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ABSTRACT

The Middle East and North Africa (MENA) region is facing the challenge of lingering droughts. Precipitation and soil moisture
are two Essential Climate Variables (ECVSs) that are relevant for drought monitoring. We assessed the discrepancies in drought
monitoring using remote sensing data from the Tropical Rainfall Measuring Mission (TRMM) and European Space Agency
Climate Change Initiative (ESA-CCI) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data
(ERADS). A standardized index approach is applied to the four datasets. The indices are spatially and temporally consistent
except for the ESA-CCI soil moisture (SM) dataset. The indices depict drought events over the North-West Africa region and
show that the TRMM standardized precipitation index (SPI), ERA5 SPI and standardized soil moisture index (SMI) detect
drought events in the Near East. A binary classification analysis showed that the indices can accurately and precisely identify
drought events across the MENA region except for North East Africa. The indices show that the MENA region was recently
under severe to extreme drought conditions, which are driving exploitation of available water resources in an unsustainable
manner. A focus on the Haouz Plain, Morocco, and Aleppo, Syria, shows the critical situation, while the conditions over Al
Jazirah, Sudan, are less critical.

Introduction

As humanity advances into the twenty-first century, the Middle East and North Africa (MENA) region is still facing the
challenge of lingering droughts. The MENA region has been identified as a hot spot of climate change by the International
Panel on Climate Change'. It is prone to extreme drought and flood events linked to climate change that are intertwined
with anthropogenic activities to create a major threat>. The MENA region has witnessed the earliest scientific methods for
water scarcity management’. For instance, Ancient Egypt’s large dependence on Nile River flooding pushed it to invent the
Nilometers: a set of installations to measure the Nile water height*. The Mesopotamian civilization also developed a complex
system for water management to address water scarcity’. More recently, several studies have suggested links between natural
disasters and recent conflicts in Syria®®, triggering massive migrations’ and so on'?. While a study in 2012 suggested that there
has been "little change in global drought over the past 60 years"'!, several other studies have drawn another conclusion'? 3.
While outlooks into future risks have shifted to the health sector due to the coronavirus disease 201 (COVID-19) situation in
2020, in the last five years, water crises were at the top of long-term risks of the World Economic Forum (WEF) Global Risks
Survey'#. In these circumstances, the risk of water crises and food security has increased'”. In fact, drought events account for
one-fifth of the global damage caused by natural hazards'®. Droughts have a direct impact across economic sectors, including
industries and energy sectors, but the most relevant is the agronomic sector, as it accounts for 70-80% of the total volume of
water use'’. Depending on the period of vegetation growth, drought has a large impact on yield production to an extent that it
poses a threat to global food security'®.

Needless to say, for the abovementioned reasons, monitoring and prediction of drought is critical. Traditionally, drought
events are defined based on the geophysical variables that are analysed. The term meteorological droughts, for instance,
stems from the analysis of precipitation. Agricultural droughts involve the analysis of land surface parameters, including
vegetation health, soil moisture conditions, and surface temperatures. Hydrological droughts are linked to the scarcity of water
resources such as snow, lakes, and groundwater, with the knowledge that 54% of irrigation is provided from surface water
and 46% depends on groundwater!®. Wilhite and Glantz*° added a long-term dimension to drought events, with the notion of
socio-economic droughts. A broader definition can also be provided when drought indices are constructed from a combination
of several variables linked to the components of the earth’s hydrosphere and biosphere?!.

