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Abstract: Due to the spin-orbit coupling, Dirac fermions, submerged in a thermal bath
with finite macroscopic vorticity, exhibit a spin polarisation along the direction parallel to
the vorticity vector Ω. Due to the symmetries of the Lagrangian for free massless Dirac
particles, there are three independent and classically conserved currents corresponding to
the vector, axial, and helical charges. The constitutive relations for the charge currents and
the stress-energy tensor at thermal equilibrium, derived in the framework of quantum field
theory at finite temperature, reveal vorticity-induced contributions that deviate from the
perfect fluid form. In this paper, we consider the mode structure of the corresponding hy-
drodynamical theory and derive collective excitations associated with coherent fluctuations
of all three charges. We show that the chirally imbalanced rotating fluid should possess
non-reciprocal gapless waves that propagate with different velocities along and opposite to
the vorticity vector. We also uncover a strictly unidirectional mode, which we call the Axial
Vortical Wave, propagating in the background of the axial charge density. We point out
an unexpected instability in the limit of degenerate matter and discuss possible solutions
when helicity and axial charge non-conservation is taken into account.
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1 Introduction

Chiral fluids possess a class of hydrodynamic gapless excitations that emerge due to a
coherent interplay of appropriate channels in the transfer and accumulation of (approx-
imately) conserved charges of the system [1–3]. These hydrodynamic modes appear in
the electromagnetic field background and curved (notably, vortical) spacetimes. They are
distinguished from other excitations because their very existence is supported by the anoma-
lous breaking of continuous internal symmetries in the system, such as the chiral anomaly
or the mixed gauge-gravitational anomaly (for an extensive review, see Ref. [4]).

The Chiral Magnetic Wave [1] represents a neat example of an anomalous hydrodynamic
mode. This excitation is supported by two transport phenomena, both arising due to the
axial anomaly: the Chiral Magnetic Effect [5–7] and the Chiral Separation Effect [8, 9].
The first phenomenon generates a vector current in a region with a nonvanishing chiral
charge density. This current, directed along the axis of the background magnetic field,
leads to a vector charge accumulation, which serves, in turn, as a source for the chiral
current generated now by the second effect. The chiral current transports the chiral charge
further along the magnetic field axis, and the process repeats cyclically again, producing the
Chiral Magnetic Wave excitation in the vector and axial charge densities of chiral fermions.
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The Chiral Magnetic Wave was hypothesized to emerge in the quark-gluon plasma
that possibly has certain experimental signatures [10]. A similar excitation also appears
in the vortical backgrounds via chiral vortical effects [11, 12], which produce intertwining
fluctuations of vector and axial currents and their charges along the axis of rotation [2].

In the standard picture described above, the chiral fluids are traditionally described
as two-component systems that incorporate vector and axial charges and their currents.
However, in addition to these local quantities, ensembles of massless fermions also possess
a third class of charges and currents associated with the helicity of massless fermions (see
a detailed pedagogical discussion in Ref. [13] along with a more recent account in [14, 15]).
In a generic ensemble of fermions, helicity enters as an independent local characteristic of
the ensemble, which is distinct from the vector (electric) and axial (chiral) charges.

Our paper intensively explores the role of the helical degrees of freedom in the hy-
drodynamic context of vortical chiral fluids. The spectrum of the hydrodynamic modes
in rotating fluids contains a multitude of hydrodynamical gapless excitations, even if the
helical degree of freedom is not accounted for [1–3, 16–22]. The main aim of the work is
to identify the physical consequences of the correct incorporation of the helicity property,
which must be present in a system possessing more than one chiral fermion, for the hydro-
dynamics of these fluids. In this paper, we work in the dissipationless limit, when both the
axial and helical quantum numbers are strictly conserved.

Helicity is often confusingly identified with chirality, even though these two properties
reflect separate physical features of fermions. Its precise nature is highlighted by the simple
observation that the chirality property equally applies to particles and anti-particles, while
the helicity distinguishes between them. The critical distinction, often misunderstood, lies
in the fact that a fermion’s chirality matches its helicity, whereas an anti-fermion’s chirality
is opposite to its helicity. This difference leads to an incorrect generalization, “chirality
equals helicity,” which does not hold in many-body particle-antiparticle systems. For in-
stance, a fermion–anti-fermion pair can have either combined chirality and zero helicity (if
their chiralities align) or zero total chirality but non-zero helicity (if their chiralities are
opposite). This striking dissimilarity between chirality and helicity can also be emphasized
by the difference in their charge conjugation symmetries: while the chiral charge density is
a C-even quantity, its helical counterpart has a C-odd symmetry with respect to the charge
conjugation [14, 15].

The distinct nature of the vector, chiral, and helical quantum numbers is highlighted
by the following relation between the charges of an individual massless (anti-)fermion:

qV qA = qH , qAqH = qV , qHqV = qA, qV qAqH = 1, (1.1)

where the vector charge qV discriminates a particle (qV = +1) from an anti-particle
(qV = −1), the helical charge qH labels the relative orientation of the momentum and spin
directions, distinguishing parallel vectors (qH = +1) and antiparallel vectors (qH = −1),
while the last entry in the triad, the chiral charge qA, shows that the chirality for a particle
(anti-particle) coincides with (is opposite to) its helicity qH . The relation (1.1) links tightly
the helicity and chirality for a single massless (anti-)particle. However, it is not generally
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valid for a system of massless fermions, therefore making the total helicity charge of an en-
semble disconnected from the total chiral charge of the same ensemble. Thus, the helicity
becomes an independent degree of freedom of the system, distinct from chirality. The sim-
ilarities and differences between chiral and helical degrees of freedom, already emphasised
by Eq. (1.1), are illustrated in detail in Fig. 1, discussed in Sec. 2.3, where the origin of
Chiral and Helical Vortical Effects is demonstrated in a simple pictorial form based on a
straightforward counting of the vector, axial, and helical degrees of freedom.

In addition, one may argue that the helical degree of freedom is as good (bad) as
the chiral charge of massive fermions: neither of them is conserved in physically relevant
theories such as massive QED or QCD. In the relaxation time approximation, the pertinence
of these quantum numbers for the dynamics of the system is determined by the relative
order of magnitudes of the axial, τA, and helical, τH , relaxation times, which show how
fast these charges dissolve in the system. Similarly to the axial (chiral) charge [23, 24], the
relaxation of the helical charge might also be a rather fast process [25]. In addition to the
charge relaxation times, the system is also characterized by the kinetic relaxation time τR,
which encodes how fast fluctuations in the thermodynamic characteristics of the system
(such as pressure and energy density) relax towards the thermodynamic equilibrium. In
general, all three relaxation times, τR, τA, and τH , are independent of each other. We defer
the discussion of the consequences of these dissipative effects to the paper representing the
second part of this work [26]. In this first part, we will focus on exploring the wide spectrum
of coherent excitations that develop at the level of the vector, axial and helicity currents at
both large and small temperatures, with or without background axial or helical imbalance.

In this paper, we concentrate on helicity-catalyzed waves that emerge in the rotating,
also called vortical, fluids. While certain properties of gapless hydrodynamic excitations in
the magnetic background field were already analyzed in Ref. [27], the vortical background
represents a more attractive perspective from the point of view of the experimental verifi-
cation of these effects in relativistic heavy-ion collisions. Here, the vorticity refers to the
local angular momentum or rotational motion of the quark-gluon plasma (QGP), which is
generated in a highly vortical state due to the angular momentum conservation and the
initial asymmetry in the non-central collision geometry [28].

While both vorticity and magnetic fields are generated almost simultaneously during
the collision, the key difference between them is their lifetime. Magnetic field decays very
rapidly as the expanding plasma cannot maintain it due to relatively low electrical conduc-
tivity [29–31]. In contrast, the vorticity, once established in the QGP, is sustained due to
the mechanical conservation of the angular momentum [28]. The emergence of vorticity can
be inferred from the spin polarization of emitted particles [32–34], which is a measure of the
alignment of their spins with the (local or global) angular momentum of the QGP [35, 36].

The hydrodynamic wave excitations that emerge in vortical plasmas of chiral fermions
propagate along the vorticity vector in the plasma. They can leave experimental signa-
tures that resemble the Chiral Magnetic Wave, imprinted, supposedly, in other observables.
Below, we concentrate on the theoretical questions related to the very existence of these
modes, their spectrum, and their lifetimes. The discussion of their experimental signatures
will be presented elsewhere.
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In our paper, we stress that the incorporation of the helical charges is important for
the hydrodynamics of the system. In particular, in a system of rotating Dirac fermions at
finite temperature and density, the accounting of the helical degree of freedom drastically
affects the hydrodynamic spectrum. For example, a new type of excitations, suggested
under a collective name “the helical vortical effects,” emerges as hydrodynamic modes that
intertwine coherent fluctuations of vector, axial, and helical charges [15]. At the typical
parameters of the quark-gluon plasma, the helical modes show a rather profound difference
compared to chiral modes, implying, in particular, that the Helical Vortical Wave propagates
much faster than the Chiral Vortical Wave [15]. Notice that the Chiral and Helical Vortical
Waves and their generalization, considered in this paper, should be distinguished from the
chiral density wave [37] and its dual analogue [38] (also, in rotating matter [39, 40]) that
emerge in the dense matter and are characterized by a static coherent state of spatially
varying scalar and pseudoscalar condensates.

We will also show below that in the presence of a non-vanishing axial (chiral) chemical
potential, the system of massless fermions hosts the Axial Vortical Wave (AVW). On a
background with positive (negative) chiral imbalance, this rather unusual excitation prop-
agates only opposite to (along) the vector of vorticity and not forward (backwards). Notice
that the existence of the AVW does not rely on helical degrees of freedom, as this excita-
tion can also propagate in the purely axial sector. The non-reciprocity of wave propagation
is a remarkable and relatively rare phenomenon that needs a particular set of conditions.
For example, in the condensed matter setting, one can find a unidirectional propagation of
phonons associated with longitudinal vibrations of a twisted crystal lattice of Weyl semimet-
als that exhibit the axial anomaly [41]. The phonons propagate only along the direction of
the twist and not backward. This excitation, dubbed the chiral sound wave, resembles the
Axial Vortical Wave because the twist of the crystal can be associated with the vorticity of
the underlying ion lattice.

The structure of the paper is as follows. In Sec. 2, we describe the rotating state in
thermal equilibrium. We then formulate the equations obeyed by the fluctuations around
this state in the Landau frame in the vicinity of the rotation axis. In our setup, the
fluctuations of the charge sector decouple from the energy-momentum sector in the Landau
frame.

As already mentioned above, in this work, we analyze the wave spectrum arising in a
rotating V/A/H fluid when all three charges are conserved. In Sec. 3, we discuss the wave
spectrum in the large temperature limit. The emergence of the Helical Vortical Wave and
the strictly unidirectional Axial Vortical Wave is demonstrated in Subsections 3.1 and 3.2.
We discuss the case of an unpolarized plasma in Subsec. 4, where the axial and the helical
chemical potentials vanish, which can be treated exactly to a high degree. In Sec. 5, we
discuss the so-called degenerate limit when the vector chemical potential µV is larger than
the temperature and the other chemical potentials. This case —which can be dubbed as a
weakly polarized plasma— corresponds to a realistic high-density matter state (|µV | � T ).
At the same time, the smallness of the other chemical potentials (µA and µH) emulates the
non-conservation of the corresponding charges.
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2 Anomalous transport in vortical fluids

We start this section with a brief review of the vortical effects involving the thermal expec-
tation values of the energy-momentum tensor and of the vector, axial and helicity currents,
summarized in Subsec. 2.1. We then discuss the transition from the natural thermome-
ter (β) frame to the Landau frame in the limit of slow rotation in Subsec. 2.2. Then, we
consider the conservation properties of the vortical/axial/helical (V/A/H, for shortness)
currents considered in this paper. We leave a discussion of the mechanisms leading to their
non-conservation in the companion paper [26]. Finally, we present the general framework
for the analysis of vortical waves in Subsec. 2.4.

