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ABSTRACT

The Middle East and North Africa (MENA) region is facing the challenge of lingering droughts. Precipitation and soil moisture

are two Essential Climate Variables (ECVs) that are relevant for drought monitoring. We assessed the discrepancies in drought

monitoring using remote sensing data from the Tropical Rainfall Measuring Mission (TRMM) and European Space Agency

Climate Change Initiative (ESA-CCI) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data

(ERA5). A standardized index approach is applied to the four datasets. The indices are spatially and temporally consistent

except for the ESA-CCI soil moisture (SM) dataset. The indices depict drought events over the North-West Africa region and

show that the TRMM standardized precipitation index (SPI), ERA5 SPI and standardized soil moisture index (SMI) detect

drought events in the Near East. A binary classification analysis showed that the indices can accurately and precisely identify

drought events across the MENA region except for North East Africa. The indices show that the MENA region was recently

under severe to extreme drought conditions, which are driving exploitation of available water resources in an unsustainable

manner. A focus on the Haouz Plain, Morocco, and Aleppo, Syria, shows the critical situation, while the conditions over Al

Jazirah, Sudan, are less critical.

Introduction

As humanity advances into the twenty-first century, the Middle East and North Africa (MENA) region is still facing the

challenge of lingering droughts. The MENA region has been identified as a hot spot of climate change by the International

Panel on Climate Change1. It is prone to extreme drought and flood events linked to climate change that are intertwined

with anthropogenic activities to create a major threat2. The MENA region has witnessed the earliest scientific methods for

water scarcity management3. For instance, Ancient Egypt’s large dependence on Nile River flooding pushed it to invent the

Nilometers: a set of installations to measure the Nile water height4. The Mesopotamian civilization also developed a complex

system for water management to address water scarcity5. More recently, several studies have suggested links between natural

disasters and recent conflicts in Syria6–8, triggering massive migrations9 and so on10. While a study in 2012 suggested that there

has been "little change in global drought over the past 60 years"11, several other studies have drawn another conclusion12, 13.

While outlooks into future risks have shifted to the health sector due to the coronavirus disease 201 (COVID-19) situation in

2020, in the last five years, water crises were at the top of long-term risks of the World Economic Forum (WEF) Global Risks

Survey14. In these circumstances, the risk of water crises and food security has increased15. In fact, drought events account for

one-fifth of the global damage caused by natural hazards16. Droughts have a direct impact across economic sectors, including

industries and energy sectors, but the most relevant is the agronomic sector, as it accounts for 70-80% of the total volume of

water use17. Depending on the period of vegetation growth, drought has a large impact on yield production to an extent that it

poses a threat to global food security18.

Needless to say, for the abovementioned reasons, monitoring and prediction of drought is critical. Traditionally, drought

events are defined based on the geophysical variables that are analysed. The term meteorological droughts, for instance,

stems from the analysis of precipitation. Agricultural droughts involve the analysis of land surface parameters, including

vegetation health, soil moisture conditions, and surface temperatures. Hydrological droughts are linked to the scarcity of water

resources such as snow, lakes, and groundwater, with the knowledge that 54% of irrigation is provided from surface water

and 46% depends on groundwater19. Wilhite and Glantz20 added a long-term dimension to drought events, with the notion of

socio-economic droughts. A broader definition can also be provided when drought indices are constructed from a combination

of several variables linked to the components of the earth’s hydrosphere and biosphere21.

Local approaches to drought monitoring have been continually enhanced and normalized in various stages of history



around the globe22. Currently, water agencies and agriculture ministries send field agents and install local sensors to create

long-term databases for detecting developing droughts in a bottom-up approach. More recently, in the relative course of events,

technological advancement has provided spatially distributed information through remote sensing observations and physical

process modelling. This evolution started with the emergence of numerical weather prediction23 and continued to land surface

assimilation and modelling. The contribution of satellite-based Earth observation (EO) to this methodology is key. Spatial

information from EO is either used to constrain the mathematical model’s spatio-temporal outputs through data assimilation24

or directly, and more in line with this research paper, by elaborating drought indices21. These indices can be classified based on

the definition of the types of droughts mentioned earlier in this introduction. The World Meteorological Organization (WMO)

in the "Lincoln Declaration on Drought Indices" issued a recommendation for the use of the Standardized Precipitation Index

(SPI) as the reference index for monitoring droughts at the national level25. The SPI is based on the fitting of a statistical

distribution to a multi-decade precipitation dataset averaged over monthly to yearly time scales and then deduces the anomaly

for a given period26.

The SPI can be obtained from EO data using Tropical Rainfall Measuring Mission (TRMM) observations27. Similar to

precipitation, soil moisture is identified as an Essential Climate Variable (ECV)28. Its location at the interface between the

atmosphere and the vegetation root zone makes it a highly relevant variable for water availability monitoring. The EO of

soil moisture is mainly based on microwave remote sensing in the C-L bands. Multiple products have been derived from the

Soil Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), Advanced SCATterometer (ASCAT), and

Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) missions. Drought indices have been

developed from the soil moisture and were compared to other datasets29–32. Vegetation health is an intermediate or late indicator

of droughts depending on the selected geophysical variable. As drought develops, the water availability in the vegetation

root zone decreases. Vegetation adapts to water scarcity by closing its stomata to reduce transpiration. The cooling effect of

transpiration is stopped and the vegetation temperature rises. This state is called vegetation temperature stress and can be

observed using the surface temperature from thermal optical EO from thermal sensors such as the one onboard the Moderate

Resolution Imaging Spectroradiometer (MODIS) at a 1 km resolution33. In the late stages of drought, the leaves gradually dry

until vegetation death. Dried vegetation can be observed using visible spectral bands. The observation of the early vegetation

drying stages has been applied using the normalized difference vegetation index (NDVI) from the MODIS34 and Advanced

Very-High-Resolution Radiometer (AVHRR)35 visible bands. A drought Vegetation Condition Index (VCI) has also been

suggested36.

