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Abstract

We present and distribute a parallel finite-element toolbox written in the free software
FreeFem++ for computing the Bogoliubov-de Gennes (BdG) spectrum of stationary solutions
to one- and two-component Gross-Pitaevskii (GP) equations, in two or three spatial dimen-
sions. The parallelization of the toolbox relies exclusively upon the recent interfacing of
FreeFem++ with the PETSc library. The latter contains itself a wide palette of state-of-the-art
linear algebra libraries, graph partitioners, mesh generation and domain decomposition tools,
as well as a suite of eigenvalue solvers that are embodied in the SLEPc library. Within the
present toolbox, stationary states of the GP equations are computed by a Newton method.
Branches of solutions are constructed using an adaptive step-size continuation algorithm.
The combination of mesh adaptivity tools from FreeFem++ with the parallelization features
from PETSc makes the toolbox efficient and reliable for the computation of stationary states.
Their BdG spectrum is computed using the SLEPc eigenvalue solver. We perform extensive
tests and validate our programs by comparing the toolbox’s results with known theoretical
and numerical findings that have been reported in the literature.

Programm summary
Program Title: FFEM BdG ddm toolbox.zip
CPC Library link to program files:
Developer’s repository link:
Code Ocean capsule: Licensing provisions: GPLv3
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Programming language: FreeFem++ (v 4.12) free software (www.freefem.org)
Catalogue identifier:
Program summary URL:
Program obtainable from:
No. of lines in distributed program, including test data, etc.: 4,054
No. of bytes in distributed program, including test data, etc.: 200Ko
Distribution format: .zip
Computer: PC, Mac, Super-computer.
Operating system: Mac OS, Linux, Windows.

Nature of problem: Among the plethora of configurations that may exist in Gross-Pitaevskii (GP)
equations modeling one or two-component Bose-Einstein condensates, only the ones that are deemed
spectrally stable (or even, in some cases, weakly unstable) have high probability to be observed in realistic
ultracold atoms experiments. To investigate the spectral stability of solutions requires the numerical
study of the linearization of GP equations, the latter commonly known as the Bogoliubov-de Gennes
(BdG) spectral problem. The present software offers an efficient and reliable tool for the computation
of eigenvalues (or modes) of the BdG problem for a given two- or three-dimensional GP configuration.
Then, the spectral stability (or instability) can be inferred from its spectrum, thus predicting (or not) its
observability in experiments.

Solution method: The present toolbox in FreeFem++ consists of the following steps. At first, the GP
equations in two (2D) and three (3D) spatial dimensions are discretized by using P2 (piece-wise quadratic)
Galerkin triangular (in 2D) or tetrahedral (in 3D) finite elements. For a given configuration of interest,
mesh adaptivity in FreeFem++ is deployed in order to reduce the size of the problem, thus reducing
the toolbox’s execution time. Then, stationary states of the GP equations are obtained by a Newton
method whose backbone involves the use of a reliable and efficient linear solver judiciously selected from
the PETSc1 library. Upon identifying stationary configurations, to trace branches of such solutions a
parameter continuation method over the chemical potential in the GP equations (effectively controlling
the number of atoms in a BEC) is employed with step-size adaptivity of the continuation parameter.
Finally, the computation of the stability of branches of solutions (i. e. the BdG spectrum), is carried out
by accurately solving, at each point in the parameter space, the underlying eigenvalue problem by using
the SLEPc2 library. Three-dimensional computations are made affordable in the present toolbox by using
the domain decomposition method (DDM). In the course of the computation, the toolbox stores not
only the solutions but also the eigenvalues and respective eigenvectors emanating from the solution to
the BdG problem. We offer examples for computing stationary configurations and their BdG spectrum
in one- and two-component GP equations.
Running time: From minutes to hours depending on the mesh resolution and space dimension.