2.1 Quantum vortical effects

Due to spin-orbit coupling, a fermionic plasma under rotation develops a spin polarization
current along the direction of the local vorticity vector. More specifically, let us consider
free massless fermions, described by the Dirac Lagrangian L = iψ̄ /∂ψ. These fermions may
be characterized by their vector charge, distinguishing between particles and anti-particles
(σ = ±1), axial charge (ξ = ±1), and helical charge (λ = ±1/2). Rotating states may be
described in the grand canonical ensemble using the density operator

ρ̂ = exp

[
−β(Ĥ − ΩĴz − ~µ · ~̂Q)

]
, (2.1)

where Ĥ and Ĵz are the system’s Hamiltonian and z-axis total angular momentum, while
~̂Q = (Q̂V , Q̂A, Q̂H) collectively denotes the vector, axial and helical charge operators, re-
spectively. The Lagrange multipliers β, Ω and ~µ = (µV , µA, µH) corresponding to these
(conserved) operators characterize the system inverse temperature, angular velocity, and
vector/axial/helical chemical potentials, respectively. The statistical operator (2.1) defines
a preferred frame, called the thermometer (or β) frame, characterized by the four-velocity
corresponding to rigid rotation:

uµΩ∂µ = ΓΩ(∂t + Ω∂ϕ), ΓΩ =
1√

1− ρ2Ω2
, (2.2)

where (t, ρ, ϕ, z) represent cylindrical coordinates and ρ is the transverse-plane distance
to the rotation axis z. The velocity profile in Eq. (2.2) allows one to introduce a so-
called kinematic tetrad, comprised of the four-velocity uµ, the kinematic vorticity vector
ωµ = 1

2ε
µνλσuν∇λuσ, acceleration vector aµ = uν∇νuµ, as well as a fourth vector τµ =

−εµνλσωνaλuσ. In the case of rigid rotation, these four vectors are mutually orthogonal.
Explicitly, uµ is given in Eq. (2.2), while the other three vectors are given as follows:

ωΩ = ΩΓ2
Ω∂z, aΩ = −ρΩ2Γ2

Ω∂ρ, τΩ = −ρΩ3Γ5
Ω(ρΩ∂t + ρ−1∂ϕ). (2.3)

In the classical Dirac theory, the energy-momentum tensor Tµν and the charge currents
JµV/A/H read

Tµν =
i

2
ψ̄γ(µ∂ν)ψ, JµV = ψ̄γµψ, JµA = ψ̄γµγ5ψ, JµH = ψ̄γµhψ + hψγµψ. (2.4)
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In thermal field theory, one may compute the thermal expectation value of an operator Â
via A = 〈Â〉 ≡ Z−1tr(ρ̂Â), where Z = tr(ρ̂) is the partition function. The expectation
values Tµν ≡ 〈T̂µν〉 and Jµ` = 〈Ĵµ` 〉 of, respectively, the energy-momentum tensor and
the charge currents can be obtained in quantum field theory [42–44]. As is customary
in relativistic fluid dynamics, one can decompose these quantities uniquely after defining
a so-called hydrodynamic frame that fixes the fluid’s four-velocity. In the β frame, the
four-velocity is given by uµΩ and

Jµ` = Q`;βu
µ
Ω + V µ

`;β, Tµν = Eβu
µ
Ωu

ν
Ω − (Pβ +$β)∆µν

Ω + πµνβ +Wµ
β u

ν
Ω +W ν

β u
µ
Ω, (2.5)

where the subscript β reminds us that all quantities appearing on the right-hand sides of the
above relations are computed in the β frame. The charge densities Q`;β (` ∈ {V,A,H}),
energy density Eβ and thermodynamic pressure Pβ are terms characteristic of a perfect
fluid.

In Eq. (2.5), the tensor ∆µν
Ω = gµν−uµΩuνΩ is a projector on the hypersurface orthogonal

to uµΩ, while the deviations from the perfect fluid form, namely $β , V
µ
`;β , W

µ
β and πµνβ , are

by construction traceless and orthogonal to uµΩ. These terms arise as quantum corrections
induced by the local acceleration and vorticity of the fluid. For a conformal fluid, the
equation of state Eβ = 3Pβ and the tracelessness condition Tµµ = 0 imply that the dynamic
pressure vanishes, $β = 0. The constitutive equations for V µ

`;β , W
µ
β and πµνβ in the β frame

are given by the vortical effects derived in Ref. [45]:

V µ
`;β = σω`;βω

µ
Ω + στβ;`τ

µ
Ω, Wµ

β = σωε;βω
µ
Ω + στε;βτ

µ
Ω,

πµνβ = π1;β

(
τµΩτ

ν
Ω −

ω2
Ω

2
aµΩa

ν
Ω −

a2
Ω

2
ωµΩω

ν
Ω

)
+ π2;β(ωµΩτ

ν
Ω + ωνΩτ

µ
Ω), (2.6)

where σω`;β = (σωV ;β, σ
ω
A;β, σ

ω
H;β) represent the vector/axial/helical vortical conductivities

and σωε;β is the vortical heat conductivity. Likewise, στ`;β and στε;β represent circular con-
ductivities. Finally, π1;β and π2;β represent shear-stress coefficients.

All of the above scalar functions can be calculated in quantum field theory as the sum
of a classical term followed by quantum corrections, with the latter being at least quadratic
in ~Ω. As pointed out in Ref. [45], the classical pressure can be calculated on the basis of
an ensemble of polarized fermions described by the Fermi-Dirac distribution,

f eq;σ
p,λ =

[
exp

(
p · u− µσ,λ

T

)
+ 1

]−1

, (2.7)

where pµ = (p0,p) is the particle four-momentum (p0 = |p| for massless fermions), σ =

±1 distinguishes between particles and anti-particles, while λ = ±1/2 labels the particle
helicity. The chemical potential µσ,λ arises due to the vector, axial, and helical imbalances
in the system, having the expression

µσ,λ = ~qσ,λ · ~µ = σµV + 2λµA + 2σλµH , (2.8)

where ~qσ,λ = {σ, 2λ, 2λσ} collects the vector, axial and helical charges. In Eq. (2.7), T
and µσ,λ represent the local temperature and a set of chemical potentials, respectively.
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For example, for the rigidly-rotating system, when uµ → uµΩ, temperature T and chemical
potentials µσ,λ are given by the Tolman-Ehrenfest law,

T = ΓΩT0, µσ,λ = ΓΩµ
0
σ,λ, (2.9)

with (T0, µ
0
σ,λ) being the values of temperature and chemical potential on the rotation axis.

The above kinetic theory framework allows the classical contribution to the thermody-
namic pressure of the system to be computed as

Pβ;cl =
1

3

∑
σ,λ

∫
dP E2

pf
eq;σ
p,λ = −T

4

π2

∑
σ,λ

Li4(−eµσ,λ/T ), (2.10)

where dP = d3p/[(2π)3p0] is the Lorentz-invariant momentum space integration measure,
Ep = p · u is the particle energy in the fluid rest frame and Lis(z) =

∑∞
n=1 z

n/ns is
the polylogarithm. All other quantities can be computed from Pcl via thermodynamic
derivatives, see Eq. (70) in Ref. [15]:

Q`;β;cl =
∂Pβ;cl

∂µ`
, σω`;β;cl =

1

2

∂2Pβ;cl

∂µA∂µ`
, στ`;β;cl =

1

12

∂3Pβ;cl

∂2µA∂µ`
, (2.11)

while σωε;cl = QA;cl. Finally, π1;β;cl = −2σπA;β;cl/27 and π2;β;cl = −2στA;β;cl [see Eq. (94) in
Ref. [15]], where σπ`;β;cl = 1

2∂
4Pcl/∂

3µA∂µ` [cf. Eq. (70) in Ref. [15]].

2.2 The Landau frame

In the case when the rotation is slow, one may neglect quadratic terms in Ω for a region
close to the rotation axis. Since the vector τµ is of third order in Ω, it can be neglected,
such that Jµ` and Tµν simplify to

Jµ` ' Q`;βu
µ
Ω + σω`;βω

µ
Ω, Tµν ' (Eβ + Pβ)uµΩu

ν
Ω − Pβgµν + σωε;β(ωµΩu

ν
Ω + uµΩω

ν
Ω), (2.12)

where we used the subscript β to indicate that the above decomposition is performed with
respect to the β-frame four-velocity, uµΩ. Neglecting quadratic terms in Ω also implies that
the quantum corrections to the above expressions can be ignored and, e.g., Pβ can be safely
replaced by Pβ;cl in Eq. (2.10). For notational convenience, we shall drop the “cl” subscript
from all thermodynamic quantities in what follows.

We now seek to reexpress Jµ` and Tµν with respect to the Landau frame. The latter
frame is characterized by the four-velocity uµL satisfying the eigenvalue equation Tµνu

µ
L =

ELu
ν
L, where EL represents the energy density of the fluid in the Landau frame. A particular

feature of the Landau frame is that the heat-flux type of term is completely removed from
Tµν , giving rise to the decomposition

Jµ` = Q`;Lu
µ
L + V µ

`;L, Tµν = (EL + PL)uµLu
ν
L − PLgµν + πµνL . (2.13)

Working under the assumption of small Ω, we can determine the Landau four-velocity up
to first order with respect to Ω as

uµL = uµΩ +
σωε;β
E + P

ωµΩ. (2.14)
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To linear order in Ω, the energy density, pressure and charge densities remain unchanged,
EL = Eβ ≡ E, PL = Pβ ≡ P , and QL;` = Qβ;` ≡ Q`, while the shear-stress tensor πµνL is
quadratic with respect to Ω and will, therefore, be disregarded. For notational convenience,
we shall remove the L subscript for Landau-frame quantities. The vortical conductivities
now absorb the vortical heat conductivity, as follows:

σω` = σω`;β −
σωε;βQ`

E + P
. (2.15)

Since we chose to ignore terms that are quadratic with respect to the angular frequency
Ω, it is possible to employ one further simplification. We consider the Lorentz boost to the
frame where the z component of the four-velocity vector uµL vanishes:

Lµν = gµν −
σωε;β
E + P

(uµΩω
ν
Ω + uνΩω

µ
Ω). (2.16)

One can easily check that uµL → Lµνu
ν
L = uµΩ +O(Ω2) ' uµΩ. To linear order, the vorticity

vector ωµΩ remains unchanged. Thus, in this boosted Landau frame, we have:

Tµν = (E + P )uµuν − Pgµν , Jµ` = Q`u
µ + σω` ω

µ, (2.17)

where we dropped both the L and the Ω labels for notational brevity. All quantities
appearing above are given by the classical expressions in Eqs. (2.10)–(2.11), i.e.

P =
E

3
' −T

4

π2

∑
σ,λ

Li4(−eµσ,λ/T ), Q` '
∂P

∂µ`
, σω` '

1

2

∂2P

∂µ`∂µA
− Q`QA
E + P

. (2.18)

2.3 Vector/axial/helical anomalous vortical transport as spin-orbit coupling

Before addressing the technical details of explicit calculations of the hydrodynamic wave
spectrum, it is necessary to discuss certain simple and easily understandable examples
of anomalous vortical transport. Our calculations involve the helical degree of freedom,
which is often misidentified with the chiral property of a fermion. As we highlighted in
the Introduction, the chirality and helicity – that are related, for a single (anti-)fermion,
to each other via Eq. (1.1) – are distinct quantities of fermionic ensembles that constitute
different properties of a many-body fermionic system. This distinction also reveals itself at
the level of anomalous transport.

