t − τ)∥L(Hs,Hs) ≲ ν
3
4 for τ ∈ [aν−

1
2 , bν−

1
2 | ln ν|], cf. again

Proposition 4.1, we get
I2(t) ≲ ν−η0bν1/4 ≲ ν1/4−1/8 ≤ κ,

for ν small enough. Eventually, using the second inequality in Proposition 4.1, we get

I3(t) ≲
∫ +∞

b| ln ν|ν−
1
2

e(η0−η1)ν
1
2 τdτ ≲ ν−

1
2
+(η1−η0)b = ν

1
8
(
η1
η0

−5) ≤ κ,

for ν small enough. Hence, ∥k2∥KS
goes to zero with ν. By Lemma 4.4 and Lemma 4.5 (still to be proved),

we deduce that the kernel k has a resolvent r, with ∥r∥Ks ≲ 1. Proposition 4.2 is then a direct consequence
of Lemma 4.3. The only missing step is the proof of Lemma 4.5, which is done below. □



NONLINEAR STABILITY FOR ACTIVE SUSPENSIONS 35

PROOF OF LEMMA 4.5. We remind for 0 ≤ τ ≤ t < T the formula

K(t, τ)u0 := St−1∇x ·
∫
S2
p⊗ pψτ ,

where ψ0 = ψ0(t) is the solution of

∂tψτ + (u+ p) · ∇xψτ − ν∆pψτ = 0, t ≥ τ, ψτ |t=τ = −3γι

4π
p⊗ p : E(u0).

The first estimate of the lemma follows from the estimates of Proposition 4.1 (see the treatment of the kernel
k2 for very close computations). To show that K has a resolvent with norm O(1), we shall again rely on
Lemma 4.4, seeing K as a perturbation of the kernel K̄(t, τ) = K̄0(t, τ)1t<T , where

for all τ > t, K̄0(t, τ) = 0, while for τ ≤ t, K̄0(t, τ)u0 := St−1∇x ·
∫
S2
p⊗ p ψ̄τ (t) (4.8)

where this time ψ̄τ is the solution (mean-free in x) of

∂tψ̄τ + p · ∇xψ̄τ − ν∆pψ̄τ = 0, t ≥ τ, ψ̄τ |t=τ = −3γι

4π
p⊗ p : E(u0). (4.9)

The kernel K̄0, corresponding to the case u = 0, was analyzed Fourier mode by Fourier mode in [8]. We
remind some elements of this analysis in Appendix A. This analysis shows in particular that there exists
ν0 > 0 depending on γ and ι such that for ν ≤ ν0 the kernel K̄0 has a resolvent R̄0 satisfying

∥R̄0(t, τ)∥Ks ≲ 1. (4.10)

It implies directly that K̄(t, τ) = K̄0(t, τ)1t<T has for resolvent R̄(t, τ) = R̄0(t, τ)1t<T whose norm in
Ks satisfies the same bound. By Lemma 4.4, it is then enough to show that under (H’)

lim
ν→0

∥(K − K̄)∥Ks = 0 (4.11)

Let κ > 0. We decompose, for some large T̃ the difference as

∥(K − K̄)∥Ks ≤
∫ T̃

0
∥(K − K̄)(t, t− τ)∥L(Hs,Hs) dτ

+

∫ ∞

T̃

(
∥K(t, t− τ)∥L(Hs,Hs) + ∥K̄(t, t− τ)∥L(Hs,Hs)

)
dτ.

For the second part, we use the estimates of Proposition 4.1, which are also valid for K̄, as u = 0 satisfies
(H’): introducing c = 1

η1∫ ∞

T̃

(
∥K(t, t− τ)∥L(Hs,Hs) + ∥K̄(t, t− τ)∥L(Hs,Hs)

)
dτ

=
(∫ ν−

1
2

T̃
+

∫ cν−
1
2 | ln ν|

ν−
1
2

+

∫ +∞

cν−
1
2 | ln ν|

)(
∥K(t, t− τ)∥L(Hs,Hs) + ∥K̄(t, t− τ)∥L(Hs,Hs)

)
dτ

≲
∫ ν−

1
2

T̃

1

⟨τ⟩
3
2

dτ +

∫ cν−
1
2 | ln ν|

ν−
1
2

ν
3
4dτ +

∫ +∞

cν−
1
2 | ln ν|

e−η1ν
1
2 τdτ

≲
∫ ∞

T̃

1

⟨τ⟩
3
2

dτ + ν1/4| ln ν|+ ν−
1
2
+η1c ≤ κ,

for T̃ large enough (depending on γ and ι) and ν small enough. This time T̃ being fixed, we turn to the first
term. We claim that for ν small enough, if (H’) holds, for all τ ≤ T̃