From the dichotomy of drought that is presented here, precipitation and soil moisture present an advantage in terms of

early warning of drought development. While they still present a drawback in terms of spatial resolution (25 to 50 km), they

are hardly prone to atmospheric perturbations, as they are mostly derived from microwave data. Mixed-information drought

indices have also been developed to take into consideration the coupled effect of geophysical variables37. For instance, the

Standardized Precipitation Evaporation Index (SPEI) introduces evaporation by removing the actual evaporated water from the

precipitation input, which is important for summer droughts38. A more complex index is the Palmer Drought Severity Index

(PDSI)39, which accounts for a two-stage bucket water budget. It has been widely used for drought assessment40, 41. Several

studies favoured the SPI and SPEI approaches over the PDSI, as it relies on the Penman-Monteith method and a large set of

input datasets that propagate uncertainties in the drought index estimates42.

This research paper addresses the intricate monitoring of drought via two remotely sensed and modelled geophysical

variables, namely, precipitation and SM. The area of interest is the highly drought-prone MENA region43. We assess whether

the differences in drought monitoring between these two pieces of information stem from the data acquisition source or from the

embedded processes. We examine where and how these data can be used to efficiently monitor droughts. A four-product dataset

is considered: two remote sensing and two modelling reanalysis products for each of the rainfall and soil moisture variables.

The remote sensing data are obtained from the TRMM for precipitation and the European Space Agency (ESA) Climate Change

Initiative (CCI) for soil moisture. The modelled datasets are obtained from the European Centre for Medium-Range Weather

Forecasts (ECMWF) reanalysis data (ERA5). A standardized index approach is selected and applied to the four variables

to reduce the impact of the statistical method. The demonstration starts with presenting a straightforward inter-correlation

analysis of the four indices. It then expands to the detection of severe and extreme events through the four datasets at the

administrative unit scale. This scale is selected due to its conformity with the water use needs of stakeholders and the resolution

of the available EO data. Several regions are the focus. Based on the presented results, we provide compound answers and

recommendations in the Conclusion section. The dataset description and methods are presented after the conclusion.

Results and Discussion

Consistency between the drought indices
Drought indices present the advantage of removing seasonal signals, and thus, they are readily qualified for temporal cross-

correlation analysis. The consistency between the monthly precipitation and soil moisture drought indices (i.e., the SPI and soil
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moisture index (SMI), respectively) using temporal cross-correlation over non-desert areas is analysed here. Figure 1 shows

the six combinations of cross-correlation maps for the four datasets. The stipples plotted over the coloured map represent

nodes with a significance test p-value < 0.05. The most visible result overall is that the SPI and the standardized SMI from the

ERA products present the highest correlation (Fig. 1.d). This finding can be explained by the fact that the two variables are

provided by the same reanalysis dataset (i.e., ERA5), and they pertain to the same assimilation system’s outputs. Nevertheless,

we notice that there are spots where the correlation is low, mainly in North-East Africa. This is a recurrent result across all the

correlation maps. Figures 1.a-c show the correlation of the TRMM SPI with the other datasets. The TRMM and ERA5 SPIs

show the highest correlation except over North-West Africa, which is consistent with previous results from44, where monthly

precipitation from the TRMM, ERA5 and ERA-Interim data were compared. Their results showed substantial improvement in

the correlation of the TRMM of the ERA5 data with the ERA-Interim data over the MENA region except over North-East Africa.

The result can be explained by the fact that while the processing of ERA5 does not assimilate the TRMM data, it assimilate

synoptic observation (SYNOP) manual stations over the MENA region45 that are also used in the Integrated Multi-satellitE

Retrievals for Global Precipitation Measurement (IMERG) algorithm for the TRMM-ERA dataset44, and these stations are rare

over north-east Africa. The same conclusion can be drawn for the ERA SMI (Fig. 1.c). The lowest overall correlation is found

when comparing the TRMM SPI to the ESA SMI (Fig. 1 b). Figures1.b,d, and f show the correlation of ESA SMI with the

other datasets. The correlation shows relatively lower correlations globally with little variation across the different datasets even

when the same variable, e.g., the SMI, is considered (Fig. 1.d). The coastline has a systematically lower correlation, which is

mainly due to land-sea contamination impacting the soil moisture retrievals from microwave sensors at frequencies of 5-10

GHz. This is consistent with the theory of microwave remote sensing of land surfaces46. This phenomenon does not impact

the TRMM dataset, as it is based on atmospheric observations at higher microwave frequencies of 10.7-85.5 GHz. When

comparing inland areas, the cross-correlation of the ESA SMI with the ERA SPI and TRMM SPI is very close even though

the ERA5 Land Data Assimilation System (LDAS) integrates the ASCAT soil moisture data44, which is one of the ESA SMI

remote sensing datasets. This finding suggests that the soil moisture-precipitation feedback into ERA5 from ASCAT is low.

Another feature that can hinder the soil moisture remote sensing dataset is the presence of radio frequency interference (RFI)

in Libya and South Sudan, which mainly impacts passive microwave remote sensing technologies (AMSR-E, AMSR-2)47.