It is worth noticing that the vortical conductivities defined in the Landau frame (2.15)
and in the β frame differ from each other due to the freedom of interpreting the heat flux
as particle diffusion and vice-versa, see Eq. (2.15). However, in the physically interesting
high-temperature limit, the leading contributions to the anomalous conductivities in the
β frame and in the Landau frame – which will be given below in Eqs. (3.5e) and (3.5f),
respectively – are the same for both frames up to subleading O(T 0) corrections and they
agree qualitatively, up to a numerical factor, even in the O(T−1) order. Explicitly, the
leading anomalous vector, axial and helical conductivities in the β frame read, respectively,
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(b) Helical Vortical Effect: Vector current in helical background ( )μV = 0, μA = 0, μH ≠ 0, T ≠ 0
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(c) Helical Vortical Effect: Helical current in vector background ( )μV ≠ 0, μA = 0, μH = 0, T ≠ 0
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Figure 1: Generation of chiral and helical vortical effects due to spin-orbit coupling in
fermion–anti-fermion ensembles rotating with the angular velocity Ω. An elementary count-
ing of vector, axial, and helical degrees of freedom explains the emergence of (a) the Chiral
Vortical Effect (2.19a) in a neutral plasma as well as the Helical Vortical Effects (2.19b)
and (2.19c) in the helically imbalanced (b) and degenerate (c) plasma. The chirality of
particles is denoted by the letters R/L; their helicity is shown by the arrows ↑ / ↓; the
vector charge is presented by the signs +/−. The counting gives the total charges, Q` and
the z-axis projection of the currents Jz` , with ` = V,A,H for each case.
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as follows [45]:

σωβ;A =
T 2

6
+

1

2π2
(µ2
V + µ2

A + µ2
H) +O(T−1) , (2.19a)

σωβ;V =
2T ln 2

π2
µH +

µV µA
π2

+O(T−1) , (2.19b)

σωβ;H =
2T ln 2

π2
µV +

µHµA
π2

+O(T−1) . (2.19c)

In the first term of Eq. (2.19a), we immediately recognize the Chiral Vortical Effect [11,
12], which appears as a result of the axial-gravitational anomaly [46]. Despite its anomalous
origin, the emergence of the Chiral Vortical Effect (2.19a) can be readily understood on the
basis of a simple particle counting of spin degrees of freedom in the system of the chiral
fermions polarized in the presence of the vortical (rotating) background. Below, we also
demonstrate that the Helical Vortical Effects, given in Eqs. (2.19b) and (2.19c), appear
naturally on the very same basis as its famous chiral partner (2.19a). To this end, we give
in Fig. 1 a pictorial counting for all three effects in Eqs. (2.19) to demonstrate its common
origin.

All illustrations in Fig. 1 are based on the simple fact that the chiralities and helicities
are equal (opposite) for particles (antiparticles). The charge conjugation C transforms a
particle to its antiparticle (q → −q) and, at the same time, flips its helicity (↑ / ↓ →
↓ / ↑) while leaving intact its chirality (R/L → R/L). These properties are consistent
with the observation that helicity, similarly to the vector charge of the particle, is a P–
odd quantity while the chirality is a P-even characteristic of the fermion. On the other
hand, the parity transformation P does not, expectedly, affect the vector charge, while
it naturally flips both helicity (↑ / ↓ → ↓ / ↑) and chirality (R/L → R/L), which are
P–odd quantities. These properties are consistent with Eq. (1.1) and are summarized in
Table 1 below. As seen in Table 1, the C parities of the spatial currents JV , JA and JH
are identical with those of the corresponding charges, while their P and T parities are
reversed. The P and T parities of the currents J` are identically shared by the product
Q`p

z, where pz is the z-axis momentum of a hypothetical plasma constituent. Therefore, a
simple, qualitative explanation of the macroscopic, ensemble-averaged, vortical effects can
be visualized pictographically by considering individual constituents and their direction of
motion, as indicated in Fig. 1.

The natural appearance of the Chiral Vortical Effect (2.19a) in a system of rotating
chiral fermions is illustrated in Fig. 1(a). The spin-orbital interaction couples the orbital
motion of the fermion–anti-fermion ensemble with the polarization of the spin of each
particle. The particle spin s tends to align with the angular velocity Ω regardless of the
charge of the particle, as the spin-orbital coupling does not discriminate between particles
and antiparticles. In Fig. 1(a), we show, for simplicity, a maximally spin-polarized ensemble
with the spins of all constituents s aligned along the angular velocity Ω. The ensemble is
neutral in all possible charges as the total vector, axial and helical numbers are zero. To
achieve total neutrality of a non-empty ensemble, one needs at least four constituents: one
(chirally) right-handed particle and a left-handed particle as well as their antiparticles, as
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QV QA QH JV JA JH v Ω

C − + − − + − + +

P + − − − + + − +

T + + + − − − − −

Table 1: The charge conjugation C, the parity inversion P, and the time reversal T
symmetries of the vector QV , axial QA, and helical QH charges their currents, J` (` =

V,A,H), as well as the group velocity v = ∂ω/∂k and the vorticity Ω. The signs +/−
indicate the even/odd nature of these quantities under the corresponding inversions.

it is shown in the figure. A simple counting, reproduced in this figure as well, shows that
the spin polarization in this ensemble generates an axial current along the axis of rotation,
jA ∝ Ω, while the vector and helical currents vanish identically. This simple picture based
on degree-counting is perfectly consistent with the prediction of the anomalous transport
laws (2.19) for the neutral plasma (with µV = µA = µH = 0).

An immediate emergence of one of the Helical Vortical Effects (2.19b) is illustrated
in Fig. 1(b). Here, we consider a helically nontrivial background where the helical charge
is non-zero while all other (vector and axial) charges are vanishing. To achieve this set
of quantum numbers, it is sufficient to take a chirally right-handed particle and a chirally
left-handed antiparticle. One quickly arrives at the conclusion that in this ensemble, the
spin polarization produces the vector current along the angular velocity: JV ∝ Ω. The
axial current is also generated in consistency with Eq. (2.19a).

Figure 1(c) shows that in the presence of a vector charge (one right-handed particle
and one left-handed particle), the spin-orbit coupling generates the helical current JH ∝ Ω

along the axis of rotation as follows from the other type of the Helical Vortical Effect (2.19c).
The axial current is again generated in consistency with Eq. (2.19a).

Finally, to close our considerations, we consider the purely axial background. Then the
anomalous vortical effects (2.19) predict that such an ensemble may only lead to an axial
current (2.19a), while the vector (2.19b) and helical (2.19c) currents should vanish. It is
not difficult to check these properties following our considerations in Fig. 1, by considering,
for example, an ensemble made of one chirally right-handed particle and its antiparticle.

Thus, the chirality and helicity are independent numbers that appear naturally in the
fermionic systems containing both particles and antiparticles. As we have just seen, the
presence of helical charge generates the vector current while the excess of vector charge
produces the helical flow along the axis of rotation. Both the helical and vector charge den-
sities produce the axial current. These anomalous transport effects, presented in Eq. (2.19)
and qualitatively justified by the counting of Fig. 1, intertwine the vector, axial and helical
degrees of freedom in the form of hydrodynamic excitations. The rigorous investigation of
these hydrodynamic effects is the subject of the present paper.
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2.4 Conservation equations for longitudinal perturbations

We now consider small perturbations around the rigidly rotating state in terms of fluc-
tuations of velocity, charge densities, and pressure. While doing so, we assume that the
constitutive Eqs. (2.17) continue to hold, with the quantities E, Q` and σω` derived from P

as in Eq. (2.18), uµ being now the perturbed velocity and ωµ the perturbed vorticity associ-
ated to uµ. Perturbations in the chemical potentials µ` and temperature T are subsequently
induced by the relations

δP =
∂P

∂T
δT +

∂P

∂µ`
δµ`, δQ` =

∂Q`
∂T

δT +
∂Q`
∂µ`′

δµ`′ , (2.20)

with ∂P/∂T = s = (E + P − ~Q · ~µ)/T being the entropy density and ∂P/∂µ` = Q`. We
consider the limit of slow rotation and continue to retain only terms that are linear in the
angular frequency Ω. For consistency, we focus on the region around the rotation axis,
where ρΩ� 1.

In this paper, we are interested in the study of the propagation of perturbations
along the axis of rotation (the z axis). Decomposing the time-dependent four-velocity
ūµ ≡ ūµ(t, z), charge densities Q` ≡ Q`(t, z) and pressure P ≡ P (t, z) into a background
contribution (denoted without the overline) and a perturbation,

ūµ = uµ∂µ + δūµ, Q` = Q` + δQ`, P = P + δP , (2.21)

we expand the perturbations δūµ, δQ` and δP in a Fourier series,

δūµδQ`
δP `

 =

∫ ∞
−∞

dk eikz
∑
ω

e−iωt

 δuµω(k)

δQ`;ω(k)

δPω(k)

 , (2.22)

where ω ≡ ω(k) is the angular frequency, which is related to the wavenumber k via the
dispersion relation. Note that the vorticity four-vector, ωµ, always carries a Lorentz four-
index, whereas its magnitude is denoted by Ω, such that there is no risk of confusion with
the angular frequency ω. The background four-velocity uµ ≡ uµΩ is introduced in Eq. (2.2)
and corresponds to that of a rigidly-rotating fluid, while the background pressure and charge
densities are assumed to be constant. Notice that the perturbation mode amplitudes for
the four-velocity, δuω, charge densities, δQ`;ω, and pressure, δPω, can take complex values
corresponding to a (relative) phase of these fluctuations.

For simplicity, in this work, we focus only on longitudinal perturbations of the velocity,
such that δuµω∂µ = δuω∂z. These perturbations in the velocity induce a perturbation in the
vorticity,

ω̄µ∂µ = Ω∂z + Ω

∫ ∞
−∞

dk eikz
∑
ω

e−iωtδuω
(
∂t − i

2ωρ∂ρ
)
. (2.23)
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The projector ∆
µν

= ∆µν + δ∆µν is given by its background value corresponding to rigid
rotation [cf. also Eq. (2.5)], and the perturbation δ∆µν

=
∫∞
−∞ e

ikz
∑

ω e
−iωtδ∆µν

ω , satisfying

∆µν =


0 yΩ −xΩ 0

yΩ −1 0 0

−xΩ 0 −1 0

0 0 0 −1

 , δ∆µν
ω = δuω


0 0 0 −1

0 0 0 yΩ

0 0 0 −xΩ

−1 yΩ −xΩ 0

 . (2.24)

We are now ready to set up the linear perturbations problem. For this purpose, we
assume, as stated in the introduction of this section, that the stress-energy tensor Tµν and
the charge currents Jµ` are given as in Eqs. (2.17). The dynamics of the velocity and pressure
perturbations follow by imposing the conservation of energy and momentum, ∂µTµν = 0,
leading to

DE + (E + P )θ = 0, (E + P )Duµ −∇µP = 0, (2.25a)

where D = uµ∂µ represents the comoving derivative, ∇µ = ∆µν∂ν is the spatial gradient in
the fluid rest frame, while θ = ∂µu

µ is the expansion scalar. For simplicity, the overhead
bars were dropped in the above equations, however we understand that they will hold also
for the perturbed quantities.

Furthermore, we impose the conservation of the charge currents, ∂µJ
µ
` = 0, with ` ∈

{V,A,H}. All three currents are conserved in the quantum field theory of free (non-
interacting) massless fermions. This is certainly true also in the quantum case for the
vector current. In a realistic interacting theory, the conservation of the axial current is
broken by the axial anomaly [47–49]. Moreover, interactions mediated by vector bosons
(photons in QED or gluons in QCD) break the helicity current conservation through the
so-called helicity-violating pair annihilation (HVPA) processes (cf. Sec. 5.2 in Ref. [25]).
We address such effects in detail in our companion paper [26] and instead consider in this
paper that all three charge currents are conserved. Then, ∂µJ

µ
` = 0 leads to:

DQ` +Q`θ + ωµ∂µσ
ω
` + σω` ∂µω

µ = 0. (2.25b)

The terms appearing in Eqs. (2.25) above can be computed by going to Fourier space,
which amounts to the following substitutions:

Df → −iωδfω, θ → ikδuω, ∂µω
µ → −2iωΩδuω,

ωµ∂µσ
ω
` → ikΩ

∂σω`
∂P

δPω +
∑

`′=V,A,H

∂σω`
∂Q`′

δQ`′;ω

 ,

Duµ → −iωδµz δuω, ∇µP → −i[ωΩ(yδµx − xδµy ) + kδµz ]δPω, (2.26)

where f is a scalar function and the right arrow indicates projecting the quantities to the
left onto the (k, ω(k)) Fourier mode.