Local approaches to drought monitoring have been continually enhanced and normalized in various stages of history



around the globe??. Currently, water agencies and agriculture ministries send field agents and install local sensors to create
long-term databases for detecting developing droughts in a bottom-up approach. More recently, in the relative course of events,
technological advancement has provided spatially distributed information through remote sensing observations and physical
process modelling. This evolution started with the emergence of numerical weather prediction>® and continued to land surface
assimilation and modelling. The contribution of satellite-based Earth observation (EO) to this methodology is key. Spatial
information from EO is either used to constrain the mathematical model’s spatio-temporal outputs through data assimilation®*
or directly, and more in line with this research paper, by elaborating drought indices>!. These indices can be classified based on
the definition of the types of droughts mentioned earlier in this introduction. The World Meteorological Organization (WMO)
in the "Lincoln Declaration on Drought Indices" issued a recommendation for the use of the Standardized Precipitation Index
(SPI) as the reference index for monitoring droughts at the national level>. The SPI is based on the fitting of a statistical
distribution to a multi-decade precipitation dataset averaged over monthly to yearly time scales and then deduces the anomaly
for a given period?®.

The SPI can be obtained from EO data using Tropical Rainfall Measuring Mission (TRMM) observations>’. Similar to
precipitation, soil moisture is identified as an Essential Climate Variable (ECV)?®. Its location at the interface between the
atmosphere and the vegetation root zone makes it a highly relevant variable for water availability monitoring. The EO of
soil moisture is mainly based on microwave remote sensing in the C-L bands. Multiple products have been derived from the
Soil Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), Advanced SCATterometer (ASCAT), and
Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) missions. Drought indices have been
developed from the soil moisture and were compared to other datasets?*=>. Vegetation health is an intermediate or late indicator
of droughts depending on the selected geophysical variable. As drought develops, the water availability in the vegetation
root zone decreases. Vegetation adapts to water scarcity by closing its stomata to reduce transpiration. The cooling effect of
transpiration is stopped and the vegetation temperature rises. This state is called vegetation temperature stress and can be
observed using the surface temperature from thermal optical EO from thermal sensors such as the one onboard the Moderate
Resolution Imaging Spectroradiometer (MODIS) at a 1 km resolution®?. In the late stages of drought, the leaves gradually dry
until vegetation death. Dried vegetation can be observed using visible spectral bands. The observation of the early vegetation
drying stages has been applied using the normalized difference vegetation index (NDVI) from the MODIS** and Advanced
Very-High-Resolution Radiometer (AVHRR)? visible bands. A drought Vegetation Condition Index (VCI) has also been
suggested.

From the dichotomy of drought that is presented here, precipitation and soil moisture present an advantage in terms of
early warning of drought development. While they still present a drawback in terms of spatial resolution (25 to 50 km), they
are hardly prone to atmospheric perturbations, as they are mostly derived from microwave data. Mixed-information drought
indices have also been developed to take into consideration the coupled effect of geophysical variables®’. For instance, the
Standardized Precipitation Evaporation Index (SPEI) introduces evaporation by removing the actual evaporated water from the
precipitation input, which is important for summer droughts®®. A more complex index is the Palmer Drought Severity Index
(PDSI)*, which accounts for a two-stage bucket water budget. It has been widely used for drought assessment**#!. Several
studies favoured the SPI and SPEI approaches over the PDSI, as it relies on the Penman-Monteith method and a large set of
input datasets that propagate uncertainties in the drought index estimates*?.

This research paper addresses the intricate monitoring of drought via two remotely sensed and modelled geophysical
variables, namely, precipitation and SM. The area of interest is the highly drought-prone MENA region*>. We assess whether
the differences in drought monitoring between these two pieces of information stem from the data acquisition source or from the
embedded processes. We examine where and how these data can be used to efficiently monitor droughts. A four-product dataset
is considered: two remote sensing and two modelling reanalysis products for each of the rainfall and soil moisture variables.
The remote sensing data are obtained from the TRMM for precipitation and the European Space Agency (ESA) Climate Change
Initiative (CCI) for soil moisture. The modelled datasets are obtained from the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis data (ERAS5). A standardized index approach is selected and applied to the four variables
to reduce the impact of the statistical method. The demonstration starts with presenting a straightforward inter-correlation
analysis of the four indices. It then expands to the detection of severe and extreme events through the four datasets at the
administrative unit scale. This scale is selected due to its conformity with the water use needs of stakeholders and the resolution
of the available EO data. Several regions are the focus. Based on the presented results, we provide compound answers and
recommendations in the Conclusion section. The dataset description and methods are presented after the conclusion.