∥(K − K̄)(t, t− τ)∥L(Hs,Hs−1) ≲ ν
5
4 . (4.12)
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Let us assume temporarily that (4.12) holds. We also have, by the third inequality in Proposition 4.1

∥K(t, t− τ)∥L(Hs,Hs+s′ ) + ∥K̄(t, t− τ)∥L(Hs,Hs+s′ ) ≲
1

τ
3
2

(4.13)

for s′ = 1
8 (any s′ ∈ (0, 14) would do). By interpolation of (4.12) and (4.13) , we get

∥(K − K̄)(t, t− τ)∥L(Hs,Hs) (4.14)

≤ ∥(K − K̄)(t, t− τ)∥1−θ
L(Hs,Hs−1)

(
∥K(t, t− τ)∥L(Hs,Hs+s′ ) + ∥K̄(t, t− τ)∥L(Hs,Hs+s′ )

)θ
≲ ν

5
4
(1−θ)τ−

3
2
θ, (4.15)

with θ such that θs′ − (1− θ) = 0, that is θ = 1
1+s′ =

8
9 . We deduce from this estimate and the estimate

∥(K − K̄)(t, t− τ)∥L(Hs,Hs) ≤ ∥K(t, t− τ)∥L(Hs,Hs) + ∥K̄(t, t− τ)∥L(Hs,Hs) ≲ 1

that ∫ T̃

0
∥(K − K̄)(t, t− τ)∥L(Hs,Hs) dτ

=

∫ κ

0
∥(K − K̄)(t, t− τ)∥L(Hs,Hs) dτ +

∫ T̃

κ
∥(K − K̄)(t, t− τ)∥L(Hs,Hs) dτ

≤ Cκ+ C ′ν
5
4
(1−θ)

∫ +∞

κ
τ−

3
2
θ ≤ Cκ+ C ′′ν

5
4
(1−θ)κ−

1
3 ≤ (C + 1)κ,

for ν small enough. As κ is arbitrary, this proves (4.11). The final step is to establish (4.12). From the
definition of the kernel, we find for t ≤ T (otherwise all quantities are zero):

∥(K − K̄)(t, τ)u0∥Hs−1 ≤ ∥(ψ0 − ψ̄0)(t)∥Hs−2 .

The function ψ := ψτ − ψ̄τ satisfies

∂tψ + (u+ p) · ∇xψ − ν∆pψ = −u · ∇xψ̄τ , t ≥ τ, ψ|t=τ = 0.

A standard estimate yields (for s− 2 > 5
2 ),

∂t∥ψ∥2Hs−2 ≲ ∥u∥Hs−2∥ψ∥2Hs−2 + ∥u∥Hs−2∥∇xψ̄τ∥Hs−2∥ψ∥Hs−2 .

For τ ≤ t with t− τ ≤ T̃ (where we remind that T̃ is fixed) this implies

∥ψ(t)∥Hs−2 ≲
∫ t

τ
∥ψ̄τ (t

′)∥Hs−1∥u(t′)∥Hs−2dt′ ≲ sup
τ≤t′≤t

∥ψ̄τ (t
′)∥Hs−1ν

5
4 ≲ ∥u0∥Hsν

5
4 ,

where the second inequality is coming from (H’) and from the standard Sobolev estimate supτ≤t′≤t ∥ψ̄τ (t
′)∥Hs−1 ≲

∥ψ̄τ (τ)∥Hs−1 = ∥3γι
4π p⊗p : E(u0)∥Hs−1 . Estimate (4.12) follows, and the proof of the lemma is concluded.

□

4.3. Improvement of the bootstrap assumptions. The goal of this section is to prove the following:

PROPOSITION 4.6. Assume (1.4). Let η0 =
η1
10 , with η1 the absolute constant given in (4.2). There exists

δ, δ′, δ′′, ν0 > 0 depending on γ and ι such that for ν ≤ ν0 the assumptions (BA0)-(BA1)-(BA2) imply

sup
0≤t≤T

∥u(t)∥Hs ≲ ∥ψin∥Hs−1e−η0ν
1
2 t, (4.16)

ν

∫ T

0
∥∇pψ(t)∥2Hs−1 dt ≲ ∥ψin∥2Hs−1ν

−1 + ∥ψin∥3Hs−1ν
− 3

2 + ∥ψin∥4Hs−1ν
− 5

2 , (4.17)

sup
0≤t≤T

∥ψ(t)∥Hs−1 ≲ ∥ψin∥Hs−1ν−
1
2 . (4.18)
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In particular, there exists δ0, depending on γ and ι, such that for

∥ψin∥Hs−1 ≤ δ0ν
3
2

(BA0)-(BA1)-(BA2) can be improved, with δ/2, δ′/2, δ′′/2 replacing δ, δ′, δ′′, and also such that (4.4) holds.

