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Editor’s Note

The editors of this document express the views of the soil moisture focus area of the Committee
on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV)
Land Product Validation (LPV) subgroup.

This focus area provides the community involved in the production and validation of satellite-based
soil moisture products with a forum for documenting accepted good practices in an open and
transparent manner that is scientifically defensible. This Global Soil Moisture Product Validation
Good Practices Protocol document (V1.0) underwent scientific review by remote sensing experts
from across the world. Many aspects are based on the publication “Validation practices for satellite
soil moisture retrievals: What are (the) errors?” by Alexander Gruber et al. 2020 (Remote Sensing
of Environment). It is expected that this good practices protocol document and recommendations
will undergo subsequent regular iterations based on community feedback and scientific
advancement. We welcome all interested experts to participate in improving this document and
invite the broader community to make use of it for their research and applications related to soil
moisture products derived from Earth Observation data. All contributors are recognized as such
in the document and on the CEOS WGCV LPV website
(https://Ipvs.gsfc.nasa.gov/SM/SM_home.html).

The Editors would like to dedicate this document to the memory of Dr. Alexander Léw (Ludwig
Maximilian University of Munich) who was serving as the Soil Moisture Co-Lead at the onset of
the development of this draft. His enthusiasm and cooperative spirit served as an example for all
of us in the development of this Good Practices Protocol. Alex Low will be remembered as a great
and enthusiastic scientist and wonderful colleague to all who worked with him.

Sincerely,

The Editors,

Michael H. Cosh, ARS-USDA

Carsten Montzka, Forschungszentrum Jilich

Jaime Nickeson, SSAI, NASA Goddard Space Flight Center

Chairperson of the CEOS WGCYV Land Product Validation Group: Fernando Camacho, EOLAB
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SUMMARY

The Global Climate Observing System (GCOS) included soil moisture in the list of Essential
Climate Variables (ECVs) to express its important role in Earth’s water, energy and carbon cycle.
Soil moisture has a major impact on agriculture, land surface hydrology, weather, and climate
forecasting. This document is a community-based effort to provide recommendations on good
practices for the validation of global to regional soil moisture products.

Definitions are given and metrics to adequately describe the quality of soil moisture products are
presented. Spaceborne active and passive microwave sensors are listed with their characteristics,
and the typical soil moisture retrieval methods are explained, including dielectric mixing models
and optical methods. Spatial scaling, root zone soil moisture estimation, and operational
implementations are addressed, as these issues continue to gain more and more importance.
Standard and advanced in situ measurement techniques are described as well as sensor
calibration, spatial representativity, sampling strategies, and the benefit of airborne campaigns.
The community has agreed upon the utilization of the International Soil Moisture Network (ISMN)
as the main online repository for in situ soil moisture measurements. Different validation methods
such as ground-based validation, satellite product intercomparison, and time series analyses are
presented. We provide strategies to evaluate the long-term quality of soil moisture products, and
give advice on how to handle typical temporal and spatial-scale mismatches and how to effectively
report validation results. Moreover, the benefit of blind tests is discussed to gain objective
validation results.

We encourage data providers, scientists and practitioners to use this Soil Moisture Product
Validation Good Practices Protocol to provide, analyze, and improve high quality Earth
Observation results.
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1 INTRODUCTION

1.1 Importance of soil moisture

The role of soil moisture in the water, energy and carbon cycle of the Earth cannot be understated.
Soil moisture has a major impact on agriculture, land surface hydrology, weather and climate
forecasting. Soil moisture is responsible for the partitioning of solar energy into latent and sensible
heat flux at the Earth’s surface, which is a key element of the energy cycle. Soil moisture also
partitions precipitation into soil water, ground water, and surface runoff. Thus, land surface
hydrology is critically concerned with monitoring and modeling surface soil moisture as it
influences infiltration and therefore land surface runoff (Figure 1). Soil moisture is a primary
concern for agriculture where it is a necessary element for growth and also the mechanism for
movement of nutrients towards crops, impacting yield and productivity. Weather and climate
forecasting can see great advances in skill with the incorporation of soil moisture state into models.

Gruur\i!ﬁ;ater
o,

Figure 1: Earth's water cycle. Credit: ESA

Remote sensing of soil moisture is challenging, as the soil matrix masks the presence of water in
many wavelengths. A few techniques have been developed, however, using thermal, microwave,
visible/near-infrared frequencies as well as gravity anomalies to characterize and understand
subsurface water status. This protocol will focus on the first three, as these tend to respond to the
near surface soil moisture (soil surface to vadose zone) and not on groundwater status.

The maturity of soil moisture as an observable from space has motivated the Global Climate
Observing System (GCOS) to include soil moisture in the list of 50 Essential Climate Variables
(ECVs) to support the work of the United Nations Framework Convention on Climate Change
(UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) (Dorigo et al., 2015).

1.2 The role of CEOS WGCV

The Committee on Earth Observation Satellites (CEOS) has the goal of ensuring international
coordination of civil space-based Earth observation programs, promoting exchange of data to
optimize societal benefit and to inform decision making for securing a prosperous and sustainable
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future for humankind. The mission of the Working Group on Calibration and Validation (WGCV) is
to ensure the accuracy and quality of Earth observation data and products and to provide a forum
for the exchange of knowledge regarding calibration and validation science. For soil moisture,
calibration refers to the quantitative assessment and definition of a system response to known
inputs. This can include radiometric responses to land surface, ocean, and sky conditions.
Validation is the independent assessment of the quality of the data product derived from the
system outputs with regard to known values of soil moisture collected by following an established
protocol and standard. The subgroup on Land Product Validation (LPV) focuses on a number of
land surface parameters and each has the following three goals:

1. Development of protocols for the validation of satellite-derived products and defining
guidelines for reporting results,

2. Coordination and implementation of global validation activities, and

3. Provision of the interface between the community, CEOS, and other international
structures.

The Soil Moisture Subgroup has been a thriving community with international cooperation related
to validation activities and collaboration between remote sensing scientists and validation
scientists. As an outcome, Gruber et al. (2020) recently published an important milestone about
good practices guidelines for the validation of global coarse-scale satellite soil moisture products,
which is a basis for many sections in this document. Community activities have progressed to the
stage where a documentation of good practices is now possible. This document is to serve as the
protocol of good practices of the community for the validation of remotely sensed satellite-based
soil moisture estimates.

1.3 Soil moisture requirements

Determination of soil moisture requirements for various remote sensing platforms is a result of a
combination of science and application requirements and platform capabilities. As missions have
evolved, resolution and accuracy have improved. Table 1 lists the product traits and accuracy
requirements of global soil moisture products.

Table 1: Examples of soil moisture product traits and requirements.

Mission | Time Frame | Repeat | Wavelength | Product Sensor Accuracy
Cycle Re_SOIUtlonS Resolution | Requirement
(grid
posting)
AMSR-E, | 2002-2011 2-3days [C, X 25 km ~40 km 0.05 m¥/m?3
AMSR?2
S 2012-present (-3dB
footprint)
SMOS 2009-present | 2-3 days |L 15 km ~40 km 0.04 m3/m?
(-3dB
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footprint)
ASCAT 2007-present | ~daily C 12.5 km ~25 km *
(since
Metop-C)
SMAP 2015-present | 2-3days |L 9 km/36 km | ~40 km 0.04 m3/m?3
(-3dB
footprint)
Aquarius | 2011-2015 7 days L ~100 km ~100 km [*
(-3dB
footprint)

* indicates no official requirement for the soil moisture product. For ASCAT H-SAF defined an accuracy
requirement in terms of the SNR: threshold 0 dB, target 3 dB and optimum 6 dB.

Soil moisture product requirements strongly depend on the target application. The Global
Observing System for Climate (GCOS) has established the measurement uncertainty for soil
moisture as 0.04 m3/m? and a long-term decadal stability criterion of 0.1 m3/m?%a (GCOS-200,
2016). This determination was a result of a survey of the community and consideration of different
requirements for decision-making and monitoring activities. Satellite missions use this requirement
as a baseline, but also incorporate instrument capabilities and land surface parameters such as
vegetation biomass to establish their own requirements.

1.4 Rationale for requirements for climate applications

There are a variety of ways to represent soil moisture, saturation, and matrix potential. The
interchange between the different variables often depends on the local land surface
characteristics. This makes large scale monitoring and interpretation difficult without consideration
of a multitude of other parameters. Therefore, a singular baseline variable, volumetric soil
moisture, has been established as the reference point. Long-term soil moisture quantification is
required for monitoring and trend analysis related to hydrology and agriculture. Without an
understanding of the climatic norms, it is difficult to put climate trends into perspective. High spatial
resolution as well as high temporal resolution are necessary as these are the scales of soil
moisture and precipitation activity within a heterogeneous landscape.

1.5 Supporting standardization programs

When Earth Observation (EO) products are to be used for societal benefit, they need to be
associated with a quality metric. The fundamental principle of the Quality Assurance Framework
for Earth Observation (QA4EO) - "that all EO data and derived products have associated with
them a documented and fully traceable quality indicator (QI)" - addresses this core requirement
and is universally applicable to all disciplines (Group on Earth Observation, 2010). QA4EO seeks
to ensure this requirement is implemented in a harmonious and consistent manner throughout all
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EO communities to the benefit of all stakeholders. The main principle is that data and derived
products shall have associated with them a fully traceable indicator of their quality:

e A quality indicator shall provide sufficient information to allow all users to readily evaluate
the “fitness for purpose” of the data or derived product,

e And traceability means that a quality indicator shall be based on a documented and
guantifiable assessment of evidence demonstrating the level of traceability to
internationally agreed upon reference standards.

Specific for soil moisture, the Quality Assurance for Soil Moisture (QA4SM,
https://ga4dsm.eodc.eu/) service has been established, which provides the user with an easy-to-
use interface for comparing satellite soil moisture data against land surface models and in situ
data stored in the International Soil Moisture Network (ISMN). The overall aim is to bring together
methodologies and protocols used for the validation and quality control of soil moisture data
products and provide users with traceable validation results. This includes the soil moisture good
practices document at hand as well as the publication by Gruber et al. (2020).

1.6 Goal of this document

The goal of this document is to identify and promote good practices for the validation of global
(and regional) satellite soil moisture products. The document specifically addresses uncertainty
assessment against reference data sets. The latter should be traceable to in situ measurements
of known accuracy, and the assessments should be augmented with metrics of precision derived
from ensembles of the products themselves. The development of validation protocols is also
related to the GCOS Action Items T15-T18 to make available global soil moisture products and a
reference data repository (GCOS-200, 2016).

2 DEFINITIONS

2.1 Definition of soil moisture

Soil moisture (or soil water content) may be expressed on a gravimetric (6,,) or volumetric (6,,)
basis and represents the amount of water present in the soil at a given matric potential. The matric
potential (1,,,) is synonymous with the combined capillary and adsorptive surface forces that hold
water within the solid soil matrix and are uniquely related to soil moisture under hydrostatic
conditions. The highly nonlinear relationship between soil moisture and i, is termed soil water
characteristic and exhibits a very distinctive shape for each individual soil.

Gravimetric soil moisture 8,,, [kg*kg™], which can be directly determined by oven-drying a wet bulk
soil sample at 105°C, is defined as the ratio of the mass of water within the soil sample to the
mass of the oven-dry solid material. Volumetric soil moisture 8,, [m**m~], defined as the volume
of water within a given soil volume, may be expressed in terms of:

p
0y = O (p_b) (1)

w

where p, is the dry bulk density [kg*m=] of the soil, and p,, is the density of water [kg*m=].

Saturated water content 6, exists when all pores are filled with water. In some instances, it is

advantageous to express soil moisture in terms of relative saturation, S, = 6,,/6,, which is the

volumetric soil moisture normalized to 6, (i.e. the pore volume). In theory, S, ranges from zero,
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when the soil is completely dry, to 1, when all soil pores are completely filled with water. In practice,
however, it is not possible to attain completely dry or completely saturated conditions. There is
always a residual moisture content 6, present under dry conditions, and it is also virtually
impossible to completely de-air soil as air bubbles remain entrapped in dead-end pores and
cavitation nuclei are held tightly in crevices of rough particle surfaces. To account for 8,, S, is
commonly defined as:

Qv_er
S, =—— 2
e=%.—0, (2)

S, ranges from 0 to 1, regardless of soil texture (for further information see Babaeian et al., 2019).

2.2 Definitions of associated physical parameters

The spectral signature of a material is defined in the solar-reflective region by its reflectance as a
function of wavelength, measured at an appropriate spectral resolution. In other spectral regions,
signatures of interest are temperature and emissivity (TIR, passive microwave) and surface
roughness (radar) (Schowengerdt, 2007).

2.2.1 Brightness temperature

In passive microwave radiometry, the brightness temperature (Tg) is a common measurement that
describes the amount of natural microwave radiation or thermal emission by man-made and
natural media. The intensity of this radiation (for natural media) depends on the dielectric
properties and temperature of the media. Because of its insensitivity to cloud cover and solar
illumination, low frequency Tg observations can provide all-weather as well as day-and-night
remote sensing capability. For the last few decades, Tg observations by Earth-orbiting radiometers
have successfully enabled frequent, global estimation of many important variables for remote
sensing of the land, ocean, atmosphere, and cryosphere.

Passive microwave remote sensing of soil maisture is a prime illustration of how Tg observations
can be used to infer the amount of water in soils in terrestrial hydrological science and applications.
At low frequencies, wet soils (e.g., those with ~40% water by volume) and dry soils (e.g., those
with ~5% water by volume) exhibit a large contrast in dielectric constant (real part of dielectric
constant of ~80 for wet soils vs. ~3.5 for dry soils). According to electromagnetic theory, this
twenty-fold difference in soil dielectric constant between wet and dry soils translates to a large Tg
dynamic range (~90 K for bare soils with a smooth surface at a temperature of 300 K, for example).
Given the typical radiometric uncertainty of ~1 K or better for modern-day radiometers, this 90 K
Tg dynamic range between wet and dry soils provides a very favorable signal-to-noise ratio (SNR)
for accurate estimation of soil moisture.

However, there are many factors that can degrade this Tg SNR for soil moisture remote sensing.
For example, surface roughness introduces additional microwave emission not contributed by soil
moisture. Without correction and isolation of the microwave emission caused by surface
roughness, soil surface roughness would lead to an overestimation of soil moisture (i.e., higher
estimated soil moisture than reality). Aboveground vegetation, on the other hand, poses another
confounding factor in that it produces its own microwave emission and also attenuates microwave
emission from the soils underneath through scattering and absorption within the vegetation
canopy. Left unaccounted for, vegetation would lead to an underestimation of soil moisture (i.e.,
lower estimated soil moisture than reality). Depending on the sensing frequencies,
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upwelling/downwelling atmospheric radiation and ionospheric effects (e.g. Faraday rotation) would
also reduce the available Ts SNR, leading to further degradation in soil moisture retrieval accuracy.

Despite the potential uncertainties and degradation in SNR caused by these confounding factors,
some of their impacts can be more readily mitigated with Tg observations acquired at lower
frequencies such as L-band (1.4 GHz) than, for example, at C-band (6.9 GHz) or X-band (10.7
GHz). At L-band frequencies, the impacts of surface roughness, low-to-moderate vegetation (up
to at least 5 kg/m? of vegetation water content), atmospheric attenuation, and ionospheric effects
are either more easily correctable or far less dominant than the emission signal due to soil
moisture. Given these benefits and its status as a protected frequency band allocated for Earth
remote sensing by international agreements, L-band is considered the most suitable frequency
range for soil moisture remote sensing, and has been used by soil moisture missions in the past
decade (e.g., Aquarius, SMOS, and SMAP). State-of-the-art L-band soil moisture retrieval
algorithms from some of these missions have been validated to demonstrate a retrieval accuracy
of the unbiased RMSD of less than 0.04 m®*m?® and a correlation of greater than 0.80 from
multiyear in situ ground truth comparisons.

The future of L-band radiometry for soil moisture remote sensing hinges on the continued usability
of its allotted frequency spectrum, which in turn calls for self-enforcement on responsible spectrum
usage among nations. Although the threat of radio frequency interference from ground-based
ubiquitous communications infrastructures on protected spectra contamination is real, the
capability for timely monitoring and reporting of unintentional man-made emission sources is
essential as a preemptive measure to maintaining the science enabled by observations acquired
in this segment of the electromagnetic spectrum.

2.2.2 Backscatter

In radar-based remote sensing systems, targets scatter a part of the electromagnetic waves
transmitted by a monostatic active microwave sensor back to the receiver part of the sensor.
Radar cross section, expressed in m?, is used as a measure to characterize the power scattered
by the target into a given direction. It is normalized so that it is independent of the level of the
incident wave. The backscattering coefficient a° is used to characterize the backscatter properties
of a surface type target. It is defined as the scattering cross section per surface area (unit is m?/m?),
and it depends on radar observation parameters such as the frequency, the polarization, and the
incidence angle, and surface parameters including the roughness of the surface and dielectric
properties of the target.

2.2.3 Reflectance and radiance

The process of reflection of solar radiation from the Earth’s surface is quantified by reflectance
(0), which is defined as the ratio of the reflected radiant flux to incident radiant energy under
specified conditions of irradiation. Spectral reflectance is defined as:

P
p(D) ==+ 3)
Pox

where P, is the spectral concentration of the radiant power reflected by the medium and P; is
the spectral concentration of radiant power incident on the medium (Choudhury, 2014).

Spectral radiance is the radiant flux emitted, reflected, transmitted or received by a given surface,
per unit solid angle per unit projected area. It is the directional quantification of energy Le oy Of a
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surface per unit frequency or wavelength and is measured by watts per steradian per square meter
per hertz [W-sr-\m~?-Hz""]. Radiance is used to characterize diffuse emission and reflection of

electromagnetic radiation. Sometimes spectral radiance is also confusingly called "spectral
intensity" (Schowengerdt, 2007).

2.3 Definition of spatial, temporal and geometrical aspects

As soil moisture is very heterogeneous in space and time (Vereecken et al., 2014) special care is
needed to describe this variability by remote or in situ observations. The difference in scale
between point in situ measurements and coarse satellite data retrievals requires a scale change
during validation. Western and Bloschl (1999) and Bloschl and Sivapalan (1995) stated that each
observation type consists of a scale triplet, consisting of spacing, extent, and support (Figure 2).
All three components of the scale triplet are needed to uniquely specify the space dimensions of
a measurement.

spacing extent support
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Figure 2: The scale triplet (spacing, extent, and support, Western and Bldschl, 1999).

2.3.1 Spacing

Spacing refers to the distance between samples. For in situ networks, spacing is the distance
between its different locations. However, for remote sensing products, it is not that obvious, as the
spacing between individual raw measurements can be different from the spacing of a gridded
product. Also, the often synonymously used term spatial resolution is not unique. For microwave
measurements, spacing indicates the distance between the individual footprints. However, for
gridded products, the term posting was established to clarify that a certain product has been
posted on a discrete grid, which is not necessarily its original frame and often implies that some
resampling of the raw data has occurred. Using the SMAP 9 km product as an example, 9 km is
the posting of the final product grid after an optimal interpolation, but it is not the spatial resolution
or the spacing of the raw data. The spacing of the SMAP radiometer footprints is ~40 km, which
is quite different from the 9 km posting.

2.3.2 Extentscale

Extent scale refers to the overall coverage of the measurements. For spaceborne records it could
refer to the swath during a satellite overpass, but also to the total coverage of a mission, i.e. global
in terms of near-polar orbiting satellites (e.g., ~85°N to 85°S, typical for soil moisture) and the
world “disc” of geostationary satellites (see also new mission concepts such as CIMR, section
3.5.12).
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2.3.3 Support scale

Support scale refers to the integration volume or area of an observation. E.g., for in situ TDR
measurements, it is just a few cm? of a soil, whereas for microwave observations it refers to the
antenna footprint characteristics. A radiometer footprint is defined by the angular region over which
the antenna power pattern is less than 3 dB down from its value at the beam center. It depends
on the angular width of the antenna main lobe, frequency, size of antenna, distance to the surface,
incidence angle, and processing techniques. For instance, the SMAP radiometer orbits at 685 km
above Earth’s surface and has a 6 m diameter reflector antenna that provides a real aperture
support scale around 40 km on the surface. On the other hand, SMOS employs synthetic aperture
radiometers where the data processing involves inverting the visibility measurements. Its native
support scale is also in the similar spatial scale of ~40 km. In the case of coherent sensing systems
such as radars, the support scale could be improved substantially by synthesizing the aperture
along the orbit of the satellite. A support scale of tens of meters could be reached at the expense
of speckle noise.

In theory, the support scale does not only refer to two dimensional information, but also to the third
dimension of a measurement volume or sensing depth. Here, in regard to soil moisture and
especially in microwave remote sensing, the vertical penetration depth is of very high importance
for the interpretation of soil moisture measurements and is therefore discussed in a separate
section (2.3.5).

2.3.4 Temporal representation

The scale triplet mentioned above can be interpreted in both the spatial and temporal domains.
However, in situ measurements and EO data are acquired in specific time intervals. Most of polar
orbiting sun-synchronous satellites have ascending and descending nodes where their orbits
cross the Equator either northbound (ascending node) or southbound (descending node),
resulting in morning and evening observations. For example, both SMOS and SMAP have 6 a.m./6
p.m. sun-synchronous orbits, although their orbits criss-cross: SMOS has a 6 am ascending node
while SMAP has a 6 am descending node. Retrieval of soil moisture has tended to focus on the
brightness temperatures from 6 a.m. overpasses since thermal equilibrium and reduced
temperature gradient conditions in near surface soil layers and vegetation is conducive to less
sub-pixel heterogeneity and greatly simplifies the retrieval process at that time of day; however,
experience with both SMOS and SMAP has led to soil moisture retrievals at 6 p.m. with only a
small decrease in retrieval accuracy. Due to their large instrument swath (~1000 km), both SMOS
and SMAP are able to provide global coverage of the Earth in 3 days at the Equator and in ~2
days at higher latitudes using just the 6 a.m. retrievals, and 1-2 days using both 6 a.m. and 6 p.m.
retrievals.

2.3.5 Penetration depth

All natural materials have a complex dielectric constant € = &' — je”’. In general, the dielectric
constant of a soil volume depends on several factors such as soil moisture content, bulk density,
texture, temperature, and salinity. Among these quantities, soil moisture is a key factor affecting
the dielectric constant. The complex dielectric constant also slowly varies with respect to the
measurement frequency used. The imaginary part of the dielectric constant corresponds to the
ability of the medium to absorb the wave where the medium converts wave energy into heat due
to the conduction.

Penetration depth corresponds to the depth at which the power of a propagating wave decreases
by a factor of e™! ~ 0.37. This distance describes how deep an electromagnetic wave can
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penetrate into the soil. A convenient way of expressing the penetration depth for low-loss media
("« €)is

5 - We' 4)
P 2M"

where 1 is the free-space wavelength. The penetration depth varies linearly with wavelength. For
example, a P-band signal (~80 cm wavelength) penetrates to a deeper depth than L-band (~21
cm wavelength), but the exact depth is variable depending on the composition of the soil and the
moisture content. The contributing depth of P-band can be down to a depth of ~20 cm.

2.4 Definition of validation metrics

The deviation of a single measurement (estimate) from the true value of the quantity being
measured (estimated), which is always unknown, is described by the term error. The term
uncertainty refers to the probability distribution underlying an error, which is the actual quantity of
interest for validation (Gruber et al., 2020). In contrast, the terms trueness, precision, and accuracy
are popular antonyms for systematic errors, random errors, and the combined systematic plus
random errors, respectively (Gruber et al., 2020; JCGM, 2008) (JCGM, 2012).

Satellite soil moisture retrievals are subject to errors from a variety of sources (Gruber et al., 2020).
The error distribution can vary in space and time. It is often more convenient to summarize the
multi-dimensional error distribution using a single number, termed a ‘validation metric’. Since
validation metrics necessarily do not contain all information in the error distribution, no single
validation metric is capable of fully describing the error distribution. It is, therefore, recommended
to estimate several complementary validation metrics. For details about the theoretical
background and a review of state-of-the-art methodologies for estimating errors in soil moisture
data sets, see Gruber et al. (2020). A conventional error model for soil moisture observations is:

0=a+p0+e¢ (5)

where @ is the true soil moisture, 8 is the estimated soil moisture, « is a constant additive bias, Bis
a constant multiplicative bias and ¢ is a zero mean random variable. Under this model, errors are
either ‘systematic’ (a,f) or ‘random’ (eg). While none of the following sections require the
assumption that ¢ is Gaussian, it can be both a useful and reasonable simplification to make. A
Gaussian random variable is defined exactly by its first two moments, i.e., its mean and variance.
Other distributions have non-zero higher-order moments. However, in practice, it can be difficult
to estimate higher-order moments from finite samples due to rapidly increasing sampling error
with increasing order of moments. This means that, for standard applications and sample sizes,
estimates of higher-order moments are often statistically indistinguishable from zero; in this case,
the error distribution is statistically indistinguishable from Gaussian.