It is clear that the stress-energy sector is decoupled from the charge currents sector
since it involves only the amplitudes δuω and δPω, which satisfy the following closed set of
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equations: (
−3ω 4kP

k −4Pω

)(
δPω
δuω

)
= 0, (2.27)

There are two independent solutions to the above equation, which are obtained by the
requirement that the determinant of the matrix on the left-hand side of Eq. (2.27) vanishes:

3ω2 − k2 = 0 . (2.28)

This relation gives rise to the acoustic modes,

ω±ac. = ±csk, cs = 1/
√

3, (2.29)

with cs being the speed of sound in an ultrarelativistic ideal fluid. To leading order in Ω,
Eq. (2.27) admits also δuω = δPω = 0 as a trivial solution.

The charge conservation condition in Eq. (2.25) gives us the following set of equations:

∑
`′=V,A,H

(
ωδ`,`′ − kΩ

∂σω`
∂Q`′

)
δQ`′;ω − kΩ

∂σω`
∂P

δPω − (kQ` − 2ωΩσω` )δuω = 0, (2.30)

where we have adopted a unified notation to refer to all three charges, ` ∈ {V,A,H}.
Below, we focus on the hydrodynamic modes characterized by fluctuations of charge

densities and their currents, thus neglecting the purely acoustic modes. Setting δuω =

δPω = 0 in Eq. (2.30) leads to(
ωδQ`;ω − kΩδσω`;ω

)∣∣∣
δPω=0

= 0. (2.31)

The above equation, written with respect to the fluctuations δQ`;ω of the charge densities,
can be reexpressed in terms of fluctuations in the chemical potentials, δµ`;ω, as well as
fluctuations in temperature, δTω. Due to the constraint δPω = 0, these fluctuations are
not mutually independent. In fact, taking into account that δPω = sδTω +

∑
`Q`δµ`;ω, one

may replace δTω via

δTω = −
∑
`

Q`
s
δµ`;ω. (2.32)

Subsequently, this replacement leads to the following system of equations for the perturba-
tions in the chemical potentials:

∑
`′

M``′δµ`′;ω = 0, M``′ ≡M``′(k, ω) =
ω

s

∂(P,Q`)

∂(T, µ`′)
− kΩ

s

∂(P, σω` )

∂(T, µ`′)
, (2.33)

where it is understood that all quantities appearing in the expression for M`,`′ are evaluated
in the background state of the fluid. In the above, we employed the standard notation for
the Jacobian,

∂(f, g)

∂(x, y)
=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (2.34)
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Nontrivial solutions for ω can be obtained by requiring that the determinant of the matrix
M vanishes. Noting that Q` = ∂P/∂µ`, we can rewrite its temperature derivative as follows:

∂Q`
∂T

=
∂s

∂µ`
=

3Q`
T
− ~µ

T
· ∂Q`
∂~µ

, (2.35)

where we took into account that s = (E + P − ~µ · ~Q)/T , as well as the relation ∂ ~Q/∂µ` =

∂Q`/∂~µ. Similarly, taking into account that σω`;β = 1
2∂Q`/∂µA and σω` = σω`;β−QAQ`/(E+

P ), we have
∂σω`;β
∂T

=
2σω`;β
T
− ~µ

T

∂σω`;β
∂~µ

,
∂σω`
∂T

=
2σω`
T
− ~µ

T

∂σω`
∂~µ

. (2.36)

Therefore, the matrix elements M`,`′ can be expressed as

M``′ = ω

(
∂Q`
∂µ`′

− Q`′

s

∂Q`
∂T

)
− kΩ

(
∂σω`
∂µ`′

− Q`′

s

∂σω`
∂T

)
= ωT 2Mω

``′ − kΩTMΩ
``′ , (2.37a)

where we introduced for later convenience the following notation:

Mω
``′ =

1

T 2

(
∂Q`
∂µ`′

− 3Q`Q`′

sT
+
Q`′~µ

sT
· ∂Q`
∂~µ

)
, (2.37b)

MΩ
``′ =

1

T

(
∂σω`
∂µ`′

−
2σω` Q`′

sT
+
Q`′~µ

sT
·
∂σω`
∂~µ

)
. (2.37c)

The structure of the matrix M``′ shows that the angular velocities ω(k) obey linear disper-
sion relations,

ω = kv , (2.38)

where v = ω/k = ∂ω/∂k represents both the phase and the group velocity of the given
excitation mode, being independent on wavenumber k.

2.5 Full space-time solutions from Fourier modes

Let us consider a function f̄(t, z) characterizing the fluid state, taking the value f in the
background fluid state. Under small perturbations, δf̄(t, z) = f̄(t, z)− f can be expanded
with respect to the Fourier modes considered in Eq. (2.22) as follows:

δf̄(t, z) =

∫ ∞
−∞

dk eikz
∑
ω

e−iω(k)tδf [k, ω(k)], (2.39)

where δf [k, ω(k)] represent the Fourier mode amplitudes. In the above, we have anticipated
that the system supports only a discrete number of angular frequencies, characterized by
the dispersion relation ω ≡ ω(k). Let us look at the complex conjugate of f̄(t, z):

f̄∗(t, z) = f∗ +

∫ ∞
−∞

dk eikz
∑
ω

eiω
∗(−k)tδf∗[−k, ω(−k)] (2.40)

Imposing that f̄(t, z) is real implies that

ω∗(−k) = −ω(k), δf∗[−k, ω(−k)] = δf [k, ω(k)], (2.41)
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while f∗ = f . This imposes the structure

ω(k) = kCω(k)− iDω(k), (2.42)

where the phase velocity Cω(k) = Re[ω(k)/k] and the dissipation rate Dω(k) = −Im[ω(k)]

are both real and even with respect to k → −k. The modes allowed by the matrix M``′

have the linear dispersion relation ω = vk, hence Cω(k) = v and Dω(k) = 0. Using the
above notation, Eq. (2.39) can be written as

δf̄(t, z) = 2

∫ ∞
0

dk
∑
ω

{cos(kvt− kz)Re[δf(k, ω(k))]− sin(kvt− kz)Im[δf(k, ω(k))]} .

(2.43)
Frequently, we will consider the case when one of the chemical potentials (the rep-

resentative one) is initialized according to a simple, harmonic cosine profile, achieved by
setting

f̄(0, z) = f + δf̄0 cos(kz). (2.44)

This implies that the mode amplitudes δf(k′, ω(k′)) satisfy

δf(k′, ω(k′)) =
1

2
δfω[δ(k′ − k) + δ(k′ + k)], (2.45)

which is compatible with Eq. (2.41). The constants δfω must satisfy∑
ω

δfω = δf̄0, (2.46)

and the space-time solution reads

δf̄(t, z) =
∑
ω

δfω cos(kz − kvt), (2.47)

with v = ω/k being independent of k.
Finally, we will consider the case of an initial Gaussian profile,

f̄(0, z) = f + δf̄0 e
−z2/2σ2

. (2.48)

The mode amplitudes then satisfy∑
ω

δf(k, ω(k)) =
σ√
2π
δf̄0 e

−σ2k2/2. (2.49)

The exact expression for each mode amplitude δfk ≡ δf(k, ω(k)) depends on the conditions
imposed at the level of the three independent chemical potentials, δµ̄`;0 ≡ δµ̄`(0, z). Re-
trieving the space-time solution δf̄(t, z) requires the inverse Gaussian integration formula,

σ√
2π

∫ ∞
−∞

e−iωt+ikze−σ
2k2/2dk = e−(z−vt)2/2σ2, (2.50)

where we used the property that ω = kv and v is independent of k.
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3 Hydrodynamic waves at high temperature

In the large temperature limit, we may assume that |µ`| � T , allowing the polylogarithms
in Eq. (2.10) to be expanded in a Taylor series with respect to the dimensionless chemical
potentials α` = µ`/T . Using the definition of the polylogarithm,

Li4(−eµσ,λ/T ) =

∞∑
n=1

(−1)n

n4
enµσ,λ/T , (3.1)

we can expand the exponential in a Taylor series. The sum over n can be performed
employing the identity

∑∞
n=1(−1)n/ns = −(1− 21−s)ζ(s), where ζ(s) is the Riemann zeta

function. This procedure leads us to a number of useful identities:

∞∑
n=1

(−1)n

n4
= −7π4

720
,

∞∑
n=1

(−1)n

n3
= −3ζ(3)

4
,

∞∑
n=1

(−1)n

n2
= −π

2

12
,

∞∑
n=1

(−1)n

n
= − ln 2,

∞∑
n=1

(−1)n → −1

2
, (3.2)

where the last relation follows only under the assumption of analytical continuation of the
ζ function. The summation over the numbers σ = ±1 and λ = ±1/2 can be performed
using the relations:∑

σ,λ

1 = 4,
∑
σ,λ

µσ,λ = 0,
∑
σ,λ

µ2
σ,λ = 4~µ2,

∑
σ,λ

µ3
σ,λ = 24µ3

×,∑
σ,λ

µ4
σ,λ = 4

(
~µ2
)2

+ 16(µ2
V µ

2
H + µ2

V µ
2
A + µ2

Aµ
2
H), (3.3)

where we employed Eq. (1.1) to perform the sums and introduced the following notation:

~µ2 = µ2
V + µ2

A + µ2
H , µ3

× = µV µAµH . (3.4)

We therefore obtain for the pressure:

P =
7π2T 4

180
+
~µ2T 2

6
+

4µ3
×T

π2
ln 2 +

(~µ2)2

12π2
+
µ2
Aµ

2
H + µ2

V µ
2
H + µ2

V µ
2
A

3π2
+O(T−1), (3.5a)

The charge densitiesQ` and entropy density s can be found via the following thermodynamic
relations (2.11):

Q` =
µ`T

2

3
+

4T ln 2

π2

∂µ3
×

∂µ`
+
µ`(3~µ

2 − 2µ2
` )

3π2
+O(T−1), (3.5b)

s =
7π2T 3

45
+
~µ2T

3
+

4µ3
×

π2
ln 2 +O(T−2), (3.5c)

where it is understood that no summation over ` is implied in the last term in the above ex-
pression for Q`. In order to find the terms appearing in the matrix M``′ given in Eq. (2.37),
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the derivative of the charge densities with respect to the chemical potential must be com-
puted:

∂Q`
∂µ`′

=
δ``′T

2

3
+

4T ln 2

π2

∂2µ3
×

∂µ`∂µ`′
+
δ``′(~µ

2 − 2µ2
` ) + 2µ`µ`′

π2
+O(T−1), (3.5d)

where again, there is no summation with respect to ` in the last term appearing above.
The β-frame vortical conductivities can be obtained from Eq. (2.11) as:

σωβ;` =
δ`,AT

2

6
+

2T ln 2

π2
(µV δ`H + µHδ`V ) +

δ`A
2π2

(µ2
V − µ2

A + µ2
H) +

µ`µA
π2

+O(T−1). (3.5e)

Noting that Q`Q`′/(E +P ) = 5µ`µ`′/7π
2 +O(T−1), the Landau frame vortical conductiv-

ities introduced in Eq. (2.15) can be seen to differ from σωβ;` only in the O(T 0) term:

σω` =
δ`AT

2

6
+

2T ln 2

π2
(µV δ`H + µHδ`V ) +

δ`A
2π2

(µ2
V − µ2

A + µ2
H) +

2µ`µA
7π2

+O(T−1). (3.5f)

Their derivatives with respect to the chemical potentials are

∂σω`
∂µ`′

=
2T ln 2

π2
(δ`V δ`′H + δ`Hδ`′V ) +

δ`A
π2

(µ`′ − 2µAδ`′A) +
2

7π2
(δ``′µA + µ`δ`′A) +O(T−1).