As explained in Paragraph 4.1, the last part of the proposition implies Theorem 1.
4.3.1. Bound on u. In all what follows, we take δ ≤ min

(
ε

η
1/4
0

, 1
)
, so that (BA0) implies (H’), and

results of Paragraph 4.2 can be applied. The starting point is Proposition 4.2, which says that

sup
0≤t<T

eη0ν
1
2 t∥u(t)∥Hs ≲ sup

0≤t<T
eη0ν

1
2 t∥f(t)∥Hs ,

with the source term

f(t) = ιSt−1∇x ·
∫
S2
p⊗ pSu(t, 0)ψin

− ιSt−1∇x ·
∫
S2
p⊗ p

∫ t

0
Su(t, τ)∇p ·

(
Pp⊥ [(γE(u(τ)) +W (u(τ)))p]ψ(τ)

)
dτ

=: finit(t) + fNL(t).

We remind that Su(t, τ) is the solution operator of L = −(u+ p) · ∇xu+ ν∆p. The first term is estimated
as

∥finit(t)∥Hs ≲ ∥(Su(t, 0)ψinit)̸=0∥Hs−1 ≲ e−η1ν
1
2 t∥ψinit∥Hs−1 ,

where the last inequality comes from (4.2). Similarly,

∥fNL(t)∥Hs ≲
∫ t

0
∥
(
S(t, τ)∇p ·

(
Pp⊥ [(γE(u(τ)) +W (u(τ)))p]ψ(τ)

))
̸=0

∥Hs−1dτ

≲
∫ t

0
e−η1ν

1
2 (t−τ)

(
∥∇xu(τ)⊗∇pψ(τ)∥Hs−1 + ∥∇xu(τ)⊗ ψ(τ)∥Hs−1

)
dτ

≲
∫ t

0
e−η1ν

1
2 (t−τ)∥u(τ)∥Hs

(
∥∇pψ(τ)∥Hs−1 + ∥ψ(τ)∥Hs−1

)
dτ

≲
(

sup
0≤τ<T

eη0ν
1
2 τ∥u(τ)∥Hs

) ∫ t

0
e−η1ν

1
2 (t−τ)e−η0ν

1
2 τ
(
∥∇pψ(τ)∥Hs−1 + ∥ψ(τ)∥Hs−1

)
dτ.

Hence,

eη0ν
1
2 t∥fNL(t)∥Hs ≲

(
sup

0≤τ<T
eη0ν

1
2 τ∥u(τ)∥Hs

) ∫ t

0
e−(η1−η0)ν

1
2 (t−τ)

(
∥∇pψ(τ)∥Hs−1 + ∥ψ(τ)∥Hs−1

)
dτ,

where the second factor at the right-hand side is a convolution, resulting in

eη0ν
1
2 t∥fNL(t)∥Hs ≲

(
sup

0≤τ<T
eη0ν

1
2 τ∥u(τ)∥Hs

)(
∥e−(η1−η0)ν

1
2 ∥L2(R+)∥∥∇pψ(·)∥Hs−1∥L2(0,T )

+ ∥e−(η1−η0)ν
1
2 ·∥L1(R+)∥∥ψ(·)∥Hs−1∥L∞(0,T )

)
≲
(

sup
0≤τ<T

eη0ν
1
2 τ∥u(τ)∥Hs

)(
ν−1/4∥∥∇pψ(·)∥Hs−1∥L2(0,T ) + ν−

1
2 ∥∥ψ(·)∥Hs−1∥L∞(0,T )

)
≲
(

sup
0≤τ<T

eη0ν
1
2 τ∥u(τ)∥Hs

)
(δ′ + δ′′),

where the last inequality comes from (BA1)-(BA2). Hence,

sup
0≤τ<T

eη0ν
1
2 τ∥u(t)∥Hs ≲ sup

t≥0
e(η0−η1)ν

1
2 t∥ψinit∥Hs−1 + (δ′ + δ′′)

(
sup
τ≥0

eη0ν
1
2 τ∥u(τ)∥Hs

)
.
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For δ′, δ′′ small enough (with a threshold depending on γ and ι), we can absorb the second term at the
right-hand side, which implies the first bound of the proposition.