In this section, four common validation metrics are discussed. First, the root mean squared
difference (RMSD) and unbiased RMSD (ubRMSD) are introduced, which, under the right
assumptions, can be interpreted as estimates of the standard deviation of &g. Second, the mean
bias (B) is introduced, which, under the right assumptions, can be interpreted as an estimate of a.
Then, the Pearson correlation coefficient (r) is discussed, which can be interpreted as a
normalized estimate of . Also triple collocation (TC) metrics are discussed. These resemble the
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ubRMSD and r, but need three data sets for their estimation, neither of which is required to be
free of random errors in order to estimate the standard deviation of 4 (Gruber et al., 2016; McColl
et al., 2014; Stoffelen, 1998; Yilmaz and Crow, 2014). Additionally, TC analysis enables estimation
of the signal-to-noise ratio (SNR) of a data set. The SNR is closely related to r, which can also be
interpreted as a normalized (between -1 and 1) representation of the SNR (Gruber et al., 2016).
Together, these metrics fully characterize the error distribution as formulated in equation (5). Note
that the given metrics can still be used when listed assumptions are not met; however, in these
cases, they do not reduce to their simplified interpretations. Finally, temporal stability analyses
and validation of downscaled products is discussed. Details about the additional metrics of
temporal autocorrelation can be found in Rebel et al. (2012), Raoult et al. (2018), and Piles et al.
(2018).

2.4.1 Root Mean Squared Difference
The root mean squared difference (RMSD) is defined as

RMSD = [E((8 - 6)?) (6)

where E(-) is the expectation operator, which in practice is estimated as either the temporal or
spatial mean (Entekhabi et al., 2010). For the case where 8 is an unbiased estimate of 8 (i.e, a =
0 and f=1) and g is a Gaussian random variable with mean zero, the RMSD is exactly
equivalent to the standard deviation of &4.

2.4.2 Unbiased Root Mean Squared Difference
The unbiased root mean square difference (UbRMSD) (Entekhabi et al., 2010) is defined as

ubRMSD = JE(((@ —E(8)) — (6 —E®)))?). (7

Compared to the RMSD, the ubRMSD can be interpreted as the standard deviation of € under a
less restrictive set of assumptions: specifically, it does not require that « = 0. This can be easily
extended to the case where there is a seasonally-varying contribution to the error.

2.4.3 Mean Bias
The mean bias is defined as

B=E@B-6) @

Under the assumption that § = 1, B is exactly equivalent to a. A bias can potentially be removed
by rescaling (Koster et al., 2009; Reichle and Koster, 2004), although caution should be exercised
in doing this (Gruber et al., 2016; Yilmaz and Crow, 2013); see next section.

2.4.4 Pearson correlation coefficient

For the error model given in equation (5), ordinary least squares regression can be used to
estimate . However, it is more common in the literature to report a standardized quantity, that is
related to : the Pearson correlation coefficient, r, which is given by
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E((B—E(8))(8—E(6))) 9)

- JE((@—E(@))Z)JE((H—E(e))z)

Itis related to S by the relation

E((@—E(@))Z). (10)

The main advantage of reporting r over g is that it is a normalized quantity: r takes values between
-1 and 1, with a positive slope indicating g > 0, and vice versa. The larger the absolute magnitude
of r, the larger the signal-to-noise ratio (Gruber et al., 2016; McColl et al., 2014).

2.4.5 Triple collocation metrics

Triple Collocation (TC) metrics require three data sets for their estimation. For defining the metrics
we will use the subscripts x, y and z to refer to these data sets, and o to refer to the covariance
between data sets. The key advantage of TC is that -- provided its underlying assumptions are
met -- it allows for unbiased error metrics to be estimated in the typical case where a
representation of the true geophysical variable (6) is unavailable. These underlying assumptions
require that observations x,y and z are: (i) linearly related to true soil moisture via Eq. 5, and (ii)
contain errors that are mutually independent -- both with regards to each other (i.e., mutual
independence) and to true values of the geophysical variable (i.e., error orthogonality).

2.4.5.1 Unbiased Root Mean Squared Difference
Using TC, the root mean squared difference (UbRMSD) of x can be obtained from

ubRMSD, = /axx — 7 (11)
yz

If the assumptions of orthogonality and zero error cross-correlation are met, then ubRMSD,. is a
consistent estimator for the temporal standard deviation of errors in x (Gruber et al., 2016).

2.4.5.2 Correlation against the unknown truth
Likewise, TC allows for the robust estimation of the linear correlation between x and the unknown

truth 6 as (McColl et al., 2014)
= fﬂ (12)
= O'xxayz.

Unlike the direct sampling of a Pearson correlation coefficient between x and y (or z), r, is — if
assumptions are met — not impacted by the presence of random error in y or z.

2.4.5.3 (Logarithmic) signal-to-noise ratio
TC analysis also allows us to estimate the SNR (Gruber et al., 2016) directly as
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SNR, = —10 log (M_ 1). (13)

OxyOxz
Notice in the above equation that the SNR is estimated in decibel (dB) units, i.e. linearized for
easier visualization and interpretation (0 dB means that the signal variance equals the noise
variance and every plus/minus 3 dB corresponds to a doubling/halving of the SNR).

2.4.6 Stability

Stability is defined in various ways by different organizations. The definition adopted by LPV of
JCGM (2008) refers to stability as the property of a measuring instrument whereby its metrological
properties (i.e. calibration and uncertainties) remain constant in time. The GCOS requirements
(WMO, 2016) refer to stability as the extent to which the systematic uncertainty of the
measurement changes over time. With the differences in these definitions, in addition to the
challenges related to assessing the accuracy of satellite derived products (described in other
sections), the definition of a method for monitoring stability becomes difficult.

Stability may be thought of as the extent to which the uncertainty of measurement remains
constant with time. Here, we would refer to the maximum acceptable change in systematic error,
usually per decade.

This is in line with second order stationarity, where seasonal cycles were excluded. The properties
of stationary time series do not depend on the time at which the series is observed. If a trend is
observed, the time series is not stationary.

2.4.7 Temporal stability analysis

Different from the product stability in the section before is the method named Temporal Stability
Analysis (TSA), which was initially proposed by Vachaud et al. (1985) as a means to assess the
time invariant distribution of soil moisture. At the heart of TSA is the mean relative difference
(MRD), which is defined as:

— 1 (S'_'—S_)
5 =y Ti, (1)
where §; ; is the soil moisture at time i at location j and is the average across locations j at time

i. This results in a set of mean relative differences detailing the comparison of a location or soll
moisture data point to the overall average of soil moisture in the domain of study.

The variance of the MRD is defined as:

1 Si —S; — 2 (15)
0@} = 5Tk (2 -5)

and the RMSD of the relative differences is defined as:

— 1/2 16
RMSD; = (82 + 6 (8)%) . (16)
The RMSD is the quantification in a single metric for the overall best sampling location within a
set of field sites or network.
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It is often observed that soil moisture patterns are repetitive and controlled by a variety of factors
including soil texture, slope, aspect, hydraulic conductivity, etc. More simply described, there are
persistent wet and dry regions within a given area, and these patterns can be used to determine
more efficient means of measuring the characteristics of the soil moisture field. It is not necessary
to have hundreds of soil moisture measurements to estimate with high confidence what is the soil
moisture average, which is useful for soil moisture validation. TSA is a common technique for
demonstrating the validity of an in situ soil moisture network to estimate field, watershed, or
regional scale soil moisture.

Since the introduction of TSA, many studies have demonstrated the efficiency that this analysis
can introduce into a cal/val program, including Martinez-Fernandez and Ceballos (2003), Cosh et
al. (2008), and Molero et al. (2018). TSA is beneficial for network management and quality control
as well as establishing confidence in the representativeness of a validation data set for remote
sensing comparisons. It is often difficult to deploy a great quantity of resources for the life of a
remote sensing platform, but by short-term intensive periods of observation in relation to a long-
term network of stations, it is possible to develop a robust and high quality validation data set for
comparisons on a multi-year timescale.

2.4.8 Performance Metrics for Soil Moisture Downscaling

Typical validation activities are focusing on the error metrics for validating time series (including
also spatial representativity, spatial resampling etc.). The question of whether the spatial patterns
are adequately represented is often not addressed. Many downscaling techniques have been
developed (see section 3.5.9), and papers are published where the downscaling result is validated
with time series metrics of just a few stations. To really validate the spatial improvement, the spatial
correlations should be calculated at each point in time, resulting in a time series of r (Montzka et
al., 2018), or summarized as boxplots as in Kolassa et al. (2017a).

To be more comprehensive, Merlin et al. (2015) proposed a new performance metric named
Gpown tO quantitatively assess with a single value the overall gain achieved at high resolution
(subscript HR) with respect to the low resolution (subscript LR). Especially, the sign of Gpown
(positive in the case of effective disaggregation and negative in the opposite case) is independent
of the uncertainties in the low-resolution observation and of the representativeness of localized in
situ measurements at the target downscaling resolution. Gpoyy is defined as:

Gpown = (Ggrrr + Gprec + Gaccu) /3. (17)

Ggrr is the disaggregation (efficiency) gain on the bias in the slope of the linear fit relative to the
non-disaggregation case:

o 1= Sial = 1= Sl as)
EFFE™ 1 — Sirl + 11— Syrl

with Sy and S;, being the slope of the linear regression between soil moisture retrievals and in
situ measurements at high and low resolution, respectively (Syr = ryr(oyr/01s) and Sz =
r.r(0Lr/015), Where g is the standard deviation of in situ soil moisture).
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Gprec 1S the disaggregation (precision) gain on time series correlation relative to the non-
disaggregation case:

|1 =1l — |1 = ryrl (19)
|1 =1l + |1 = ryrl

Gprec =

with ryr and r; i being the time series correlation computed at high and low resolution, respectively
(Eq. (9)). Gprec Can be interpreted as characterizing the precision of the disaggregation method
to be evaluated.

Gaccy 1S the disaggregation (accuracy) gain on the mean bias relative to the non-downscaled case:

G _|Bir| — | Byl (20)
accy |BLr| + |Byrl

with B,z and B, being the mean bias computed at high and low resolution in Eq. (8), respectively.
Gaccuy Can be interpreted as characterizing the accuracy of the disaggregation method. For further
details see Merlin et al. (2015), an application can be found, e.g., in Piles et al. (2016).

3 GENERAL CONSIDERATIONS FOR SPACEBORNE SOIL MOISTURE
PRODUCTS

3.1 Dielectric mixing models

The microwave region of the electromagnetic spectrum has shown immense potential in accurate
and efficient measurement of soil moisture using both the space-borne sensor and point-based in
situ techniques (Engman and Chauhan, 1995; Njoku and Entekhabi, 1996). Soil moisture
estimation techniques rely on the electrical properties of soil such as its dielectric constant, for
which there is a significant difference between dry soil (~3.5) and pure water (~80) at microwave
frequencies (Schmugge et al., 1992). The following sections will further discuss different aspects
involved in soil moisture modeling using radiometer measurements, as well as a review of some
of the most widely used dielectric mixing models for SM estimation using L-band measurements.

A microwave radiometer measures the thermal emission from the Earth's surface, which at
microwave frequencies is the product of the soil temperature and surface emissivity commonly
known as the brightness temperature (Tg). This brightness temperature is used as input in soll
moisture retrieval algorithms to estimate surface soil moisture content. Mladenova et al. (2014)
explains that the overall process of SM retrieval using passive microwave approaches basically
involves two major stages. Stage | entails modeling the thermal emission from the Earth's surface
using radiative transfer theory, while in Stage I, a soil-water dielectric mixing model is applied for
SM estimation. A third important component, the Fresnel equations, combines the two stages.
However, the accuracy of the retrieval process depends largely on selection of optimal
parameters, among which dielectric mixing models are a very important consideration (Bolten et
al., 2003; Merlin et al., 2008; Panciera et al., 2008; Piles et al., 2011).

A dielectric mixing model is an essential part of soil moisture retrieval using remote sensing data

(Mironov et al., 2004). The mixing model is employed to calculate the complex permittivity of a dry

and wet soil-water mixture as a function of various soil and sensor properties such as soil texture,
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temperature, salinity, free and bound water permittivity, and frequency. Figure 3 shows the
relationship between permittivity and soil moisture for five different soil texture classes. The
technical literature domain cites a number of soil dielectric models such as Wensink, Knoll,
Heimovaara, Curtis, Nguyen, Halllikainen, Wang and Schmugge, Dobson, and Mironov. Dielectric
models are widely grouped as 1) phenomenological (Cole-Cole model (Cole and Cole, 1941),
Debye relaxation model (Debye, 1929)), 2) volumetric (Complex Refractive Index, CRI model
(Birchak et al., 1974), Maxwell De Loor model (Loor, 1968)), 3) empirical (Wang and Schmugge,
1980), 4) semi-empirical model (Dobson et al., 1985; Mironov et al., 2004; Park et al., 2019), and
5) volumetric model based on the input data requirement (Srivastava et al., 2015; van Dam et al.,
2005).
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Sandy Loam 51.5 35.0 13.5
Loam 42.0 49.5 8.5
Silt Loam  30.6 55.9 13.5
Silt Loam 17.2 63.8 19.0
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Figure 3: Dielectric constant for five soil textures at 1.4 GHz (Hallikainen et al., 1985).

Phenomenological models such as the Cole-Cole and Debye relaxation models allow calculation
of complex dielectric properties of a soil- water mixture at specified frequencies by relating the
characteristic relaxation time period to the frequency dependent behavior of the materials, such
as the induced polarization effect as a function of frequency. Due to complex calculation and
recalibration for specific materials, these models are not widely used and are only documented in
a limited number of studies. Volumetric dielectric models estimate the dielectric behavior of soil
based on relative amounts of soil constituents. These models require solid matter proportion, pore
space, and volumetric water content as input parameters for the retrieval process. Empirical
models use the mathematical relationship between the dielectric properties and soil medium
characteristics such as volumetric water content and bulk or apparent relative permittivity for
calculation of dielectric properties. Data for these models were initially generated using time
domain reflectometry (TDR) probes for different soil types. Artificial Neural Networks (ANN) are
the latest addition in this category and are widely applicable by providing an alternative means for
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describing the relationship between the soil moisture and the relative permittivity of the soil water
mixture. Semi-empirical models fuse the empirical and volumetric models, and are currently
considered some of the most advanced and accurate ones in estimating the complex dielectric
constant of soils. Semi empirical models such as the Mironov and Dobson models use site-specific
results from the volumetric models, pre-calibrated for specific combinations of soil types, to
calculate the complex frequency dependent characteristics of soil dielectric constants. These
models take the percentage of sand and clay particles, volumetric water content, bulk density, soll
physical temperature, and the relative fraction of bound and free water as input parameters to
outline the behavior of the real and imaginary parts of the soil dielectric constant. A brief review of
the most popular models for L-band soil moisture retrieval are presented below, namely the
Halllikainen, Wang and Schmugge, Dobson, and Mironov models. Results from a case study
assessing the comparative performance of these models are also briefly described.

3.1.1 Soil Water Dielectric Mixing Models: Wang and Schmugge

Wang and Schmugge (1980) proposed an empirical dielectric mixing model that outlined the
influence of soil texture on the complex soil water dielectric constant. This model was based on
the variation of soil dielectric properties with soil moisture content depending on different soil
types. The Wang and Schmugge model calculates the dielectric constant of the soil from the
known dielectric constants or refraction indices of air, water and ice and the volume fraction of
each constituent. The development of this model followed two approaches: the first approach was
to deal with the resultant dielectric mixing of the soil-water mixture represented in terms of the
constituent materials, while the second approach accounted for the refractive index of the mixed
constituents to get the resultant refractive index of the soil-water mixture. The proposed model
took into account the property of the initially absorbed water molecule below the transition point of
soil moisture, which was found to be strongly correlated with the soil wilting point and ultimately to
the soil texture. Thus, this model offered a unique possibility to quantify the dielectric constant
according to the soil type, unlike the other previous models which only considered soil as a mixture
of two constituents (dry soil or rock and pure water). Wang and Schmugge used data sets derived
from previous experiments to study the dielectric behavior of the constituents of the soil-water
mixture at 1.4 and 5 GHz over a wide range of soil moisture from 0.0-0.5 m3/m?.

As explained earlier, the first approach accounts for the direct mixing of the dielectric constants of
the constituents as

e=W_., +(P-W.)+(1-P)g,, W, <W, (21)
with
e =¢ +(& —E)WC (22)
X i w i Wt Y
and
e=We, +W, -W)e, +(P-W,)e, + 1-P)e,, W, =W, (23)
with,
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e =& +(e,—¢&)y (24)

where P is the porosity of the dry soil, and ¢4, ¢, &., and g; in sequential order are the dielectric
constants of air, water, rock, and ice. ¢, is the dielectric constant for the initially absorbed water,
and y is the parameter chosen to best fit Equations (22) and (24) to the experimental data. At low
frequencies for the dielectric constant of the imaginary part, the total dielectric loss adding the
conductivity loss is represented as

6‘t" = 8" + 8; (25)
=¢ +601c (26)
=& +aW’ (27)

where ¢," is the total dielectric losses, ¢ is the ionic conductivity [mhos/cm], 4 is the wavelength
[cm], " is the imaginary part of dielectric constant, and « is a fitting parameter. In the second
approach, the mixing is represented as the refractive indices of the air, water, rock and ice, and
Eqr Ew» & and g; are replaced by the refractive indices in the above Equations (21) to (24).

3.1.2 Soil Water Dielectric Mixing Models: Hallikainen

Hallikainen et al. (1985) in the first set of two experiments introduced an empirical dielectric mixing
model to estimate the dielectric constant of the soil-water mixture more precisely and accurately
over a broad frequency range between 1-18 GHz for different soil types based on specified soll
physical characteristics. The microwave dielectric constant of the soil in this model was
represented as a function of soil moisture content, physical temperature, and soil texture
composition. Several experiments were conducted to derive the dielectric constant of five different
types of soil at room temperature and at frequencies between 1.4-18 GHz using a waveguide
technique (for 1.4 GHz and 4-6 GHz) and free space transmission technique (for 4-18 GHz in 2
GHz increments). The dielectric constant for each frequency was represented using polynomial
expressions dependent on volumetric soil moisture content and sand and clay percentage
separately for the real and imaginary part of the dielectric constant. This model introduced the
concept of free and bound water presence in the soil- water system, with dielectric constant as a
function of 1) frequency, temperature and salinity, 2) total volumetric soil moisture content, 3)
relative fraction of bound and free water which is related to the soil surface area per unit volume,
4) bulk density of the soil, 5) shape of the soil particles, and 6) shape of the water inclusions.

To represent the real ¢’ and imaginary &'’ part of the dielectric constant as a function of volumetric
water content m,, and the percentage of sand S and clay C, the general form of the expression
can be represented as

&=(a, +a,S+a,C)+(b, +b,S +b,C)m, +(c, +¢,S +¢,C)m? (28)

Important inferences of these experimental measurements were:
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1) the dielectric constant of the soil-water mixture is a function of volumetric water content m,,
and soil texture composition.

2) the dielectric constant of dry soil is independent of texture and frequency under controlled
density effects.

3) the frequency behavior of ¢’ for wet soil and water was found to be similar and only reduced
in magnitude between 1.4 to 18 GHz.

4) for &', the minimum value was found between 2-4 GHz due to salinity effects while the
maximum value was obtained at frequencies near 17 GHz due to the relaxation of water
at normal room temperature.

5) Both &' and " were found to decrease with a decrease in temperature below 0°C.

3.1.3 Soil Water Dielectric Mixing Models: Dobson

The Dobson model (Dobson et al., 1985) was proposed in a second series of experiments studying
the behavior of microwave dielectric properties of wet soil as a function of soil moisture and soil
textural composition in 1985. The main objective behind developing this model was the failure of
the Wang and Schmugge model in efficiently predicting the behavior of " and conductivity losses
based on soil type and water content.

The Dobson model is a semi-empirical dielectric mixing model based on the refractive index
requiring easily available information about soil physical parameters such as volumetric soil
moisture content (m,,), bulk density (pp), and sand (S) and clay (C) fraction. An empirical model
proposed by Birchak et al. (1974) based on refractive volumetric mixing was used to understand
the responses of dielectric properties to these soil physical parameters and to address the first
proposed objective. The expressions representing the Birchak model are given by

el = ZVi g’ (29)

where a is a constant shape factor; when a=0.5, Eq. (29) describes refractive mixing and when
applied to moist soil can be represented as

g% =V, el +V,ef +V 8% +V, €0 (30)

The subscripts s, a, fw and bw refer to the soil solids, air, free water, and bound water,
respectively.

Due to the value of the complex dielectric constant of bound water not being well-known and to
avoid lengthy calculations for the volume fraction, the following approximation is made in Eq. (30)
and is represented as

mles =V g% +V, e (31)
where the value of the empirical constant f depends on the texture composition of the soil. For a

given soil with bulk density (p,), specific density (o), and volumetric soil moisture content (m,,),
the final expression for the semi-empirical model is
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(32)

v*

P B
o =1+—(ef -D)+m/eq, —m
S

3.1.4 Soil Water Dielectric Mixing Models: Mironov

In 2004, Mironov et al. (2004) introduced a generalized refractive dielectric mixing model
(GRMDM) applicable over a wide range of soil moisture, texture, mineral content and frequency.
The model presented was a modified version of a previous refractive mixing dielectric model
(RMDM) (Birchak et al., 1974) considering soil as a biphasic system. It also introduced the concept
of intrinsic bound soil water (BSW) and free-soil water (FSW) and the complex dielectric constant
(CDC) for both the constituents obtained through the straight-line fitting method. The CDC is
derived through the measured soil complex refractive index (CRI) mathematically obtained as the
square root of CDC and as a function of soil moisture. In the modified RMDM, the CDC is
considered as a function of both soil moisture and frequency. Expressions representing the
GRMDM can be written in the following set of equations.

According to the RMDM, the CRI of moist soil can be calculated by mixing the CRIs of the separate
constituents of the soil as weighted by their partial volumetric contents

Je =Y JeW, (33)

where ¢ is the soil CDC, and W; and ¢; are the volume fraction and CDC of the ith soil component
such as mineral solids, air, and soil water (salinity). Considering soil as a three-component system,
Eqg. (33) can be modified as

ey =Wy + e W, + /e, W (39

Where subscripts s, m, a and w refer to the bulk moist soil, mineral particles, air, and water,
respectively. Subscript w is omitted when applied to the volumetric soil moisture as

W =W (35)
and,

W, =1-W, -W (36)

and since ¢, = 1, Eq. (36) can be rewritten as

Ve, = eg + (o, ~DW &0

where g, is the CDC of the absolutely dry soil and can be determined by the dielectric constant of
soil solids and bulk density as
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Veq =1+ (e, —DW,, (38)
where ¢, is the CDC of the dry soil and W, is the volume fraction of solids in a dry soil which is

obtained through W, = ps/pm, Where p,; and p,, are the bulk and specific density of the dry saill,
respectively.

The CRI, n* = +/¢, can be expressed in terms of the refractive index (RI) n and the normalized
attenuation coefficient (NAC) which is considered as a proportion of the standard attenuation
coefficient to the free space propagation coefficient, k, as

n=+/e =n— jk (39)

where j is an imaginary unit. The Rl and NAC can be derived from two expressions simplifying
Eq. (37) as

n, =n, +(n, —HW (40)

and

k, =k, +k,W (41)

If the Rl and NAC are known, the respective value of dielectric constant ¢ and loss factor €” can
be calculated as

F=nt -k (@2)

and

g"=2nk (43)

The inverse transformation of the above equation is

nv/2 :\/ (&) +(&")? +&' (44)

and,

V2 = (&) + )7 )
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3.1.5 A comparative performance analysis of soil dielectric mixing models: case studies
This section reports some of the previous experiments performed with the above mentioned soil
dielectric mixing models using L-band radiometer measurements, and highlights the performances
of these models in soil moisture retrievals at various reported sites.

To assess global soil moisture patterns observed by spaceborne microwave radiometers and
scatterometers under different vegetation conditions at selected experimental sites across the
USA, Spain, Australia, France, West Africa, and Ukraine, de de Jeu et al. (2008) used the Wang
and Schmugge dielectric model to describe the behavior of dielectric properties of soil-water
mixtures for different soil textures (sand, loam, and clay). Results of this study showed good
performance of the model in retrieving surface soil moisture and a linear relationship between the
soil dielectric constant and soil moisture content. However, a non-linear relationship was observed
at low moisture content. The reason given for this nonlinearity was the formation of a strong bond
between the soil particle surface and the thin water film surrounding it under water deficit
conditions.

To test the efficiency and performance of the Hallikainen mixing model, Hallikainen et al. (1986)
conducted a comparative analysis of dielectric measurements from the model at nine frequency
intervals between 3-18 GHz and at 37 GHz using the free-space transmission technigue against
the Polder-Van Santen model. Both models were found to satisfactorily describe the dielectric
behavior of snow and wet soils.

In a first evaluation study of the comparative performance of the Dobson and Mironov models
using SMOS measurements and the L-Band Microwave Emission of Biosphere (L-MEB) model in
2015, Mialon et al. (2015) retrieved soil moisture values using these data sets and tested them
against in situ soil moisture measurements for some selected SMOS validation sites located in
various climatic regions. Results of this study showed better performance for the Mironov model
over the Dobson model in retrieving soil moisture at a global scale.

In an experiment to analyze the performance of these soil dielectric mixing models in soil moisture
retrievals using the combined radar/radiometer (ComRAD) ground-based L-band simulator for the
SMAP mission and single-channel algorithm at H-polarization (SCA-H) version of the tau omega
model, Srivastava et al. (2015) conducted a field experiment during summer 2012 over corn fields
at United States Department of Agriculture (USDA) test site using ComRAD measurements and
in situ soil moisture and theta probe sensors. Parameters such as brightness temperature (Tg) at
horizontal (H) and vertical (V) polarization measured by ComRAD, soil temperature, and
Vegetation Water Content (VWC) were used to retrieve soil moisture using SCA-H and various
dielectric mixing models -- Mironov, Dobson, Wang and Schmugge, and Hallikainen. Results
obtained were compared using the highest performance statistics combination in terms of high
correlation (r), low RMSD, and lowest bias scores. The study showed best performance by the
Mironov dielectric model (r=0.79; RMSD=0.04 m3/m?3; bias=0.01), followed by the Dobson model
(r=0.76; RMSD=0.04 m3®m3; bias=-0.01), Wang and Schmugge (r=0.79; RMSD=0.04 m3m?3;
bias=0.02), and Hallikainen model (r=0.76; RMSD=0.06 m3/m?3; bias=0.04), suggesting a marginal
advantage of the Mironov dielectric model for soil moisture retrieval using passive microwave
measurements.