Results and Discussion

Consistency between the drought indices
Drought indices present the advantage of removing seasonal signals, and thus, they are readily qualified for temporal cross-
correlation analysis. The consistency between the monthly precipitation and soil moisture drought indices (i.e., the SPI and soil
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moisture index (SMI), respectively) using temporal cross-correlation over non-desert areas is analysed here. Figure 1 shows
the six combinations of cross-correlation maps for the four datasets. The stipples plotted over the coloured map represent
nodes with a significance test p-value < 0.05. The most visible result overall is that the SPI and the standardized SMI from the
ERA products present the highest correlation (Fig. 1.d). This finding can be explained by the fact that the two variables are
provided by the same reanalysis dataset (i.e., ERAS), and they pertain to the same assimilation system’s outputs. Nevertheless,
we notice that there are spots where the correlation is low, mainly in North-East Africa. This is a recurrent result across all the
correlation maps. Figures 1.a-c show the correlation of the TRMM SPI with the other datasets. The TRMM and ERAS SPIs
show the highest correlation except over North-West Africa, which is consistent with previous results from**, where monthly
precipitation from the TRMM, ERAS and ERA-Interim data were compared. Their results showed substantial improvement in
the correlation of the TRMM of the ERAS data with the ERA-Interim data over the MENA region except over North-East Africa.
The result can be explained by the fact that while the processing of ERAS does not assimilate the TRMM data, it assimilate
synoptic observation (SYNOP) manual stations over the MENA region® that are also used in the Integrated Multi-satellitE
Retrievals for Global Precipitation Measurement (IMERG) algorithm for the TRMM-ERA dataset**, and these stations are rare
over north-east Africa. The same conclusion can be drawn for the ERA SMI (Fig. 1.c). The lowest overall correlation is found
when comparing the TRMM SPI to the ESA SMI (Fig. 1 b). Figures1.b,d, and f show the correlation of ESA SMI with the
other datasets. The correlation shows relatively lower correlations globally with little variation across the different datasets even
when the same variable, e.g., the SMI, is considered (Fig. 1.d). The coastline has a systematically lower correlation, which is
mainly due to land-sea contamination impacting the soil moisture retrievals from microwave sensors at frequencies of 5-10
GHz. This is consistent with the theory of microwave remote sensing of land surfaces*®. This phenomenon does not impact
the TRMM dataset, as it is based on atmospheric observations at higher microwave frequencies of 10.7-85.5 GHz. When
comparing inland areas, the cross-correlation of the ESA SMI with the ERA SPI and TRMM SP1 is very close even though
the ERAS Land Data Assimilation System (LDAS) integrates the ASCAT soil moisture data*™, which is one of the ESA SMI
remote sensing datasets. This finding suggests that the soil moisture-precipitation feedback into ERAS from ASCAT is low.
Another feature that can hinder the soil moisture remote sensing dataset is the presence of radio frequency interference (RFI)
in Libya and South Sudan, which mainly impacts passive microwave remote sensing technologies (AMSR-E, AMSR-2)*.
In summary, the ERA SMI and SPI and the TRMM SPI show more consistent results than the ESA SMI. Low correlation is
observed over North-East Africa, and the highest correlation is observed in North-West African (Maghreb).

Correlation between TRMM SPI and ERA SPI Stipples: p < 0.05 Correlation between TRMM SPI and ESA SMI Stipples: p < 0.05 Correlation between TRMM SPI and ERA SMI Stipples: p < 0.05

~1.00 -0.75 -0.50 ~0.25

Figure 1. Pearson temporal cross-correlation maps for the four considered drought indices: Corr(TRMM SPI, ERA SPI) (a),
Corr(TRMM SPI, ESA SMI) (b), Corr(TRMM SPI, ERA SMI) (c), Corr(ERA SPI, ESA SMI) (d), Corr(ERA SPI, ERA SMI)
(e), and Corr(ERA SPI, ESA SMI) (f).