In summary, the ERA SMI and SPI and the TRMM SPI show more consistent results than the ESA SMI. Low correlation is

observed over North-East Africa, and the highest correlation is observed in North-West African (Maghreb).

Figure 1. Pearson temporal cross-correlation maps for the four considered drought indices: Corr(TRMM SPI, ERA SPI) (a),

Corr(TRMM SPI, ESA SMI) (b), Corr(TRMM SPI, ERA SMI) (c), Corr(ERA SPI, ESA SMI) (d), Corr(ERA SPI, ERA SMI)

(e), and Corr(ERA SPI, ESA SMI) (f).

Detection capacity of the drought indices

The validation of a drought index is a complex exercise due to its probabilistic nature. Often, the validation exercise consists of

directly evaluating the performances of the input geophysical variables or indirectly via the drought impacts43. For the objective

of providing a validation exercise, the drought indices are compared using binary classification to a drought observation
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database that was constructed in this study based on an extensive set of reports, news outlets, and scientific articles [The MENA

Region and Drought database]. Figure 2 shows the true positive rate (TPR) (equation 5) and the false positive rate (FPR)

(equation 6) for the four datasets over the MENA region at the country scale while excluding desert areas, considering the

months from November to April over the period 1998 to 2017 and a standardized value for the drought index ≤-1.5. The choice

of the drought index threshold is guided by the fact that the registered drought events in the validation database correspond

to severe and extreme conditions. The TPR, which corresponds to the hit rate, reaches values higher than 0.9 over several

countries in MENA for all indices except for the ESA SMI, which reaches a maximum TPR of 0.8-0.9 over North-West Africa

(Maghreb). The FPR, which corresponds to the missed rate, is lower than 0.4 overall with the best performance over North-West

Africa (Maghreb) (FPR < 0.2) for all the indices except the ERA SMI. When analysing the results in terms of geophysical

variables, the precipitation-based drought indices from the TRMM and ERA5 show a higher TPR than the soil moisture-based

indices from ESA-CCI SM and ERA5 data. When considering the results in terms of geography, the Middle East shows the

highest spatial variability of TPR and FPR across the drought indices. The best performances for the Yemen region were found

for the ERA SPI (TPRs of 0.8-0.9 and FPRs of 0.3-0.4). To better show the distribution across geographic regions, the FPR

Figure 2. True positive rate (TPR) (left) and false positive rate (FPR) (right) for the TRMM SPI, ERA SPI, ESA SMI, and

ERA SMI drought indices against the constructed drought database.

and TPR were aggregated over North-West Africa (Maghreb), North-East Africa (Nile basin), and the Middle East in Table

1. North-East Africa (Nile basin) shows the lowest TPR and the highest FPR for the TRMM and ERA datasets. This result

is consistent with global precipitation comparison exercises48 and validation exercises focusing on this region49. The ESA

SMI under-performs over the Middle East (TPR = 0.42). This finding is expected because the dataset contains long gaps and

is inconsistent with all other datasets, as shown in the correlation analysis. The best overall performances are obtained over

North-West Africa (Maghreb) (TPR > 0.9 for the TRMM and ERA5 indices). The SMI from ESA and ERA showed good

overall detection ratios over North-West Africa, which is consistent with previous studies showing the utility of soil moisture

data for drought monitoring in this region30. The FPR for the selected regions varies between 0.16 and 0.31. While the ESA

SMI achieves the lowest FPR, it also presents the lowest TPR, which implies that the total number of detected (true and false)

events is low compared with that of the other datasets. The low performances of the ESA-CCI SM data for detecting droughts

in arid to semi-arid regions have already been pointed out50.

Index TRMM SPI ESA SMI ERA SPI ERA SMI

Region TPR FPR TPR FPR TPR FPR TPR FPR

North-West Africa: Maghreb 0.90 0.30 0.71 0.26 0.94 0.29 0.92 0.31

North-East Africa: Nile basin 0.71 0.28 0.63 0.21 0.87 0.32 0.63 0.20

Middle East 0.79 0.18 0.42 0.16 0.76 0.23 0.65 0.24

Table 1. True positive rates (TPRs) and false positive rates (FPRs) over the North-West Africa, North-East Africa, and Middle

East MENA regions.

To determine the drought event detection accuracy and precision with respect to the selected drought index threshold,

the detection was re-run using varying thresholds for each of the indices. The resulting accuracy (equations 7 and precision

(equation8) for the MENA region and the three aforementioned regions of interest are plotted in Figures 3.a and b. The accuracy

and precision over North-East Africa (Nile basin) achieve the lowest relative performances, except for the ESA SMI. The reason

that the ESA SMI achieved higher precision while providing a lower hit rate and a higher missed rate is the very low number

of detected events in the region of interest, which artificially increased the precision. Over all, the accuracy ranges between

0.65 and 0.82 with wide variability across the regions and datasets. The accuracy is on average lower at the edges (-2 and
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-1). At threshold =−2, the number of events is low, which explains the reduced detection performance. A threshold =−1

corresponds to nominal conditions. Interestingly, the highest accuracy is reached at approximately threshold =−1.5, which is

the recommended value for severe droughts51. The precision increases as the threshold decreases, which corresponds to more

severe droughts and can be explained by the reduced number of drought events. This implies that a dataset with a longer time

series is needed for determining the detection precision. The accuracy for the SMIs is lower than the equivalent values for the

SPIs independent of the data source (i.e., remote sensing or reanalysis data). This finding can be associated with the more

heterogeneous nature of the SM data, which encodes precipitation and evapo-transpiration dynamics.