Accurate and efficient retrieval of soil moisture using remote sensing data depends largely on
careful selection of retrieval parameters such as which soil dielectric mixing model to use.
Dielectric mixing models calculate the complex permittivity of the dry and wet soil-water mixture
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as a function of various soil and sensor properties such as soil texture, temperature, salinity, free
and bound water permittivity, and microwave frequency. A number of mixing models have been
developed, but several experiments show that the Mironov model, followed by the Dobson, Wang
and Schmugge, and Hallikainen models, are the most efficient ones for soil moisture retrieval
using L-band measurements. Recently, a dielectric mixing model accounting for organic matter in
mineral soils has been developed (Park et al., 2019) which could extend the range of validity of
the dielectric models used to higher organic soils.

3.2 Soil moisture retrieval from brightness temperature

As noted in section 2.2.1, soil moisture retrieval from brightness temperature (Tg) primarily benefits
from the high sensitivity of Tg in response to soil moisture change. For example, Ts from bare soils
with a smooth surface could exhibit a change of ~90 K between dry soil (~5% water by volume)
and wet soil (~40% water by volume) conditions. With a typical radiometric uncertainty of < 1 K in
modern radiometers, the resulting large signal-to-noise ratio allows for accurate estimation of soil
moisture.
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Figure 4: Contributions to the top-of-atmosphere brightness temperature (Kerr et al., 2010a).

The zeroth order radiative transfer model (a.k.a. the "tau-omega" model) is a common forward
model that relates soil moisture to Tg observations (Mo et al., 1982). Over the last few decades,
its usefulness has been demonstrated at various spatial scales based on agreement between in
situ ground truth and ground-based, airborne and spaceborne Ts observations. Besides its
relatively good accuracy, the model is also relatively straightforward to deploy over large spatial
scales due to its modest parameterization requirements. The model provides an end-to-end
physics-based description of how the impact of soil moisture on soil dielectric properties affects
the Tg from soils as well as the Tg interaction between soils and vegetation through scattering and
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absorption (Figure 4). Operationally, a full formulation of the model often requires additional
ancillary data to provide Tg correction before soil moisture retrieval is attempted. Common
ancillary data include (1) land/water mask to correct for Tg contamination due to water near
coastlines or open-water bodies, (2) vegetation indices such as LAl or NDVI to correct for Tg
scattering, absorption and emission by vegetation, (3) surface roughness and soil temperature for
surface emissivity estimation, and (4) soil texture as inputs to soil dielectric models (O'Neill et al.,
2015).

Radiometer-based or passive soil moisture retrieval begins with solving for the estimated soil
moisture from the tau-omega model with actual Tg observations and prior information from the
ancillary data listed above as constraints. The retrieval process is often of an iterative numerical
nature, in that an initial numerical guess is used as a "seed" to search for an estimated soil
moisture that predicts the actual Tg observations according to the model either analytically as with
single-channel Tg observations or in a least-squared sense as with multi-channel Tg observations,
which would involve concurrent observations at multiple observation angles, frequency channels,
and/or polarization planes. Both single-channel and multi-channel soil moisture retrieval
algorithms have been extensively studied in field experiments and tested with airborne Tg
observations in field campaigns or spaceborne Tg observations by Earth-orbiting radiometers such
as Aqua/AMSR-E, GCOM-W/AMSR2, Aquarius/SAC-D SMOS and SMAP. State-of-the-art L-
band soil moisture retrieval algorithms from some of these missions have been validated using in
situ ground truth to demonstrate a retrieval accuracy of an unbiased RMSD of less than 0.04 m3/m3
and a correlation of greater than 0.80.

Earlier field campaigns had established that Tg observations acquired at L-band (1.4 GHz) exhibit
greater sensitivity to soil moisture variability compared with those acquired at higher frequencies
such as C-band (6.9 GHz) or X-band (10.7 GHz) (Wang et al., 1990). During the last decade,
technological and engineering advances have matured to a point where the construction of large
and lightweight antennas for L-band has become practical, leading to a series of L-band
radiometer instruments (e.g. Aquarius/SAC-D, SMOS, and SMAP) that provide Ts observations
useful for frequent and global remote sensing of soil moisture from space.

Pioneer work showed the possibility to retrieve simultaneously soil moisture and vegetation
opacity (2-Parameter retrievals) from multi-angular passive microwave measurements (Wigneron
et al., 1995). This step was key as it avoided the complex step of estimating vegetation effects
externally from ancillary data. Moreover, vegetation opacity was potentially a very interesting index
to monitor the dynamics of vegetation (Wigneron et al., 2017). The soil moisture retrieval algorithm
for the SMOS satellite was based on this principle (Wigneron et al., 2000). However, the multi-
angular characteristics need to be considered for the parameterization of both soil and vegetation
(Wigneron et al., 2017; Wigneron et al., 2007; Wigneron et al., 2004). Multi-angular signatures of
rough soils were investigated based on both experimental (Wigneron et al., 2011; Wigneron et al.,
2017) and simulated data (Lawrence et al., 2013) and led to the development of simple and
accurate modelling based on the H-Q-N approach after Wang and Choudhury (1981), where the
rough-surface reflectivity is a function of the specular reflectivity of a smooth surface and the
roughness parameters H (intensity of the roughness effects), Q (polarization mixing parameter),
and N (parameter to better account for multi-angular and dual-polarization measurements). In
addition, vegetation may present strong anisotropy which may affect the multi-angular and dual-
polarization signatures of vegetation-covered areas. For instance, the effects of vegetation
anisotropy on optical depth with respect to incidence angle and polarization were found to be very
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significant for crop types with a vertical (stem-dominated) structure. The opacity of a well-
developed wheat canopy was found to be three times higher at V- than at H-polarization (0.3 vs
0.1) (Wigneron et al., 2004). To account for these effects, in the SMOS retrieval vegetation opacity
is expressed as a function of the opacity at nadir, where also the intensity of opacity change related
to the incidence angle is implemented (Wigneron et al., 2004).

3.3 Soil moisture retrieval from backscatter

For active microwave remote sensing of soil moisture, the intensity and phase of a reflected
microwave signal are input to radar-based soil moisture retrieval algorithms. The ratio of the
transmitted and reflected intensity, radar backscattering coefficient (¢°), is also referred to as
‘normalized radar cross section (NRCS) and ‘normalized bistatic RCS (NBRCS)' in the
backscattering and bistatic directions, respectively. ¢° is usually given in decibel units (dB) with
minus tens of dB for NRCS to plus tens of dB for NBRCS, subject to mono- or bistatic acquisition
scenarios, the local incidence and scattering angles, peak power transmit, transmit/receive
polarizations, and finally the properties of the media under investigation.

Satellites operating at X-, C-, S-, and L-bands have been used with center frequencies at ~10,
5.4, 3.2, and 1.3 GHz, respectively. Observation of dynamic range indicates that ¢° tends to be
most sensitive to the changes in vegetation, then to soil surface roughness, and lastly to soll
moisture (as an example of dynamic range at L-band, 10 dB for vegetation (Fig 5 (McNairn et al.,
2015)), 7 dB for roughness, and 4 dB for soil moisture (Fig. 4 (Kim et al., 2012)). Consequently,
how well the effects of vegetation and roughness are accounted for by correction or signal
decomposition (Jagdhuber et al., 2014), and the validation of the correction or decomposition, are
as important as soil moisture validation itself. Issues associated with validating soil moisture
retrieved by radar backscattering coefficients are discussed below.

3.3.1 State-of-the-art algorithms (regarding spaceborne SAR data)

The first group of algorithms do not employ/use electromagnetic scattering models for soil
moisture retrieval. Semi-empirical (Burgin and van Zyl, 2016) or machine learning methods
(Paloscia et al., 2013; Pasolli et al., 2015) are trained using existing data sets, and may need
additional adaptation for global application. Change detection concepts estimate temporal
variations in soil moisture by assuming that vegetation is static over the monitoring period
(Ouellette et al., 2017) or by developing a data-driven correction of the vegetation
effect/influence/bias (Bauer-Marschallinger et al., 2019). The former algorithm, assuming static
vegetation, experiences a challenge when plants grow rapidly and the monitoring period extends
towards months; and the latter algorithm, using data-driven correction methods, limits the spatial
resolution to ~1 km at present.

The second group of algorithms incorporates a scattering model for forward modelling and
inversion purposes. One of the most widely used semi-physical models is the Water Cloud Model
(Attema and Ulaby, 1978) that has calibration coefficients for each scattering mechanism (Bousbih
et al., 2017; McNairn et al., 2012). The model lacks a double-bounce component and it tends to
be site-specific due to the tuning coefficients. Simplified physical scattering models were
developed and inverted (Kim et al., 2017). However, developing a physical model for each plant
type is a challenge. Lastly, polarimetric decomposition techniques (Jagdhuber et al., 2014) allow
extraction of the surface scattering component, followed by direct inversion of soil moisture. The
limitations of this approach are the efficacy/quality of removing the effect of vegetation and
roughness, as well as the need for fully polarimetric observations which places requirements on
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sensor acquisition configuration and constrains the data refresh rate. This summary does not
include the current progress being made with Global Navigation Satellite System and
Reflectometry (GNSS-R) data, airborne studies (e.g. P-band), and Interferometric Synthetic
Aperture Radar (INSAR) approaches.

3.3.2 Product (soil moisture) accuracy goal

A major driver of radar soil moisture retrieval is the accuracy required by the application under
consideration and the technical capability of retrieval by sensor and algorithms. For agricultural
applications, the distinction of five wetness states over a 25% soil moisture dynamic range would
require a sensitivity of at least 0.05 m3/m?® (RMSD). From the technical maturity perspective, 0.06
m3/m3 ubRMSD has routinely been achieved.

3.3.3 Acquisition mode (mono-/bi-static) and local incidence angle

Most current spaceborne radars operate in the monostatic backscattering mode. Moreover, the
incidence angles of conventional synthetic aperture radar (SAR) and scatterometer sensors range
between 20° to 60°. As signal strength varies with incidence angle and acquisition mode, the
retrievals need to account for the respective angle and cannot directly be transferred to other
acquisition modes.

3.3.4 Spatial resolution

The most important merit of spaceborne radar for global soil moisture retrieval is spatial resolution.
Resolution varies from ~10 m (single-look of a SAR) to ~30 km (real aperture scatterometer). A
SAR single-look scene is prone to large speckle noise. To reduce the speckle down to ~0.7 dB
(desired to distinguish ~ 5 levels of wetness using ~ 4 dB dynamic range at L-band, Fig. 4 (Kim et
al., 2012)), about 40 single-looks have to be averaged spatially, resulting in ~70 m spatial
resolution. The resolution of spaceborne bistatic instruments varies depending on the flatness of
the soil surface from ~0.7 km (first Fresnel zone) to 25 km (Ruf et al., 2018).

3.3.5 Number of in situ stations

The analysis by Famiglietti et al. (2008) suggests that at least three in situ soil moisture readings
are necessary to validate at 0.06 m3*m® RMSD accuracy at 800 m spatial resolution. This
recommendation applies to homogeneous conditions of soil roughness and texture, terrain slope,
and vegetation within the resolution cell. For coarser resolutions and more heterogeneous
conditions, more stations are necessary.

3.3.6 Radiometric resolution

The radiometric resolution highly depends on the capability of the sensor to send, receive and
amplify the signal in the best way for soil moisture sensing. Most currently operating radar sensors
have a radiometric resolution between 0.3-1.0 dB after calibration (0.3 dB for co-polarization,
SMAP (West, 2015)). For soil moisture sensing and especially global validation, it is beneficial to
include regions with different radiometric signal characteristics (representative range of spatial
heterogeneity in terms of land cover and soil diversity), considering that ¢° change due to soil
moisture is only in the range of a few dB (e.g., ~4 dB Fig. 4 (Kim et al., 2012)).

3.3.7 Overpass time

The radar-based soil moisture retrieval does not require the physical temperature of soil and
vegetation unlike the radiometer-based inversion/retrieval. Therefore, overpass time is not an
issue from this perspective. However, Faraday rotation becomes strong at L-band in the afternoon
near the Equator. The L-band Soil Moisture Active Passive (SMAP) mission used a numerical
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model for the ionospheric electron content, which provided sufficient information to correct the
rotational effect (West, 2015).

3.3.8 Frequency and duration of temporal sampling

The desired interval for revisit depends on the subsequent usage of the soil moisture information.
Major application areas are meteorology, hydrology, and agriculture. For non-irrigating agricultural
purposes, rainfall frequency and plant growth primarily determine the revisit interval requirement.
In India and US cropland rain-fed regions, it rains between 20 to 40 days a year (Sun et al., 2006),
which translates into an 18- to 9-day interval between rain events assuming a temporally even
distribution. Meteorological (e.g. storms) and hydrological (e.g. floods) applications require about
3-day revisit (Entekhabi et al., 2010), while plants may grow rapidly within 10 days, requiring a
minimum revisit of ~ 6 days (McNairn et al., 2015). One hydrological cycle is typically one calendar
year, while the crop growth season tends to be 3-4 months at the shortest: these intervals
determine the duration for soil moisture observation for agricultural and meteorological
applications.

3.3.9 Ancillary information (vegetation, roughness, terrain slope)

The successful retrieval of soil moisture requires rigorous correction, separation or cancellation of
the strong effects on radar backscatter by vegetation, surface roughness, and terrain slope.
Vegetation effects are corrected using concurrent radar data or ancillary information (Attema and
Ulaby, 1978; Bauer-Marschallinger et al., 2019; Bousbih et al., 2017; Kim et al., 2017), or are
assumed to be static and cancelled in retrievals based on time-series (Burgin and van Zyl, 2016;
Ouellette et al., 2017). Polarimetric decomposition techniques extract smooth surface scattering
by removing the other components (vegetation & surface roughness) (Jagdhuber et al., 2014).
Surface roughness has also been estimated (Kim et al., 2017) or assumed static (Bauer-
Marschallinger et al., 2019; Burgin and van Zyl, 2016; Ouellette et al., 2017). Accordingly,
recording such information at the validation sites is very helpful to understand, evaluate and
improve the validity of the retrieved surface soil moisture.

3.4 Soil moisture retrieval by optical methods

Use of optical remote sensing in surface soil moisture (SSM) retrievals started in the mid 1970's
(Johannsen, 1970). The available methods can be largely divided into the following groups: (1)
single spectral analysis methods, (2) vegetation index based methods, (3) thermal infrared based
methods, and (4) synergistic methods.

3.4.1 Single Spectral Analysis methods

Using laboratory based measurements, Angstrom (1925) was the first who demonstrated a
decrease in reflectance as soil moisture increases. Jackson et al. (1976) in an early experimental
study reported albedos of all dry soils to be two times higher than those of wet soils of the same
soil types, with the exception of some sandy soils. Since then, various studies have also reported
empirical relationships between single-channel reflectance and SSM (Dalal and Henry, 1986;
Ishida et al., 1991). Such methods have generally reported reasonable SSM prediction for specific
soil samples and experimental site conditions. Nonetheless, those methods provide only a poor
indication of SSM because of the large variability in spectral characteristics of a soil, which is
affected by parameters such as organic carbon, soil texture and type, topography and surface
roughness. The impact of these factors can lead to strong deviations when applied outside the
local calibration conditions (Wang and Qu, 2009).
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Apart from empirical models, relationships between SSM and surface reflectance have been
established using physically based models. For example, Lobell and Asner (2002) proposed a
physical model and showed an exponential relationship between soil reflectance and SSM on the
basis of an analysis of four different soils at various moisture contents. Their model was expressed
as:

R=fxR, +(1—-f)xR

dry

X (—cx 8) (46)

where Ry, is the dry soil reflectance, c is a variable used to characterize the change rate induced
by SM, s refers to the soil saturation, and f to the saturation rate.

However, even if these empirically-based approaches have generally been proven adequate for
estimating SSM under conditions close to those used for calibration, serious issues frequently
emerge when they are applied outside these conditions as the spectral characteristic of soil is
affected by various soil attributes (such as soil moisture, organic matter, soil type) that can vary
significantly (Soriano-Disla et al., 2014). One of the most widely used techniques is based on
computing the relative reflectance that is then linked to surface soil moisture. This technique, using
only one wavelength, aims to reduce the soil type effect by normalizing the reflectance by that
observed under dry conditions over the same soil. A different approach exploits the change of
reflectance sensitivity to moisture as a function of the wavelength for minimizing the effect of
confounding factors, using derivatives of either reflectance or absorbance. Such methods reduce
the effects of these confounding factors assuming that they are either constant or vary linearly
with the wavelength over the limited spectral domain considered (Petropoulos et al., 2018).

3.4.2 Vegetation Index Based methods

In vegetation index based methods, the underlying principle is to develop an empirical spectral
vegetation index to estimate the degree of vegetation moisture stress, which can be used for
indirect estimates of soil moisture (Martinez-Fernandez et al., 2016). An example of a widely used
vegetation index linked to estimating SSM is the so-called normalized difference water index
(NDWI) proposed by Gao (1996). NDWI exploits spectral information acquired in the near infrared
(NIR), 0.86 um, and the short wave infrared (SWIR), 1.24 um, because this part of the
electromagnetic spectrum is sensitive to SSM content, and this index is also insensitive to the
atmospheric conditions. The NDW!I is defined as:

p(0.86um)— p(1.24 um) 47
p(0.86um)+ p(1.24 um)

NDWI =

where p is the reflectance.

Wang et al. (2008) suggested using the normalized multi-band drought index (NMDI), which is
essentially a modified version of the NDWI offering an improved sensitivity to drought monitoring.
The NMDI uses the NIR as the base and the difference between two SWIR bands to detect soil
and vegetation water content. NMDI is defined as:

 p(0.86m)—[ p(1.640um) - p(2.130um)] (48)

NMDI =
p(0.86um) + [p(] 640um)— p(2.130pm)]
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Recent studies have focused on exploring the use of hyperspectral sensors in SSM retrieval.
Although hyperspectral data have generally shown promising results in SSM retrievals (Dematte
et al., 2006; Heusinkueld et al., 2008), their usefulness needs to be further explored. Overall, it is
generally accepted that even to date, techniques utilizing reflected spectral information from only
the reflective part of electromagnetic radiation are not capable of accurately measuring SSM. This
is because there are too many noise factors (e.g., organic matter, roughness, texture, plant cover),
which eventually make the exploitation of such techniques impractical and non-viable (Moran et
al., 2004).

Indeed, even today a limited body of literature exists on the exploitation of VIS, NIR, SWIR and/or
hyperspectral remote sensing observations on the retrieval of SSM due partly to the fact that soil
reflectance measurements are strongly affected by the soil composition, physical structure, and
observation conditions. Because of these limitations, efforts to directly relate soil reflectance to
moisture have achieved success only when models are fitted to specific soil types in the absence
of vegetation cover (Muller and Decamps, 2001). Nevertheless, one of the key advantages of
reflectance-based methods is the maturity of optical remote sensing technology. In addition, such
methods provide estimates of SSM at high spatiotemporal resolutions, as optical sensing systems
that have generally high spatial resolution.

3.4.3 TIR-based Methods

Thermal infrared methods use thermal inertia, a parameter describing the ability of soil to resist
temperature change (Cheng et al., 2006) to estimate SSM. Generally, thermal inertia estimation
requires information on the soil heat capacity and on soil thermal conductivity, and can be
computed as follows:

P=JAxpxC (49)

where 1 is the soil thermal conductivity, p is the soil bulk density, and C is the soil heat capacity.
An increase in SSM results in an increase of the thermal inertia, thus reducing the diurnal
amplitude variations of the land surface temperature.

Surface temperature is primarily dependent upon the thermal inertia of the soil, while the latter is
dependent upon both the thermal conductivity and the heat capacity of the soil water content
(Olsen et al., 2013). Consequently, a measurement of the amplitude of the diurnal temperature
change allows development of a relationship between the temperature change and soil moisture.
A number of studies have been proposed for this purpose. For example, (Ma and Xue, 1990)
proposed the following relationship between thermal inertia and soil moisture:

: ~0.007(wds/d—20) 12 (50)
P= {(2.1ds“-*”-”“d”‘”‘*’])e[ ) ])m's [0.8+0.02(ds / d)w]

#(0.2w/ d)ds> /0.0015100

where ds is the soil density, d is the water density, and w is the weight percentage of soil moisture.

However, the association between diurnal temperature and soil moisture is dependent on soil type
and is limited to bare soil conditions to a large degree (Vandegriend et al., 1985). Therefore,
generally it cannot be applied for large-scale soil moisture monitoring. Various (mainly empirical)
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methods for mapping soil moisture over a given area have been suggested based on correlations
of SSM with radiometric satellite measurements in both visible and thermal bands (Friedl and
Davis, 1994; Price, 1990). However, such methods are accompanied by all the limitations of
empirically-derived methodologies discussed earlier as well (e.g., lack of transferability to other
regions, fine-tuning, weakness to describe physical processes, etc.). On the other hand, these
approaches can provide estimates of SSM at high spatial resolution using mature technology in
terms of sensor technology.

3.4.4 Synergistic Methods

Since the early 1980’s, several studies have documented the presence of a triangular (or
trapezoidal) shape when remotely sensed surface temperature (T's) and vegetation index (VI)
measurements taken from heterogeneous areas are plotted in two-dimensional feature space,
forming a Ts/VI scatterplot (Petropoulos et al., 2009; Price, 1990). Many of these studies have
focused on analyzing the biophysical properties encapsulated in the Ts/VI pixel envelope, and in
associating these and the estimation of SSM as well as of other parameters that characterize land
surface interactions. In brief, if an image is cloud free and masked for water bodies, per pixel-level
values of T's and VI collected from any satellite imagery usually form a triangular (or trapezoidal)
shape in the Ts/VI feature space, as shown in Figure 5.
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Figure 5: Key descriptors and physical interpretations of the Ts/VI feature space “scatterplot” (adopted from
Petropoulos et al. 2009).

Each yellow circle represents the measurements for a single pixel. Figure 5 shows the Ts/VI pixel
envelope captured by each satellite scene. The triangular (or trapezoid) feature space is formed
by the variability of Ts and its relation to vegetation with soil water content variations. The right-
hand side border of the triangle (or trapezoid) (the so-called “dry edge” or “warm edge”) shown in
Figure 5 is defined by the locus of points of highest temperature. This locus, however, contains
points with differing amounts of bare soil and vegetation and represents limited SSM. Likewise,
the wet edge at the left hand border corresponds to low temperature pixels with maximum surface
soil water content. Points within the triangular space correspond to pixels with varying vegetation
index (i.e., fractional vegetation cover, Fr) and surface soil water content, between those with bare
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soil and those with dense vegetation. The relatively narrow vertex of the triangular envelope
expresses the comparatively lesser sensitivity of leaf (i.e. vegetation) temperature to changes in
soil water content, while the much wider base indicates that surface soil temperature is much more
influenced by such changes.

The potential of relating SSM with a VI and Ts has been thoroughly scrutinized since the early
1980’s. Carlson et al. (1981) were the first who found the existence of a marked relation in a Ts/VI
scatterplot between soil moisture, evapotranspiration and vegetation cover (for a review see
Petropoulos et al., 2009; Petropoulos et al., 2013).

Various studies have been conducted attempting to relate the satellite-derived Ts/VI feature space
to drought conditions, and thus indirectly to SSM distribution. A large number of those studies
have as their basis the estimation of spectral indices which allows combining information from
both the reflected and TIR parts of electromagnetic radiation (Carlson and Petropoulos, 2019;
Ghulam et al., 2007; Sandholt et al., 2002; Wan et al., 2004). A different group of approaches to
the estimation of surface soil moisture content from T's/VI feature space measurements has been
based on the coupling of these data with a Soil Vegetation Atmosphere Transfer (SVAT) model.
In this method, the estimated soil water content is obtained from a parameter called the ‘moisture
availability (M,)’, a parameter loosely equated with the fraction of field capacity for the SSM. In the
beginning of the 1990’s, Carlson et al. proposed a method that provided estimates of surface
energy fluxes and SSM over partially vegetated canopies with the help of a boundary layer model
(BML) and two image products: the Ts/NDVI scatterplot and the “arch” diagram (Coakley and
Bretherton, 1982). The two diagrams were used to identify the asymptotic limits of the sunlit leaf
and the sunlit bare soil temperature and also to qualitatively assess the level of noise produced
by small variations in soil moisture and leaf shading. The SVAT was used to estimate soil surface
and root zone water contents, given the asymptotic vegetation and bare soil temperatures, derived
from the aforementioned diagrams. Based on this study, Gillies and Carlson (1995) introduced a
new method for the retrieval of spatially distributed maps of M,. The outputs from a SVAT model
were coupled with the Ts and VI (here the Fr was used as the latter is a physical quantity in terms
of a SVAT model contrary to the NDVI) EO data via empirically-derived correlations developed
between the relevant input (e.g. Fr, M,) and output (e.g. LE, Ts) parameters of the physically-
derived model, parameterized for the time of satellite overpass. These correlations were then used
with the EO values of, for example, Fr and T's to retrieve M, at each image pixel as follows:

M, =>""S"""a " Fr® LSTY lim (51)

a
i=0 Lt j=0 il oo

where *NDVI and *LST can be obtained by using the following relations (52) and (53):

Fr= (NDVIY =[(NDVI - NDV1,)/(NDVI,~ NDV1,) | (52)

"LST =(LST - LST,)/(LST, — LST,) (53)

where, LST and NDVI are observed surface temperature and the Normalized Difference
Vegetation Index used in the triangle model respectively, and the subscripts o and s stand for bare
soil and dense vegetation, respectively. This method’s accuracy in retrieving M, was evaluated by
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different investigators suggesting a promising ability of this technique (Capehart and Carlson,
1997; Carlson, 2007; Gillies et al., 1997; Petropoulos et al., 2016; Wang et al., 2007). Variants of
this method have also been proposed for downscaling SSM operational products at higher spatial
resolutions (Piles et al., 2016; Piles et al., 2014).