(3.5g)
With the above results, the matrices Mω and MΩ defined in Eq. (2.37) can be expanded

as follows:

Mω =
1

3
I +

4 ln 2

π2T

 0 µH µA
µH 0 µV
µA µV 0

+O(T−2),

MΩ =
2 ln 2

π2

0 0 1

0 0 0

1 0 0

+
2

7π2T

µA µV 0

µV −4µA µH
0 µH µA

+O(T−2), (3.6)

where I is the unit matrix.
The equation det (M/T 2) = 0 can be solved iteratively, using the formula

det(A + εB) = det(A)[1 + εtr(A−1B) +O(ε2)], (3.7)

which is valid for small ε. Considering now a large-T expansion of the agular frequency ω,

ω = ω0 +
ω1

T
+
ω2

T 2
+O(T−3), (3.8)

it is easy to see that the zeroth-order term must vanish since

det[ω0I] = 0⇒ ω0 = 0. (3.9)

Now, taking into account that ω = ω1T
−1 + . . . , we notice that the leading-order term in

M/T 2 = ωMω − k(Ω/T )MΩ becomes of order T−1. Substituting Eq. (3.8) into Eq. (3.7),
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we obtain:

1

T 2
M =T−1M1 + T−2M2 +O(T−3),

M1 =
ω1

3
I− 2kΩ ln 2

π2

0 0 1

0 0 0

1 0 0

 ,

M2 =
ω2

3
I +

4ω1 ln 2

π2

 0 µH µA
µH 0 µV
µA µV 0

− 2kΩ

7π2

µA µV 0

µV −4µA µH
0 µH µA

 . (3.10)

The determinant of M1 reads

det(M1) =
ω1T

2

27

(
ω2

1

T 2
− k2c2

h

)
, (3.11)

where
ch =

6 ln 2

π2

Ω

T
, (3.12)

and the notation ch introduced above is the propagation speed of the helical vortical wave
in a neutral, unpolarized plasma with a conserved helical charge, see Eq. (116) in Ref. [15]
for details. The solution ω1 = 0 of Eq. (3.12) corresponds to the so-called Axial Vortical
Wave, while the solutions ω1/T = ±kch correspond to the Helical Vortical Waves. Notice
that despite the velocity for the Axial Vortical Wave vanishing in the zeroth and first orders,
this hydrodynamic mode is still a propagating excitation because the second order brings
a nonzero contribution to ω. These properties will be discussed in detail below.

3.1 Helical Vortical Wave

The solutions ω1/T → ω±h,1/T = ±kch of Eq. (3.11) represent two propagating modes,
corresponding to the Helical Vortical Wave (HVW). In order to compute the second order
correction ω±h;2 for the velocity of the vortical wave, we note that the inverse (M1)−1 of
the matrix M1 does not exist since we imposed det(M1) = 0. Nevertheless, the following
combination is still finite:

det(M1)(M1)−1 =
(ω±h;1)2

9k2

 1 0 ±1

0 0 0

±1 0 1

 . (3.13)

The leading-order contribution to det(M/T 2) is thus given by T−4tr[det(M1)M−1
1 M2], which

evaluates to
2(ω±h;1)2

27T 4

{
ω±h,2 +

6kΩµA
7π2

[
84

π2
(ln 2)2 − 1

]}
= 0. (3.14)

From the above equation, we obtain

ω±h,2 = −6kΩµA
7π2

[
84

π2
(ln 2)2 − 1

]
, (3.15)
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leading to the following extension of Eq. (3.12) for the velocity of the helical vortical wave:

ω±h = ±6 ln 2

π2

kΩ

T
− 6

7π2

[
84

π2
(ln 2)2 − 1

]
kΩµA
T 2

+O(T−3). [Helical Vortical Wave]

(3.16)

We see that at finite axial chemical potential µA, the angular velocity ω±h receives a non-
reciprocal contribution that distinguishes between the helical vortical waves propagating
along and opposite to the direction of vorticity.

Let us now consider the relation between the fluctuation amplitudes. Employing a
high-temperature expansion similar to that in Eq. (3.8),

δµh;±
` = δµh;±

`;0 + T−1δµh;±
`;1 + . . . , (3.17)

we get a matrix equation for the fluctuations of the chemical potentials, which also involve
the first-order corrections. To zeroth order, this equation reads as follows:

ωh;±
1

3

±1 0 −1

0 ±1 0

−1 0 ±1


δµ

h;±
V ;0

δµh;±
A;0

δµh;±
H;0

 = 0, (3.18)

giving us
δµh;±

A;0 = 0, δµh;±
H;0 = ±δµh;±

V ;0 . (3.19)

Therefore, in the leading order in the inverse temperature expansion, the helical vortical
wave represents a coherent propagation of helical and vector charges as encoded in the
relation (3.19) between the fluctuations of the corresponding potentials. In the same order,
the axial charge content of the helical vortical wave is vanishing. To be explicit, we take the
fluctuation amplitude δµh;±

V,0 ≡ δµh;±
V ;0 of the vector chemical potential to be the reference

amplitude scale. Therefore, we impose that its higher-order corrections vanish, δµh;±
V ;i>0 = 0.

Now, let us look at the next-to-the-leading order. We have a relation

M1

δµ
h;±
V ;1

δµh;±
A;1

δµh;±
H;1

+ M2

 1

0

±1

 δµh;±
V ;0 = 0, (3.20)

which constraints the fluctuations of the chemical potentials as follows:

δµh;±
H;1 =± δµh;±

V ;1 = 0, δµh;±
A;1 =− µH ± µV

7 ln 2

[
84(ln 2)2

π2
− 1

]
δµh;±

V ;0 . (3.21)

It can be seen that the first-order corrections to δµh;±
V/H;1 are absent, which is consistent with

the interpretation that the amplitudes δµ±V/H represent the relevant scale for the induced
amplitude of the axial chemical potential.

Therefore, the HVW is a hydrodynamic excitation in vector and helical charges, with
a slight admixture of the axial charge. In the HVW, the vector, axial, and helical chemical
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Figure 2: Time evolution of the charge perturbations (left) δµ̄V (t, z) and (right) δµ̄H(t, z),
corresponding to the propagation of the helical vortical wave (HVW) through a charge-
conserving plasma. The initial conditions are given in Eqs. (3.34). The background state
has parameters T = 300 MeV, Ω = 6.6 MeV, µV = 30 MeV and µA = µH = 0, corresponding
to the large temperature limit discussed in Sec. 3.

Figure 3: Time evolution of the axial charge perturbation δµ̄A(t, z), corresponding to
the propagation of the axial vortical wave (AVW) through a charge-conserving plasma.
The initial conditions are shown in Eq. (3.39). The background state has T = 300 MeV,
Ω = 6.6 MeV, µV = µH = 0 and µA = 30 MeV, corresponding to the large temperature
limit discussed in Sec. 3.

potentials are constrained as follows:

δµh;±
H =± δµh;±

V , [Helical Vortical Wave]

δµh;±
A =− 1

7 ln 2

[
84(ln 2)2

π2
− 1

]
µH ± µV

T
δµh;±

V +O(T−2). (3.22)

3.2 Axial Vortical Wave

We now focus on the axial vortical wave, for which the zeroth- and first-order terms in
the angular frequency vanish, ωa

0 = ωa
1 = 0. Thus, the angular frequency reads ωa =
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ωa
2T
−2 +O(T−3). In this case, we have the split

M =T 2[T−1M1 + T−2M2 +O(T−3)],

M1 =− 2kΩ ln 2

π2

0 0 1

0 0 0

1 0 0

 ,

M2 =
ωa

2

3

1 0 0

0 1 0

0 0 1

− 2kΩ

7π2

µA µV 0

µV −4µA µH
0 µH µA

 . (3.23)

At the level of the fluctuation amplitudes, the structure of M0 mandates that

δµaV ;0 = δµaH;0 = 0, (3.24)

while δµaA;0 remains arbitrary, and it is the relevant scale for the fluctuations in this axial
wave. For the next order, we have

− 2kΩ ln 2

π2

0 0 1

0 0 0

1 0 0


δµaV ;1

δµaA;1

δµaH;1

+

ωa
2

3

1 0 0

0 1 0

0 0 1

− 2kΩ

7π2

µA µV 0

µV −4µA µH
0 µH µA



 0

δµaA;0

0

 = 0.

(3.25)
The equation corresponding to the second line (which contains δµaA;1) can be satisfied only
if the leading-order contribution to the velocity is given by

ωa
2 = −24µAkΩ

7π2
. (3.26)

The amplitude δµaA;1 remains unconstrained (as it should be), and without loss of generality,
we set it to 0. The amplitudes corresponding to the vector and helical chemical potentials
satisfy

δµaV/H;1 = −
µH/V

7 ln 2
δµaA;0. (3.27)

Restoring the inverse powers of temperature in the above equations, we arrive at the
following physical picture of the Axial Vortical Wave. In the leading order, this hydrody-
namic excitation is dominated by the axial chemical potential fluctuations (hence the name)
δµA, which is accompanied by the induced vector and helical charge densities:

δµaV/H = −
µH/V

7T ln 2
δµaA +O(T−2), [Axial Vortical Wave] . (3.28)

In other words, the leading role in this hydrodynamic excitation is taken by the axial charge
density. In the presence of the vector (helical) chemical potential, the helical (vector)
chemical potential fluctuates in coherence with the axial chemical potential according to
Eq. (3.28).

The axial vortical wave slowly propagates along the vorticity vector with the speed

va ≡
ωa

k
= − 24

7π2

µAΩ

T 2
+O(T−3), [Axial Vortical Wave] . (3.29)
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The Axial Vortical Wave has three notable features. First, it propagates only in the presence
of the axial background charge characterized by a nonzero axial chemical potential, µA 6= 0.
Second, the propagation has a strictly uni-directional nature (3.29): depending on the sign
of the axial chemical potential, the wave propagates in the direction along (opposite to)
the vorticity vector Ω for µA < 0 (µA > 0). Third, the Axial Vortical Wave does not
generate oscillations in vector and helical chemical potentials if their background values are
vanishing, µV = µH = 0. In this case, the wave propagates as an oscillation in the axial
chemical potential only.

3.3 Propagation properties

We now consider two concrete examples to illustrate the properties of the HVW and AVW,
respectively. In the first case, we take the following initial conditions:

µ̄V (t = 0, z) = µV + δµ̄V ;0 cos(kz), µ̄A(t = 0, z) = µH(t = 0, z) = 0, (3.30)

where we used the overhead bar µ̄V to denote the background value of the vector chemical
potential (both the axial and helical background chemical potentials vanish). We then have
three equations for the mode amplitudes,

δµh;+
V + δµh;−

V + δµaV = δµ̄V ;0,

δµh;+
A + δµh;−

A + δµaA = 0,

δµh;+
H + δµh;−

H + δµaH = 0. (3.31)

Using Eq. (3.27), it can be seen that δµaV = 0. Using the last two of the above relations, it
can be shown that δµaA = 0, which leads to the solution

δµh;+
V = δµh;−

V =
1

2
δµ̄V ;0, (3.32)

while δµh;±
H = ±δµh;±

V and δµh;±
A = 0, with δµaV = δµaA = δµaH = 0. The full solution

describes the propagation of the helical vortical wave in an unpolarized plasma,

µ̄V (t, z) = µV + δµ̄V ;0 cos(kcht) cos(kz), µ̄H(t, z) = δµ̄V ;0 sin(kcht) sin(kz), (3.33)

while µ̄A(t, z) = 0.
We now consider the Gaussian example suggested in Eq. (2.48). We take

µ̄V (0, z) = µV + δµ̄V ;0 e
−z2/2σ2

, µ̄A(0, z) = µ̄H(0, z) = 0. (3.34)

Applying Eq. (2.49), the mode amplitudes can be found as

δµh;+
V (k) = δµh;−

V (k) =
σ δµ̄V ;0

2
√

2π
e−σ

2k2/2, (3.35)

while δµh;±
H (k) = ±δµh;±

V (k). Reconstituting the time-dependent profile using Eq. (2.50),
we find

δµ̄V (t, z) =
δµ̄V ;0

2

[
e−(z−cht)2/2σ2

+ e−(z+cht)
2/2σ2

]
,

δµ̄H(t, z) =
δµ̄V ;0

2

[
e−(z−cht)2/2σ2 − e−(z+cht)

2/2σ2
]
. (3.36)
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The HVW splits the initial Gaussian in two lumps travelling along and opposite to the
vorticity vector. The excess vector charge is carried symmetrically in both directions. The
lump travelling in the direction of the vorticity vector has equal vector and helicity charges,
while the lump travelling opposite to the vorticity vector presents vector and helicity charges
of equal magnitude but opposite sign. Thus, the HVW generates a local helicity imbalance
that propagates out towards the system edges. This behaviour is illustrated in Fig. 2.