(a)

(b)

Figure 3. Accuracy and precision of the TRMM SPI, ESA SMI, ERA SPI, and ERA SMI with respect to the constructed

drought dataset.

State of droughts in the MENA region over the last two decades

The last two decades were particularly dry over the Mediterranean region compared to the last 65 years52 and even last

centuries53. How droughts are spatially and temporally distributed across the MENA region is shown here with no aim at

determining the drought frequency or return period, as it requires a very long time series, which are not available from remote

sensing datasets. The drought index was determined over each administrative level-1 area (governorates, provinces, wilayas,

muhafazat) based on the median value and the total number of months with severe to extreme droughts from November through

April of each year (Fig. 4). The maps show a large number of regions with more than 24 months of droughts over the last

twenty years. The regions with the highest number of drought months are North-West Africa and North-East Africa. The

precipitation indices (TRMM SPI and ERA SPI) show a higher number of drought months, which can be attributed to the more

statistically stationary nature of precipitation with respect to soil moisture. In an effort to investigate a direct application of the

drought indices, no normalization was performed with the total number of available months. Thus, the gaps in the ESA SMI

directly penalize the number of depicted drought months. The total number of dry months in North Africa and the Middle East

can be linked to the vegetation cover. Vegetated regions are more prone to drought, while dry to desert areas are less prone to

drought30. This impact is even more visible using the SMIs than the SPIs.

The most severe drought events are distributed across years and regions. While the droughts in Syria were very extreme for

2008-2013, several indices show even a more critical situation for more recent drought events from 2013-2018 (Fig. 5). The

5-year class of the worst droughts in North-West Africa is even more distributed across the indices. For Algeria and northern

Morocco, 1998-2008 appears to be the decade with the worst droughts. For southern Morocco, the 2008-2018 decade is more

prominent in terms of extreme drought events. The worst droughts in North-East Africa are identified for the 2008-2018 decade

across all the indices. A focus on the Morocco, Syria and Sudan situations with a wider view that includes groundwater, rivers,

and lake water resources is provided in the next section.
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Figure 4. Number of months with severe to extreme drought events (index < -1.5) from 1998-2018 at administrative level 1

across the MENA region, from the TRMM SPI (a), ERA SPI (b), ESA SMI (c), and ERA SMI (d).

Figure 5. Period of most extreme drought by class for the 5 years from 1998-2018 for the TRMM SPI, ERA SPI, ESA SMI

and ERA SMI for each column.

Drought events, irrigation, and water resources across the MENA region

As drought develops, more stress is applied to the available water resources. In many cases, in the MENA region, these

resources are exploited at an unsustainable level. Therefore, when analysing drought events, it is important to consider the

available water resources at the regional scale. These stocks are either in the form of surface water (rivers, lakes) or groundwater.

We present to the reader three case studies with analysis of drought events (Fig. 6) in link to the existing water resources (Fig.

7). Notably, the river, dam and lake heights were obtained from remote sensing altimetry. The aim of the results is to show

the use of drought indices in contextualized conditions and to assess the relevance of the very recent droughts depicted in the

previous section.

Haouz Plain, Morocco

The Haouz Plain is an agricultural area located within the Tensift watershed in southern Morocco near the city of Marrakech.

The climate is arid to semi-arid, with an average yearly rainfall of 250 mm/year. Irrigation is intensely and extensively applied.

It is provided from surface water and groundwater. Surface water irrigation depends on supplies from the Lalla Takerkoust,

Moulay Youssef, and Hassan 1 reservoirs through irrigation canals58. An estimated 25% of the streamflow is generated by

snow melt59. The time series of drought indices with associated histograms over the Haouz Plain are shown in Figure 6.a. The

TRMM-ERA SPI time series shows very good consistency, while the ESA-ERA data are more consistent after 2005, which

coincides with the addition of satellite sensors more adapted for soil moisture observations [Remote sensing soil moisture

dataset]. Abrupt changes due to the choice of sensors are detectable. The well-documented extreme droughts of 2001 and

2016 can be easily depicted by the indices. Severe drought events are frequent with a strong developing drought in the

last three years of the dataset. The decadal analysis of the drought indices in the histograms shows an increase in drought

events (Fig. 6.a). When comparing the statistical distribution of irrigated areas versus the surrounding closest non-irrigated

areas in terms of precipitation (Fig. 8.a) and soil moisture (Fig. 8.b), the impact of irrigation can clearly be identified. The

statistical distribution of precipitation is very similar between agricultural and non-agricultural areas (∆median = 5mm/month).

The soil moisture dataset shows a relatively strong discrepancy between the two areas, with agricultural areas much wetter

6/17



(a)

(b)

(c)

Figure 6. Time series (left) and histogram (right) of the SPI and SMI for Marrakech in Morocco, Aleppo in Syria, and Al

Jazirah in Sudan. The histograms are divided into two decades for each of the four datasets.

(∆median = 0.06m3/m3). The persistence of wetter conditions is ensured by irrigation in this arid to semi-arid region.

When the groundwater levels are considered, the situation can be better comprehended, as shown in Figure 7.a. The

groundwater resources are exploited at a unsustainable rate, inducing a decrease in the groundwater level at approximately

1-3 m/year55, 60. The Moroccan government triggered conversion to drip irrigation through financial incentives that fostered

intensification and conversion to cash crops (tree crops), threatening even more groundwater resources. The combined

interlinked effect of irrigation and drought diminishes water resources in an unsustainable manner. The very recent droughts

will pose a great challenge.