All'in all, the key advantages of the methods that utilize the synergy between optical and TIR EO
data help in development of SSM algorithms and provide missing data in real time (namely a
vegetation index and surface temperature). In addition, these techniques incorporate all the
advantages of both the optical and TIR methods previously reviewed (i.e., they provide fine spatial
and temporal resolution for SSM estimation, and they employ the use of mature technology with
broad knowledge, data easily accessible from operational satellites, long historical data). Also,
many of these techniques are able to provide relatively satisfactory estimates of SSM over partially
or fully-vegetated regions, conditions which limit the performance of other techniques for
estimating soil moisture (e.g., when MW data are used, as will be discussed next). Other key
advantages of the T's/VI methods with respect to SSM estimation generally include their ability to
be largely independent of ancillary surface and atmospheric information and their ability to better
deal with land surface heterogeneity. In addition, many of the aforementioned synergistic methods
require for their practical implementation a full spatial coverage or at least a very wide range of
both VI and surface moisture within the study region, a condition that in general cannot be satisfied
over large homogeneous areas. In our view, these are some of the main reasons that justify the
continuous interest of the scientific community in these methods to date (Petropoulos et al., 2015).

3.5 Current and upcoming satellite-based soil moisture products
In this section currently operating systems as well as planned missions including sensor-specific
soil moisture retrieval methods/characteristics are discussed.

3.5.1 Metop Advanced Scatterometer (ASCAT)

The Advanced Scatterometer (ASCAT) is part of the payload of the series of Metop satellites and
represents a real aperture radar system operating in C-band using a vertical signal polarization
(VV) (Gelsthorpe et al., 2000). The instrument has been operating in space more than 14 years,
starting with the launch of Metop-A on 19 October 2006. The two following satellites, Metop-B
(launched on 17 September 2012) and Metop-C (launched 7 November 2018), have succeeded,
at six year intervals, to ensure a continuity of services provided by Metop. The three satellites
share the same polar orbit (817 km orbit height, 29-day repeat cycle) with an
ascending/descending node at 9:30 p.m./a.m. local solar time. The series of Metop satellites will
operate in unison as long as Metop-A will be available, presumably until 2022.

ASCAT measures the normalized radar cross section (NRCS), or radar backscatter, which is the
ratio of the received backscattered energy to that of an isotropic surface scatterer as given by the
two-way radar equation. The instrument consists of two sets of three fan-beam antennas arranged
in azimuth at £45°, 90°, and 135° and +45° broadside. The incidence angles of the two antennas
perpendicular to the flight direction range between 25-53°, whereas the other four antennas range
between 33-64° (Figa-Saldana et al., 2002). As a result, the measurement geometry produces
two 550 km wide swaths located approximately 360 km to the left and right of the satellite ground
track (Figure 6). Each point of the Earth’s surface that falls within one of the two swaths will be
seen by all three antennas, and a so-called backscatter "triplet" (Fore, Mid and Aft beam) can be
observed. ASCAT works in two different modes: measurement and calibration. The calibration
mode is used during external calibration campaigns when the platform passes over three different

ground transponders located in central Turkey (Wilson et al., 2010).
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Despite the fact that initially no operational services were foreseen over land, ASCAT has been
utilized to develop a global near real-time soil moisture processing and dissemination service
(Wagner et al., 2013). Much of this success is owed to its predecessor instrument, the C-band
scatterometer (ESCAT) on-board the European satellites ERS-1 (1991-2000) and ERS-2 (1995-
2011), which was originally used to study backscatter and soil moisture changes (Wagner et al.,
1999c). A physically-based semi-empirical change detection algorithm has been developed by
Vienna University of Technology (TU Wien) to estimate surface soil moisture (Wagner et al.,
1999a; Wagner et al., 1999b). The similar sensor design of ESCAT and ASCAT allowed a direct
transition of the same retrieval approach (Bartalis et al., 2007; Naeimi et al., 2009).

Figure 6: The ASCAT observation strategy with two 550 km-wide swaths. Credit: ESA/EUMETSAT.

The TU Wien soil moisture retrieval exploits the multi-incidence angle measurement capability of
the fan-beam scatterometer. Backscatter observations are interpolated to a common reference
incidence angle of 40° based on an empirical description of the incidence angle behavior (Wagner
et al.,, 1999b). A second order Taylor polynomial is used to model the relationship between
backscatter and incidence angle (Hahn et al., 2017). Temporal variations in this relationship are
due to changes in the dominant scattering mechanism over time. Vegetation dynamics and soil
state can have distinct scattering characteristics and define whether the signal contribution from
the soil to the overall backscatter is more important than the signal contribution from the vegetation
canopy, or vice versa (Vreugdenhil et al., 2016; Wagner et al., 2013). Considering that those two
physical effects are able to cancel each other out at distinct incidence angles means that the
backscatter signal becomes stable compensating for changes in vegetation dynamics. However,
the exact incidence angle is a function of the soil moisture content because of its dependency on
the strength of the attenuation of the soil contribution. This notion has led to the so-called "cross-
over angle concept"”, which defines two distinct incidence angles for dry (25°) and wet (40°) soil.
The dry and wet backscatter references are estimated at these two incidence angles and enable
correction for static and seasonal vegetation effects. Finally, surface soil moisture content is

47



computed by scaling the incidence-angle-normalized backscatter between the dry and wet
backscatter references, which leads to a value between 0 (completely dry) and 1 (saturated)
representing the quantity degree of saturation. By knowing the amount of soil porosity (m3m3) it
is also possible to convert degree of saturation into volumetric soil moisture content (m3m=)
(Wagner et al., 2013).

ASCAT surface soil moisture products are developed and distributed in the framework of the
"EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water
Management (H SAF)" project. Near real-time (NRT) and Climate Data Record (CDR) products
are based on the TU Wien soil moisture retrieval and serve the different needs of the user
communities. While NRT soil moisture products are most current and rely on pre-computed model
parameters, the CDR soil moisture products are required to ensure long-term consistency and are
based on the most recent version of model parameters. The ASCAT soil moisture products are
validated at regular intervals using in situ reference data, and are intercompared with other
remotely sensed soil moisture products as well as land surface models (Brocca et al., 2011; Qiu
et al., 2013; Wagner et al., 2013).

It is planned to extend the series of C-band scatterometers with the EUMETSAT Polar System
Second Generation (EPS-SG) programme in the near future. The space segment will consist of a
constellation of two satellites (Sat-A and Sat-B) developed by ESA, whereas the ground segment
will be developed and maintained by EUMETSAT. Sat-B will carry a scatterometer (SCA)
operating at 5.355 GHz. It is expected that three pairs of satellites will ensure a total mission
duration of 21 years starting in 2022 (Lin et al., 2017). The combination of C-band scatterometer
observations between ESCAT, ASCAT and SCA will create a surface soil moisture data record
covering more than 40 years into the future.

3.5.2 Soil Moisture and Ocean Salinity (SMOS)

SMOS was launched in November 2009 (Kerr et al., 2010b; Kerr et al., 2001) and was designed
to acquire L-band measurements globally over all surfaces of the Earth (land, ocean, and
cryosphere alike). In contrast to Aquarius and SMAP, the antenna technology chosen for SMOS
was — for the first time in space — a two-dimensional interferometer radiometer, composed of a Y-
shape antenna of 8 m in diameter mounted on a central platform, the hub (Figure 7). The antenna
arms and the hub host 69 individual receivers, evenly distributed, as well as three noise injection
radiometers used to calibrate the signal from a known source. The interferometry technology used
by SMOS has been developed for radio astronomy and provides the opportunity to measure at a
spatial resolution suitable for the global measurements required while saving on antenna mass
and volume. Interferometry is used to address the constraint (in space) that the antenna size is
proportional to the wavelength and the spatial resolution achieved, hence L-band synthetic
aperture and interferometric processing are advantageous for space applications addressing the
Earth’s global water cycle. SMOS measures the brightness temperature (Tg) emitted from the
Earth at L-band at 1.4 GHz over a range of incidence angles (0 to 55°) across a swath of
approximately 1000 km with a spatial resolution of 27 to 55 km and a revisit time of 1-3 days.
SMOS has the functionality to provide measurements in full polarization, and continues in
operation today.

SMOS Level 1 data products consist of brightness temperatures available in near-real time (NRT),

i.e., ~3 hours from acquisition of the measurement on orbit. Level 2 data products are retrieved

soil moisture vegetation opacity and sea surface salinity, available approximately 6-8 hours after

sensing. A Level 2 soil moisture product based on a neural network approach is also available in
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near-real time (Rodriguez-Fernandez et al., 2015; Rodriguez-Fernandez et al., 2017). Higher-level
products for both soil moisture and sea surface salinity are available from national data processing
centers in France (CATDS Centre Aval de traitement des Données SMOS) and Spain (CP34).
They include Root zone soil moisture and drought index, high resolution soil moisture products (1
km), freeze thaw at high latitudes, and surface water fraction, An assessment of the mission’s
performance can be found in (Kerr et al., 2016).

SMOS was the first one of three instruments launched into orbit with the aim of producing global
maps of sea surface salinity and soil moisture using the 1400-1427 MHz protected band: SMOS,
Aquarius, and SMAP. Although this frequency band is allocated to passive measurements only,
RFI (Radio-Frequency Interference) is present in the data of all three missions. Despite active
emissions in the protected band being illegal, RFl is globally present. The SMOS team put in place
several strategies to improve and mitigate the RFI situation, with substantial improvement in some
areas (Oliva et al., 2016).

Figure 7: Artist’s depiction of the SMOS satellite. Credit: CNES, ESA.

In addition, also alternative products are available. E.g., SMOS-IC (SMOS INRAE-CESBIO
product) is a recent and alternative SMOS product of surface soil moisture and vegetation optical
depth at L-band (L-VOD). The product development was coordinated by INRAE Bordeaux, and
the first version was developed in collaboration with CESBIO and KU LEUVEN (Fernandez-Moran
et al., 2017a; Fernandez-Moran et al., 2017b). SMOS-IC corresponds to the SMOS "original
algorithm" i.e. the two parameter inversion of the L-MEB model (Wigneron et al., 2007) that was
proposed in the SMOS project submitted to ESA and was already described in Wigneron et al.
(2000) and Wigneron et al. (2017). SMOS-IC is an alternative product to the official Level 2 (Kerr
et al., 2012) and Level 3 SMOS (Kerr et al., 2016) products with the following characteristics:

e Most importantly, it is independent of modelled soil moisture data and vegetation optical
indices (LAI, NDVI). This independence makes it robust in evaluations/applications for both
soil moisture and L-VOD by avoiding circularity.
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e ltis based on a much simpler algorithm by deleting complex corrections, whose full evaluation
is very difficult and which may lead to add more noise than improvement (corrections can be
very tricky as the SMOS footprint changes from one day to the other and for each multi-angular
observation).

e |t considers the pixel as homogeneous, consistent with SMAP, ASCAT and AMSR2, and thus
avoids the use of a decision tree which may create discontinuities in the global soil moisture
map.

SMOS-IC provides global gridded (EASE grid 2) daily soil moisture (m®m=) and VOD in NetCDF
format with a ~25 km cylindrical projection (ascending and descending overpasses at 0600 a.m.
and 0.600 p.m. Local Solar Time, respectively). The first version V105 (processed in late 2017) is
available as a scientific product at CATDS. A more recent version was based on a first order model
(2-Stream instead of the “tau-omega”, (Li et al., 2020)) and the most recent version is a multi-orbit
product. It is available at https://ib.remote-sensing.inrae.fr/.

Many recent inter-comparison studies with SMAP, ASCAT, AMSR2, etc. showed that the IC
product compares very well with the other microwave products for both soil moisture (Al-Yaari et
al., 2019; Dong et al., 2020; Kim et al., 2020; Ma et al., 2019; Quets et al., 2019; Sadeghi et al.,
2020) and L-VOD (Rodriguez-Fernandez et al., 2018). Besides soil moisture, the SMOS-IC L-
VOD vegetation index was found to well represent the above-ground vegetation biomass (Brandt
et al.,, 2018b) and SMOS-IC has been recently used in several applications for monitoring the
water and carbon cycles in the tropical, temperate and boreal regions (Al-Yaari et al., 2020; Bastos
et al., 2020; Bastos et al., 2018; Brandt et al., 2019; Brandt et al., 2018a; Tagesson et al., 2020;
Tong et al., 2020; Wigneron et al., 2020).

3.5.3 Soil Moisture Active Passive (SMAP)

NASA launched the Soil Moisture Active Passive (SMAP) mission on January 31, 2015 (Entekhabi
et al., 2010; Entekhabi et al., 2014). The satellite started to deliver science data products on March
31, 2015. NASA developed the mission as a Tier 1 recommendation of the 2007 National
Academy of Sciences Earth Science Decadal Survey (National Research Council, 2007). The
mission built on the heritage of the canceled NASA ESSP mission called Hydros (Entekhabi et al.,
2004). The concept is based on a single large (6 m diameter) conically scanning antenna, through
which both an L-band radiometer and radar make measurements. At an incidence angle of 40°,
the resolution of the radiometer and the radar (in a scatterometer operation) is about 40 km (Figure
8). The radar was designed for synthetic aperture processing with single look resolution of 250 m
X 400 m and multi-look resolution of 1 km. On July 7, 2015, the radar ceased operations abruptly,
but the radiometer continues nominal operations.

The SMAP mission provides a suite of science data products including Level 1 products for
brightness temperature and backscatter, Level 2 and Level 3 products for soil moisture and
freeze/thaw state, and Level 4 data assimilation products for surface and root zone soil moisture
(Reichle et al., 2019) and carbon flux (Jones et al., 2017). SMAP data are also used for routine
generation of sea surface salinity. Originally, SMAP generated soil moisture products separately
from its radiometer (high accuracy, coarse spatial resolution) (Chan et al., 2016) and radar
(reduced accuracy, high spatial resolution) (Kim et al., 2017) and also produced an active-passive
product that combined the radiometer and radar measurements for a moderate resolution soil
moisture retrieval with enhanced accuracy (Das et al., 2018). After the radar failure, the mission
reassessed its data product suite and started to produce the radiometer product on a finer 9 km
grid using an optimal interpolation technique (Chan et al., 2018). The mission also decided to
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collaborate with the Copernicus/ESA Sentinel-1 mission and started to generate a combined high-
resolution product using the SMAP L-band radiometer and the Sentinel-1 C-band backscatter data
(Das et al., 2019).

Figure 8: Artist’s depiction of the SMAP satellite. Credit: NASA.

The SMAP radiometer-based products include different soil moisture retrievals using three
different algorithms. The baseline algorithm uses the single channel algorithm based on the
vertically polarized brightness temperature (SCA-V) (O’'Neill et al.,, 2018). The two additional
algorithms use (1) the SCA based on the horizontally polarized Tg, and (2) both Tg polarizations
in a modified dual channel algorithm (MDCA). The MDCA algorithm retrieves vegetation opacity
in addition to soil moisture.

For determining the accuracy and improving the performance of its soil moisture products, the
SMAP mission developed a calibration and validation plan, which employs a suite of
complementary methodologies to achieve a robust global assessment (Jackson et al., 2014).
These methodologies include the utilization of core validation sites (Colliander et al., 2017b),
sparse networks (Chen et al., 2017), other satellite data products (Burgin et al., 2017; Chan et al.,
2018), model-based data products (Pan et al., 2016), and field campaigns (Colliander et al.,
2017a; Colliander et al., 2019; Ye et al., 2019). Several other initiatives have also investigated the
performance of the SMAP soil moisture products (Chen et al., 2018b; Zhang et al., 2019) and their
utility for various applications (Bolten and Crow, 2012).
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3.54 Advanced Microwave Scanning Radiometer (AMSR2)

The second Advanced Microwave Scanning Radiometer (AMSR2) is a multi-frequency scanning
radiometer onboard the Global Change Observation Mission — Water Satellite 1 (GCOM-W1),
which was developed by JAXA in collaboration with NASA (Figure 9). AMSR2 has a sun-
synchronous orbit as part of the "A-train" satellite constellation and is a follow-up of the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E) onboard the AQUA satellite mission, which
was active until October 2011.

Figure 9: Artist’s depiction of the GCOM-W satellite. Credit: JAXA.

The AMSR2 instrument measures in 14 channels, ranging from 6.9 to 89.0 GHz in both vertical
and horizontal polarization, of which 6.9, 7.3 (C-band) and 10.7 (X-band) are most used for soil
moisture retrievals. With a 1450 km swath width, a revisit time of less than 3 days is achieved
globally.

Currently, there are two operational AMSR2-based soil moisture products available, first the JAXA
Soil Moisture Content product (JAXA, 2013) and secondly, soil moisture retrievals using the Land
Parameter Retrieval Model (LPRM) (de Jeu et al., 2017; Owe et al., 2008).

With (including AMSR-E) an historic database back to 2002, AMSR2 plays an important part in
the development of long term climate data records (e.g. see section 3.5.8). The follow-up mission
to AMSR?2 is expected to be launched in 2022.

3.5.5 The Argentine Microwaves Observation Satellite 1 (SAOCOM 1)

The SAOCOM 1 Mission is a constellation of two identical L-band SAR satellites whose main
objective is to produce a soil moisture map over the Argentinian Pampa region. The Level 1
products are single look complex images, detected image (amplitude slant range), geocoded
ellipsoid corrected, geocoded terrain corrected, interferogram and co-registered stack of images.
Level 2 products include classification maps and soil moisture maps. Acquisition modes are Strip
Map and TopSAR, all available in single, dual or quadpol mode.
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The SAOCOM acquisition strategy is flexible, consisting in part of a fixed integrated mission
acquisition strategy but also allowing acquisition requests and reprocessing of products by users.
The repeat cycle of one satellite is 16 days, 8 days with 2 satellites. The noise level is better than
-30 dB for all beams. Resolution for the soil moisture map depends on the acquisition mode: Strip
Map, TopSAR narrow or TOpSAR wide.

Calibration and validation of the soil moisture map is based on two different aspects. A core site
provided with a dense network of sensors and where multiple field campaigns are done will allow
for comparison with ground truth and will determine the accuracy of the soil moisture map.
Extension over the whole region will use other sources (using the Triple Collocation technique, for
example), and dedicated campaigns and analyses will be also performed as needed.

3.5.6 Sentinel-1

The launch of the Sentinel-1 (S-1) European Radar Observatory has opened new perspectives to
SAR-derived SSM products and stimulated a large research effort to develop SSM products at
high-resolution. S-1 consists of two satellites (S-1A & B) with a C-band SAR system aboard,
characterized by frequent revisit, large geographical coverage, and a sustained observation
strategy for the next decades (Torres et al., 2012).

Figure 10: Artist’s depiction of the Sentinel-1 satellite. Credit: Copernicus.

Overland, the main S-1 acquisition mode is the Interferometric Wide (IW) swath, which operates
in dual-polarization (VV & VH) and uses the Terrain Observation by Progressive Scan (TopSAR)
acquisition mode to feature a total swath of 250 km, with a spatial resolution of 5 m by 20 m (single
look) (De Zan and Guarnieri, 2006). Although the S-1 duty cycle (i.e., 25 min per orbit) can in
principle provide a complete global earth coverage every 6 days, several operational constraints
(ESA, 2018) have led to an observation strategy that, overland, enables an exact revisit of 12 days
at the global level and of 6 days over Europe in both ascending and descending orbits (Figure 10).

Two main broad classes of SSM retrieval algorithms using S-1 data can be identified. The first
one encompasses those schemes based on S-1 data only (S-1-alone), whereas the second one
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comprises methods requiring multiple satellite (S-1-combination) data to implement either data
fusion (e.g., S-1 and Sentinel-2 and/or Landsat) or downscaling algorithms (e.g., S-1 and SMAP
or SMOS).

An example of an algorithm falling in the first class is the one developed by the Technical
University of Wien (TU Wien) (Bauer-Marschallinger et al., 2019; Hornacek et al., 2012) and
implemented as a pre-operational product in the EU Copernicus Land Services. A second example
has been developed and implemented as a prototype at the Mediterranean scale by the National
Council of Research (CNR, Italy), in the context of an ESA feasibility study. Both algorithms apply
an incoherent change detection approach and provide an output at ~1 km resolution. However,
while the TU Wien approach requires very long time series to estimate extreme wetness conditions
and therefore may be referred to as long term change detection (LTCD), the CNR approach
exploits the approximation that between two subsequent S-1 observations only SSM may change,
whereas all the other surface parameters affecting the radar backscatter (e.g., vegetation layer,
soil roughness) can be approximated as constant (Balenzano et al., 2011). In this respect, the
CNR approach is referred to as a short term change detection (STCD) approach. Moreover, the
TU Wien algorithm is a snapshot approach, which inverts single date S-1 VV acquisitions into a
single date wetness index that subsequently can be transformed into SSM levels using porosity
maps (Bauer-Marschallinger et al., 2019). Conversely, the CNR scheme transforms time-series of
SAR VV & VH observations into time-series of SSM maps (Balenzano et al., 2011).

In the second class (i.e., S-1-combination), a large number of retrieval algorithms combining
microwave S-1 and optical Sentinel-2 (S-2) and/or Landsat data have been proposed over the last
few years (Alexakis et al., 2017; Attarzadeh et al., 2018; Bao et al., 2018; El Hajj et al., 2017; Gao
et al., 2017; Paloscia et al., 2013; Pierdicca et al., 2014; Pulvirenti et al., 2018). Most of these
algorithms invert a theoretical/semi-empirical backscattering model using spectral information
(such as NDVI) to constrain the retrieval and, hence, improve the robustness and the geometric
resolution of the SSM estimate, where the latter can be up to ~0.1 km.

A great deal of work has also been carried out to integrate S-1 data and passive microwave
observations at low resolution to improve the geometric resolution of the SSM estimates (Eweys
et al., 2017; He et al., 2018; Lievens et al., 2017; Santi et al., 2018). In particular, after the failure
of the L-band radar aboard the SMAP satellite, an important effort has been dedicated to adapt
the original active and passive SMAP merging algorithm (Das et al., 2011; Das et al., 2014) to the
case of Sentinel-1 and SMAP combination in order to produce SSM maps at 3 km and 1 km
resolution (Das et al., 2019).

Such a large variety of retrieval approaches has, for the first time, the potential to produce SSM
maps at high resolution (e.g., 0.1 km — 3.0 km) and at local, regional and continental scale with a
temporal resolution ranging between ~3 and 12 days (depending on the geographic location and
the implemented approach). Besides, the recent launch of the first satellite of the SAOCOM
mission and that of Canada’s Radarsat Constellation mission will boost the availability of SSM
products at high spatial and temporal resolution.

Many applications, such as applied hydrology, agriculture, disaster prevention, and numerical
weather prediction, are expected to have a beneficial impact from the use of high-resolution SSM
products. Nevertheless, a crucial issue is to be able to assess the accuracy and consistency of
the various SSM products and monitor their evolution. Validation is important to provide feedback
about the various retrieval approaches and stimulate the adoption of the best solutions. In this
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respect, it is important to adopt a community-agreed validation strategy tailored to high-resolution
SAR SSM products. At the same time, it is vital to understand the needs and requirements of the
scientific and economic communities that are interested in exploiting satellite high-resolution SSM.

3.5.7 Advanced Land Observing Satellite 2 (ALOS-2)

JAXA’s ALOS-2 satellite carrying aboard the Phased Array type L-band Synthetic Aperture Radar
2 (PALSAR-2) instrument, successor to ALOS/PALSAR (2006-2011), was launched in May 2014
and began routine operation in November 2014 (Figure 11). With respect to soil moisture
estimation, among the main advancements in ALOS-2 are certainly its high resolution (6 m) quad-
polarization mode as well as the novel dual-polarization ScanSAR (50 m) mode, which, for the
first time, allowed application of partial polarimetric decomposition-based vegetation corrections
on a 350 km wide-swath SAR image. In terms of technology, the ALOS-2 is arguably the state-of-
the-art radar sensor in orbit with the highest potential for accurate high resolution (sub-field scale)
soil moisture estimation. Apart from the penetration capabilities through vegetation at the 1257.5
MHz center frequency and various polarimetric observation modes, PALSAR-2 has the maximum
possible spatial resolution for a L-band EO system (85 MHz bandwidth), a nominal revisit time of
only 14 days, and a very good Noise Equivalent Sigma Naught (NESO) of <-28 dB. Another
advantage is the sun-synchronous high-noon orbit which virtually eliminates the disturbing
influences of dew on crops and other vegetation in soil moisture retrievals. However, it might be
fair to say that, due to JAXA'’s basic observation scenario which significantly reduces the effective
temporal resolution in large parts of the globe plus the restrictive data distribution policy, ALOS-2
probably has never gained the attention in the soil moisture remote sensing community that it
deserves.