1https://petsc.org/
2https://slepc.upv.es
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1 Introduction

The study of Bose-Einstein condensates (BECs) has admittedly enjoyed a substantial interest for
more than two decades since their first observation in ultracold atoms experiments (Anderson
et al., 1995; Davis et al., 1995). Both theoretical and experimental developments have been
summarized in (Pethick and Smith, 2011; Pitaevskii and Stringari, 2015). These studies revealed
the emergence of interesting wave configurations including vortices and vortex structures (Fetter
and Svidzinsky, 2001; P. Engels and Cornell, 2004; Kevrekidis et al., 2004; Fetter, 2009), and
the quest for experimentally creating and studying new states has been an exciting and active
area of research. Indeed, a plethora of experimental techniques have been developed including
imprinting techniques (Matthews et al., 1999; Leanhardt et al., 2002; Becker et al., 2008),
stirring the condensate above a certain critical angular speed (Madison et al., 2000; Haljan et al.,
2001), counterflow techniques (Yan et al., 2011), the use of anisotropic potentials (Theocharis
et al., 2010), nonlinear interference between different condensate fragments (Scherer et al., 2007)
as well as the so-called Kibble-Zurek mechanism (Weiler et al., 2008), among many others.
The variety of configurations that have emerged through these studies is vast, and has sparked
theoretical and computational investigations over the years. Some basic examples of such
structures are dark solitons, single vortex lines (with I-, U- or S-shaped ones in rotated BECs)
(Aftalion and Danaila, 2003), as well as vortex rings (P. G. Kevrekidis and Carretero-González,
2015) (see also the review (Malomed, 2019) and references therein). More complex states,
such as multiple vortex lines and rings, vortex stars, and hopfions have also been reported in
the literature (see for example (Crasovan et al., 2004; Bisset et al., 2015; Wang et al., 2017)),
together with recent computational techniques for vortex identification V. Kalt and Danaila
(2023). Alongside prototypical bound modes in multi-component BECs that can identified (e. g.
dark-bright (Charalampidis et al., 2015), vortex-bright (Law et al., 2010; Charalampidis et al.,
2016) and dark-antidark (Danaila et al., 2016), as well as vortex-ring-bright and vortex-line-
bright solitons (Wang and Kevrekidis, 2017)), more exotic configurations have been reported,
including skyrmions (Ruostekoski and Anglin, 2001; Battye et al., 2002), monopoles and Alice
rings (Ruostekoski and Anglin, 2003; Mithun et al., 2022). Even more, with the introduction of
state-of-the-art bifurcation techniques for partial differential equations (PDEs), more and more
multi-component solutions were identified (Charalampidis et al., 2020; Boullé et al., 2023).

The principal model for the above theoretical and computational studies has been the
Gross-Pitaevskii (GP) equation (Pitaevskii and Stringari, 2015) (and variants, including multi-
component settings) which is a PDE known to describe the properties of a BEC in the
mean-field approximation. Note that the GP model is a nonlinear Schrödinger (NLS) equation
that incorporates an external potential to confine the atoms in the condensate (Pitaevskii
and Stringari, 2015). One of the key steps in these studies, however, is concerned with the
response of the pertinent waveforms under the presence of a perturbation induced, e. g. by
imperfections in the initial state preparation in the BEC. This crucial step involves the study of
the spectral stability (Kapitula and Promislow, 2013) of the solution to the GP equation at the
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theoretical/computational level, and it is a two-fold process. At first, a stationary solution to
the GP equation is identified by means of (spatial) discretization methods and root-finding, i. e.
fixed-point techniques. Then, the GP equation is linearized about this (stationary) solution,
thus resulting into a spectral (eigenvalue) problem, known as the Bogoliubov-de Gennes (BdG)
problem (Bogolyubov, 1947; De Gennes, 1966). The numerical solution of the BdG problem
provides important information about the spectral characteristics of waveforms that may have
high probability to be observed numerically if they are deemed stable (or even weakly unstable,
depending on the growth rates of the unstable eigenvalues).