Detection capacity of the drought indices

The validation of a drought index is a complex exercise due to its probabilistic nature. Often, the validation exercise consists of
directly evaluating the performances of the input geophysical variables or indirectly via the drought impacts**. For the objective
of providing a validation exercise, the drought indices are compared using binary classification to a drought observation
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database that was constructed in this study based on an extensive set of reports, news outlets, and scientific articles [The MENA
Region and Drought database]. Figure 2 shows the true positive rate (TPR) (equation 5) and the false positive rate (FPR)
(equation 6) for the four datasets over the MENA region at the country scale while excluding desert areas, considering the
months from November to April over the period 1998 to 2017 and a standardized value for the drought index <-1.5. The choice
of the drought index threshold is guided by the fact that the registered drought events in the validation database correspond
to severe and extreme conditions. The TPR, which corresponds to the hit rate, reaches values higher than 0.9 over several
countries in MENA for all indices except for the ESA SMI, which reaches a maximum TPR of 0.8-0.9 over North-West Africa
(Maghreb). The FPR, which corresponds to the missed rate, is lower than 0.4 overall with the best performance over North-West
Africa (Maghreb) (FPR < 0.2) for all the indices except the ERA SMI. When analysing the results in terms of geophysical
variables, the precipitation-based drought indices from the TRMM and ERAS5 show a higher TPR than the soil moisture-based
indices from ESA-CCI SM and ERAS data. When considering the results in terms of geography, the Middle East shows the
highest spatial variability of TPR and FPR across the drought indices. The best performances for the Yemen region were found
for the ERA SPI (TPRs of 0.8-0.9 and FPRs of 0.3-0.4). To better show the distribution across geographic regions, the FPR
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Figure 2. True positive rate (TPR) (left) and false positive rate (FPR) (right) for the TRMM SPI, ERA SPI, ESA SMI, and
ERA SMI drought indices against the constructed drought database.

and TPR were aggregated over North-West Africa (Maghreb), North-East Africa (Nile basin), and the Middle East in Table
1. North-East Africa (Nile basin) shows the lowest TPR and the highest FPR for the TRMM and ERA datasets. This result
is consistent with global precipitation comparison exercises*® and validation exercises focusing on this region®”. The ESA
SMI under-performs over the Middle East (TPR = 0.42). This finding is expected because the dataset contains long gaps and
is inconsistent with all other datasets, as shown in the correlation analysis. The best overall performances are obtained over
North-West Africa (Maghreb) (TPR > 0.9 for the TRMM and ERAS indices). The SMI from ESA and ERA showed good
overall detection ratios over North-West Africa, which is consistent with previous studies showing the utility of soil moisture
data for drought monitoring in this region’. The FPR for the selected regions varies between 0.16 and 0.31. While the ESA
SMI achieves the lowest FPR, it also presents the lowest TPR, which implies that the total number of detected (true and false)
events is low compared with that of the other datasets. The low performances of the ESA-CCI SM data for detecting droughts
in arid to semi-arid regions have already been pointed out>”.

Index | TRMM SPI ESA SMI ERA SPI ERA SMI
Region TPR | FPR | TPR | FPR | TPR | FPR | TPR | FPR
North-West Africa: Maghreb | 0.90 | 0.30 | 0.71 | 0.26 | 0.94 | 0.29 | 0.92 | 0.31
North-East Africa: Nile basin | 0.71 | 0.28 | 0.63 | 0.21 | 0.87 | 0.32 | 0.63 | 0.20
Middle East 0.79 | 0.18 | 042 | 0.16 | 0.76 | 0.23 | 0.65 | 0.24

Table 1. True positive rates (TPRs) and false positive rates (FPRs) over the North-West Africa, North-East Africa, and Middle
East MENA regions.