>
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Figure 11: Artist’s depiction of the ALOS-2 satellite. Credit: JAXA.

3.5.8 Combined products

3.5.8.1 ESA Climate Change Initiative (CCI)

Although data products derived from single missions or instruments are valuable resources for
most applications, they are generally too short to monitor climate variability and change (Dorigo
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et al., 2015). For this purpose, Climate Data Records (CDRs) spanning 30 years or more are
typically recommended (GCOS-200, 2016). To fulfill this requirement, since 2011, ESA’s Climate
Change Initiative (ESA CCI) has supported the development and production of harmonized long-
term soil moisture products from multiple active and passive microwave sensors (http://www.esa-
soilmoisture-cci.org). Since its first release in 2012, several versions of the ESA CCI soil moisture
product have been released, each version containing either algorithmic improvements, the
integration of new sensors, or a temporal extension of the climate data records. The latest version
(vO47) integrates soil moisture retrievals from 11 different microwave sensors and covers the
period November 1978 to end of 2019 at a spatial sampling of 0.25° and a temporal sampling of
1 day (Figure 12). Extensive reviews of the evolution of the ESA CCI Soil Moisture climate data
records and their underlying merging methodology are given in Dorigo et al. (2017) and Gruber et
al. (2019).

AMI-WS ERS 1/2 SCAT

Metop-B ASCAT [ |

2020

Figure 12: ESA CCI soil moisture v04.7 product utilizes 4 active and 7 passive microwave sensors. Credit: ESA CCI
Soil Moisture Project Team.

In short, the ESA CCI SM approach consists of a statistical merging of Level 2 (i.e. in swath
geometry) single-sensor soil moisture products into a harmonized record by synergistically
combining the strengths of the individual products (Liu et al., 2012; Liu et al., 2011b; Wagner et
al., 2012). The Level 2 products are either available through data providers (e.g. Metop ASCAT
soil moisture from H SAF) or produced within ESA CCI itself (as for the soil moisture estimates
from microwave radiometers based on LPRM). After scaling the various Level 2 products into a
common climatology (i.e. inter-sensor bias correction), they are merged using a weighted
averaging. The weight attributed to each sensor corresponds to the reciprocal of the random error
variance, which is a priori computed for each input product and multi-sensor period using the triple
collocation analysis (Gruber et al., 2017; Gruber et al., 2016). ESA CCI produces three CDRs:
one based on radiometer data only (PASSIVE), one based on scatterometer data only (ACTIVE),
and one that combines radiometer and scatterometer-based Level 2 products into a COMBINED
product. While the latter is spatially and temporally the most complete and has the smallest errors
of the three products (Dorigo et al., 2015), its absolute values cannot be considered independent
of the GLDAS-Noah land surface model, which is used as ancillary data during the production
process (Dorigo et al., 2017).
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In 2017, the ESA CCI methodology was transferred to the Copernicus Climate Change Service
(C39), where, based on near-real-time satellite data streams, global daily, 10-daily, and monthly
products are produced with a maximum delay of 10 days after satellite overpass. Algorithmically,
C3S is always one development cycle behind that of ESA CCI.

While the ESA CCI methodology has proved its worth for the production of CDRs from a wide
variety of sensors with different specifications and periods covered, valuable alternative
approaches exist to combine more uniform (in terms of measurement principle or frequency, or
period covered) multi-sensor data into combined data sets of shorter time spans. Most of these
alternative approaches apply a machine learning framework to a combination of Level 1 data sets
(brightness temperature or backscatter values) (Kolassa et al., 2017a; Rodriguez-Fernandez et
al., 2016; Santi et al., 2018). Also, the assimilation of various Level 1 or Level 2 (soil moisture)
products into a land surface or hydrological model is used to combine the observations of multiple
sensors. The advantage of this approach is that consistency is achieved between various land
surface states and fluxes and that a model allows for propagating the surface observations to the
root zone. On the other hand, the intervention of a model makes the resulting product less
independent.

3.5.8.2 NOAA Soil Moisture Products System (SMOPS)

The NESDIS Soil Moisture Operational Products System (SMOPS) combines soil moisture
retrievals from multiple satellite sensors to provide a global soil moisture map with high spatial
coverage (https://www.ospo.noaa.gov/Products/land/smops). SMOPS provides a seamless soil
moisture map over global land from six satellites, including GPM, SMAP, GCOM-W1, SMOS,
Metop-A, and Metop-B. The global soil moisture maps are generated in daily intervals with the
most recent 24 hours of soil moisture from multiple retrieval algorithms, and posted with a
cylindrical projection on 0.25 x 0.25 degree grid (Figure 13). For each grid point of the map, the
output includes soil moisture values as a percentage (vol/vol) of the surface (top 1-5 cm) soil layer
with associated quality information and metadata. The archive period of record begins in March
2017. The SMOPS Algorithm Theoretical Basis Document can be accessed here
(https://www.ospo.noaa.gov/Products/land/smops/figures/SMOPS _ATBD v4.0.pdf).

NOAA SMOPS Blended Soil Moisture: Daily — 20200907

,g@i = G
°:?_=’_,_\/~« ‘\‘__/_/J‘,_,\/—N—NA ’\é

1200 B [) € 120E 130
[ T
0 001 005 01 015 02 025 03 035 04 045 05

Figure 13: Example of the SMOPS product.
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3.5.9 Downscaling methods

Typical soil moisture products have spatial resolutions on the order of tens of kilometers, but many
regional hydrological and agricultural applications need soil moisture information at higher spatial
resolutions, e.g., on the order of a few kilometers or even tens of meters. A downscaling of soil
moisture can also help to solve the problem of scale mismatch between in situ measurements and
global soil moisture products for validation applications (Malbeteau et al., 2016). Several
downscaling methods have been recently reviewed by Peng et al. (2017). They can be categorized
into three major groups:

1. satellite-based methods,
2. methods using geoinformation data, and
3. model-based methods.

The first group uses higher resolution satellite data for disaggregation. The active-passive
methods are driven by the SMAP concept and the launch of the Sentinel-1 satellites, so that
downscaling by radar gains importance. Njoku et al. (2002) studied the combination of active and
passive microwave data for soil moisture retrieval, and Das et al. (2011) improved the change
detection algorithm that does not require previous satellite overpass observations and provides
an absolute soil moisture rather than relative soil moisture change. Das et al. (2014) further
improved the downscaling starting at the brightness temperature level by analyzing time series
statistics of the radar-radiometer data relationships, which can also be forward calculated based
on physical approaches (Jagdhuber et al.,, 2019). Additional methods and applications were
published e.g. by Das et al. (2019), Piles et al. (2009), Montzka et al. (2016), and Akbar and
Moghaddam (2015).

Optical and thermal remote sensing data for downscaling have the advantage of providing land
surface parameters at higher spatial resolution, but those observations can be affected by cloud
coverage (Figure 14). Methods make use of the triangular surface temperature and vegetation
index feature space and an empirical polynomial fitting for downscaling (Petropoulos et al., 2009;
Piles et al., 2011). Other more physically based methods exploit the link of soil evaporation
processes to optical and near-surface SM data. Soil temperature, evaporative fraction, and
evaporative efficiency were investigated as soil moisture proxies for downscaling by Merlin et al.
(2006); Merlin et al. (2013). Also, atrtificial intelligence techniques including random forest, support
vector machines, artificial neural networks, and relevance vector machines were used for
downscaling with optical data provided by MODIS (Srivastava et al., 2013; Zhao et al., 2018).

The second group uses geoinformation data such as topography and soil and vegetation
characteristics for downscaling (Ranney et al., 2015; Werbylo and Niemann, 2014). These proxies
are able to alter the soil moisture at small scale, topography by gravitational water flow, soil texture
by infiltration and storage capacity, and vegetation by a change of the evaporation at the soil
surface and transpiration from deeper soil layers. Montzka et al. (2018) make use of soil texture
information at high resolution to downscale SMOS, SMAP, and ASCAT data by a prediction of the
soil moisture standard deviation as a function of soil moisture mean curves.
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Figure 14: A SMAP-MODIS downscaling example for the Iberian Peninsula (Zhao et al., 2018).

The third group uses either geostatistical approaches or land surface models for downscaling
(Peng et al., 2017). The statistical methods make use of studies that have been conducted on
dense soil moisture observation networks or remotely sensed observations in order to describe
the spatial statistics of the soil moisture field (Famiglietti et al., 1998; Peng et al., 2013), to relate
the spatial variability to the spatial average (Grayson and Western, 1998), or to reveal how
statistics change across scales (Rodriguez-lturbe et al., 1995). This led to machine learning
(Kaheil et al., 2008) or (multi)fractal methods (Kim and Barros, 2002; Mascaro et al., 2011).
Involving a land surface model introduces physical process understanding into the downscaling
approach. The following method groups have been developed:

e Deterministic downscaling: the optimization of hydrological or land surface model
parameters based on the coarse-scale observations (Ines et al., 2013; Shin and Mohanty,
2013),

e Statistical downscaling: downscaling based on regressions (Koster et al., 2009; Verhoest
et al., 2015), and

o Data assimilation: assimilating coarse-scale observations into land surface models, often
by Bayesian methods like the Kalman Filter (Naz et al., 2019; Sahoo et al., 2013).
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3.5.10 Root zone soil moisture products

Knowledge of the moisture content in the top ~100 cm of the soil, defined here as “root-zone” soil
moisture, is key to monitoring and predicting agricultural yield, carbon storage and the risk for
natural hazards such as floods, droughts, landslides and wildfires (Entekhabi et al., 2010).
However, satellite observations of microwave radiation in the X-, C- and L-band frequency ranges
are at best sensitive to moisture in the upper few centimeters of the soil (see section 2.3.5). While
lower-frequency P-band microwave radiation is sensitive to soil moisture down to ~20 cm depth
(Crow et al., 2018), spaceborne P-band measurements are not currently available. Finally, the
Gravity Recovery and Climate Experiment (GRACE) mission observes anomalies of total
terrestrial water storage, including the entire soil moisture profile, but only at ~300 km, monthly
resolution. Estimating root-zone soil moisture from GRACE requires partitioning of the total water
storage into its components (Girotto et al., 2019; Zaitchik et al., 2008).

Various methods have been employed to derive root-zone soil moisture estimates from satellite-
based surface soil moisture information, ranging from exponential time series smoothing (Albergel
et al., 2008) to the assimilation of satellite observations into land surface models (De Lannoy and
Reichle, 2016). Data assimilation enables a physically-based interpolation between and
extrapolation beyond the satellite observations, using ancillary information about surface
meteorological forcing and land surface conditions, such as vegetation and soil properties. The
assimilation system thereby produces gapless estimates of land surface conditions, including
surface and root-zone soil moisture, that are consistent with the assimilated satellite observations
(Mo et al., 2011; Munoz-Sabater et al., 2007). More specifically, the surface layer information
observed by the satellite sensor is propagated into deeper soil layers based on (i) the soil water
and energy process dynamics encapsulated in the land model structure and parameters, and (ii)
the modeled error covariance between moisture in the surface and deeper soil layers. A number
of soil moisture data assimilation approaches have been explored in the past, including filtering
(Plaza et al., 2012; Reichle et al.,, 2002; Sabater et al., 2007) and smoothing (Dunne and
Entekhabi, 2006; Reichle et al., 2001) techniques, assimilating active or passive soil moisture
retrievals (Draper et al., 2012; Kolassa et al., 2017b), or directly assimilating backscatter and/or
radiance measurements (De Lannoy and Reichle, 2016; Han et al., 2013; Lievens et al., 2017,
Munoz-Sabater, 2015; Rains et al., 2017).

An example of an operational assimilation-based data set is the SMAP Level-4 Soil Moisture
(L4_SM) product, which provides global, 9 km resolution, 3-hourly estimates of surface (0-5 cm)
and root-zone (0-100 cm) soil moisture with a mean latency of ~2.5 days (Reichle et al., 2017a;
Reichle et al., 2017b), see Figure 15. The underlying L4 SM algorithm assimilates 36 km SMAP
Level-1 brightness temperature (Tg) observations into the Catchment Land Surface Model (Koster
et al., 2000) using a spatially distributed ensemble Kalman filter. An L-band microwave radiative
transfer model is used to diagnose Tg estimates at the 36 km satellite resolution from the simulated
soil moisture and temperature (De Lannoy et al., 2013), and the differences between the SMAP
Tg observations and the corresponding Tg simulations are then utilized to update the modeled 9
km surface and root-zone soil moisture and surface soil temperature. The model error covariance
estimates required for this analysis are diagnosed from a 24 member ensemble of Catchment
model simulations. The resulting L4_SM soil moisture estimates have been validated using in situ
measurements from SMAP core validation sites (Colliander et al., 2017b), yielding an average
unbiased RMSD of 0.039 m® m= for surface and 0.026 m® m for root-zone soil moisture for
Version 4 of the L4 _SM product (Reichle et al., 2019). Moreover, the L4_SM estimates were
shown to outperform model-only soil moisture estimates.
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a) Reference Pixel 16070911 (SouthFork)
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Figure 15: Surface and root zone soil moisture from the SMAP Level-4 soil moisture product for an example pixel
(Reichle et al., 2019).

3.5.11 Operational utilization of soil moisture products

ASCAT soil water index has been assimilated operationally at the UK Met Office since 2010
(Dharssi et al., 2011) and at the European Center for Medium Range Weather Forecasts
(ECMWEF) since 2012 (de Rosnay et al., 2013). The first global product of consistent surface and
root zone soil moisture available in NRT for the NWP, climate, and hydrological communities was
the SM-DAS-2 product. SM-DAS-2 is the EUMETSAT Hydrology-SAF root zone soil moisture
index product, retrieved by scatterometer assimilation in the ECMWF Land Data Assimilation
System. It has been operationally produced in Near Real Time since 1 January 2012.

SMOS SM has also been assimilated operationally at ECMWF since cycle 46r1, which entered in
operations in June 2019. The SM data set assimilated at ECMWF has been developed specifically
following the methodology discussed in Rodriguez-Fernandez et al. (2019a), which is similar to
that used for the ESA SMOS Near-Real-Time SM product discussed in section 3.5.2. However, in
the case of the DA-specific NRT, the neural networks were trained on ECMWF soil moisture fields.
The operational data assimilation approach and the first results, which show that SMOS NN data
assimilation slightly improves the two-meter air temperature forecast in the short range at regional
scale, are discussed in Rodriguez-Fernandez et al., (2019). The assimilation of SMOS SM is
also in development at the UK Met Office while other operational centers such as Environment
Canada are developing the assimilation of SMOS and SMAP brightness temperatures for their
soil moisture analysis (Carrera et al., 2015).
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SMOS surface soil moisture estimates are also assimilated to correct model-based soil moisture
predictions for the impact of rainfall forcing errors by the International Production Assessment
Division within the Foreign Agricultural Service at the United States Department of Agriculture.
The SMOS retrievals are assimilated into a modified Palmer two-layer soil moisture model by
using an Ensemble Kalman filter approach using the framework that was previously developed for
AMSR-E (Bolten et al., 2010) for food security applications (Mladenova et al., 2019). SMOS SM
is also used operationally by Agriculture Canada to monitor agricultural risk. Regarding food
security and plague management, a SMOS product has been downscaled to 1 km (Escorihuela et
al., 2018) for use by national locust centers and by the Desert Locust Information Service (DLIS)
in the United Nations Food and Agriculture Organization (FAO).

3.5.12 Future missions and products

3.5.12.1 The NASA-ISRO SAR (NISAR) Mission

The NISAR mission is a multidisciplinary radar mission to make integrated global measurements
to understand the causes and consequences of land surface changes for integration into Earth
system models (NASA, 2018). The level 1 products consist of range-doppler single looks of
complex-number radar returns, polarimetric covariance, interferogram, and unwrapped
interferogram. The level 2 products include geocoded single look complex images, geocoded
unwrapped interferogram, and geocoded polarimetric covariance matrix (GCOV). Existing soil
moisture retrieval algorithms utilize backscattering or bistatic intensity values (such as HH, VV,
HV) and polarimetric covariance, which are the components of GCOV.

As of September 2019, only HH and HV are planned for acquisition globally by NISAR. Full-
polarization GCOV will be obtained over India. Global mapping of multi-polarization (HH, VV, HV,
VH) is envisioned but not confirmed. The repeat cycle is 12 days. Although there is a possibility
for combining ascending and descending observations to achieve a 6-day revisit, the ascending
and descending orbits may not offer the same polarization and spatial resolution. The spatial
resolution of GCOV will be 7 m in azimuth, and TBD (to be determined) in range direction (from
20 m to 80 m). To reduce speckle noise to the same level as the calibration uncertainty of 0.7 dB,
about 36 single looks need to be spatially averaged, which will result in roughly 150 m spatial
resolution with the 80 m single look resolution. The radar-only algorithms are aiming at 200 m
resolution soil moisture products, while active-passive algorithms using the radiometer data from
SMAP or SMOS target 500 m resolution soil moisture retrieval. The noise level is -23 dB, meaning
that most of the vegetated surfaces will not be impacted by noise. However, copol data over a
desert, for example, as well as crosspol data over larger regions, may not be distinguishable
from noise.

3.5.12.2 Advanced Land Observing Satellite-4 (ALOS-4)

Currently under final production at the Mitsubishi Electric Corp., the ALOS-4 spacecraft carrying
PALSAR-3 is programmed for launch in March 2021. Using digital beamforming and phase
spoiling techniques, the next generation L-band SAR will be capable of high resolution (3 m)
Stripmap mode imaging with remarkable 200 km swath width. The improved dual-pol ScanSAR
mode will enable imaging a 700 km swath at 25 m spatial resolution. Moreover, a much-improved
downlink speed of 3.6 Gbps will allow more frequent acquisitions in the 6 m quad-polarization
mode (100 km swath). ALOS-4 will fly in the same sun-synchronous high-noon orbit (14 days
revisit time) as its predecessor ALOS-2. However, due to the improved specifications, ALOS-4
can image every part of the earth at 3 m resolution 20 times per year (as compared to 4 times per
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year with ALOS-2). As it is expected that ALOS-2 can operate well until 2024, the two satellites
simultaneously in orbit will provide unseen opportunities for advances in soil moisture related
research including the first spaceborne polarimetric SAR interferometry (PoliInSAR) applications.

3.5.12.3 The Copernicus Imaging Microwave Radiometer (CIMR) Mission

The CIMR mission is a high priority candidate mission within the European Copernicus Expansion
program. CIMR is a global multi-frequency (L, C, X, Ka/Ku-bands) imaging microwave radiometer
designed to observe the ocean and sea ice with a focus on the Arctic environment (Kilic et al.,
2018). Beyond the provision of key polar ocean, ice and snow parameters with an increased
accuracy and/or spatial resolution, the CIMR mission is also of high interest for land applications.
The envisaged long-term commitment of the CIMR mission will significantly enhance and allow
the extension of soil moisture climate data records based on microwave space observations (e.g.
the ESA CCI Soil Moisture (Dorigo et al., 2017)).

Over land, the multi-frequency capability of CIMR enables sensing from up to more than half a
century in length, which are crucial for monitoring water reservoirs and the impact of climate
change and anthropogenic forcing on natural and agricultural ecosystems.
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Figure 16: Frequency channels and their targeted spatial resolutions of the CIMR mission candidate
(https://doi.org/10.6084/m9.figshare.7177730.v7).

Advanced multifrequency soil moisture algorithms need to be designed to exploit the CIMR L, C,
and X-band frequency ensemble for a better characterization of vegetation properties,
electromagnectic soil surface roughness, and soil-plant interactions in the inversion process.
Information on effective temperature and terrestrial surface water extent, required in soil moisture
retrieval, is provided by higher frequencies (Ku and Ka bands). Beyond soil moisture, multiple
channels can potentially be used to infer information on moisture status in different plant
components (Baur et al., 2019). While the native spatial resolution of CIMR (~60 km) will be
coarser at L-band than SMOS and SMAP, it will be higher (~15 km) at C- and X-bands than
AMSR2, and its conical scan leads to a high degree of oversampling in the across-scan and flight
directions, allowing for gridded products at higher postings (Figure 16). With a temporal revisit of
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1.5 days and its multi-frequency and multi-resolution capabilities, CIMR enables the provision of
key land products for monitoring the water in soils and vegetation, allowing major advances in
understanding water movement across the soil- vegetation continuum as well as ecosystem
responses to water stress.

Figure 16 illustrates the frequency channels of the candidate Copernicus Imaging Microwave
Radiometer (CIMR) mission, and their targeted spatial resolutions. CIMR is also compared to two
other similar Passive Microwave Radiometers (PMR): the Japanese AMSR2 in orbit since 2012,
and the MWI to fly on-board the European EPS-SG satellites starting in ~2023 (MWI-SG). Also,
the resolution of the planned L-band channel is compared to NASA SMAP and ESA SMOS

3.5.12.4 The Terrestrial Water Resources Satellite (TWRS)

The TWRS mission is currently in Phase C at China National Space Administration (CNSA). Two
possible new opportunities are being considered by China, including the Water Cycle Observation
Mission (WCOM) (Shi et al., 2014) and the TWRS (Zhao et al., 2020). Unlike the SMOS and
SMAP, the WCOM and TWRS are both based on the one-dimensional (1-D) synthetic aperture
technology, which can reduce the complexity as compared to a two-dimensional (2-D) radiometer
of SMOS. It can also avoid the risk of large antenna rotating (SMAP) to obtain high resolution
observations in the cross-track direction. Except the 1-D radiometer at L-band, a synthetic
aperture radar at L-band is designed to share the reflector antenna. The WCOM concept carries
a multi-frequency radiometer achieving spatial resolutions of 50 km (L-band), 30 km (S-band) and
15 km (C-band)

3.5.12.5 The Soil Moisture and Ocean Salinity - High Resolution (SMOS-HR) Mission

If existing L-band radiometers (SMOS and SMAP) satisfy many of the current needs, they
nevertheless need to be replaced as both systems are beyond their expected life times. A recent
requirement study performed for ESA shows that to satisfy user requirements, future systems
should have a 10 km native resolution: this is the goal of the SMOS-HR mission. Two options are
being studied for the antenna layout, a square and a cross with 12 m sides or arms, respectively,
both carrying about 230 antennas. While the square is slightly better in radiometric performance,
the cross is slightly lighter but much simpler and much less risky (Figure 17). SMOS-HR presents
several additional improvements with respect to SMOS such as simultaneous full-polarization
acquisitions and multi-bit quantization, ensuring a similar radiometric resolution to that of SMOS
in spite of the increased size of the array. The position of the individual antennas has been
optimized following a patented design that reduces the aliasing of the reconstructed images while
allowing to increase the distance between antennas, which can be larger than those of SMOS.
Efficient RFI filtering will be implemented at different stages of the processing chain before and
after correlation of the signals. SMOS-HR will measure L-band brightness temperatures for a wide
range of incidence angles (~0°-50°), which will allow for simultaneous retrieval of SM and
Vegetation Optical Depth (VOD). Of course, a native resolution of 10 km will still be coarse for a
number of applications in agriculture and hydrology, and downscaling strategies merging SMOS-
HR with higher resolution data have to be implemented. However, the quality of the downscaled
products improves as the native resolution of the passive radiometer increases (Rodriguez-
Fernandez et al., 2019b).

In summary, the overall specifications of SMOS-HR are: a native spatial resolution of around 10
km (3 dB beam width), with a 3-day revisit (6 am and 6 pm overpass times), a sensitivity at least
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equivalent to SMOS, and multangular acquisitions between at minima 20 and 40° incidence angle
of fully polarized brightness temperatures.

Figure 17: A concept for the SMOS HR sensor configuration.

The phase 0 of SMOS-HR has been carried out by CNES with Airbus Space and Defense (ADS)
and the phase A study is being initiated. The instrument is very largely based on SMOS heritage,
and should the cross layout be selected, no major problem has been identified. Pending funding
availability, SMOS-HR could be ready for launch by 2027.

4 GENERAL CONSIDERATIONS FOR IN SITU REFERENCES

4.1 The International Soil Moisture Network (ISMN)

For more than 10 vyears, the |International Soil Moisture Network (ISMN;
https://ismn.geo.tuwien.ac.at/) has been an operational data hosting facility providing access to
fiducial reference measurements from stations around the globe (Dorigo et al., 2011). The data
available for download from the ISMN are collected from a large variety of networks and data
providers, then harmonized and subjected to several quality checks (Dorigo et al., 2013) before
being stored in a central database. Currently, more than 2500 stations from 60 different networks
are contained in the ISMN, see Figure 18.

Due to the wide variety of networks contributing to the ISMN, the data sets offered are very
heterogeneous in terms of measurement techniques, quality, and spatial and vertical
representativeness (Gruber et al., 2013). Recently, even citizen-based observations from low-cost
sensors were added to the databases. For such a diversity of data, more advanced quality
assurance methods are needed to allow users to select only data sets and stations that are
compliant with predefined international quality standards and fulfill the requirements on spatial
representativeness, land cover, spatial distribution etc. that are needed for validating a specific
product.
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Figure 18: Currently available stations from sparse networks hosted by the ISMN (from
https://www.geo.tuwien.ac.at/insitu/data_viewer and Gruber et al. (2020)). Colors represent different station hosting
networks.

The entire ISMN database is currently integrated in the Vienna University of Technology’s Quality
Assurance for Soil Moisture (QA4SM) validation tool to allow for transparent and reproducible soil
moisture product validations and intercomparisons (see https://qa4sm.eodc.eu).