Aleppo plateau, Syria

Food security is a major concern in Syria since the rise of the Syrian conflict in 2011, which has impacted more than 2.5 million

residents61. The Syrian conflict coincided with the end of a long period of drought and caused the displacement of 6.2 million
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(a) (b) (c)

Figure 7. Time series of soil moisture from the ERA SPI and water levels of rivers, lakes and groundwater. (a) Haouz Plain,

Morocco: groundwater level from54 until 2002 (Hydraulic Agency) and extrapolated to 2019 by considering a constant rate of 1

m/year based on55, (b) Aleppo, Syria: groundwater level from56, 57, and (c) Al Jazirah: White Nile, Blue Nile and Lake Nasser

levels.

(a) (b)

Figure 8. Statistical distribution of precipitation and soil moisture from ERA5 over agricultural and adjacent non-agricultural

nodes in the Haouz Plain, Morocco.

Syrians. The Aleppo region is an essential agricultural area in Syria. The crops in the region were traditionally wheat and

cotton during the winter season with additional irrigation and have diversified to wheat, cotton, tobacco, sugar beet, barley,

lentils, chickpeas, fruits and vegetables during the last two decades. The major droughts of 2008 and 201653 are depicted by the

four datasets (Fig. 6.b). The time series also shows that the precipitation drought index variations are consistent, while the soil

moisture indices show many disagreements. The histograms show a more contrasting climate with strong extremes of wet and

very dry conditions, as projected by the International Panel on Climate Change (IPCC)1. The predominant dry conditions from

2008 to 2017 are best depicted in the ERA SMI dataset. The dataset also shows very dry conditions in recent years. Agriculture

in Aleppo relies highly on irrigation. Irrigation water is provided by channel irrigation from the Euphrates and groundwater

pumping. During the last decade, the irrigation amounts for cotton and wheat were higher than the technically recommended

levels and reached unsustainable levels57. The levels in the artificial Lake Assad on the Euphrates have shown a continuous

drop since 2002 with a strong increase in 2016 (Fig. 7.b). On the other hand, the ground water levels have continually decreased

since the 1980s (at approximately 1.5 m/year) and have reached dry conditions in several wells56, 57 (Fig. 7.b).

Al Jazirah, Sudan

Wilayat Al Jazirah, Sudan, is located between the Blue Nile in the north-west and the White Nile in the west. It is a major

agricultural area in Sudan with more than 10,000 km2 of irrigated fields, making it one of the largest irrigation projects in the

world. The crops are mainly cotton along with several varieties of cash crops (millet, pulses, wheat). Rainfall occurs mainly

during July and August and is extremely scarce during the winter months. Irrigation is practised during the winter season

for cotton. The major drought events over Al Jazirah during 2008 and 2016 are depicted by the four datasets (Fig. 6.c). The

ESA SMI shows abrupt changes at the other sites due to the heterogeneity among the applied sensors. Most interestingly, the

four datasets show a strong aggravation of the SPIs and SMIs during the last five years with several extreme drought events.

This finding is also clear in the histogram of the drought indices, which show a higher probability of dry conditions during

the 2008-2018 decade than for the the 1998-2007 decade. Considering the importance of this region to the entire economy of

Sudan, these conditions can have direct socio-economic consequences. It is also vital information since the regional strategic

water management scheme has shifted since the 1980s from foreign exchange earnings to sustain food security62. In the long

term, the IPCC projections show, on average, an increase in rainfall of approximately 40 mm for the period from 2040 to
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2070 combined with increased evapo-transpiration due to increased temperatures, but this phenomenon is combined with more

extreme droughts and floods1. The situation may be further exacerbated as the dependence on irrigation will increase while the

potential Grand Ethiopia Renaissance Dam (GERD) being constructed upstream of the Blue Nile63. Currently, the levels of the

Blue Nile, White Nile and Lake Nasser downstream of the Nile River show an increase in water levels (Fig. 7.c), which should

enable compensation with proper water management of recent drought conditions.

Criticality of drought events over the MENA region

By 2025, 1.8 billion people will experience absolute water scarcity, and two-thirds of the world will be living under water-

stressed conditions64. The MENA region, with an area of approximately 10 million km2, has a prevailing hot and dry climate

with only some areas that have sub-humid and humid climates. The worldwide average water availability is approximately

7000 m3/cap/year, while in the MENA region, it reaches 1200 m3/cap/year65. Drought monitoring is crucial for countries

in the MENA region. We showed that the SPI and SMI drought indices are spatially and temporally consistent to a lesser

extent for the ESA-CCI SM data. Our results suggest that for multi-decade applications of the ERA-CCI SM dataset, efforts

should be invested to better homogenize and gap-fill the time series. The comparison to the drought database assembled in

this paper delivers insights into the capacity of the precipitation- and soil moisture-based drought indices to detect drought

across the MENA region. The spatial patterns in the true detection results matched the expected ones, with several areas

showing a perfect hit score (1.0). An assessment of the droughts over the MENA region in the last two decades shows the

severity of recent droughts. We did not assess the impact of climate regimes such as the North Atlantic Oscillation (NAO) on

these results, as 20 years is a short period, but it is clear from the detected cases that the MENA region is still experiencing

extreme droughts. However, to properly interpret the drought index results, it is important to consider the available water

resources for irrigation. The analysis in the cases of the Haouz Plain, Morocco, and Aleppo, Syria, shows the high stress on the

water resources when considering groundwater and drought events. The situation in Al Jazirah, Sudan, is less alarming when

considering the water levels of the White Nile, Blue Nile and Lake Nasser, even though recent drought conditions are apparent.