To determine the drought event detection accuracy and precision with respect to the selected drought index threshold,
the detection was re-run using varying thresholds for each of the indices. The resulting accuracy (equations 7 and precision
(equation8) for the MENA region and the three aforementioned regions of interest are plotted in Figures 3.a and b. The accuracy
and precision over North-East Africa (Nile basin) achieve the lowest relative performances, except for the ESA SMI. The reason
that the ESA SMI achieved higher precision while providing a lower hit rate and a higher missed rate is the very low number
of detected events in the region of interest, which artificially increased the precision. Over all, the accuracy ranges between
0.65 and 0.82 with wide variability across the regions and datasets. The accuracy is on average lower at the edges (-2 and
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-1). At threshold = —2, the number of events is low, which explains the reduced detection performance. A threshold = —1
corresponds to nominal conditions. Interestingly, the highest accuracy is reached at approximately threshold = —1.5, which is
the recommended value for severe droughts®'. The precision increases as the threshold decreases, which corresponds to more
severe droughts and can be explained by the reduced number of drought events. This implies that a dataset with a longer time
series is needed for determining the detection precision. The accuracy for the SMIs is lower than the equivalent values for the
SPIs independent of the data source (i.e., remote sensing or reanalysis data). This finding can be associated with the more
heterogeneous nature of the SM data, which encodes precipitation and evapo-transpiration dynamics.
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Figure 3. Accuracy and precision of the TRMM SPI, ESA SMI, ERA SPI, and ERA SMI with respect to the constructed
drought dataset.

State of droughts in the MENA region over the last two decades

The last two decades were particularly dry over the Mediterranean region compared to the last 65 years>> and even last
centuries®>. How droughts are spatially and temporally distributed across the MENA region is shown here with no aim at
determining the drought frequency or return period, as it requires a very long time series, which are not available from remote
sensing datasets. The drought index was determined over each administrative level-1 area (governorates, provinces, wilayas,
muhafazat) based on the median value and the total number of months with severe to extreme droughts from November through
April of each year (Fig. 4). The maps show a large number of regions with more than 24 months of droughts over the last
twenty years. The regions with the highest number of drought months are North-West Africa and North-East Africa. The
precipitation indices (TRMM SPI and ERA SPI) show a higher number of drought months, which can be attributed to the more
statistically stationary nature of precipitation with respect to soil moisture. In an effort to investigate a direct application of the
drought indices, no normalization was performed with the total number of available months. Thus, the gaps in the ESA SMI
directly penalize the number of depicted drought months. The total number of dry months in North Africa and the Middle East
can be linked to the vegetation cover. Vegetated regions are more prone to drought, while dry to desert areas are less prone to
drought®®. This impact is even more visible using the SMIs than the SPIs.

The most severe drought events are distributed across years and regions. While the droughts in Syria were very extreme for
2008-2013, several indices show even a more critical situation for more recent drought events from 2013-2018 (Fig. 5). The
5-year class of the worst droughts in North-West Africa is even more distributed across the indices. For Algeria and northern
Morocco, 1998-2008 appears to be the decade with the worst droughts. For southern Morocco, the 2008-2018 decade is more
prominent in terms of extreme drought events. The worst droughts in North-East Africa are identified for the 2008-2018 decade
across all the indices. A focus on the Morocco, Syria and Sudan situations with a wider view that includes groundwater, rivers,
and lake water resources is provided in the next section.

517



TRMM SPI ERA SPI ESA SMI ERA SMI

a0/ (@) a0 (b) a0l @ : 20| @

30 KT v.;"\ 30 jﬁ"""» TR 4 X 30 f e - Q.‘.?"“ 30 .-';‘1 . ’Z‘;q
20 . 20 2 20 . 20

10 "\, — 10 f"'? &5 10 “" ro 10 e v

-20 =10 O 10 20 30 40 50 60 -20 -10 O 10 20 30 40 50 60 -20 -10 O 10 20 30 40 50 60 -20 -10 O 10 20 30 40 50 60

3 6 9 12 15 18 21 24+
Number of drought months

Figure 4. Number of months with severe to extreme drought events (index < -1.5) from 1998-2018 at administrative level 1
across the MENA region, from the TRMM SPI (a), ERA SPI (b), ESA SMI (c), and ERA SMI (d).
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Figure 5. Period of most extreme drought by class for the 5 years from 1998-2018 for the TRMM SPI, ERA SPIL, ESA SMI
and ERA SMI for each column.