The ESA-funded ISMN is commonly accepted by the community as a single repository where all
fiducial reference measurements can be stored. The LPV subgroup recommends support to
secure a long-term operation. Critical to the success of endeavors such as ISMN is the
collaboration of the contributing networks and the appropriate recognition of the network
contributions to the Cal/Val process. ISMN does not financially support in situ networks.

4.2 Spatial representativity of soil moisture monitoring networks

4.2.1 Horizontal representativity

An often-asked question is how representative a soil moisture station is of the surrounding region.
Most sensors make measurements on the scale of centimeters, while most satellite products are
on the scale of kilometers. Some proximal sensors such as Cosmic-ray neutron sensors do
provide an estimate over 100s of meters, but this is still a large gap to span to satellite
observations. Furthermore, many soil moisture stations are permanently installed in an area which
does not represent the same surface conditions as the landscape at large. For example, with a
few exceptions (Carman, Manitoba, Canada), stations in agricultural regions are outside of the
managed landscape, not experiencing tillage or planting like the rest of the field. In rangeland,
stations are frequently fenced in to keep out cattle, so the grasses grow taller within the station
enclosures. Or in mountainous, rocky regions, the stations are installed in predominantly soil
regions with low rock fraction, even though the landscape can have significant rock fraction.

The scale at which soil moisture varies depends on a variety of factors including weather and
precipitation patterns, topography, land use and land cover, soil type variation, and land
management practices (Gaur and Mohanty, 2013). To overcome these challenges, a common
technique is to deploy enough stations to develop a statistical confidence in the soil moisture
estimate (Caldwell et al., 2019). Because of cost of operation and land ownership issues, this is
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not a simple solution. A frequent approach is to conduct large scale field experimentation across
a range of soil moisture conditions to produce an error estimate for the network at a variety of
scales. This can lead to the development of scaling functions for converting small scale in situ
station data into a representative remote sensing scale estimate with a quantified error
(Coopersmith et al., 2015; Cosh et al., 2006). The SMAP Cal/Val program adopted this goal of
validated in situ measurements to meet their mission accuracy metric of 0.04 m*/m?3 ubRMSD
(Chan et al., 2016).

4.2.2 Vertical representativity

Another challenging aspect of representativeness is the difference between different penetration
depths of remote sensors and the sensing depths of most in situ networks. C and X band sensing
depths are approximately within the top 1 cm. While it is estimated that L-band radiometry can
penetrate down to 0-5 cm, dry soil conditions can extend the penetration depth deeper. Under
most conditions, soil moisture retrievals from remote sensing are limited to the top 10 cm.
Installation of sensors in the very near surface has been challenging in practice, often resulting in
lost or unstable data because of the high temperature swings experienced in the near surface.

Most soil moisture networks have settled on an installation depth of 5 cm for horizontally installed
in situ sensors, which for many sensors produces an estimate of the moisture in a soil volume
approximately 3-7 cm in depth. This depth is common among the leading national networks in the
U.S., i.e,, NOAA’s Climate Reference Network (CRN) (Diamond et al., 2013) and USDA’s Soill
Climate Analysis Network (SCAN) (Schaefer et al., 2007). However, the Kenaston network in
Alberta, Canada has vertically installed sensors which more completely integrate the near surface
from 0-5 cm (Magagi et al., 2013).

4.3 In situ soil moisture sensor technology

There are a variety of methods which can be used for monitoring in situ soil moisture, including
manual gravimetric sampling, neutron probes, and dielectric sensors to name a few. Newer
technologies have also emerged, including land-based remote sensing and proximal sensors like
the cosmic ray neutron probe. We will focus on the current dominant sensor methods which
provide the most common basis for satellite calibration and validation.

4.3.1 Gravimetric Methods

The only direct measurement of soil moisture is to physically collect a soil sample and then
determine the amount of water contained within. This method is commonly referred to as the
thermogravimetric method, and it involves either a gravimetric or volumetric collection of soil,
weighing the soil, drying the soil, then reweighing to determine the amount of water lost. For a

definition of volumetric soil moisture (6,,) and gravimetric soil moisture (8,,,) see Eqation (1). Most

satellite missions use 6,, as their reference, which is measured via the thermogravimetric method,
where soil samples are dried for at least 24 hours at 105°C.

An associated measurement system is the lysimeter which is a column of soil that has a
maintained structure sitting atop a weighing scale. As moisture enters or leaves the structure, the
weight of the soil allows for the direct calculation of the gravimetric soil moisture and therefore the
volumetric soil moisture. As the large scale deployment of lysimeters is often beyond the means
of most soil moisture networks, this method will not be covered further.

The thermogravimetric method is the principal means of providing a ground reference soil moisture
during large scale field campaigns and other intensive observation periods, but the labor and time
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involved in collecting this information is prohibitive for long term monitoring. Therefore,
electronically based measures provide the core set of measurements via automated monitoring,
which is more efficient and suitable for sustained validation activities over time.

4.3.2 Time Domain Reflectometry (TDR)

Time Domain Reflectometry (TDR) became a useful method for sensing soil volumetric water
content (8,,) and bulk electrical conductivity (g,) in the 1980s (Dalton and Vangenuchten, 1986;
Dasberg and Dalton, 1985; Topp et al., 1980; Topp et al., 1988). Automated TDR systems were
described by Baker and Allmaras (1990), Heimovaara and Bouten (1990), Herkelrath et al. (1991),
and Evett et al. (1993). Commercial systems became available in the 1990s and continued to
evolve while becoming wide spread in research and monitoring applications, thus this technology
will be covered in more detail here. A short electronic pulse transmitted down a waveguide inserted
in a porous media (soil). There is a correspondence between the travel time of this pulse and the
water content of the soil via the apparent dielectric permittivity. A waveform is created from the
sensors in the probe. From the waveform, various soil parameters can be estimated.
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Figure 19: (a) A TDR probe with three electrodes fashioned from stainless steel rods. (b) Plot of TDR instrument
waveform (lower trace) and its first derivative (upper trace) from a probe in wet sand. Shown are the reflections
caused by physical changes in the transmission line and tangent lines fit to determine the times at which the
reflections occurred. (c) Different TDR probe designs used in research and monitoring (with cross section depiction
of electromagnetic field lines) (Jones et al., 2002).

In the conventional TDR method, a very fast rise time step (approx. 120-300 ps) voltage increase
is generated by a TDR instrument and passed to a probe (Figure 19a) placed in the soil or other
porous medium. The TDR probe is typically an inert assembly (it is not a sensor) with a plastic
head from which extend electrodes (typically three, but sometimes more or only two, Figure 19c),
typically fashioned from stainless steel rods. In conventional field installation, probes are
connected to the instrument through a network of coaxial cables and multiplexers, to reduce costs
by using a single TDR instrument. The TDR instrument provides the rapid voltage step and
captures a waveform (Figure 19b) of the reflected voltage using an internal fast oscilloscope (at a
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picosecond or GHz sampling rate). Typically, the oscilloscope can capture waveforms that
represent all, or any part of, the transmission line (this includes connections, cables, multiplexers,
and probes), beginning from a location that is just prior to step voltage generation. The travel time
of the pulse in the probe electrodes embedded in the soil is represented by the waveform, which
is interpreted graphically to determine the two-way travel time (t;) in the electrodes (Figure 19b).
The value of t; is related to soil water content through equations based on Maxwell's
electromagnetic theory, with travel times increasing with increasing volumetric soil water content
0,. The relationship between t, and 6,, is usually linear (see section 4.5) but may deviate due to
water-mineral surface interactions (Jones et al., 2002). In conventional TDR applications, an
embedded computer or microprocessor/datalogger is used to control the system and often to
analyze the waveforms for travel time and to compute 6, values. Therefore, conventional systems
are expensive (several thousand dollars for a basic system with few probes), difficult to maintain,
and finally not much used in practical agricultural and environmental monitoring.

High speed (GHz) electronics made available from the cellular telephone industry have made it
possible to miniaturize the TDR instrument to a small circuit board that fits inside the head of a
sensor. Such TDR sensors directly couple the TDR step voltage generator to the sensor
electrodes and thus circumvent the deleterious effects of coaxial multiplexers and cables because
these are not required. In addition, expensive TDR instruments and embedded computers
involved in conventional TDR systems are not required. Because the TDR instrument is in the
sensor head, the fast rise time pulse is injected directly into the electrodes with minimal loss,
making such sensors useful in soils with larger o, and greater contents of large surface area clays
than are feasible for conventional TDR systems (Casanova et al., 2013; Schwartz et al., 2016).
The microprocessor in the sensor head captures the waveform data, interprets it for travel time,
calculates the apparent permittivity (&,), applies a calibration to estimate 6,,, calculates o, and
records temperature from a separate sensor in the head. In normal use, sensors are used with
dataloggers to acquire values of ¢4, 6, a,, and temperature sent through the sensor cable as
digital signals (SDI-12 protocol), which greatly increases the feasible length of cables. The sensors
can also deliver TDR waveforms, which are useful for checking on sensor installation and trouble
shooting. Such TDR sensors are becoming widely used in agricultural and environmental
monitoring.

4.3.2.1 Theoretical basis and calibration equations

Except for the obvious differences discussed in the preceding paragraph, the following discussion
is relevant to both conventional TDR systems and the new directly-coupled TDR sensors. Figure
19b shows a waveform from a conventional TDR system that represents the transmission line in
the coaxial cable just before the probe and the probe itself. The relative magnitude of the waveform
represents a voltage, which is proportional to the impedance of the waveguide. When scaled
against the magnitude of the voltage pulse supplied by the TDR circuit, the voltage values are
known as reflection coefficients. Although earlier TDR instruments displayed the horizontal axis in
units of length, the horizontal axis is really measured in units of time. Because the waveform
represents the reflected pulse, the times are two-way travel times. Conventional TDR instruments
convert the time measurement to length units by using the relative propagation velocity factor
setting (v,,), which is a fraction of the speed of light in a vacuum. For a given cable, the correct
value of v, is inversely proportional to ¢, of the dielectric (insulating plastic) between the inner and
outer conductors of the cable
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where v is the propagation velocity of the pulse along the cable, ¢, is the speed of light in a
vacuum, and u is the magnetic permeability of the dielectric material.

For a TDR probe in a soil, the dielectric between the probe rods is a complex mixture of air, water
and soil particles that exhibits a variable apparent permittivity, which determines the pulse velocity
along the probe electrodes (exposed rod length divided by travel time). The TDR method relies
on interpretation of the waveform reflected from that part of the transmission line that is the probe
(Figure 19a,b). An example of waveform interpretation shows how the two-way travel time for the
step voltage pulse to travel along the probe rods, t; = t, — t;, may be determined (Figure 19b).
The value of t; is related to the propagation velocity as

t; =2L/v (55)
where L is the length of the rods, and the factor 2 signifies two-way pulse travel. Combining
Equation (54) and (55), we see that t; is related to the inverse square root of g,,.

2L
V== Co(ga.u)_O'S

te (56)
With a permittivity of ~80, water is the largest determinant of permittivity in soils. In comparison,
the permittivity of soil minerals varies in the range of 3 to 5; the permittivity of organic matter is
likewise small; and the permittivity of air is unity. Because soil water is the only rapidly changing
determinant of ¢,, we can calibrate soil water content vs. measured t, or calculated ¢,.

Reflection 2 in Figure 19b can be difficult to identify (visually or by computer algorithm), so it is not
always possible to directly determine t,. For example, in dry soils Reflection 2 may not be visible
(see waveforms for 6, < 0.1 in Figure 20b). Reflection 1 is, however, always identifiable for
conventional TDR probes and the time that passes as the pulse travels through the plastic handle
from reflection 1 to reflection 2, called the handle transit time (or offset), is a reasonably constant
value, At,, for a particular TDR probe design and materials. TDR probes should be calibrated to
evaluate At, to facilitate evaluating t; (Evett, 2000; Heimovaara, 1993); yielding t; = t;, + At,.
TDR probes should also be calibrated to account for small differences between the electrical
length (L.) and the physical length (L). Calibration of the L, and At, can be accomplished by
evaluating t,,, and the second reflection t, in air and deionized water

E tz,water - tz,air
2 1 1 (57)

Ewater? — Eqir?

L, =

1

2L¢ - Ewater? (58)

Aty = (tz,water - tlx) - c
)

where ¢, = 1, and g, IS the permittivity of water at the calibration temperature. Here, t;,
tends to vary slightly (~5 ps) when it is evaluated in air and water and the average of the measured
values is used to determine At, Because waveform smoothing can influence the shape of the first
peak, the time of the transition t;, should always be evaluated with limited or no waveform
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smoothing and the same level of smoothing for calibrations and water content evaluations
(Schwartz et al., 2013). Calibration of direct-coupled TDR sensors is evaluated in the same
manner above except that t,,, is based on the intersection of the tangent to the maximum gradient
of the incident step pulse and the preceding baseline (Schwartz et al., 2016).

Rearranging Equation (56), and assuming u = 1, one sees that e, may be determined for a probe
of known length, L, by measuring t;

gq = [cote/(2L)]? (59)

Topp et al. (1980) found that a single polynomial function described the relationship between 6,
and values of ¢, determined from Equation (59) for four mineral soils:

6, = (=530 + 292¢, — 5.5¢,% + 0.043¢,3) /10* (60)
Since 1980, Topp and Reynolds (1998) and other researchers have noted that the quantity t,/(2L)
in Equation (59) is quadratic and have shown that the relationship between 6, and t;/(2L) is
practically linear (Evett et al., 2006; Ledieu et al., 1986; Topp and Reynolds, 1998; Yu et al., 1997),
and useful calibration equations take the form:

6, = a+ blcot/(2L)] (61)

For example, Topp and Reynolds (1998) linearized Equation (60) as:

6, = —0.176 + 0.115[cyt,. /(2L)] 62)
As a general TDR calibration for mineral soils, we recommend using the means of slope and
intercept values for Equation (61), which are a = -0.168, b = 0.115. With these parameter values,
Equation (61) differs from Equation (62) by 0.008 m3®m= over the range of water contents from
zero to 0.5 m*m=.

Because increasing o, causes an increase in t; (see Figure 20a,b), several authors have
attempted to include o, in calibration equations (Wyseure et al., 1997). Evett et al. (2006)
proposed that the loss tangent (o, /(2nwe,) be included in a linear calibration equation of the form:

6y = a+ blcote/(2L)] + c(2mfyie0)*® (63)

where g, is the permittivity of free space, w is replaced by f,,;, which is the effective frequency of
the TDR pulse at reflection 3 in Figure 19b, and the other variables are as previously defined. Both
o, and f,,; can be determined from the TDR waveform.
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Figure 20: (a) Waveforms from a TDR sensor in water at several different bulk electrical conductivity (oa) values
illustrating waveform attenuation caused by increasing values of oa. (b) Waveforms from conventional TDR probes
at several depths in a clay loam soil with expanding lattice (2:1) clays (Evett et al., 2005).

Several attempts have been made to interpret ¢, of soils from theoretical considerations using
dielectric mixing models that consider the volumetric proportions of soil mineral, organic, water,
and air constituents, as well as soil mineralogy and particle shape and packing considerations,
see section 3.1.

4.3.2.2 Using TDR

For most soils, the TDR method provides water content in the range from zero to 0.5 m®m-= with
an accuracy of ~0.02 m3®m= without soil-specific calibration. This includes soils with large clay
content if that clay is kaolinitic in nature. Exceptions are soils with organic matter content >10 %,
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appreciable content of expanding lattice clay with relatively large surface area, appreciable
magnetite and/or hematite such that p # 1, volcanic soils (Regalado et al., 2003; Tomer et al.,
1999), and soil with appreciable ¢,. With soil-specific calibration, accuracy (RMSD of the
calibration) of better than 0.01 m®m= for a specific soil is attainable. However, the predictive
accuracy under field conditions can vary in response to variations in soil texture, bulk density,
apparent EC, and temperature. Repeatability is excellent, with standard deviations (SD) of
measurement ranging from 0.0006 m3m=3 (Evett, 1998) to 0.003 m®*m= (Herkelrath et al., 1991),
although SD may be larger if waveforms are severely attenuated (Schwartz et al., 2014).

Because frozen water has a relatively small permittivity (~3), data records at frozen conditions
need to be masked before utilizing a time series for validation.

4.3.3 Transmission Line Oscillators (TLO) and Time Domain Transmissometry (TDT)

Like TDR, both Transmission Line Oscillators (TLO) and Time Domain Transmissometry (TDT)
measure the travel time of an electromagnetic pulse; however, the frequency is generally lower
(~100 MHz) and the technology less expensive. A transmission line oscillator (TLO) uses parallel
rods to form an open-ended transmission line or a waveguide, which varies in length from 5 to 30
cm. A square wave is transmitted along the waveguide, with its return triggering another pulse.

This oscillation time and the attenuation of the square wave are used to infer both 6,, and EC
(Caldwell et al., 2018; Campbell and Anderson, 1998). TDT is similar except the sensor forms a
loop along a given length of a transmission line embedded in the soil (Blonquist et al., 2005). In
either case, there is no complex waveform analysis as with TDR.

4.3.4 Impedance Sensors

Impedance sensors are soil probes, which use electrical impedance as the basis of their soil
moisture estimate. Gaskin and Miller (1996) provide a description of the technique in full detail.
The probe uses a single frequency sinusoidal oscillator to transmit down a transmission line. A
portion of the incident signal is reflected back along the line towards the signal source. This can
be used to estimate the magnitude of the permittivity of the media in which it is embedded. This is
a simple, low energy measurement, so it is a cost and energy efficient option for sensor
development; however, a specific calibration needs to be generated for each soil type in which it
is installed.

4.3.5 Heat pulse sensors

The Dual Probe Heat Pulse (DPHP) sensor estimates soil moisture via soil thermal properties,
which is a direct analog to the soil water content approach (Campbell et al., 1991). There are two
hollow small needles, one with an electrical heater and the other with a thermistor or
thermocouple. For measurement, the heater is turned on for a set period of time (~4-8 sec) and
then turned off. The thermistor/thermocouple measures soil temperature each second for a longer
period of time and the maximum temperature change is then computed and used to estimate the
soil moisture. The advantages of this probe are that the measurement volume is quite small, often
on the order of <10 cm?3. This allows the sensor to estimate soil moisture very near to the soil
surface. It is also capable of estimating soil moisture near obstructions such as roots or rocks.

Heat dissipation sensors (HDS) use a similar technique but the resistor (heater) and thermocouple
are integrated into a single needle encased in a porous ceramic matrix of known thermal
properties, allowing the water content in the ceramic matrix to be estimated (Reece, 1996). This
water content is in equilibrium with the soil-water potential in the soil. Thus, an HDS sensor is
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really a matric-potential sensor (e.g., tensiometer), but it can be calibrated to measure 6,, and is

used extensively at the Oklahoma Mesonet (lliston et al., 2008; Scott et al., 2013). The 229 Sensor
(Campbell Scientific Inc., Logan, UT) is the only commercially available HDS on the market.

4.3.6 Capacitance sensors

Capacitance sensors are relatively inexpensive and easy to operate. The basic principle of the
capacitance method is to incorporate the soil medium that surrounds the sensor prong as part of
the dielectric of the sensor capacitor (Bogena et al., 2007). The relative dielectric permittivity of
the solil is then determined by measuring the charge time from a starting voltage to a voltage with
an applied capacitor voltage. A popular example of this sensor type is the family of capacitance
sensors of METER Group, Inc. (e.g. EC-5, 5TE, TEROS12).

Capacitance sensors can also be replaced in an installation tube with little disturbance (e.g. the
EnviroSCAN sensor of Sentek Sensor Technologies). Access tube capacitance sensors consist
of two cylindrical metal rings separated from each other by a small gap along an axis. This
axis/spine is installed in a thin plastic (PVC) tube in the soil and the fringe of the capacitor’s field
of influence is within the soil, so that the undisturbed soil that is in contact with the tube is constant,
despite future capacitor replacement. These tubes are capable of going as deep as 2 meters in
practice and can be replaced or recalibrated regularly. Because of the size of the capacitors, the
most shallow depth to be measured is 10 cm, and the closest spacing is 10 cm within a single
tube. More information on capacitance sensors can be found at Evett and Cepuder (2008)

4.3.7 Emerging methods

Novel emerging methods have been developed to i) fill the scale gap between point-scale
measurements and coarse spaceborne soil moisture products, ii) utilize existing networks initially
established to monitor other variables, and iii) measure soil moisture at various depths for the
calibration and validation of P-band microwave data. Recent advances in noninvasive techniques
allow continuous contactless and integrative measurements of soil moisture from the field to basin
scale, e.g. cosmic-ray neutron sensing (CRNS), Global Navigation Satellite System Reflectometry
(GNSS-R), gamma-ray monitoring, and ground penetrating radar (GPR) (Bogena et al., 2015).
These methods may give important insights in the spatial and temporal patterns of soil moisture
for validation.

4.3.7.1 Cosmic-ray neutron sensing

Cosmic-ray neutron sensing allows for the non-invasive monitoring of integral soil moisture at the
field or small catchment scale (Zreda et al., 2008; Zreda et al., 2012). CRNS probes count
secondary fast neutrons near the soil surface that are created by primary cosmic-ray particles in
the atmosphere and in the soil. Hydrogen atoms in the soil, which are mainly present as water,
moderate the secondary neutrons on the way back to the surface (Figure 21). Therefore, fewer
neutrons escape in moist soils, whereas more neutrons are able to escape dry soil. This results
in a negative correlation between near-surface fast neutron counts and soil water content and
enables the use of the CRNS probe to measure soil moisture. The horizontal footprint of the CRNP
varies from a radius of 150m to 210m depending on soil water content and atmospheric pressure
(Kohli et al., 2015). The measurement depth is strongly dependent on soil water content (~75cm
for dry soils and ~12cm for wet soils). A further critical point that needs to be considered is the fact
that the neutron count rates as well as the sensing volume of the cosmic-ray probe depend on the
total amount of hydrogen within the sensor footprint and not only on the hydrogen contained in
soil water (Zreda et al., 2012). Additional sources of hydrogen are above- and below-ground
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biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and
water in the litter layer, intercepted water in the canopy, and soil organic matter. In the case that
the amount of hydrogen within these compartments shows temporal variations, this variation has
to be considered in order to determine soil water content dynamics using CRNS measurements
(Bogena et al., 2013). Nevertheless, the applicability of the cosmic-ray neutron probe to measure
soil water content has been demonstrated for several different environmental settings, including a
coastal site in Hawaii (Desilets et al., 2010), a desert site in Arizona (Franz et al., 2013), an
agricultural site with sandy soils near Potsdam, Germany (Rivera Villarreyes et al., 2011), and a
low-altitude humid forested catchment in Germany (Bogena et al.,, 2013). A recent study
demonstrated the potential of CRNS measurements for the validation of global soil moisture data
products (Montzka et al., 2017).

Figure 21: Cosmic neutrons interact with atmosphere, vegetation and soil. The neutrons detected by the sensor
originate from a larger area, and are converted to an integral estimate of soil moisture. Credit: Rosolem, University of
Bristol.

4.3.7.2 GNSS reflectometry

Global Navigation Satellite Systems (GNSS) were originally used for positioning and navigation.
However, GNSS signals can also be used to infer soil moisture (Larson et al., 2008b). The retrieval
algorithm for soil moisture from single GNSS receivers is based on the power variations of the
GNSS signal (Larson et al., 2008a). The direct signal from the GNSS satellite and the signal
reflected at the land surface are simultaneously received at the antenna and add up to the
observed signal power. The simultaneous reception of the direct and reflected signals causes an
interference pattern in the signal power due to the different travel distances from the satellite to
the antenna (Figure 22). The amplitude and phase of the interference pattern are affected by the
soil permittivity, which is linked to the soil moisture content (Larson et al., 2010). GNSS signals
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comprise two L-band frequencies with wavelengths of 19.05 and 24.45 cm. For soil moisture
estimation, both dual frequency GNSS sensors that are permanently installed in geodetic networks
as well as lower cost sensors that receive only one frequency can be used.

/

Direct GNSS signal

Direct GNSS signal

Reflected GNSS
signal

€] e Reflected surface

Figure 22: GNSS-R principle to estimate soil moisture by analyzing the signal interference (Martin et al., 2020).

The measurement depth of GNSS reflectometry strongly depends on soil moisture. For wet sails,
the GNSS signal is reflected within the first few millimeters below the land surface, while for dry
soils the signal penetrates deeper into the soil and is reflected within a near-surface layer of up to
7 cm depth. The reflections start at a distance of 70 m from the GNSS antenna and approach the
antenna until 2 m for a satellite pass from 5° to 30° elevation. The satellite needs about one hour
for this passage. Within this time soil moisture information is obtained over a ground track about
70 m long and 4 m wide. The radius of the area that is scanned around a GNSS antenna varies
from 50 m for an antenna installed at 1 m height to 330 m for an antenna installed at 20 m height.
While each GPS satellite has a revisit time of one day at any antenna location, the large number
of available satellites potentially allows for sub-daily resolution of soil moisture monitoring. In order
to obtain absolute soil moisture values, local calibration campaigns with in situ soil moisture
sensors are necessary for each site. Another approach is the calibration of absolute soil moisture
by assuming that the minimum value seen in a sufficiently long GNSS time series corresponds to
a plausible texture-dependent estimate of the residual soil moisture. The accuracy of soil moisture
estimates from GNSS reflectometry depends on (1) the vegetation cover of the ground, (2) the
type of the GNSS signal, (3) the sampling rate, and (4) the calibration. Rodriguez-Alvarez et al.
(2009) showed that soil moisture derived from GNSS over bare soil agreed well with in situ data
(RMSD of 0.03m3/m3).