To illustrate the properties of the axial vortical wave, we set the initial conditions

µ̄A(0, z) = µA + δµ̄A;0 cos(kz), µ̄H(0, z) = − µV
7T ln 2

δµ̄A;0 cos(kz), (3.37)

while µ̄V (0, z) = µV . Then, the HVW modes vanish, δµh;±
` = 0, for all ` ∈ {V,A,H}.

Moreover, δµaV = 0, while δµaH = −µV δµ̄A;0/(7T ln 2). The full solution reads

µ̄A(t, z) = µA + δµ̄A;0 cos(ωat− kz), µ̄H(t, z) = −
µV δµ̄A;0

7T ln 2
cos(ωat− kz), (3.38)

where ωa = kva ' −24µAkΩ/(7π2T 2). Contrary to the solution in Eq. (3.33), the AVW is
not a standing wave. It is rather a propagating solution, transferring axial charge in the
direction opposite to that of the vorticity. This feature is better seen when considering the
Gaussian example, with the following initial configuration:

µ̄V (0, z) = µV , µ̄A(0, z) = µA + δµ̄A e
−z2/2σ2

, µ̄H(0, z) = − µV
7T ln 2

µ̄A(0, z). (3.39)

Since only the axial mode is excited by these initial conditions, the solution trivially reads

µ̄A(t, z) = µA + δµ̄A e
−(z−vat)2/2σ2

, (3.40)

while µ̄V (t, z) = µV and µ̄H(t, z) = −µV µ̄A(t, z)/(7T ln 2). The above solution shows
clearly that the AVW will lead to uni-directional transport of the excess axial charge in the
direction opposite to the vorticity. This behaviour is illustrated in Fig. 3.

3.4 Symmetries of the helical and axial vortical waves

Qualitatively, the emergence of the non-reciprocal propagation effects can be understood on
the basis of discrete CPT symmetries of the quantities involved in the process (summarized
in Table 1). For a slowly rotating fluid of massless fermions, the leading contribution to the
velocity of a hydrodynamic wave excitation in a rotating fluid should be linearly proportional
to the magnitude of the corresponding angular velocity, v ∝ Ω (here, we remove all indices
for simplicity). One can also notice the collinearity of these vectors v‖Ω following from the
spatial symmetries of the system. One gets for the dispersion relation the following generic
expression:

ω = C(T, µV , µA, µH)k ·Ω, (3.41)

where C is a function of all parameters of the system.
Consider first a neutral fluid with vanishing chemical potentials, ~µ = 0. Since temper-

ature T is the only dimensionful parameter in this case, one has C ∝ 1/T for dimensional
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reasons. The latter statement also implies that C is a P- and T -even quantity in a neutral
fluid.

The T symmetries of the two sides of Eq. (3.41) are different: while the wave velocity
v is a P-odd quantity, the angular velocity Ω is P-even (c.f. Table 1). Equation (3.41) is
preserved under the time reversal T and the charge conjugation C transformations, while
it changes the sign under the parity inversion P.

Now we notice that in the discussed system, all chemical potentials vanish, thus im-
plying that its P- (and T )-symmetries are unbroken. Therefore, a P transformation ap-
plied to the system should give us a system with identical properties. The latter state-
ment is formally inconsistent with the P-property of Eq. (3.41) as the parity transform
—corresponding to the inversion of all spatial coordinates— flips the sign of this equa-
tion. Therefore, the wave is either absent (C = 0), or there are two identical waves, with
C → ±|C|, propagating in opposite directions with the same velocities. These branches of
Eq. (3.41) are then mapped to each other by the P transformation, and the system main-
tains the invariance under parity transformation. The latter property, indeed, is realized
in our case of the Helical Vortical Waves, indicating the reciprocity of the hydrodynamic
spectrum of the neutral fluid.

Can the generic law (3.41) describe non-reciprocal waves? To figure this out, let us
consider the system with all three chemical potentials non-vanishing. One can write for the
proportionality function (3.41)

C(T, ~µ) = TcT + µV cV + µAcA + µHcH + µV µAcV A + µV µHcV H + µAµHcAH , (3.42)

where cT , c` and c`,`′ with `, `′ = V,A,H are CPT -invariant functions of the temperature
T and the chemical potentials ~µ = (µV , µA, µH).

We require that the C symmetry of the system should be unbroken to be consistent
with the anticipations in quantum field theory. In our case, this statement means that the
spectrum of the hydrodynamic excitations in the system with particles and the identical
system made of anti-particles should be the same. Since µV and µH are C-odd quantities
the corresponding coefficients must vanish in Eq. (3.42): cV = cH = cV A = cAH = 0.
Therefore, we are only left with two terms in the generic expression for the group velocity:

v =
dω

dk
= cTTΩ + cAµAΩ + cV HµV µHΩ , (3.43)

where we remind that cT , cA and cV H are CPT -invariant quantities.
As we discussed above, the first term in Eq. (3.43) breaks parity P inversion for the

hydrodynamic wave, leading to the existence of two identical counter-propagating branches
that preserve reciprocity of the system. The second and the third terms do not break any
symmetry since the combinations µAΩ and µV µHΩ have the same CPT properties as the
velocity v (µA and the product µV µH share identical CPT symmetries). Thus, the last two
terms describe a wave excitation that can have no reciprocal partner.

Thus, the non-reciprocity effects appear in the presence of the finite axial chemical
potential (for a chirally imbalanced fluid with µA 6= 0), as well as in helically imbalanced
(µH 6= 0) dense (µV 6= 0) fluid. In the lowest order in chemical potentials, the second term
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in Eq. (3.43) provides a leading contribution to the non-reciprocal effects. This term enters
the velocities of the helical (3.16) and axial (3.29) vortical waves.

We conclude that in the chirally imbalanced rotating fluid, the non-reciprocal gapless
waves can appear in the hydrodynamic spectrum.

4 Unpolarized Plasma

We now consider the limit when the background state is unpolarized, such that µA = µH =

0. This limit is particularly relevant in realistic plasmas, when the axial and helical charge
conservation is broken by interactions (see companion paper [26]). We refer to this case as
the unpolarized plasma.

Setting µA = µH = 0 in Eq. (2.10) leads to

P = −T
4

π2

∑
σ,λ

Li4(eσµV /T ) =
7π2T 4

180
+
µ2
V T

2

6
+

µ4
V

12π2
, (4.1)

where we used Eq. (5.2) to eliminate the polylogarithms. The charge densities Q` can be
computed by differentiating the pressure P in Eq. (2.10) with respect to the corresponding
chemical potential µ`, as shown in Eq. (2.11), using the property

∂

∂µ`
Lin(−eµσ,λ/T ) =

q`σ,λ
T

Lin−1(−eµσ,λ/T ). (4.2)

This leads to

Q` = −T
3

π2

∑
σ,λ

q`σ,λLi3(eσµV /T ) = δ`,V

(
µV T

2

3
+
µ3
V

3π2

)
, (4.3)

where we have used the properties
∑

σ,λ qσ,λ = 0 (thus, QA and QH vanish), as well as

Li3(−eα)− Li3(−e−α) = −π
2α

6
− α3

6
. (4.4)

Since QA = 0, the Landau-frame vortical conductivities σω` = σω`;β − QAQ`/(E + P )

agree with the β-frame ones, σω` = σω`;β = 1
2∂

2P/∂µA∂µ`. The second derivatives of the
pressure with respect to the chemical potentials can be evaluated as

∂2P

∂µ`∂µ`′
=
∂Q`
∂µ`′

= −T
2

π2

∑
σ,λ

q`σ,λq
`′
σ,λLi2(−eµσ,λ/T ) = 2

σωA 0 0

0 σωA σωH
0 σωH σωA

 , (4.5)

where we used Eq. (1.1) and q2
` = 1 to simplify the product q`σ,λq

`′
σ,λ of two charges. The

vector vortical conductivity σωV = 1
2∂

2P/∂µV ∂µA involves the product qVσ,λq
A
σ,λ = qHσ,λ = 2λσ

and hence vanishes. The axial conductivity is given by

σωA = − T 2

2π2

∑
σ,λ

Li2(−eσµV /T ) =
T 2

6
+
µ2
V

2π2
, (4.6)
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where we used the following property of the polylogarithm function:

Li2(−ea) + Li2(−e−a) = −π
2

6
− a2

2
. (4.7)

The helical vortical conductivity can be expressed as

σωH =
T 2

π2
[Li2(−e−µV /T )− Li2(−eµV /T )], (4.8)

and reduces for small and large |µV /T | to:

σωH(|µV | � T ) =
2 ln 2

π2
TµV +O(T−1),

σωH(|µV | � T ) ' sgn(µV )

[
σωA −

2T 2

π2
e−|µV |/T +O(e−2|µV |/T )

]
. (4.9)

Finally, we need to consider the derivatives of the vortical charge conductivities σω` =

σω`;β −QAQ`/(E +P ) with respect to the chemical potential. Here, the second term makes
a non-vanishing contribution since ∂QA/∂µ`′ = 2σω`′ :

∂

∂µ`′

(
QAQ`
E + P

)
µA=µH=0

=
2QV σ

ω
`′

E + P
δ`V . (4.10)

The derivative of the β-frame vortical conductivity evaluates to

∂σω`;β
∂µ`′

=
1

2

∂3P

∂µ`′∂µA∂µ`
=

1

π2

 0 µV TL

µV 0 0

TL 0 0

 , (4.11)

where we introduced the notation L based on the relations

Li1(−eµV /T )− Li1(−e−µV /T ) = −µV
T
,

L = − 1

T

[
Li1(−eµV /T ) + Li1(−e−µV /T )

]
= 2 ln

(
2 cosh

µV
2T

)
, (4.12)

taking into account that Li1(−eα) = − ln(1 + eα). As with σωH , the degenerate limit for
L involves an exponentially-decaying function. For convenience, we list below both the
high-temperature and the large-chemical potential limits:

L(T � |µV |) = 2 ln 2 +
µ2
V

4T 2
−

µ4
V

96T 4
+O

(
µ6
V

T 6

)
,

L(|µV | � T ) =
|µV |
T

+ 2e−|µV |/T + . . . , (4.13)

where we suppressed terms that decay faster than e−|µV |/T . We thus conclude that

∂σω`
∂µ`′

= −δ`V
2QV σ

ω
`′

E + P
+

1

π2

 0 µV TL

µV 0 0

TL 0 0

 . (4.14)
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Once again, we have to find the non-trivial solutions of the system (2.33). As in the
previous subsection, let us define the dimensionless chemical potential αV = µV /T . Then
the matrix M has the following structure:

1

T 2
M = ωMω(αV )− kΩ

T
MΩ(αV ) , (4.15)

with Mω and MΩ given by

Mω =
2

T 2

σωA − T 2

3 ∆H 0 0

0 σωA σωH
0 σωH σωA

 , MΩ =

 0 1
HA

1
HB

A 0 0

B 0 0

 , (4.16)

where ∆H = H − 1 with H = (e+P )/sT = 1 +µVQV /(sT ), while A and B are defined as

A =
αV
π2
− QV

3s
, B =

HL

π2
− 2QV
sT 2

σωH . (4.17)

Since det(M1) = 0, one can conclude that det(M) = 0 has ω0 = 0 as a solution. This
non-propagating mode is a fluctuation in a purely axial-helical sector, i.e. δµ0

V = 0, with
the axial and helical fluctuations being related as follows:

Aδµ0
A +Bδµ0

H = 0. (4.18)

The other two modes correspond to the helical vortical wave. Their angular frequencies
satisfy the following equation:

ω2
h

(
2

T 2

)2(
σωA −

T 2

3
∆H

)
[(σωA)2 − (σωH)2]− k2Ω2

HT 2
[σωA(A2 +B2)− 2ABσωH ] = 0. (4.19)

There are two solution branches:

ω±h = ±kΩT

2

√
σωA(A2 +B2)− 2ABσωH

H(σωA −
T 2

3 ∆H)[(σωA)2 − (σωH)2]
. (4.20)

The above solution is completely analytical, allowing the large temperature and degenerate
limits to be taken explicitly. At high temperature, we have

σωA =
T 2

6
+
µ2
V

2π2
, σωH =

2 ln 2

π2
T 2αV +O(α3

V ), H = 1 +
15α2

V

7π2
+O(α4

V ),

L = 2 ln 2 +O(α2
V ), A =

2αV
7π2

+O(α3
V ), B =

2 ln 2

π2
+

7π2 − 120 ln 2

28π4
α2
V +O(α4

V ).