Drought events, irrigation, and water resources across the MENA region

As drought develops, more stress is applied to the available water resources. In many cases, in the MENA region, these
resources are exploited at an unsustainable level. Therefore, when analysing drought events, it is important to consider the
available water resources at the regional scale. These stocks are either in the form of surface water (rivers, lakes) or groundwater.
We present to the reader three case studies with analysis of drought events (Fig. 6) in link to the existing water resources (Fig.
7). Notably, the river, dam and lake heights were obtained from remote sensing altimetry. The aim of the results is to show
the use of drought indices in contextualized conditions and to assess the relevance of the very recent droughts depicted in the
previous section.

Haouz Plain, Morocco

The Haouz Plain is an agricultural area located within the Tensift watershed in southern Morocco near the city of Marrakech.
The climate is arid to semi-arid, with an average yearly rainfall of 250 mm/year. Irrigation is intensely and extensively applied.
It is provided from surface water and groundwater. Surface water irrigation depends on supplies from the Lalla Takerkoust,
Moulay Youssef, and Hassan 1 reservoirs through irrigation canals®®. An estimated 25% of the streamflow is generated by
snow melt>®. The time series of drought indices with associated histograms over the Haouz Plain are shown in Figure 6.a. The
TRMM-ERA SPI time series shows very good consistency, while the ESA-ERA data are more consistent after 2005, which
coincides with the addition of satellite sensors more adapted for soil moisture observations [Remote sensing soil moisture
dataset]. Abrupt changes due to the choice of sensors are detectable. The well-documented extreme droughts of 2001 and
2016 can be easily depicted by the indices. Severe drought events are frequent with a strong developing drought in the
last three years of the dataset. The decadal analysis of the drought indices in the histograms shows an increase in drought
events (Fig. 6.a). When comparing the statistical distribution of irrigated areas versus the surrounding closest non-irrigated
areas in terms of precipitation (Fig. 8.a) and soil moisture (Fig. 8.b), the impact of irrigation can clearly be identified. The
statistical distribution of precipitation is very similar between agricultural and non-agricultural areas (Amedian = 5mm/month).
The soil moisture dataset shows a relatively strong discrepancy between the two areas, with agricultural areas much wetter

6/17



(a)

Morocco Marrakech(agri) - lat=31.591 lon=-8.182

1998-2007

2008-2017

—— TRMM SPI

TRMM SPI

Y
T

TRMM SPI

|
21 === ERASPI : L 0.0
_— ! AT ' ; . —t 2
wv A h
3 L) ERA 2.5
| Y SPI ERA SPI
- j i 0.0
T T T T vl T T T T T T r T F T =25
— ESASMI SA SMI EsA smif 22
2 ~==+ ERAS5 SMI| 0.0
- LR -25
: } . } -
= SR L2.5
LN\ ERA SMI ERA SMI[ <
VA
5 N A Lo.0
T T T T T T T T T T rl T T T T T L T L T F-2.5
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Syria Aleppo(non agri) - lat=36.274 lon=37.763 1998-2007 2008-2017
! —— TRMM SPI TRMM SPI TRMM SPI 25
! - ERASPI 0.0
|
i ‘ ! i -2.5
i L
ERA SPI ERA SPI 25
0.0
-25