4.3.2. Bound on ψ. We come back to the equation (1.3). Performing standard Hs−1 Sobolev estimates
on the equation, we get

1

2

d

dt
∥ψ∥2Hs−1 + ν∥∇pψ∥2Hs−1 ≲ ∥u∥Hs∥ψ∥Hs−1 + ∥u∥Hs−1∥ψ∥2Hs−1

+ ∥u∥Hs (∥ψ∥Hs−1 + ∥∇pψ∥Hs−1) ∥ψ∥Hs−1 .

At the right-hand side, the first term corresponds to the contribution of the linear term −3Γ
4π (p ⊗ p) : E(u).

The second term corresponds to the contribution of the transport term (u + p) · ∇xψ, while the third one
corresponds to the contribution of ∇p ·

(
Pp⊥ [(γE(u) +W (u))p]ψ

)
. It implies that

1

2

d

dt
∥ψ∥2Hs−1 +

ν

2
∥∇pψ∥2Hs−1 ≲ ∥u∥Hs∥ψ∥Hs−1 + ∥u∥Hs∥ψ∥2Hs−1 + ν−1∥u∥2Hs∥ψ∥2Hs−1 (4.19)

so that
d

dt
∥ψ∥Hs−1 ≲ ∥u∥Hs + (∥u∥Hs + ν−1∥u∥2Hs)∥ψ∥Hs−1 .

The Gronwall lemma together with the bound (4.16) that we have just established yield

∥ψ(t)∥Hs−1 ≲ ∥ψin∥Hs−1ν−
1
2 exp

(∫ t

0
(∥u∥Hs + ν−1∥u∥2Hs)dτ

)
≲ ∥ψin∥Hs−1ν−

1
2 exp

(∫ t

0
(δν

3
2 e−η0ν

1
2 τ + δ2ν2e−2η0ν

1
2 τdτ

)
≲ ∥ψin∥Hs−1ν−

1
2 ,

for ν small enough. Back to (4.19), integrating from 0 to t and using (4.16), we find

ν

2

∫ t

0
∥∇pψ∥2Hs−1 ≲ ∥ψin∥2Hs−1 +

∫ t

0

(
∥u∥Hs∥ψ∥Hs−1 + ∥u∥Hs∥ψ∥2Hs−1 + ν−1∥u∥2Hs∥ψ∥2Hs−1

)
dτ

≲ ∥ψin∥2Hs−1 + ∥ψin∥2Hs−1ν
−1 + ∥ψin∥3Hs−1ν

− 3
2 + ∥ψin∥4Hs−1ν

− 5
2

≲ ∥ψin∥2Hs−1ν
−1 + ∥ψin∥3Hs−1ν

− 3
2 + ∥ψin∥4Hs−1ν

− 5
2 .

Appendix A. Resolvent estimates in the linear setting

The goal of this appendix is to show that the kernel K̄0 defined in (4.8) has a resolvent R̄0 satisfying
∥R̄0∥Ks ≲ 1. As the equation in (4.9) is autonomous in time, we have K̄0(t, τ) = K0(t− τ)1τ≤t, with

K0(t)u0 := St−1∇x ·
∫
S2
p⊗ p ψ̄0(t).

Accordingly, we look for a resolvent under the form R̄0(t, τ) = R0(t − τ)1τ≤t, where R0 is the resolvent
of K0 for the usual convolution product

R0 +K0 ⋆ R0 = R0 +R0 ⋆ K0 = K0, f ⋆ g(t) =

∫ t

0
f(τ) g(t− τ) dτ.

In this case, ∥R̄0∥Ks = ∥R0∥L1
t (R+,L(Hs,Hs)). Hence, we want to show

∥R0∥L1
t (R+,L(Hs,Hs)) ≲ 1. (A.1)

The properties of K0 have been studied in [8]. More precisely, we performed a mode by mode Fourier
analysis in x, with the study for an arbitrary k ∈ 2πZ3

∗ of

∂tψ̂k + ip · kψ̂k − ν∆pψ̂k = 0, t ≥ 0, ψ̂k|t=0 = −3γι

4π
p⊗ p :

k ⊗ u0 + u0 ⊗ k

2
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and

K̂k(t) =
i

|k|2

∫
S2
p · kPk⊥p ψ̂k(t) ∈ L(C3,C3).