In summary, desertification and reduction of agricultural areas are highly probable over many regions in the MENA region,

which could develop into a food security crisis.

Data and Methods

The MENA region and the associated drought database

The MENA region has no strict political or organisational definition. In this paper, we refer to the reduced extents of the MENA

region, which is mainly defined by the southern part of the Mediterranean Sea from Syria to Morocco and the Arabic Peninsula.

It can be divided into the Maghreb region, the North-East Africa region, and the Middle East (or West Asia) region. The MENA

region, with an area of approximately 10 million km2, has a prevailing hot and dry climate with only some areas that have

sub-humid and humid climates. The MENA region as defined here has a population of approximately 374.9 million people66.

The region has climate impacts from the Mediterranean Sea, the surrounding deserts and the NAO67, 68. It is also identified

as a hot spot of climate change by the IPCC1. The North-West African (Maghreb) region is bounded by deserts in the south

and the Mediterranean Sea to the north. The agricultural landscape in this area is mainly composed of field crops and olive

trees. The field crops are mainly wheat, barley and oat, which make up approximately 46% percent of the cultivated area. Olive

orchards represent approximately 14% of the agricultural area but are very dominant in Tunisia, with 2 million hectares30. The

North-East African part of the MENA agricultural areas is dominated by the Nile River basin, which concentrates along its

path along the agricultural areas. The Middle East region consists of semi-arid to desert areas and has witnessed numerous

drought events in the last two decades. Administrative division level 1 (provinces, governorates, wilayas, muhafazat) was

selected for the drought analysis since the mitigation and adaptation measures concerning droughts are applied at this scale

based on the Global ADMinistrative Areas Database (GADM)69. Since drought is a major threat in the MENA region, it is

monitored closely by administrations, international organisations, and the scientific community. Therefore, there is a plethora

of resources on drought in the form of reports, scientific papers, and media outlets. While a global database with regional-scale

aggregation of drought events exists, it does not present separate events across the MENA region52. In this paper, a “drought

history database” was assembled from a collection of sources on the occurrence of drought in the Middle East and North Africa

spanning the same period as the remote sensing and modelling datasets, namely, from 1998 to 2017. This database consists of

the reference database for the verification of drought detection from standardized indices across the MENA region. The density

of information differs across the region’s countries. Those with more agricultural production (the Maghreb region, Egypt and

east of the Mediterranean) have more articles and reports on droughts as they are dependent on sufficient water resources during

their growing seasons. In contrast, countries with largely dominant desert and arid areas, such as the KSA and UAE, are less

studied, and few localized studies on drought and drought impacts have been identified over these areas. Table (2) summarises
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the findings at the country level. It was constituted based on three sources: international and local organisations70–73, scientific

papers74, 74–81, and media and database portals61, 82–86.

Country Year Country Year Country Year Country Year Country Year

Lebanon 1999 Morocco 1999 Tunisia 1999 Syria 1999 Algeria 1999

2000 2000 2000 2000 2000

2001 2001 2001 2001 2001

2003 2002 2002 2006 2002

2008 2005 2008 2007 2004

2010 2006 2010 2008 2007

2012 2008 2013 2009 2008

2013 2012 2015 2010 2009

2014 2015 Sudan 1998 2013 2015

2016 2016 2000 2014 2016

Jordan 1999 Yemen 1998 2002 2015 Bahrain 2000

2000 1999 2003 2016 2001

2004 2008 2005 UAE 1999 2009

2006 2009 2006 2000 2012

2007 2018 2007 2002

2008 Qatar 2000 2008 2004

2009 2001 2009 2007

2013 2009 2010 2010

2014 2012 2011 2012

2015 Iraq 1999 2017 2016

KSA 1998 2000 Oman 1999 Mauritania 1999

1999 2006 2002 2004

2009 2007 2004 2011

2012 2008 2006 2012

2017 2009 2007 2013

Kuwait 2001 2010 2011 2014

2007 2011 2013 Israel/Palestine 1999

2008 2012 Libya 1999 2000

2009 Egypt 1999 2008 2001

2010 2002 2010 2007

2012 2009 2015 2008

2015 2010 2016 2014

Table 2. Drought years in the MENA region from 1998 to 2017 based on the literature.

Remote sensing and reanalysis datasets

Drought is assessed through two geophysical variables: cumulative rainfall (mm) and soil moisture averages (m3/m3). Pre-

cipitation is commonly used for meteorological drought monitoring at 1-month averages and agricultural drought monitoring

at 1-6-month averages. The monthly average soil moisture has the advantage of combining the impact of rainfall and soil

evaporation. For each geophysical variable, a remote sensing and a reanalysis dataset are considered to identify the differences

that arise from the data source or physical processes. The details of the analysed datasets are presented in Table (3). A

standardized drought index is derived for each dataset.