— EsAsmi ESA SMI Esa smi[ 2
A

S \ AW N ‘/'.(‘V/\ T b v —25

n \ i} VA 1Y
VVA,J\ 4 \’r N .” \;'\:N ERA SMI era smif 22
A EYATREY 0.0

ki ¥

T T T T T T T T T T T T T T T T L T F T F-25

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

©

Sudan Al Jazirah(agri) - lat=14.9 lon=33.0 1998-2007

TRMM SPI

2008-2017
RMM SPI[

' :
1o N
N o
)

| ERA SPI ERA SPI
—— TRMM SPI
---- ERASPI

I o N
N o b
o

4 T T T —

ESA SMI[
I
H
i
i

—— ESASMI ESA SMI
---- ERA5 SMI

\
\
\
\
\

,
i |
, | = N
Am /\I\ A LN, A AT V2N /\/—\/“
4 i v e V,W WA \\,7 AAVESYAY N . A ,’\}/ ERA SMI
£ 4 N v Y AR N ERSTAAS
1 \ \ V Vo Y \

i
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

ERA SMI

TEYY
LA/

Figure 6. Time series (left) and histogram (right) of the SPI and SMI for Marrakech in Morocco, Aleppo in Syria, and Al
Jazirah in Sudan. The histograms are divided into two decades for each of the four datasets.

(Amedian = 0.06m3 /m?). The persistence of wetter conditions is ensured by irrigation in this arid to semi-arid region.

When the groundwater levels are considered, the situation can be better comprehended, as shown in Figure 7.a. The
groundwater resources are exploited at a unsustainable rate, inducing a decrease in the groundwater level at approximately
1-3 m/year>>%°. The Moroccan government triggered conversion to drip irrigation through financial incentives that fostered
intensification and conversion to cash crops (tree crops), threatening even more groundwater resources. The combined
interlinked effect of irrigation and drought diminishes water resources in an unsustainable manner. The very recent droughts
will pose a great challenge.

Aleppo plateau, Syria
Food security is a major concern in Syria since the rise of the Syrian conflict in 2011, which has impacted more than 2.5 million
residents®!. The Syrian conflict coincided with the end of a long period of drought and caused the displacement of 6.2 million
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Figure 7. Time series of soil moisture from the ERA SPI and water levels of rivers, lakes and groundwater. (a) Haouz Plain,
Morocco: groundwater level from>* until 2002 (Hydraulic Agency) and extrapolated to 2019 by considering a constant rate of 1
m/year based on>, (b) Aleppo, Syria: groundwater level from>®>7, and (c) Al Jazirah: White Nile, Blue Nile and Lake Nasser
levels.
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Figure 8. Statistical distribution of precipitation and soil moisture from ERA5 over agricultural and adjacent non-agricultural
nodes in the Haouz Plain, Morocco.

Syrians. The Aleppo region is an essential agricultural area in Syria. The crops in the region were traditionally wheat and
cotton during the winter season with additional irrigation and have diversified to wheat, cotton, tobacco, sugar beet, barley,
lentils, chickpeas, fruits and vegetables during the last two decades. The major droughts of 2008 and 20163 are depicted by the
four datasets (Fig. 6.b). The time series also shows that the precipitation drought index variations are consistent, while the soil
moisture indices show many disagreements. The histograms show a more contrasting climate with strong extremes of wet and
very dry conditions, as projected by the International Panel on Climate Change (IPCC)'. The predominant dry conditions from
2008 to 2017 are best depicted in the ERA SMI dataset. The dataset also shows very dry conditions in recent years. Agriculture
in Aleppo relies highly on irrigation. Irrigation water is provided by channel irrigation from the Euphrates and groundwater
pumping. During the last decade, the irrigation amounts for cotton and wheat were higher than the technically recommended
levels and reached unsustainable levels®’. The levels in the artificial Lake Assad on the Euphrates have shown a continuous
drop since 2002 with a strong increase in 2016 (Fig. 7.b). On the other hand, the ground water levels have continually decreased
since the 1980s (at approximately 1.5 m/year) and have reached dry conditions in several wells’®37 (Fig. 7.b).