(4.21)

It can be seen that the axial vortical conductivity σA dominates over its helical counterpart
σH , such that to leading order, ω±h ' ±(kΩT/2) × (B/σA) ' ±kch, with ch being the
speed of the helical vortical wave given in Eq. (3.12). Taking into account terms up to
next-to-leading order, we arrive at the following expression for the helical vortical wave:

ω±h (T � |µV |) = ±kΩ

T

[
6 ln 2

π2
− 0.0124

µ2
V

T 2
+O(µ4

V /T
4)

]
. (4.22)
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Figure 4: Phase velocity v±h = ω±h /k of the helical vortical wave as a function of µV /T , for
the unpolarized plasma in which the background axial and helical densities are vanishing
(µA = µH = 0). The result is normalized to the speed of the HVW in the neutral plasma,

ch =
6 ln 2

π2

Ω

T
' 0.42

Ω

T
.

In the limit of vanishing chemical potentials for the neutral plasma, Eq. (4.22) coincides
with Eq. (3.16).

In the opposite limit of large chemical potential, we have σωA−sV σωH = (2T 2/π2)e−|µV |/T ,
where we abbreviated sV = sgn(µV ). Thus, we can replace

(σωA)2 − (σωH)2 =
4T 2

π2
σωAe

−|αV |. (4.23)

The numerator of the fraction appearing under the square root in Eq. (4.20) can be put in
the form

σωA(A2 +B2)− 2ABσωH = σωA(A− sVB)2 +
4sV T

2

π2
ABe−|µV |/T . (4.24)

The first term of the right-hand side of the above equation becomes subleading due to the
asymptotic relation

B ' sVA+
2

π2

(
H +

2sVQV
s

)
e−|µV |/T . (4.25)

Taking into account that

H =
α2
V

π2

(
1 +

23π2

15α2
V

+O(α−4
V )

)
, A =

2αV
3π2

(
1− 4π2

15α2
V

+O(α−4
V )

)
,

2sVQv
s

=
2sV
αV

(H − 1) ' 2sV αV
π2

(
1 +

8π2

15α2
V

+O(α−4
V )

)
, (4.26)

we finally arrive at

ω±h = ± kΩA
√

3

2
√
HσωA( 3

T 2σ
ω
A −∆H)

+O(e−|µV |/T ). (4.27)
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Expanding the above in powers of T/µV , we get

ω±h (|µV | � T ) = ±2πkΩT

µ2
V

√
3

[
1− 7π2T 2

6µ2
V

+O

(
T 4

µ4
V

)]
. (4.28)

We display the phase velocity of the Helical Vortical Wave v±h = ω±h /k normalized to
the neutral plasma velocity ch = 6Ω ln 2/π2T in Figure 4. The quantity |v±h | exhibits
a monotonically-decreasing dependence on αV = µV /T . We also display using dotted
lines the asymptotic limits for large temperature and large chemical potential, shown in
Eqs. (4.22) and (4.28), respectively.

The explicit space-time solutions as standing waves or as the evolution of the Gaussian
initial state shown in Eqs. (3.33) and (3.36) apply straightforwardly to the case considered
here by replacing the velocity ±ch of the HVW in a neutral plasma with ω±h /k given in
Eq. (4.20).

Summarizing, the unpolarized (µA = µH = 0) plasma maintains only the Helical
Vortical Wave, while its axial vortical analogue is absent since the background axial density
vanishes. The finite vector chemical potential µV results in slowing down the propagation
of the Helical wave, as indicated in Fig. 4 and confirmed by the asymptotic results in
Eqs. (4.22) and (4.28).

5 Degenerate limit of high-density matter and non-reciprocity

We now consider the case when the fermion gas is strongly degenerate, i.e., when the vector
charge density is higher than any other scales in the system so that |µV | � T, |µA|, |µH |.
We analyze this system by rewriting the pressure (2.10) as follows:

P = −T
4

π2

∑
λ

[
Li4

(
−eαV +2λ(αH+αA)

)
+ Li4

(
−e−αV +2λ(αA−αH)

)]
, (5.1)

where we denoted the dimensionless chemical potentials α` = µ`/T . We now wish to
eliminate the polylogarithms using the relation

Li4(−eα) + Li4(−e−α) = −7π4

360
− π2α2

12
− α4

24
. (5.2)

The arguments of the exponentials in the polylogarithms appearing in Eq. (5.1) are, how-
ever, not balanced as required in Eq. (5.2). To apply this formula, we first rewrite Eq. (5.1)
as

P = −T
4

π2

∑
λ

[
Li4(−e|αV |+2λ(αA+sV αH)) + Li4(−e−|αV |+2λ(αA−sV αH))

]
, (5.3)

where sV = sgn(αV ) represents the sign of the vector chemical potential. Taking into
account the explicit expression of the polylogarithm,

Lin(z) =

∞∑
j=1

zj

jn
= z +

z2

2n
+O(z3), (5.4)
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we seek to eliminate the polylogarithms whose arguments contain the e|αV | factor by adding
and subtracting the term Li4(−e−|αV |−2λ(αA+sV αH)). Taking only the first term in Eq. (5.4),
we see that these added terms behave as ∼ e−|αV | at large αV , and are therefore exponen-
tially suppressed.

Writing P = P̃+Pe, we collect in P̃ the terms obtained by pairing the polylogarithms as
in Eq. (5.2) and in Pe the remaining non-essential terms, which are exponentially suppressed:

P̃ = −T
4

π2

∑
σ,λ

Li4

(
−eσ|αV |+2λσ(µA+sV µH)

)
=

7π2T 4

180
+
T 2

6
(µ2
V + µ2

χ) +
1

12π2
(µ4
V + 6µ2

V µ
2
χ + µ4

χ),

Pe = −T
4

π2

∑
σ,λ

σLi4(−e−|αV |−2λsV αH+2λσαA) ' −4T 4

π2
e−|αV | sinhαA sinhαH , (5.5)

where σ = ±1 was introduced for compactness. It can be seen that the chemical poten-
tials µA and µH enter the dominant part of the pressure P̃ only through the symmetric
combination

µχ = µA + sV µH . (5.6)

For later convenience, we also introduce the conjugate combination,

µχ̃ = µA − sV µA, (5.7)

For the purpose of studying the excitations in the degenerate limit, we neglect the
exponentially damped contributions coming from Pe. We will restore these terms later in
this section. Using the standard machinery described in Sec. 2.2, we can derive the charge
densities, entropy density, and the β- and Landau-frame vortical conductivities, as follows:

Q̃V =
µV T

2

3
+
µ3
V + 3µV µ

2
χ

3π2
, Q̃χ =

µχT
2

3
+
µ3
χ + 3µ2

V µχ

3π2
,

s̃ =
7π2T 3

45
+
T

3
(µ2
V + µ2

χ), σ̃ωV ;β =
µV µχ
π2

, σ̃ωχ;β =
T 2

6
+
µ2
V + µ2

χ

2π2
,

σ̃ωV = σ̃ωV ;β −
Q̃χQ̃V

4P̃
, σ̃ωχ = σ̃ωχ;β −

Q̃2
χ

4P̃
(5.8)

where Q̃χ = Q̃A = sV Q̃H and σ̃ωχ;β = σ̃ωA;β = sV σ̃
ω
H;β . It can be seen that the axial

charge density and vortical conductivity are equal to the helical ones multiplied by the sign
sV = sgn (µV ) of the vector chemical potential µV because, for an ensemble of single-charge
particles (as dictated by the high vector potential), the total helical and axial charges are
equal to each other up to sV . Due to this reason, the lines corresponding to ` = A and H,
as well as the columns corresponding to `′ = A and H, are proportional to each other at
the level of the non-exponential part of the matrix M̃``′ , i.e.

M̃A`′ = sV M̃H`′ , M̃`A = sV M̃`H . (5.9)

The above observation implies that, in the strongly degenerate regime, the oscillations in
the helical and axial chemical are additive, providing only one degree of freedom in the

– 31 –



form δµχ = δµA + sV δµH . As we just mentioned, this property is to be expected since
when the system consists only of particles (that is, there are no antiparticles present), the
helicity and chirality are indistinguishable from each other and, therefore, they enter only
in the combination (5.6). Due to the very same reason, at high vector density, the helical
and axial vortical waves form the same hydrodynamic excitation, the Axial-Helical Vortical
Wave, which inherits features from both original waves.

We now formally introduce a small parameter ε such that T → εT and µχ → εµχ. We
further consider an expansion of the velocity of the form ω → ω̃ = ω̃0 + ω̃1ε+ . . . . A series
expansion with respect to ε yields:

M̃V V =
ω̃0µ

2
V

3π2
+
ε(4µχkΩ + ω̃1µ

2
V )

3π2
+O(ε2), M̃V χ =− 2ε2kΩ

µV

(
T 2

3
+

2µ2
χ

π2

)
+O(ε3),

M̃χV =− 2kΩµV
3π2

+
4εω̃0µV µχ

3π2
+O(ε2), M̃χχ =

ω̃0µ
2
V

π2
+
ε(6µχkΩ + ω̃1µ

2
V )

π2
, (5.10)

where M̃V χ = M̃V A = sV M̃V H , M̃χV = M̃AV = sV M̃HV , and M̃χχ = M̃AA = sV M̃AH =

sV M̃HA = M̃HH . Taking the determinant, it can be seen that at order O(ε0), we have
ω̃2

0µ
4
V /3π

4 = 0, such that ω̃0 = 0 and ω̃ becomes of first order with respect to ε. The next
non-vanishing contribution is of order ε2, with the corresponding equation given by:

ω̃2
1µ

4
V + 10ω̃1µχµ

2
V kΩ + 16µ2

χk
2Ω2 − 4π2T 2

3
k2Ω2 = 0. (5.11)

Solving the above equation, we obtain the energy dispersion relation of the vortical wave
in the degenerate matter:

ω̃± = −5kΩµχ
µ2
V

± kΩ

µ2
V

√
4π2T 2

3
+ 9µ2

χ, [Axial-Helical Vortical Wave]. (5.12)

The wave appears to couple fluctuations δ̃µV in the vector chemical potential and the
fluctuations in the combined axial-helical chemical potentials δ̃µχ as follows:

δ̃µ
±
V =

3δ̃µ
±
χ

2µV

(
µχ ±

√
4π2T 2

3
+ 9µ2

χ

)
, [Axial-Helical Vortical Wave] . (5.13)

Both the energy dispersion relation (5.12) and the charge density content (5.13) of the
Axial-Helical Vortical Wave depend on the sum µχ of the axial and helical chemical poten-
tials (5.6).