4.3.7.3 Gamma-ray monitoring

All rocks and soils emit gamma radiation at a range of energies due to the decay of radioactive
isotopes (*°K, 28U and #*2Th) and their progenies in soil (Minty, 1997). The attenuation of gamma-
rays in soil can be approximated by classical radiation intensity laws (Beamish, 2013). Since
attenuation in water is higher than in air or solid soil particles, a negative correlation between
measured gamma-ray intensity and soil moisture is expected. Gamma-ray intensity can be
measured using airborne and ground-based platforms. Although the influence of soil moisture can
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be detected by airborne surveys (Beamish, 2013), it is difficult to quantitatively determine soll
moisture from such data because of the unknown spatial distribution of the radioactive isotopes
that determine the background radiation intensity. Therefore, a more promising approach for soil
moisture estimation from gamma-ray intensity is the use of permanently installed measurement
stations that provide temporal changes in spectrometric or the total amount of gamma-ray intensity
(Yoshioka, 1989). Here, the total amount of gamma-ray intensity is of particular interest because
it can be measured with relatively cheap Geiger-Miiller counters.

Gamma-ray attenuation strongly decreases with increasing energy (Minty, 1997), which means
that high-energy gamma rays travel further than low-energy gamma rays. At a high energy of 2.6
MeV, the radius of the horizontal footprint (90% of energy) is on the order of 250 m and
independent of soil moisture for an airborne survey at a height of 100 m (Minty, 1997). This value
decreases with decreasing energy and also depends on the angular sensitivity of the detector. For
gamma-ray intensity measurements near the surface, the footprint is much smaller. According to
the approximate models used for airborne surveys, the radius of the horizontal footprint is on the
order of several meters for a sensor height of 1 m at an energy of 2.6 MeV. However, a better
assessment of the horizontal footprint using more advanced gamma-ray transport modeling is
required to confirm this. The measurement depth similarly depends strongly on the gamma-ray
energy (Loijens, 1980). At a high energy of 2.6 MeV, the measurement depth above which 90%
of the measured gamma rays originate is 24 cm in a homogeneous dry soil with a bulk density of
1.0 g*cm®, and 15 cm in a dry soil with a bulk density of 1.6 g*cm™. When these two soils are fully
saturated, the measurement depths are reduced to 14 and 12 cm, respectively.

The gamma-ray intensity near the soil surface does not only depend on the decay of radioactive
isotopes in the soil. There are three main sources of additional gamma radiation: cosmic rays that
enter and interact with the atmosphere, anthropogenic **’Cs from nuclear tests and accidents, and
atmospheric ?22Rn66. Therefore, accurate soil moisture estimates from gamma-ray
measurements can only be obtained when all interfering time-variable, anthropogenic, and non-
terrestrial signals have been removed from the data. Loijens (1980) provided a simple calibration
relationship between the terrestrial component of gamma-ray intensity and gravimetric soll
moisture. In principle, a single calibration measurement of gamma-ray intensity for known moisture
would be sufficient to parameterize this relationship. However, this has not been extensively
validated, and there is considerable need for further studies here.

4.3.7.4 Ground Penetrating Radar

Ground penetrating radar (GPR) in principle records electromagnetic (EM) waves reflected from
boundaries of subsurface materials having different dielectric properties. Within the last two
decades GPR has matured to become one of the standard methods to investigate geological and
pedological subsurface structures. Recently it was demonstrated that GPR is also a meaningful
source of in situ data for low frequency SAR soil moisture studies (L-band and particularly P-band)
(Koyama et al., 2017). Up to now, the problems arising from mismatching measurement depths
between ground-based sensors and incoming SAR signals have been largely ignored with the use
of TDR or Frequency Domain Reflectometry (FDR) probes being the standard approach for
distributed in situ soil moisture measurements. Depending on the sensor type and length of the
rods, the measurement depth usually varies between 5 cm and 15 cm. TDR-based in situ data is
widely used for low frequency L-band to high frequency C-band and even X-band SAR data. While
the obtained information is generally not fully suitable for high frequency SAR data due to the
limited penetration into the soil, in some cases it might also be misleading for L-band data when
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the soil is dry, and the penetration depth exceeds the sensor depth. However, with the advent of
ESA’s P-band BIOMASS mission, the classical methods to determine “ground truth” soil moisture
will become completely unsuitable. Considering the much higher penetration capabilities at P-
band, information about the vertical soil moisture distribution, rather than surface soil moisture
information alone, becomes crucial. In particular, the knowledge of both the permittivity and depth
of wet soil layers will be of great value for future calibration and validation studies at P-band.
However, measuring soil moisture at various depths by means of classical methods is not feasible
in a spatially distributed manner in coordination with satellite passes. At best, only very limited
point information is available from continuous monitoring stations with sensors installed at several
fixed depths.

To overcome this problem, an improved method for fast and robust quantitative estimation of
vertical soil moisture profiles by using GPR has been recently proposed (Koyama et al., 2017).
Using a semi-automated data acquisition technique in combination with advanced signal
processing, the time efficiency and accuracy of soil moisture measurements in the field were
drastically improved. The multi-offset method, based on the common-midpoint (CMP) technique,
allows for the acquisition of accurate quantitative vertical soil moisture profiles in only 1-2 min. The
sensing depth and vertical resolution depend on the frequency of the GPR antennas used. Under
typical soil conditions, the best results for low frequency SAR ground truth are obtained by using
a ~500 MHz antenna. At this frequency, one can achieve a penetration depth of about 2 m and a
vertical resolution that would enable the distinction 10 cm soil layers. However, the method also
works with GPR frequencies below 100 MHz or higher than 1000 MHz. Based on comparisons
with SAR-derived soil moisture estimates, it has been demonstrated that the GPR/CMP method
is well suited to serve as an in situ measurement technique for SAR soil moisture studies at low
frequencies (Koyama et al., 2017).

4.4 Airborne validation campaigns

4.4.1 Campaign objectives
The design of airborne soil moisture validation and calibration campaigns needs to be guided by
the objectives of the campaign itself. The key topics for consideration are:

. How broad and diverse should the environmental surface conditions be?
Homogeneous to minimize scaling issues or heterogeneous to investigate various
conditions?

. What is the spatial scale and time span required for repeat coverage of the experiment
domain?

° What kind of sensor, product level and algorithm development is the experiment

supposed to support?

A vast range of airborne missions have been conducted over the past decades, covering a wide
range of conditions for the objectives above, see Table 2. While the European campaigns focused
on a transect approach, overflying as many ground stations as possible for algorithm validation,
the American and Australian missions mainly covered larger spatial domains more representative
of the satellite footprint during actual satellite overpasses, or to investigate the spatial structure
prior to satellite campaigns. Those airborne campaigns served their individual purposes, as no
campaign can cover all aspects of complete cal/val programs.
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Table 2: Selection of soil moisture airborne campaigns.

Continent Campaign

Europe EuroSTARRS

SVRC

CAROLS

TERENO

North America SGP

SMEX

SMAPVEX

CanEx-SM10

Australia NAFE

AACES

SMAPEX

Asia HIWATER

Eventually, for the validation of satellite microwave acquisitions and soil moisture products,
campaigns designed to cover the actual satellite footprint, or a representative fraction thereof, are

Campaign Full name

the
and

European Campaign with
Salinity Temperature
Roughness Remote Scanner

SMOS
Campaign

Validation Rehearsal

Cooperative Airborne Radiometer
for Ocean and Land Studies

Terrestrial Environmental

Observatories

Southern Great Plains Experiment

Soil Moisture Experiment

Soil Moisture Active Passive
Validation Experiment

Canadian Experiment for Saoll
Moisture in 2010

National Airborne Field
Experiment

Australian Airborne Cal/val

Experiments for SMOS

Soil Moisture Active Passive
Experiment

Heihe Watershed Allied Telemetry
Experimental Research

required. Satellite products to be validated are either

Reference

(Saleh et al., 2004)

(Delwart et al,
2008; Juglea et al.,
2010; Montzka et
al.,, 2013; Saleh et
al., 2009a)

(Zribi et al., 2011)

(Hasan et al., 2014;
Montzka et al.,
2016)

(Njoku et al., 2002)

(Jackson et al,
2008; Vivoni et al.,
2008)

(Colliander et al.,
2015)

(Magagi et al,
2013)

(Merlin et al., 2009;
Panciera et al.,
2008; Saleh et al.,
2009b)

(Peischl et al,
2012; Rudiger et
al., 2011)

(Panciera et al,
2014; Wu et al.,
2014; Ye et al,
2019)

(Lietal., 2013)
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o Level 1: brightness temperature including four Stokes parameters sensitivity to multi-
angular observation conditions of different surface properties,

e Level 2: soil moisture products improving direct and inverse modeling and calibrating
retrieval algorithms,

e Level 3: user-friendly products of soil moisture and brightness temperature, and

e Level 4: research products, particularly root-zone soil moisture, soil water index and other
derived quantities.

Those campaigns need to consider the representativeness of the surface conditions, in particular
the vegetation and terrain complexity (topography), ground measurement requirements, and post-
processing needs that arise from the antenna designs and the duration of the flights.

4.4.2 Representativeness of observed areas

In the first instance, airborne campaigns that aim for the calibration and validation of satellite data
should have the spatial extent of a satellite footprint (generally taken to be the 3 dB point of the
antenna main beam) in order to capture the full spatial heterogeneity of the land surface within the
footprint. While it would be desirable to capture the full extent, analyses suggest that acquiring
data across 50% of the footprint may be sufficiently representative to achieve this target, which
may be reduced further for largely homogeneous field sites, such as certain desert areas.
Moreover, aircraft observations should be performed at different altitudes in order to optimally
study up- and downscaling methods. In addition, it would be advantageous to have repeat
coverage of the same areas under different soil moisture conditions (e.g. before and after rain
events, during extensive dry-down periods, etc.).

4.4.3 Ground measurements

In order to ensure the accuracy of the airborne measurements, reference sites representing
different land surface conditions need to be selected within the area of interest where soil moisture
and temperature, surface roughness, and vegetation parameters are collected. In Figure 23 and
Figure 24 field measurements with gravimetric and impedence methods, respectively, are shown.
While these only represent point measurements, they still allow a reasonable qualitative validation
and cross-check for the airborne measurements. Moreover, the data collected at those locations
are required for the post-processing of the acquired data.

Soil roughness deserves special attention in this context. Saleh et al. (2009a) clearly showed that
the microwave surface roughness parameter Hg (as a mean to correct for non-specular reflectivity
of natural soils) is the most significant microwave parameter for successfully retrieving soil
moisture over bare soil and areas covered by moderate vegetation, and ways to estimate it are
key as such correction is site specific. Fernandez-Moran et al. (2015) carried out a detailed
characterization campaign of in situ soil roughness measurements made for 13 dates during 2013,
exploring soil roughness changes after major agricultural practices and rainfall events. These
measurements were used as inputs for the intercomparison of the five L-band emissivity surface
roughness models in Lawrence et al. (2013). Microwave surface roughness Hgr was also found to
be sensitive to surface soil moisture for all land uses, with decreasing values of Hg for wetter soils.
As expected, higher differences with respect to specular surfaces were found over ploughed dry
soils than prairies or wet soils (Saleh et al., 2009a).
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Figure 23: Gravimetric sampling, where a surface soil core of known volume is collected at multiple depths for
comparison to aircraft and satellite products.

Figure 24: Coincident to gravimetric methods, impedence probe measurements help to improve efficiency of sampling
on the ground.

4.4.4 Data quality assurance

Technical aspects of the sensor design may also require further post-processing steps. For
instance, instruments such as the Polarimetric L-band Microwave Radiometer (PLMR, deployed
in Europe and Australia), may be multi-beam and multi-angular instruments, which requires the
normalization of the acquired data to a common reference angle before any upscaling of the
airborne data to the satellite footprint. Finally, to avoid issues with instrument calibration drifts
during extensive campaigns, regular on-ground calibrations of the microwave radiometer
instruments using warm (ambient blackbody) and cold (sky) calibration targets are required. On-
ground calibration consists of the characterization of the calibration subsystem itself and antenna
measurements. On-ground calibration results are required when the measured data are converted
to the brightness temperature of the measured target. The most important on-ground
characterization activities are antenna measurements, flat target response measurement and
external residual correlation measurements. The flat target response is measured using a known
uniform cold target such as open sky. During land campaigns, calibration can be carried out pre-
or post-flight using liquid nitrogen or other means, by passing over a sizeable lake near the
operations area. This is a common procedure which also requires water temperature (and salinity)
transects over the lake to check for spatial gradients. If, however, there is no suitable lake nearby,
more liquid nitrogen calibrations should be carried out (i.e., both pre- and post-sortie). Moreover,
depending on the airborne radiometer type, after each installation, the antenna alignment has to
be checked very carefully by doing a few wing and nose wags over water during calm conditions.
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To be of value for cal/val activities, airborne data need to meet several requirements. This includes
temporal coincidence with satellite observations, comparable sensor incidence angles, thorough
sensor calibration, etc.

As the daily airtime of airborne campaigns can extend to several hours, the airborne data may
have to be corrected for temporal drift, in particular in the land surface temperature. As many
campaigns are timed to coincide with the satellite morning overpasses, the warming of the land
surface would be a recognizable artifact within the data set. However, this can be corrected
through the continuous in situ measurement of soil temperature.

4.5 Sensor calibration

Electromagnetic soil moisture sensors measure the apparent dielectric permittivity of the soil,
which needs to be converted to soil water content. The relationship between apparent dielectric
permittivity and soil water content depends on soil properties, e.g. soil texture, organic carbon
content, soil bulk density, and soil structure. Usually, some general calibration equations are
provided by the manufacturer for using the sensors in mineral or organic soils. However, such
calibration equations may result in poor measurement accuracy which can be improved with
laboratory or field calibration (Caldwell et al., 2018; Dominguez-Nino et al., 2019).

Alternatively, a two-step calibration procedure (Seyfried and Murdock, 2004) can be used. First,
the relationship between sensor response and permittivity is determined for each sensor (i.e. a
sensor-specific calibration). Second, site-specific relationships between permittivity and soil water
content can be established with a limited number of measurements on soil samples, preferably
using the highly accurate TDR method (soil specific calibration). For the sensor-specific
calibration, media with well-known dielectric properties (here referred to as reference permittivity),
such as air, 2-isopropoxyethanol (Kaatze et al., 1996) and 1,4-dioxane (Schwank et al., 2006))
are used to relate the sensor response to dielectric permittivity. The advantages of using this
approach are: i) the avoidance of air gaps and density variations, ii) the possibility to separate
sensor- and soil-specific effects, and iii) the ability to quickly calibrate multiple sensors for a wide
range of dielectric permittivity (from ~2 to 35, given as the ratio of the permittivity of a substance
to free space). In the second step, the dielectric permittivity is related to soil water content using
empirical or semi-empirical models (Roth et al., 1990; Topp et al., 1980). For more accurate SM
measurements, a site-specific calibration accounting for soil textural variation can also be
performed on a limited number of samples (Qu et al., 2013). Moreover, for individual sensors,
such as those installed permanently at soil moisture monitoring stations, calibrations can be
completed by taking in situ samples to the laboratory and performing dry downs of the soil core
while monitoring the permittivity (Burns et al., 2014). Alternatively, samples from the network
location can be obtained periodically to develop the in situ calibration (Ojo et al., 2015). During
experiments when numerous sites are monitored multi-site calibration approaches exist to derive
global calibration equations and parameters that vary by soil type (Rowlandson et al., 2013;
Rudiger et al., 2010).

4.6 Upscaling of reference soil moisture estimates

Upscaling of ground-based soil moisture observations to test/validate remotely sensed soail
moisture needs deeper geophysical understanding leading to strategic sampling and/or sensor
placement. Temporal and spatial variability are two key features to describe soil moisture behavior
at a particular remote sensing footprint scale or study domain. Multiple studies in the past two
decades during various remote sensing field campaigns in different hydro-climates (Crow et al.,
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2012; Das and Mohanty, 2008; Gaur and Mohanty, 2013; Gaur and Mohanty, 2016; Gaur and
Mohanty, 2019; Jacobs et al., 2004; Jana and Mohanty, 2012a; Jana and Mohanty, 2012b; Jana
and Mohanty, 2012c; Joshi and Mohanty, 2010; Joshi et al., 2011; Kathuria et al., 2019; Mohanty
and Skaggs, 2001; Singh et al., 2019) have provided better insight into how geophysical controls
contribute to soil moisture variability and their scaling behavior. At a particular point in time soil
moisture content is influenced by: (1) the precipitation history, (2) the texture of the soil, which
determines the water-holding capacity, (3) the slope of the land surface, which affects runoff and
infiltration, and (4) the vegetation, aspect, and land cover, which influences evapotranspiration
and deep percolation. In other words, the soil moisture spatio-temporal pattern reflects a conjoint
variability of soil properties, topography, vegetation, and precipitation attributes. Soil moisture
variability is dominated by soil properties at the field scale (e.g., of the order of meters),
topographic features at the catchment/watershed scale, and vegetation characteristics and
precipitation patterns at the biome to regional scale and beyond. Thus, ensemble hydrologic fluxes
(including evapotranspiration, baseflow, infiltration, shallow groundwater recharge) within and
across the critical zone reflect the evolution of soil moisture at a particular spatial scale (field,
catchment, watershed, or region) and can be “effectively” represented by one or more
linear/nonlinear hydrologic (soilffield, topography/catchment, vegetation/watershed, or
precipitation/region) scale parameters reflecting dominant heterogeneity of the landscape. These
findings can be used to determine sensor placement or optimum ground-based soil moisture
sampling to confirm water balance closure, as well as physics-driven rather than random sensor
placement. To reflect RS footprint-scale soil moisture behavior, a strategic sampling design should
include the following:

1) Developing a comprehensive historical regionalized soil moisture database (if) collected
using any in situ and remote sensing platforms.

2) Gleaning available spatial data for soil, topography, vegetation, precipitation, and other
hydro-climatic features in the design.

3) Conducting principal component / EOF analysis to evaluate the dominance of various
geophysical controls across scale.

4) Determining soil moisture spatio-temporal correlation structures at the study footprint scale
and developing soil moisture scaling relationships based on dominant physical controls.

5) Examining accuracy and uncertainty in scaling relationships across different space-time
scales.

6) Designing thematic soil moisture sampling at field/footprint, catchment, watershed, and
regional scale.

5 GENERAL STRATEGY FOR VALIDATION OF SOIL MOISTURE PRODUCTS

5.1 CEOS validation stages

The CEOS WGCYV Land Product Validation (LPV) subgroup has identified five validation levels
corresponding to increasing spatial and temporal representativeness of samples used to perform
direct validation (Table 3). The soil moisture validation protocol includes these aspects and
supplements them with requirements for assessing the spatial and temporal precision of individual
products as well as a characterization of the operational implementation.
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Table 3: Definition of CEOS validation stages.

Stage Description

0 No validation. Product accuracy has not been assessed. Product considered
beta.

1 Product accuracy is assessed from a small (typically < 30) set of locations and

time periods by comparison with in situ or other suitable reference data.

2 Product accuracy is estimated over a significant (typically > 30) set of locations
and time periods by comparison with reference in situ or other suitable reference
data.

Spatial and temporal consistency of the product, and its consistency with similar
products, has been evaluated over globally representative locations and time
periods.

Results are published in the peer-reviewed literature.

3 Uncertainties in the product and its associated structure are well quantified over
a significant (typically > 30) set of locations and time periods representing global
conditions by comparison with reference in situ or other suitable reference data.
Validation procedures follow community-agreed-upon good practices.

Spatial and temporal consistency of the product, and its consistency with similar
products, has been evaluated over globally representative locations and time
periods.

Results are published in the peer-reviewed literature.

4 Validation results for stage 3 are systematically updated when new product
versions are released or as the interannual time series expands.

When appropriate for the product, uncertainties in the product are quantified
using fiducial reference measurements over a global network of sites and time
periods (if available).

The overall aim of validation good practices is to reach validation stage 4. The LPV subgroup has
developed a framework for product intercomparison and validation which is based on a citable
protocol, fiducial reference data, and automated subsetting. Ideally, each of these parts will be
integrated into an online platform where quantitative tests are run and standardized
intercomparison and validation results reported for all products used in the validation exercise.
The current status of  soil moisture validation is elaborated in the following section.

5.2 Status of current validation capacity and methods

The validation of soil moisture products is currently undertaken by data producers and
independent parties on a regular basis. While some studies are aimed at demonstrating a product
has reached particular requirements (for example, the GCOS requirements (WMO, 2016) or
requirements set out by funding agencies) (Dorigo et al., 2018), others are targeted at
consideration of whether a product is suitable for use in a particular application (Chen et al., 2018a;
Gonzalez-Zamora et al., 2019).

However, while such validation reports / papers are available, there are often differences between
the methodologies and reference data used, which leads to further confusion for the users and
inhibits their ability to exploit the data sets to their full potential (Zeng et al., 2015). In addition, the
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results of the validation, as well as the data used in the validation, are rarely available to interested
parties.

The Quality Assurance for Soil Moisture (QA4SM) service (https://gadsm.eodc.eu) is an easy-to-
use online validation portal which allows the traceable validation of satellite derived soil moisture
products through comparison to in situ (e.g. data from the International Soil Moisture Network)
and modeled (e.g., from ERA5/Land, GLDAS Noah) soil moisture data (Figure 25). The service
allows users to easily select specific criteria for the comparison process including control of the
masking applied to each data set, the metrics calculated, and so on. The validation results are
provided as a netCDF file which includes traceability data in the global attributes as well as plots
of each metric. All code used in the generation of the validation results is open source and the
data sets used are freely available.

Validation
Satellite data Tzl T
Validation netCDF format

process
(options for
filtering and

i
Reference data scaling) Visualisations

(in-situ and including graphs
models) and maps

Traceability from input data to output results

Figure 25: QA4SM validation workflow. Credit: QA4SM with TU Wien GEO, AWST and EODC.

The availability of the QA4SM service ensures the application of a coherent methodology to allow
the provision of standardized, and above all, traceable validation results to the user community,
thereby ensuring that validation results between studies are comparable.

As there are a variety of applications which can make use of soil moisture data, it is necessary to
have an accurate characterization of soil moisture against a standard or known baseline. There
are many different metrics that one can employ for this assessment, each with advantages and
disadvantages, but first we must focus on the methods for operating a validation program.

5.2.1 Lowlevel data validation

As soil moisture is not directly measured by any satellite mission, only estimated, there is an initial
assessment which can be made to determine if the raw data stream of the satellite instrument is
accurate. This can be done by a variety of methods. For many soil moisture missions, the
microwave spectrum is used and there are regions of known microwave emission, such the ocean
or regions of ice in Antarctica. In addition, there are cold sky (space) targets which can provide a
demonstration of instrument signal accuracy as well as determining if there is a drift or trend in the
signal. This validation is often particular to the frequencies being used for the sensing, and the
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metrics of this validation are often on the order of fractions of 1 K brightness temperature. This
type of validation is more simply described as a validation of the sensor signal, whereas our
primary concern in this document is the validation of the retrieved soil moisture estimate.

5.2.2 Ground-based validation of soil moisture

In situ soil moisture measurements are commonly used to assess remote sensing soil moisture
retrievals (see Figure 26). However, it is necessary to be careful about how the comparison is
made and, even though the reference in situ data are of good quality, it is important to realize that
they are not ‘truth’ and also contain errors (Quets et al., 2019).

All soil moisture sensors are not using the same technique to measure soil moisture content.
Commonly used sensors are based on time-domain reflectivity (TDR) or capacitance probes that
provide a measurement representative of a small sample of soil (about 400 cm?), whereas cosmic
ray sensors for instance are sensitive to 250 m horizontally around the sensor and about 12 to 24
cm vertically (see section 4.3.5). As remote sensing of soil moisture measurements (using active
and passive microwave frequencies down to 1.4 GHz) are representative of a thin layer of soil
(from 0-2 cm to 0-8 cm depending on the water content), a commonly used procedure is to install
TDR and capacitance probes at a 5 cm depth, which is a compromise between the remote sensing
observation depth at higher frequencies and the difficulty to install a soil moisture sensor close to
the surface. The vast majority of surface soil moisture sensors of the ISMN database are located
at a 5 cm depth. For the intensifying research on P-band (~430 MHz) soil moisture retrievals, with
penetration depths of 0-10 cm to 0-20 cm in typical soils, the sensor installation depth needs to
be accounted for.

Figure 26: Two examples of in situ network locations which monitor soil moisture as well as soil temperature, and
precipitation. Both have sensors buried in soil outside of the station footprint.

Each soil moisture sensor has to be carefully calibrated during its installation. Gamma ray sensor
installation is done using a detailed procedure based on gravimetric measurements to be collected
(about 50 samples of soil in all directions around the sensor). For TDR and capacitance probes,
similar gravimetric measurement has to be done ideally at the installation and during a wet
situation. This soil moisture sensor calibration is recommended to check whether default
relationships between raw measurements and soil moisture estimates (provided by the
manufacturer) are relevant or not.

Prior to comparison with satellite soil moisture estimates, manual and/or automated quality control

procedures have to be done to remove spikes, temporal inhomogeneities, oscillations, and other

artifacts commonly seen in automated measurements (Caldwell et al., 2019; De Lannoy et al.,
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2014; Entekhabi et al., 2014; Liu et al., 2011a; Reichle et al., 2017a). Furthermore, it is required
to exclude times when the soil temperature is below 4°C or when the soil is partially or fully covered
with snow.