Drought index Product name Type Source Spatial resolution Reference

TRMM-SPI TRMM-3B43v7 remote sensing TRMM mission 0.25◦ × 0.25◦ Huffman et al. 200787

ESA-SMI ESA-CCI-SMv2.0 remote sensing multi-mission 0.25◦ × 0.25◦ Dorigo et al. 201788

ERA-SPI ERA5 reanalysis IFS (CY41R2) 0.25◦ × 0.25◦ Dee et al. 201144

ERA-SMI ERA5 reanalysis IFS (CY41R2) 0.25◦ × 0.25◦ Dee et al. 201144

Table 3. Datasets used to compute the drought indices.
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Remote sensing precipitation dataset

The TRMM-3B43 (version 7) product was used in this study27. It consists of monthly averages of TRMM-3B42 (in mm/h)

with a spatial resolution of 0.25◦ × 0.25◦. The TRMM-3B42 product combines remotely sensed precipitation estimates

corrected with land surface gauge analyses. The monthly average precipitation was extracted over the region of interest for the

period extending from 1998 to 2018. TRMM-3B43 is based on data from the TRMM and the Global Precipitation Mission

(GPM) using the IMERG algorithm. The TRMM is a joint EO satellite mission between the NASA and the Japan Aerospace

Exploration Agency (JAXA), previously the Japanese National Space Development Agency (NASDA), with the objective of

measuring tropical and subtropical precipitation87. The TRMM ended in 2015, and the GPM is the successor mission.

Remote sensing soil moisture dataset

The ESA-CCI provides long-term consistent archives of data for several ECVs, aiming at enhancing the knowledge on the

effects of climate change. The ESA-CCI SM dataset addresses the surface soil moisture ECV. It is available globally at daily

time steps from 1978 onward and over a 0.25◦ × 0.25◦ grid. The initiative produces a consistent remotely sensed soil moisture

dataset from the observations of a multitude of active/massive microwave sensors (Special Sensor Microwave Imager (SSM/I),

ASCAT, AMSR-E, SMOS, SMAP, and AMSR-2) at different spectral bands (X, C, K, and L)88. The choice of sensors changes

over time and in space depending on the available platforms to take advantage of the advantages of the most adequate sensor

technology at each location. In the case of the MENA region, the data are predominantly provided by the SSM/I sensors from

1998 to 2002, the AMSR-E sensor from 2002 to 2007, and the AMSR-E and ASCAT sensors after 2007. The daily ESA-CCI

data were downloaded and extracted over the area of interest. The monthly cumulative precipitation and average soil moisture

were then computed.

Precipitation and soil moisture reanalysis data

Reanalysis in weather forecasting consists of re-running the integrated forecast and assimilation system to produce consistent

global datasets. Reanalysis is essential for climate change studies and extreme event monitoring. Here, the ERA5 dataset was

used. ERA5 is the latest global reanalysis dataset produced by the ECMWF. ERA5 is produced using 4D-Var data assimilation

in CY41R2 of ECMWF’s Integrated Forecast System (IFS), with 137 hybrid sigma/pressure (model) levels in the vertical

direction, with the top level at 0.01 hPa44. The land model in ERA5 is the Hydrology Tiled ECMWF Scheme for Surface

Exchanges over Land (HTESSEL). ERA5 replaces the ERA-Interim data89 and improves upon it across various aspects. One of

the major improvements in ERA5 is the much higher spatial and temporal resolution, better global balance of precipitation and

evaporation, and better soil moisture estimates90. The ERA5 data cover the period from 1950 up to 2 months before the present

month at a 0.25◦ × 0.25◦ spatial resolution and various time steps. Monthly cumulative precipitation and monthly average

surface soil moisture (layer 1) data from 1998 to 2017 from the ERA5 dataset were used.

Rivers and lake water heights from remote sensing altimetry

The water levels (in metres) for the virtual stations were acquired from the Hydroweb database91. The water levels are

retrieved by radar altimetry satellites over virtual stations in rivers92 and lakes93. The time series data are constructed from the

acquisitions of the Joint Altimetry Satellite Oceanography Network (Jason), Jason-2, Jason-3, and Sentinel-3 satellites. The

Jason series operates at Ku-band (13.575 GHz) and C-band (5.3 GHz). Jason-2 was launched in 2008 and ended operations

in 2019. Jason-3 was launched in January 2016. The Sentinel-3A altimetry satellite operates at Ku-band (13.575 GHz) and

C-band (5.41 GHz) and was launched in February 2016. Table 4 shows the details of the used virtual stations.

Case Type Name Lat Long Start date End date

Aleppo, Syria Lake Assad 36.0 38.17 10/10/2002 22/05/2016

Al Jazirah, Sudan Lake Nasser 22.8 32.57 27/09/1992 28/09/2020

Al Jazirah, Sudan River Blue Nile 13.2598 33.9004 17/07/2008 22/09/2020

Al Jazirah, Sudan River White Nile 22.8 32.57 19/07/2008 25/09/2020

Table 4. Altimetric river and lakes heights.

SPI and SMI

The SPI is widely used for assessing droughts26, 42, 94, 95. It is obtained by fitting a given probability density function to a long

historical record of cumulative rainfall data and then by deducing the percent point function (ppf). The main advantage of this

approach is that it provides relevant information across locations and can be used for a variety of timescales. The approach was

also applied to the soil moisture data; in this case, the index is identified as the SMI. Time series of cumulative and averaged

data over each node of the precipitation and soil moisture datasets were generated using 3-month periods. In this paper, we

refer indifferently to SPI-3 as the SPI. The Weibull distribution and the more commonly used gamma distribution were tested,
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and the gamma distribution was finally selected to fit the data. The gamma distribution probability density function for variable

X with a time constant (t) is given in its integral form by equation (1).

f (x) = β α xα−1 e−βx Γ(α)−1 (1)

where x is a random variable, α is the shape parameter, and β is a rate parameter with α ,β > 0. Γ(α) is the gamma function

given equation(2).