Al Jazirah, Sudan

Wilayat Al Jazirah, Sudan, is located between the Blue Nile in the north-west and the White Nile in the west. It is a major
agricultural area in Sudan with more than 10,000 km? of irrigated fields, making it one of the largest irrigation projects in the
world. The crops are mainly cotton along with several varieties of cash crops (millet, pulses, wheat). Rainfall occurs mainly
during July and August and is extremely scarce during the winter months. Irrigation is practised during the winter season
for cotton. The major drought events over Al Jazirah during 2008 and 2016 are depicted by the four datasets (Fig. 6.c). The
ESA SMI shows abrupt changes at the other sites due to the heterogeneity among the applied sensors. Most interestingly, the
four datasets show a strong aggravation of the SPIs and SMIs during the last five years with several extreme drought events.
This finding is also clear in the histogram of the drought indices, which show a higher probability of dry conditions during
the 2008-2018 decade than for the the 1998-2007 decade. Considering the importance of this region to the entire economy of
Sudan, these conditions can have direct socio-economic consequences. It is also vital information since the regional strategic
water management scheme has shifted since the 1980s from foreign exchange earnings to sustain food security®2. In the long
term, the IPCC projections show, on average, an increase in rainfall of approximately 40 mm for the period from 2040 to
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2070 combined with increased evapo-transpiration due to increased temperatures, but this phenomenon is combined with more
extreme droughts and floods'. The situation may be further exacerbated as the dependence on irrigation will increase while the
potential Grand Ethiopia Renaissance Dam (GERD) being constructed upstream of the Blue Nile®. Currently, the levels of the
Blue Nile, White Nile and Lake Nasser downstream of the Nile River show an increase in water levels (Fig. 7.c), which should
enable compensation with proper water management of recent drought conditions.

Criticality of drought events over the MENA region

By 2025, 1.8 billion people will experience absolute water scarcity, and two-thirds of the world will be living under water-
stressed conditions®. The MENA region, with an area of approximately 10 million km?, has a prevailing hot and dry climate
with only some areas that have sub-humid and humid climates. The worldwide average water availability is approximately
7000 m> /cap/year, while in the MENA region, it reaches 1200 m? /cap/year® . Drought monitoring is crucial for countries
in the MENA region. We showed that the SPI and SMI drought indices are spatially and temporally consistent to a lesser
extent for the ESA-CCI SM data. Our results suggest that for multi-decade applications of the ERA-CCI SM dataset, efforts
should be invested to better homogenize and gap-fill the time series. The comparison to the drought database assembled in
this paper delivers insights into the capacity of the precipitation- and soil moisture-based drought indices to detect drought
across the MENA region. The spatial patterns in the true detection results matched the expected ones, with several areas
showing a perfect hit score (1.0). An assessment of the droughts over the MENA region in the last two decades shows the
severity of recent droughts. We did not assess the impact of climate regimes such as the North Atlantic Oscillation (NAO) on
these results, as 20 years is a short period, but it is clear from the detected cases that the MENA region is still experiencing
extreme droughts. However, to properly interpret the drought index results, it is important to consider the available water
resources for irrigation. The analysis in the cases of the Haouz Plain, Morocco, and Aleppo, Syria, shows the high stress on the
water resources when considering groundwater and drought events. The situation in Al Jazirah, Sudan, is less alarming when
considering the water levels of the White Nile, Blue Nile and Lake Nasser, even though recent drought conditions are apparent.
In summary, desertification and reduction of agricultural areas are highly probable over many regions in the MENA region,
which could develop into a food security crisis.

Data and Methods

The MENA region and the associated drought database

The MENA region has no strict political or organisational definition. In this paper, we refer to the reduced extents of the MENA
region, which is mainly defined by the southern part of the Mediterranean Sea from Syria to Morocco and the Arabic Peninsula.
It can be divided into the Maghreb region, the North-East Africa region, and the Middle East (or West Asia) region. The MENA
region, with an area of approximately 10 million km?2, has a prevailing hot and dry climate with only some areas that have
sub-humid and humid climates. The MENA region as defined here has a population of