In the presence of a finite axial (or helical) charge density, the propagation of the wave
becomes non-reciprocal with respect to the direction of the angular velocity Ω. In general,
the speed of the wave ṽ+ = ω̃+/k parallel to the direction of the angular velocity Ω and the
speed ṽ− = ω̃−/k in the direction anti-parallel to Ω are different from each other (5.12).
For example, setting high temperature T � |µχ| (but still maintaining the degenerate limit
µV � T ), we clearly see from Eq. (5.12) that the wave propagates in both directions with an
offset in the velocities given by the first term. For a positive (negative) sign of the product
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µχΩ, the wave propagates thus faster opposite (along) the vorticity vector |ṽ−| > |ṽ+|
(|ṽ−| < |ṽ+|).

Moreover, at the critical temperature

T deg
c =

2
√

3

π
|µχ|, (5.14)

the speed of propagation of the wave along (opposite to) the vorticity vector vanishes if the
product µχΩ takes a positive (negative) value. Thus, at the critical temperature (5.14),
one of the branches of the axial-helical wave is propagating (anti-)parallel to the vorticity
while the other branch represents a static mode. If the temperature is below the critical
value (5.14), then both modes propagate in the same direction in a transparent manifesta-
tion of non-reciprocity.

Thus, in the cold and dense rotating matter, the hydrodynamical waves propagate in a
non-reciprocal manner with respect to the global angular velocity if the background state
is axially or helically imbalanced. Moreover, the relation between the magnitudes of the
vector and axial-helical components of the wave differs in the waves propagating in opposite
directions (5.13). These properties represent a unique feature of hydrodynamic excitations
possessing the helical degree of freedom.

Considering now a vector wave constructed as in Eq. (2.44), namely µ̄V (t = 0, z) =

µV + δµ̄V ;0 cos(kz) and µ̄χ(t = 0, z) = µχ, with |µV | � |µχ|, we find

δµ̄±V =
1

2

(
1± µχ

s

)
δµ̄V ;0, δµ±χ = ±µV

3s
δµ̄V ;0, (5.15)

with s =
√

4π2T 2/3 + 9µ2
χ. This leads to

µ̄V (t, z) = µV + δµ̄V ;0 cos

(
kz − 5Ωµχ

µ2
V

kt

)
cos

(
kΩt

µ2
V

s

)
−
µχδµ̄V ;0

s
sin

(
kz − 5Ωµχ

µ2
V

kt

)
sin

(
kΩt

µ2
V

s

)
,

µ̄χ(t, z) = µχ −
µV δµ̄V ;0

3s
sin

(
kz − 5Ωµχ

µ2
V

kt

)
sin

(
kΩt

µ2
V

s

)
. (5.16)

In the case of the initial Gaussian distribution in Eq. (2.48) for the perturbation in the
vector chemical potential, µ̄V (0, z) = µV + δµ̄V ;0 e

−z2/2σ2 , with constant µ̄χ(0, z) = µχ, we
have

µ̄V (t, z) = µV +
δµ̄V ;0

2

[(
1 +

µχ
s

)
e−(z−ṽ+t)2/2σ2

+
(

1− µχ
s

)
e−(zṽ−t)2/2σ2

]
,

µ̄χ(t, z) = µχ +
µV δµ̄V ;0

3s

[
e−(z−ṽ+t)2/2σ2 − e−(z−ṽ−t)2/2σ2

]
, (5.17)

where ṽ± = −5Ωµχ/µ
2
V ± Ωs/µ2

V represent the group velocities corresponding to the two
propagating modes.

The propagation of the initial Gaussian distribution is considered in Fig. 5. For defi-
niteness, we took a small background temperature of T = 10 MeV and a background vector
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Figure 5: Time evolution of the charge perturbations (top left) δµ̄V (t, z), (top right)
δµ̄χ(t, z) and (bottom) δµ̄χ̃, corresponding to the propagation of the axial-helical vortical
wave through a charge-conserving plasma. The initial conditions are given in Eqs. (3.34).
The background state has parameters T = 10 MeV, Ω = 6.6 MeV, µV = 200 MeV and
µA = µH = 0, corresponding to the degenerate limit discussed in Sec. 5. In the label, ṽ
is the absolute value of the corresponding speed of the wave ṽ± = ω̃±/k defined in 5.12.
The analytical solution (black) 5.17 is superimposed onto the numerical solutions (blue and
pink).

chemical potential of µV = 100 MeV, while the background axial and helical chemical po-
tentials were set to zero. The left and middle panels demonstrate the expected analytical
solution derived in Eq. (5.17). Surprisingly, the third panel reveals that the combination
δµ̄χ̃ = δµ̄A − sV δµ̄H grows to very high values. In the degenerate limit described by the
tilde quantities (e.g., P̃ ) in Eq. (5.10), the combination δµ̄χ̃ is not accessible.

To understand this behaviour described above, we move back to the unpolarized plasma
considered in Sec. 4 and derive the relation between all mode amplitudes before taking
the degenerate limit. Considering the exact expression for the matrices Mω and MΩ in
Eq. (4.16), we can find the relations between the amplitudes corresponding to the trivial
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mode ω0 = 0 as follows:

δµ0
V = 0, δµ0

χ̃ = −A+ sVB

A− sVB
δµim.

χ ' − 2π2

3|αV |
e|αV |δµ0

χ. (5.18)

Clearly, exciting the δµ0
χ amplitude leads to an exponentially-larger amplitude δµ0

χ̃.
In the case of the non-trivial (helical) modes, when ω±h is given by Eq. (4.20), we can

take the amplitude of the vector charge fluctuation, δµh;±
V , as the reference amplitude. The

amplitudes δµh;±
χ and δµh;±

χ̃ are then given by

δµh;±
χ =

kΩT

2ω±h

A+ sVB

σωA + sV σωH
δµh;±

V ' ± αV

π
√

3
δµh;±

V ,

δµh;±
χ̃ =

kΩT

2ω±h

A− sVB
σωA − sV σωH

δµh;±
V ' ±

sV α
4
V

√
3

4π3
δµh;±

V , (5.19)

where we displayed just the leading-order contribution in the degenerate limit. It can be seen
that as |αV | → ∞, a small excitation in δµV in either modes δµh;±

V will lead to excitations in
δµh;±

χ̃ that are α4
V times larger, signalling the breakdown of the linear perturbations ansatz

in the degenerate matter. Coming back to Fig. 5, considering the ratio αV = µV /T = 20,
our estimate above indicates δµh;±

χ̃ /δµV ;0 ' 1117 to leading order in αV , which is in line
with the results shown in the right panel of this figure.

The above discussion indicates that degenerate matter under rotation is unstable under
small perturbations. A small excitation of the vector chemical potential induces huge
excitations in the vector and helical chemical potentials, invalidating the linear regime
ansatz of this analysis. One may question the physical soundness of these results. In
our companion paper [26], we show that in a realistic plasma, the non-conservation of the
helicity charge prevents the axial and helical mode amplitudes from growing, leading to
perfectly reasonable propagation properties.

6 Summary and Conclusions

In our work, we challenge the traditional approach to chiral systems, which presumes that
the chiral fluids are completely described only by the pair of the vector and axial local
charges. We show that the inclusion of the helical degree of freedom enriches the hydrody-
namic spectrum of the system. Since we explored various regimes of the vector-axial-helical
triad of charges, it is worth summarizing the main features of our findings in a compact set
of plots shown in Fig. 6.

In the high-temperature limit of low-density plasmas, where the temperature signif-
icantly exceeds the magnitude of any background chemical potential, we confirmed the
existence of the Helical Vortical Wave, which corresponds to a gapless hydrodynamic ex-
citation acting mainly in the helical and vector sectors of charge densities. In the next
order in the series over the inverse temperature, this wave receives a slight admixture of
the axial charge (3.22), indicating that all components of the fluid, represented by the
vector, helical and axial charges, fluctuate coherently as the wave propagates as it is il-
lustrated in Figs. 6(a) and 6(b). This next-order-correction gives us also a qualitatively
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Figure 6: A summarising illustration of four classes of gapless hydrodynamic excitations
discussed in the paper for the hierarchy µV > µH > 0 and µA > 0 of the background
chemical potentials. For simplicity, a gapless sinusoidal wave is shown only. A detailed
description is given in the text.

unusual result implying the non-reciprocity of these hydrodynamic excitations: the helical
vortical waves propagating along and opposite to the direction of vorticity possess different
velocities (3.16).

Our approach also allows us to uncover yet another gapless wave in the system: the
Axial Vortical Wave. According to Eq. (3.29), this wave propagates only in the presence
of the axial chemical potential µA, since its velocity vanishes if µA = 0. In the case when
the other two charge densities are vanishing, the wave exhibits oscillations in the axial
charge density, which propagate unidirectionally along (opposite to) the vorticity vector
Ω for µA < 0 (µA > 0). In the presence of the background of vector (helical) charges,
the purely axial wave is also accompanied by coherent fluctuations in axial and helical (or
vector) charges (3.28), as it is illustrated in Fig. 6(c).

It is important to stress that the appearance of unidirectional transport in this simple
homogeneous system is a fascinating and unexpected phenomenon that is distinct from the
processes that usually occur in high-temperature plasmas. For example, in most classical
acoustics and hydrodynamics, sound waves typically exhibit reciprocal propagation, mean-
ing that the waves can travel forward and backwards along the same path without change in
their propagation characteristics. On the contrary, the unidirectionally, seen from the point
of view of ordinary acoustical waves, emerges as a result of the meticulously engineered
breaking of time-reversal symmetry in the medium through which sound waves propagate.
For example, in systems that break the time-reversal symmetry, sound waves can be en-
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gineered to propagate in one direction while being significantly attenuated in the opposite
direction [50].

The theoretical basis for unidirectional sound transport can, for example, be linked to
the concept of topological insulators that represent materials that maintain propagating
excitations only along their surface and not through their bulk [51]. Analogously, the
unidirectional transport of sound waves has been realized through specific mechanisms,
such as using exotic active materials with time-varying properties, creating asymmetric
structures that induce directional bias, or employing magnetic fields in conjunction with
magneto-acoustic materials [52].

On the practical level of acoustic (or, gapless, in a more generic sense) applications,
the unidirectional transport includes acoustic diodes or rectifiers, which allow sound to pass
through in one direction while blocking it in the opposite direction [53]. These devices could
be used in noise reduction systems, acoustic logic devices, and improved ultrasonic imaging
technologies [54]. Unidirectional sound propagation is an unusual phenomenon, and its
appearance in a chiral plasma represents a fascinating, unexpected effect of an interplay of
anomalous transport effects.

Coming back to the field-theoretical applications in chiral plasmas, we highlight our
observation that at high densities, both the helical and the axial waves merge into a common
hydrodynamic excitation, the Axial-Helical Vortical Wave. In this limit of the degenerate
Dirac fluid, the magnitudes of helical and axial charge densities of the ensemble of particles
are indistinguishable from each other since the helical and axial charges of a given particle
(or anti-particle) are the same up to a sign. The Axial-Helical Vortical Wave maintains the
property of non-reciprocity reflected in the velocities of its branches (5.12). Interestingly,
there exists a critical temperature (5.14), at which one of the branches of this mixed wave
stops propagating while the other one moves parallel to the direction of the vorticity vector.
The mixed axial-helical vortical wave is illustrated in Figs. 6(d) and 6(e).

The discussion in this paper focussed on the simplified model where both the axial
and the helical charges are conserved. As already discussed in Ref. [15], the helicity charge
dissipates in a realistic plasma due to helicity-violation pair annihilation (HVPA) processes.
Furthermore, the conservation of the axial charge is violated due to interactions via the
axial anomaly [48]. The latter is dynamically relevant for the crossover region of finite-
temperature QCD [23]. For the sake of completeness, we show in Figs. 6(f) and 6(g)
the chiral vortical wave [2] which emerges in the limit where the helical degree of freedom
is frozen due to strong relaxation [26]. We explore the consequences of the axial and
helical charge non-conservation on the excitations spectrum revealed here in the companion
paper [26].
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