Γ(α) =
∫ ∞

0
xα−1e−x dx, α > 0. (2)

The gamma distribution was fit to each pack of data records across the time series (i.e., the month of the year for the

monthly data) using an optimization scheme based on maximum likelihood estimation. The extracted set of values (i.e., 12

for the monthly data) of α and β were then used to generate the ppf, which also corresponds to the cumulative distribution

function. These correspond to the SPI values, which are then used to discriminate dry and wet conditions. The qualifications of

the wet and dry conditions with respect to the SPI values are presented in Table (5) based on51.

Standardized index value Conditions

2+ extremely wet

1.5 to 1.99 very wet

1.0 to 1.49 moderately wet

-.99 to .99 near normal

-1.0 to -1.49 moderately dry

-1.5 to -1.99 severely dry

-2 and less extremely dry

Table 5. Drought conditions with respect to the SPI values, adapted from51

Temporal cross-correlation for consistency analysis

Pearson’s correlation is computed based on the time series at each node for each pair of datasets (equation (3)).

R =
covx,y

σx σy

(3)

where σx and σy are the variances of the time series for variables x and y, respectively, and cov is the covariance of x and y

(4).

covx,y =
∑

N
i=1(xi − x̄)(yi − ȳ)

N −1
(4)

where N is the total number of time records from x and y.

The significance test using the p-value, which is the probability that the null hypothesis is true, was added to the correlation

maps. The null hypothesis corresponds to the case where two measured phenomena are not related to each other. A

p− value ≤ 0.05 was considered statistically significant.

Binary classification for drought index evaluation

Drought detection via the four standardized indices were compared to the historical drought dataset using binary classification.

The historical dataset is applied at administrative division level 1 (governorates). Droughts from November to April were

considered. The TPR and the FPR were computed using equations (5 and 6), respectively. The TPR is the successful drought

detection rate. The FPR corresponds to the false drought alert rate. The accuracy and precision are computed using equations

(7 and 8), respectively. The accuracy is representative of the ability of the drought index to detect drought and non-drought

conditions, while the precision assesses the dispersion of the predictions.

T PR =
∑(T P)

∑(T P+FN)
(5)
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FPR =
∑(FP)

∑(FP+T N)
(6)

Accuracy =
∑(T P+T N)

∑(T P+T N +FP+FN)
(7)

Precision =
∑(T P)

∑(T P+FP)
(8)

where T P is the number of true positives, T N is the number of true negatives, FP is the number of false positives, and FN is

the number of false negatives.

Data Availability

All data used in this study are publicly available with an open licence for non-commercial use. They were all last accessed on

10/10/2020.

• The TRMM 3B43 dataset is available at https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7

• The ESA-CCI SM dataset is available at https://www.esa-soilmoisture-cci.org/

• The ECMWF ERA5 dataset is available at https://www.ecmwf.int/en/forecasts/datasets/

• Administrative division maps are available at http://www.gadm.org

• Water level heights and lake heights from altimetry are available at http://hydroweb.theia-land.fr/
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Figures

Figure 1

Pearson temporal cross-correlation maps for the four considered drought indices: Corr(TRMM SPI, ERA
SPI) (a), Corr(TRMM SPI, ESA SMI) (b), Corr(TRMM SPI, ERA SMI) (c), Corr(ERA SPI, ESA SMI) (d),
Corr(ERA SPI, ERA SMI) (e), and Corr(ERA SPI, ESA SMI) (f). Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the
part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.

Figure 2

True positive rate (TPR) (left) and false positive rate (FPR) (right) for the TRMM SPI, ERA SPI, ESA SMI,
and ERA SMI drought indices against the constructed drought database. Note: The designations
employed and the presentation of the material on this map do not imply the expression of any opinion



whatsoever on the part of Research Square concerning the legal status of any country, territory, city or
area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been
provided by the authors.

Figure 3

Accuracy and precision of the TRMM SPI, ESA SMI, ERA SPI, and ERA SMI with respect to the constructed
drought dataset.

Figure 4

Number of months with severe to extreme drought events (index < -1.5) from 1998-2018 at administrative
level 1 across the MENA region, from the TRMM SPI (a), ERA SPI (b), ESA SMI (c), and ERA SMI (d). Note:
The designations employed and the presentation of the material on this map do not imply the expression
of any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.



Figure 5

Period of most extreme drought by class for the 5 years from 1998-2018 for the TRMM SPI, ERA SPI, ESA
SMI and ERA SMI for each column. Note: The designations employed and the presentation of the
material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.



Figure 6

Time series (left) and histogram (right) of the SPI and SMI for Marrakech in Morocco, Aleppo in Syria, and
Al Jazirah in Sudan. The histograms are divided into two decades for each of the four datasets.



Figure 7

Time series of soil moisture from the ERA SPI and water levels of rivers, lakes and groundwater. (a)
Haouz Plain, Morocco: groundwater level from54 until 2002 (Hydraulic Agency) and extrapolated to 2019
by considering a constant rate of 1 m/year based on55, (b) Aleppo, Syria: groundwater level from56, 57,
and (c) Al Jazirah: White Nile, Blue Nile and Lake Nasser levels.

Figure 8

Statistical distribution of precipitation and soil moisture from ERA5 over agricultural and adjacent non-
agricultural nodes in the Haouz Plain, Morocco.
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