Figure 27 presents a good practices validation workflow which includes the data collocation,
masking, decomposition into different error types, scaling to remove a potential bias, calculating
the validation metrics and a final reporting of the results (Gruber et al., 2020). All workflow
elements are transparent, traceable, and standardized.
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Figure 27: Validation good practices workflow illustration by Gruber et al. (2020).

The question of the difference of spatial scale is a recurrent question in soil moisture assessment.
Except for a few sites specifically designed for remote sensing cal/val procedures that contain a
dense network of soil moisture sensors, “sparse network” measurements provide soil moisture
estimates at a single point-scale location but over a much larger range of surface conditions and
geographical locations. In the case of dense soil moisture measurements, the grid-cell scale
measurements should be computed as the weighted average of the contributing sensor
measurements using Thiessen polygons or, if available, custom upscaling functions derived from
intensive field campaigns (Colliander et al., 2017b). For sparse network measurements (e.g., just
one sensor located within a given 25 km grid cell), the environment adjacent to the sensor has to
be analyzed against the considered satellite grid cell (many km in scale), particularly if the sensor
location significantly differs from most of the surrounding grid cell. This is of particular concern for
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locations with high leaf area index (> 5 m?m2), as well as those with complex topography (elevation
standard deviation greater than 71 m), and forested, wetland, or urban land cover types.

5.2.3 Satellite product intercomparison

With the benefit of multiple satellites measuring either the same parameter or the same
frequencies, it is useful to perform product intercomparisons. However, such comparisons do not
provide a true validation of the product in question, only offering insights into consistency and
potential errors in the algorithms. The first issue is concerned with whether the measurement
techniques are identical or fundamentally different, such as between passive and active systems.
The second issue concerns the match between the spatial resolution, footprint, and timing of the
measurements. It is unusual for sensors to have identical spatial footprints, so there will be
differences in the points of reference. SMOS and SMAP are both passive L-band instruments, but
have a fundamental difference in that SMOS is a synthetic aperture system, while SMAP is a
spinning real aperture mesh antenna. The time of the satellite overpass can also impact aspects
of the algorithm, such as the SMOS overpass of 6 pm/6 am local time versus the AMSR2 overpass
of 1 am/1 pm local time. The temperature regimes at these times are significantly different,
impacting assumptions made in the retrieval algorithms for each instrument. Other differences of
concern are the view angles of the instruments, as well as algorithmic assumptions or ancillary
data sets used in the processing of the signal. Burgin et al. (2017) provided a detailed comparison
of different satellite missions, including SMAP, SMOS, ASCAT, and AMSR2, while Su et al. (2013)
gave one of the first intercomparisons using the SMOS, ASCAT, and AMSR-E instruments. Gruber
et al. (2020) offer a comprehensive description of a validation setup for satellite (and model)
product intercomparisons and a discussion on where currently available satellite soil moisture
validation literature often fails to comply with good practices recommendations. All source code is
available at https://github.com/alexgruber/validation_good_practice.

5.2.4 Time series intercomparisons

A key feature of soil moisture validation is time series analysis, because soil moisture has a known
or predictable temporal character. This means that there is temporal correlation across time for
the variable of interest. Also, it is important to note that soil moisture is a practically bounded
variable with a minimum value close to 0.0 m®m?® and a maximum value dependent on the soil
properties at saturation. This makes time series or correlation comparisons useful but limited. Soil
moisture has seasonality in most places as well as short term responses to precipitation, and both
provide useful insights into the performance of a satellite sensor or algorithm. Comparison to a
baseline consistent soil moisture reference is also crucial for detecting drift in an estimate. For
microwave sensors, this can either be accomplished with a brightness temperature target which
has a known value, such as a cold sky look, or land surfaces of consistent value, like the Antarctic
ice sheet. As with most validation activities, more data are better, but those data must be of high
guality with consistent accuracy, to allow for appropriate conclusions to be drawn about a
satellite’s performance over time.

These four intercomparison approaches all provide their own unique perspective on the
performance of a sensor. Currently, investment in high quality, accurate, and representative soll
moisture information at the land surface is very low, and only a few locations are providing
validation data for the majority of satellite missions. Therefore a thorough validation program
should make use of several if not all of these intercomparison methods. While it is generally
desired to reach an ubRMSD of 0.04 m3m3 or better in retrieved soil moisture for many
applications, the acceptable error can vary dramatically based on the land cover condition,
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specifically vegetation density, but also surface roughness and soil texture. Direct ground-based
validation is the primary source of validation and is considered the standard for the community.

5.3 Validation strategy

A general validation strategy should be capable of testing products for compliance with
GCOS requirements. A distinction is made between the strategy, which corresponds to the
sampling design, the definition of key reference data sets and inter-comparison methods, and
the data required to use this strategy to test if products meet either threshold or science
requirements. Major criteria of the validation strategy has detailed in the following.

5.3.1 Directvalidation on a global basis representative of surface characteristics

The direct validation of soil moisture from satellite platforms relies upon measurements which
need to be traceable to some verifiable truth or reference. Most sensors installed in ground based
networks are also estimators of soil moisture and are not making genuine “truth” measurements,
so it must be considered that all validation metrics must be comprised of measurements which
each have an uncertainty value less than the required error level of the remote sensing product.
Any validation must also take into account the spatial variability and representativeness of the
measurements being made. Upscaling of small point measurements are encouraged, but
upscaling techniques themselves often involve assumptions that must also be verified and can
add error. Matching up in situ measurements with satellite observations should be temporally
coincident (within at least 1 hour). Because soil moisture can vary significantly, it is encouraged
that validation statistics be generated on a seasonal basis. Also, because most in situ networks
rely upon sensors with narrow temperature windows, the validation metrics should sequester
frozen soils from the analysis. In addition, it is recommended that validation metrics be stratified
by land classification and/or soil texture to help provide insight into the performance of the
algorithm.

5.3.2 Quantify the long term (interannual) stability in soil moisture products

The accurate determination of trends in climate data is key to ensuring that climate forecasts are
correctly interpreted (Loew et al., 2017). Therefore, it is important that observed trends can be
attributed to the physical quantity of interest (i.e. soil moisture) and any trends due to other factors,
for example, changes in sensors (e.g. sensor drift) are appropriately characterized and, where
possible, removed. Trends related to these other factors can be broadly considered under the
topic “stability”.

One suggested approach for monitoring stability of soil moisture records is the regular comparison
of reference data (using the methods described in other sections) against a satellite-derived
product over small time periods, but at least on annual basis. This method allows for the changes
in the accuracy of the product over time to be monitored. Furthermore, the trends in accuracy over
time can be derived to provide a pseudo-measure of stability compliant with the GCOS
requirements. However, it is recognized that such a method requires more development not only
to fully satisfy the GCOS requirements in the separation of the random and systematic uncertainty
components, but also to ensure that the application of the method is bringing added value to the
data producer, e.g., by enabling them to determine if trends in a product are related to the physical
guantity under study or are due to other factors.

5.3.3 Spatial variability representation during validation
The land surface characteristics which impact soil moisture estimation are numerous and
confounding. It is necessary to consider all of the major physical properties within a validation
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pixel, and it is also necessary to have a wide variety of validation sites to reasonably survey the
land surface. In conjunction with deploying in situ resources in a diverse and accurate manner, it
is also important to include other methods to ensure spatial representativeness. Land surface
modeling at high resolution can provide a crucial insight into landscape diversity, which may not
be obvious. With in situ resources and a remote sensing platform, it is possible to conduct triple
collocation analysis, which will provide an assessment of the random errors associated with soll
moisture estimates in a particular region. But this is just an estimate of the random errors, there
are still systematic errors and biases to be concerned with. Ultimately, this is currently left to
intensive experimentation to understand the variability across the remote sensing pixel with either
high-resolution aircraft mapping or intensive network deployment to cover the dominant land
covers.

5.3.4 Handling the scale mismatch

A challenge for the validation strategy is the typical case that validation measurements of sail
moisture do not represent the same scale as remote sensing measurements. The typical in situ
measurements represent a point scale compared to the remote sensing product ranging from
hundreds of meters to tens of kilometers. The remote sensing measurements capture the average
soil moisture within the footprint of the measurements. Therefore, the validation reference should
measure or estimate the same scale. However, as discussed in the previous section, the point
scale measurements do not represent the spatially averaged soil moisture that the remote sensing
products represent because of the natural spatial variability of soil moisture.

When it comes to using in situ measurements for the validation of soil moisture products, there
are a few approaches that deal with this issue — each one with their pros and cons. A replication
of point-scale measurements within the footprint to estimate the average soil moisture is the most
straightforward one. This approach results in a potentially very accurate estimate of the soil
moisture average provided enough replication exists within the footprint compared to the local
variability of soil moisture (see the previous section). The drawback is the cost and complex
logistics of operating a large number of ground soil moisture stations.

Because of persistency in the soil moisture spatial patterns, it is possible to determine a location
within the footprint whose soil moisture statistically compares best to the average soil moisture in
the entire satellite footprint. In order to find this so-called temporally stable location, the footprint
area needs to be sampled thoroughly over a range of soil moistures. Once the temporal stability
has been established, measurements at that location can be used for validation if the uncertainties
in the evaluation of the location were adequately small.

Finally, there are approaches that use a combination of independent data sources at the same
spatial scale as the remote sensing product over the location so that the representation error of
one soil moisture measurement within a large footprint can be analyzed. This is a so-called triple-
collocation approach that statistically establishes the error structure between the data sources.
However, the method is sensitive to correlating errors between the products.

5.3.5 Blind tests

When evaluating new retrieval algorithm approaches, parameterizations etc., one has to run a
new algorithm under similar conditions to the previous one to compare results. Very often different
approaches tend to give similar results, with no clear cut answers as to which one performs best
(large confidence intervals, varying degrees of success depending on area, period of time etc). In
such conditions it was found that personal bias or preconceived ideas could alter the results. For
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instance, the same results could lead two scientists to give different opinions. If scientist A believes
in algorithm A (and similarly scientist B in algorithm B), very often when the outcome is ambiguous
or not a clear cut result, scientist A will select algorithm A while scientist B will select algorithm B.

To avoid this possibility, a blind test approach was developed for SMOS. One person gathers all
suggestions for algorithm change and improvements and implements them in a breadboard
setting. All the possibilities are then run on a large and representative data set and provided
“blindly” to evaluators who simply rank them. Once all is done, a meeting is organized where
results are given together with what is behind each option to validate the final choice.

It was found that this approach is more efficient when the different options are grouped into
comparable subsets (for instance, dielectric constant models or surface roughness models or
vegetation models, etc.). It was also found that if the first attempt was to be made on relevant and
validated ground data (dense or sparse networks), it was not sufficient as most of the sites with
long series of good quality data are mainly located in temperate agricultural areas and are not
necessarily representative of global conditions. It was also found that spatial aspects have to be
considered if the test / comparison is to be made complete.

5.3.6 Reporting results of soil moisture product validation

Product validation should be performed over large regions covering all relevant climatic and
surface conditions, using a range of complementary metrics (see Sec. 2.4). Validation metrics
should generally not be averaged into single effective values in order to maintain information about
spatial error variability and its connection to land surface parameters such as vegetation (Gruber
et al., 2020). Instead, spatial maps of validation metrics and summary statistics in the form of
percentiles (e.g., as boxplots) should be provided. Moreover, confidence intervals around
validation metrics should always be reported (Table 4). These can be estimated analytically for
pairwise-metrics (see Secs. 2.4.1 - 2.4.4) or using bootstrapping for triple collocation metrics (see
Sec. 2.4.5). Confidence intervals should be corrected for temporal auto-correlation in the data.

Table 4: Metrics in common practices and recommended good practices.

Quantity Current practices Good practices, add:

Accuracy Mean temporal bias Percentiles of residuals

Precision Standard deviation

Uncertainty RMSD, ubRMSD, Person’s Median and percentiles of

correlation coefficient absolute residuals,

confidence intervals, TC
metrics

Stability Mean error per decade

Downscaling gain For downscaled products,

add downscaling gain Gpown

The following details related to reporting results are good practice:

o All participants in the exercise should be declared unless products were provided blindly,
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e Links to accessible versions of the products and reference data used during the validation
should be provided and maintained,

e Match-ups of product and reference soil moisture values used to derive aggregation
statistics together with ancillary information related to location (biome type, latitude and
longitude of the site), temporal interval and uncertainty in reference data (at least a
reference to the protocol used to produce each reference data point) should be made
available publicly,

e Resulting figures should be reported within the validation document or linked
supplementary material in addition to any other statistics,

¢ Planned updates or revisions to the document (e.g. in anticipation of new reference
datasets that may be available on a regular basis) should be identified,

o Reporting in refereed journals is encouraged and supporting materials corresponding to
spatial or temporal accuracy statistics should be made accessible.

6 CONCLUSIONS

This document provides CEOS LPV recommendations on good practices for the validation of
surface soil moisture products derived from satellite observations. Validation efforts should include
a full characterization and appropriate documentation of the validation data sets used, including
uncertainty estimates of the reference soil moisture measurements to be associated with the
accuracy of the satellite measurements (ground based retrieval method, for example). Gruber et
al. (2020) offers an easy-to-follow protocol and source code to adequately consider these
characteristics. Because spatial representativeness and landscape heterogeneity are challenging
to overcome, quantitative assessment of algorithm uncertainties requires dedicated and high
guality in situ soil moisture measurements over sites that are homogeneous at the spatial scale of
the satellite observing system. It is recommended that only sites that are representative of the
satellite field of view or the product resolution cell should be used for validation purposes. Four
soil moisture validation approaches have been identified: (1) low level data validation; (2) ground-
based validation of soil moisture; (3) satellite product intercomparison; and (4) time series
comparisons. Soil moisture validation studies should include the four different methods (when
applicable) to get a detailed characterization of product accuracies. The four different approaches
are complementary and provide different levels of information about the quality of the soil moisture
estimate. The availability of in situ soil moisture resources is the foundation of a sound validation
protocol which is constantly advancing with time. Satellite soil moisture products have reached
CEOS Level 3 validation stage (see Table 3 for definition) with numerous in situ resources
available to provide reference data. Recent merged products of in situ and satellite resources are
advancing the resilience of soil moisture for various applications purposes. In development are
standardized evaluation systems for automated and systematic assessment of new algorithms
and products. However, we must remain vigilant to the maintenance and advancement of in situ
resources as resolutions of satellite products improve and new questions are generated from the
validation process. Furthermore, increasing the number and quality of in situ resources remains a
central challenge to the soil moisture community.
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7 APPENDIX: Manual Soil Moisture Sampling for Intensive Observation

Periods

This document explains the recommended methodologies for measuring soil moisture for the
purpose of calibrating and validating a remote sensing signal at the pixel scale via intensive
observation periods. It serves as a guideline for manual field measurements to validate remotely-
sensed soil moisture products. It is adapted from protocols from the Soil Moisture Active Passive
Validation Experiments (see https://smap.jpl.nasa.gov/science/
validation/fieldcampaigns/SMAPVEX16/) and the Joint Experiment of Crop Assessment and
Monitoring (JECAM) inter-SAR comparison initiative (see also http://jecam.org/documents/ ).

7.1 Number of field measurements

Determining the number of fields and samples points needed is not a simplistic exercise. It is
important to acquire an adequate number of points (points = fields x sample points per field) to
fulfill the error requirements of the mission. It is also important that measurements and samples
capture the full range of vegetation and moisture conditions of a footprint or a grid cell. This
representativeness will ensure that any algorithm/model created and inverted will produce good
results over a range of conditions. A good knowledge about the area helps to select adequate
sample points according to general variability statistics.

There are three types of scales discussed herein: pixel scale, site/field scale, and sampling scale.
Figure 28 illustrates the differences in scale. Pixel is the remote sensing pixel, commonly on the
order of tens of km, but this is scaleable. Within each pixel there are at least 15 sites or fields.
Within each siteffield, there should be at least 15 sampling points. Within each sampling point,
there are four replicates.

Pixel size ~25km x 25 km

. _Site/field size ~0. 5km x 0.5 km

[

\ L B B 8. 8.8.8.8.

\ At least 15 sampling points
\ in a site/field

v [ e A ARk

\ -

e /TjTTr—’

4 Sampling Replicates

Figure 28: Depiction of the different scales discussed in this Appendix.

The general instructions are as follows:
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Because of the complexity of satellite algorithms, it is desirable to minimize the number of
variables being evaluated at a particular pixel, and it is optimal to minimize the number of
heterogeneous variables within a pixel. If soil texture is highly variable, it would be
preferable to select a domain with homogeneous land cover. If land cover is
heterogeneous, soil texture could be homogeneous. This allows for isolation of the
sensitivity of algorithms to specific variables. Not all sites are suitable for satellite
calibration activities.

The sites/fields should be easy to access with permission of the landowner.
Measurements should be made at the approximate time of the overpass of the satellite.
Spatial patterns of soil moisture can change throughout a day so close temporal proximity
is important.

Within a satellite footprint/pixel, there may be a variety of land cover types and it is
necessary to sample the significant cover types separately to the extent possible. If a pixel
has 50% forest and 50% pasture, resources should be equally dedicated to sampling both
land covers. Characteristics necessary to consider include land use, land cover, soil type,
topography, aspect, etc.

For longer-term studies, land cover changes or management should be noted for posterity.
For agricultural fields, information such as tillage, seeding, and harvest dates should be
recorded.

We would recommend selection of at least 3 sites for each significant land cover type, and
an overall minimum of 15 sites per pixel.

Figure 29: Typical forest agricultural landscape for a 25 km pixel.
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Figure 30: Field sites across 25 km pixel with 15 sites: 6 in forest and 9 in agricultural fields to approximate
proportions of the landscape.

Figure 29 is an example of an approximate 25 km by 25 km domain. It is a mixture of forest (40%
by area) and agricultural lands (60% by area). The land cover is isotropic, meaning that there is
no trend of land cover in any particular direction. For 15 sampling locations, a reasonable
apportionment would be 6 sites for forest and 9 sites for agricultural lands. Figure 30 shows a
sample distribution of sites.

7.2 Number of sample points per site

The general goal is to gather data for at least 15 sites per pixel. If sites are far apart, it may be
preferable to place sites of different land covers near each other to improve travel efficiency. It is
important, however, to spread the same land cover sites across the full pixel as much as possible
because precipitation will be one of the primary drivers of soil moisture variation. For example, if
5 sites per land cover type are selected, collect data at 3 points at each site.

We would recommend locating sample points at least 25 m from the edge of a field or land cover
edge, and at least 25 m from each other. The location of each point can be pre-loaded into a GPS
for easy navigation back to the point during each field campaign. Alternatively, point locations can
be flagged.

Figure 31 has two examples of a siteffield. The first (Figure 31a) is a singular soil cropland field
with low topography. The second (Figure 31b) has one soil texture and topography, but three land
covers. Sampling is done by teams, so the flow of the sampling path is a key consideration. In
agricultural fields, row direction is the main consideration. Fences, streams, or ditches are also
important to consider when designing a sampling scheme. Figure 32(a & b) has corresponding
examples of sampling sites with 16 and 15 sampling sites. These configurations should adequately
survey the landscape and provide an estimate of the soil moisture conditions across this site.
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Figure 31: Example of square remote sensing site with mixed land use.
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Figure 32: Example of sampling plan. 20 sampling sites are identified for sampling in approximate proportion to the
overall land cover distribution.

At each of these sampling sites, there should be some combination of physical and dielectric soil
moisture samples taken as described below.

7.3 Soil moisture sampling
General guidelines for soil moisture sampling are as follows:

1. Soil moisture varies over time. As such, soil moisture must be measured near coincident
to the satellite overpasses. There are two possible ways to go about this. If data are being
collected by field crews, we recommend measuring soil moisture within plus or minus two
hours of the satellite overpass (local time). Local overpass times vary slightly but for most
satellites these times are approximately 6 PM and 6 AM according to the descending or
ascending orbit. As such soil moisture should be measured between 4 AM and 8 AM and
4 PM and 8 PM. For validation of passive microwave sensors the morning overpass is to
be preferred in order to capture soil moisture at low temperature gradients in the vegetation
and upper soil. An alternative approach is to install temporary soil moisture stations which
can record soil moisture at the exact time of the satellite overpass.
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2.

A coupled dielectric probe and volumetric sampling campaign is suggested for field data
collected. If fifteen sampling points are located in a siteffield, it is suggested that most of
these sites be sampled with a dielectric probe (with four replicates at each sampling site,
described below). In addition, four volumetric samples in the field can be collected as part
of the calibration process for the dielectric probes, as well as providing a true ground truth
measurement for soil moisture.

Dielectric probes provide a quick and easy way to increase the amount of samples taken
while also grounding the measurements in physical reality. Stevens Hydra Probes or Delta-
T Theta Probes are two commonly used examples, though there are other options. The
tines on the head of the probe measure moisture at a depth of 0-5.7 cm. Information on
these probes can be accessed at http://www.stevenswater.com/products/sensors/soil/ and
https://www.delta-t.co.uk/product-category/soil_science/soil_moisture_sensors/. We
highly recommend calibration of the dielectric probes. Both Stevens and Delta-T provide
general calibration equations to convert measured dielectric to volumetric soil moisture.
However, site specific calibration equations may improve the accuracy of moisture
measurements.

In tandem with calibrated dielectric probes, soil moisture can be measured
thermogravimetrically by collecting soil cores of known volume. Gravimetric sampling is a
lower cost option, but can be more time consuming to collect in the field and process in
the lab (weighing and drying). The volume of each core is needed to convert the
gravimetric sample to volumetric soil moisture. It is common to take a core to a depth of 0-
5 cm for calibration of L-band instruments.

Specific instructions for soil moisture sampling using dielectric probes are as follows:

1.

2.

3.

Take four replicate measurements at each sample point. If row structure exists, take one
measure on the top, downslope, bottom and up-slope. If no structure exists, take one
measure in the plant row (between plants) and three measurements in between plant rows.
Always insert the probe perpendicular to the soil surface. Make sure that the probe is in
complete contact with the soil (i.e. no air gaps/stones between the bottom of the head of
the probe, and the soil). Samplers must take care not to push the soil moisture probe too
hard against the soil as it may cause compaction, especially if the soil is loose. Tines must
be cleaned thoroughly after each measurement before re-inserting to take a new
measurement.

Although both the Stevens and Delta-T probes are used with data loggers, we recommend
also manually recording the measured volumetric soil moisture including time and GPS
position on data sheets to avoid any loss that could occur when downloading data from
the loggers.

Specific instructions for soil moisture sampling using volumetric soil cores are as follows:

1.

Select a location with a flat soil surface in a position that represents the majority of the soill
surface. For instance, if there is a row structure, the % or % location between the crop rows
should be selected. Push the aluminum soil core vertically into the soil until fully inserted.
Gently remove the core by inserting a trowel underneath to loosen the soil. Once removed,
trim the soil sample on both ends to ensure the exact volume of soil has been removed. If
new cores are being used at each site, the entire core (with soil still intact) can then be
placed into a dry paper bag. If soil cores are being reused, remove all soil from inside the
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core using a spatula. Place the core in a paper bag while the soil is being removed as this
approach will avoid any loss of soil while cleaning out the core. Place the paper bag in a
sealed plastic bag. The plastic bag ensures minimal moisture loss until samples can be
weighed. If a soil can is being used, a funnel can be used to capture the soil from the core
and get it into the can. The can should have a firm closure. Rubber bands/tape can be
used to provide extra security if needed.

2. Once at your lab, the weight of the wet soil sample must be recorded. We recommend
placing the entire sample (paper bag + soil + plastic bag) on the scale. The average weight
of the paper and plastic bags will need to be recorded in order to subtract this weight from
the total wet weight of the soil sample -- the determination of the average bag weights can
be done prior to the start of the field experiment. Once weighed, remove the plastic bag.
Place the paper bag in a soil drying oven for at least 22 h at 105 °C. Then remove the dry
sample and record its weight. The sample is then dried for another 12 h and re-weighed.
If the dry weight has not changed after the 12 h, the sample is now completely dry. If the
weight has changed after the 12 h, place the sample back in the oven until re-weighing
establishes that the dry weight is no longer changing within 0.1% of the total weight of the
sample. If soil cans are used, the lid should be removed and placed under the can.

3. The gravimetric moisture content is determined for each individual sample as the mass of
water divided by the mass of oven-dry soil. The bulk density of each individual sample is
determined as the oven-dry mass of soil divided by the soil core volume. The average bulk
density is multiplied by the gravimetric moisture content of each individual sample to
calculate the volumetric moisture content of each core sample.

7.4 Soil core sampling for calibration of soil dielectric probes

We recommend conducting this calibration exercise during field campaigns. In this case, take four
soil cores per field, per day, per campaign. If time does not permit, collection of soil cores to
calibrate these instruments can occur before or after the field campaign. In any case, make sure
that calibration samples are taken over a full range of moisture conditions (from dry to wet). This
will ensure the development of a robust calibration curve. The instructions are as follows:

1. Push the core into the soil as described before at the down or up slope. Leave the core
inserted.

2. Take three dielectric probe readings around each soil core sampling location, within about
10 cm of the soil core along the same position in any slope. The probe should not come
into contact or be too close to the core as it may be metal and conductive.

3. Remove the soil core as described before. Process the gravimetric sample at the lab as
described before. The volumetric soil moisture content for each core sample is used with
the adjacent dielectric probe readings to create a calibration function. Volumetric soil
moisture is a linear function of the square root of the real dielectric permittivity, see
Equation after Rowlandson et al. (2013):

0, =a(e)’> +b (64)

where 8, is volumetric soil moisture and ¢ is soil dielectric permittivity. The coefficients a
and b are computed by minimizing the RMSDs between the measured and estimated
volumetric water content.
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