The analysis in [8] showed in particular that under the spectral condition γ|ι|
|k| < Γc, the K̂k has a unique

resolvent R̂k, satisfying ∥R̂k∥L1(R+) ≤ Ck where Ck is independent of ν, depends on γ, ι and possibly
on k (the dependence with respect to k was not examined in details in [8], see below). Note that for
u =

∑
k∈2πZ3

∗
ûke

ik·x, one has

K0(t)u =
∑

k∈2πZ3
∗

K̂k(t)ûke
ik·x

and, at least formally,

R0(t)u =
∑

k∈2πZ3
∗

R̂k(t)ûke
ik·x.

The remaining step is to show convergence of the series defining R0, and to get a bound independent of ν.
This requires more accurate bounds on the R̂k for k ∈ 2πZ3

∗. We shall distinguish between low and high
frequencies: for some cut-off frequency N to be fixed later, we write

R♭
0(t)u =

∑
|k|≤N

R̂k(t)ûke
ik·x, R♯

0(t)u =
∑
|k|>N

R̂k(t)ûke
ik·x.

We will prove that there exists N , depending only on γ and ι such that

sup
|k|>N

|R̂k(t)| ≲
1

(1 + t)
3
2

, ∀t ≥ 0. (A.2)

As ∥R♯
0(t)u∥Hs ≤ sup|k|>N |R̂k(t)|∥u∥Hs , one has easily ∥R♯

0∥L1
t (R+,L(Hs,Hs)) ≲ 1. This N being fixed,

R♭
0 is made of a finite number of terms, for which the bound ∥R̂k∥L1(R+) ≤ Ck allows to conclude that

∥R♭
0∥L1

t (R+,L(Hs,Hs)) ≲ 1, which in turn yields (A.1).
To prove (A.2), let

t′ = |k|t, k′ =
k

|k|
, ν ′ =

ν

|k|
, ψ̂′

k′(t
′) =

1

|k|
ψ̂k(t)

so that

∂t′ψ̂
′
k′ + ip · k′ψ̂′

k′ − ν ′∆pψ̂
′
k′ = 0, t ≥ 0, ψ̂′

k′ = −3γι

4π
p⊗ p :

k′ ⊗ u0 + u0 ⊗ k′

2

We further introduce

K̂k′(t
′)u0 = i

∫
S2
p · k′P(k′)⊥p ψ̂

′
k′(t)

It is an easy verification that
K̂k(t) = K̂k′

(
|k|t
)
.

The analysis of [8] was actually focused on the normalized kernels K̂k′ (normalized because |k′| = 1).
There, it was shown that there exists ν0, C0, η1,m depending on γ, ι such that for ν ′ ≤ ν0 following
inequalities hold

|K̂k′(t
′)| ≤ C0

ln(2 + t′)

(1 + t′)2
∀t′ ≤ (ν ′)−

1
2 ,

|K̂k′(t
′)| ≤ C0ν

′| ln(ν ′)|m ∀t′ ∈ [ν ′−
1
2 , c| ln(ν ′)|(ν ′)−

1
2 ],

|K̂k′(t
′)| ≤ C0e

−η1(ν′)
1
2 t′ ∀t′ ≥ c| ln(ν ′)|(ν ′)−

1
2 .
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Taking c large enough compared to η1, these estimates imply

|K̂k′(t
′)| ≲ 1

(1 + t′)
3
2

(any power less than 2 would do). Hence,

|K̂k(t)| ≲
1

(1 + |k|t)
3
2

.

This implies

∥K̂k∥L1(R+) ≲
1

|k|
≲

1

N
.

For N large enough, we have in particular that ∥K̂k∥L1(R+) < 1, and we know in this case that the resolvent
is given explicitly by the Neumann series

R̂k =
∑
j≥0

(−1)j(K̂k ⋆ )
jK̂k.

It is moreover straightforward to show that if

|f(t)| ≲
Cf

(1 + |k|t)
3
2

, |K̂k(t)| ≤
CK

(1 + |k|t)
3
2

then for some absolute constant C0

|K̂k ⋆ f(t)| ≤
C0CfCK

|k|(1 + |k|t)
3
2

.

By induction we get

|(K̂k ⋆ )
jK̂k(t)| ≤

(C0CK

|k|

)j CK

(1 + |k|t)
3
2

.

Eventually, for N large enough so that C0CK
N < 1, we find

|Rk(t)| ≲
∑
j≥0

(C0CK

|k|

)j 1

(1 + |k|t)
3
2

≲
1

(1 + |k|t)
3
2

.

The result (A.2) follows.
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