Up until now, there has been a wide variety of publicly available programs (written in
C, Fortran, MATLAB, and FreeFem++) dedicated exclusively to the computation of stationary
states to the GP equation that employ spectral methods(Dion and Cancès, 2007; Caliari and
Rainer, 2013; Antoine and Duboscq, 2014), finite elements (Marojević et al., 2016; Vergez et al.,
2016) (see, also (Uecker et al., 2014) which includes a working example on GP equations), and
finite differences (Muruganandam and Adhikari, 2009; Vudragović et al., 2012; Kong et al.,
2014; Hohenester, 2014; Kishor Kumar et al., 2019). In almost all of these studies, stationary
solutions are computed when the L2-norm of the wave function is fixed (this is accomplished by
imposing a Lagrange multiplier constraint for the number of atoms). Alternative approaches for
the computation of solutions to the GP equation involves the re-formulation of the problem as a
bifurcation one where the chemical potential (controlling the number of atoms) is varied by using
numerical continuation (Allgower and Georg, 1990) coupled with Newton’s method (Kelley,
2003). This approach has been adopted in a series of studies that employ finite-element(Danaila
et al., 2016; Carretero-González et al., 2016; Boullé et al., 2020; Charalampidis et al., 2020),
finite-difference,(Bisset et al., 2015; Wang et al., 2017; Charalampidis et al., 2020), as well
as spectral (spatial) discretization methods (Wang et al., 2017). However, to the best of
our knowledge, a limited number of publicly available codes for studying the BdG spectrum
of configurations to the GP equation exist. One such a code (written in Fortran) is the
FACt toolbox (Roy et al., 2020) which computes thermal fluctuations in BECs by solving
the associated BdG equations. Recent efforts in that same vein involve the publicly available
toolbox in FreeFem++ that was developed by a subset of the present authors (SADAKA et al.,
2024). It utilizes mesh adaptation techniques (that are built-in in FreeFem++ ) and employs
the ARPACK eigenvalue solver (Hecht, 2012) (which is interfaced with FreeFem++) for solving
the BdG equations although the calculations therein are carried out in sequential mode.

Building upon the recent work in (SADAKA et al., 2024), we present and distribute herein
a parallel finite-element toolbox written in FreeFem++ for computing the Bogoliubov-de Gennes
(BdG) spectrum of stationary solutions to one- and two-component Gross-Pitaevskii (GP)
equations in 2D or 3D. The parallelization of the toolbox relies exclusively on the recent
interfacing of FreeFem++ with the PETSc library Balay and et. al. (2022) (see also Jolivet
(2023)). The combination of mesh adaptivity and the simplification in the use of parallel
linear solvers in FreeFem++ (such as distributed direct solvers and domain decomposition
methodsDolean et al. (2016); Tournier et al. (2019)) renders the present toolbox an ideal
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framework for computing configurations in one- and two-component BECs in 2D or 3D. This
further paves the path for the efficient and reliable computation of the BdG spectrum by using
the SLEPc (Hernandez et al., 2005) library.

Our ultimate goal with the present toolbox is to offer a versatile and reliable tool to the
BEC community which can perform parallel computations for exploring the existence and BdG
spectrum of 2D and 3D (one- or two-component) configurations of interest within reasonable
computational time. Finally, the advantage of FreeFem++ in hiding all technicalities of the
finite-element method and using a syntax close to the mathematical formulation of the problem
allows the user to focus on the mathematical and physical aspects of the problem and easily
make changes in the codes to simulate new configurations.

The structure of the paper is as follows. In Sec. 2, we introduce the one- and two-component
GP equations together with the associated BdG models. In Secs. 3 and 4, we describe the
numerical methods for computing stationary states to the GP equations and their respective
BdG spectra. We illustrate the validation of our programs in Secs. 5 and 6, whereas the
architecture of the programs and the description of parameter and output files is discussed in
Sec. 7. Finally, the main features of the toolbox are summarized in Sec. 8, where we additionally
offer some of its potential extensions.

2 The Gross-Pitaevskii model and Bogoliubov-de Gennes equa-
tions

In this section, we present the theoretical setup of the toolbox. We introduce the one- and
two-component Gross-Pitaevskii (GP) and Bogoliubov-de Gennes equations in Secs. 2.1 and
2.2, respectively. We would like to stress out that the model equations below are expressed
in adimensionalized form, and further details about the physical units of the model equations
together with their scaling can be found in our recent contribution SADAKA et al. (2024)
(and references therein). For the user’s convenience, we include with this toolbox the example
scripts (see files phys to adim 1comp.edp and phys to adim 2comp.edp in the Tools scaling
subdirectory) that compute non-dimensional parameters from physical values corresponding to
several experimental studies published in the literature. These programs could guide the user
in linking parameters of existing experiments with non-dimensional parameters used in this
contribution (and, more generally, in theoretical studies).

2.1 The one-component case: Gross-Pitaevskii and Bogoliubov-de Gennes
equations

The spatio-temporal behavior of a Bose-Einstein condensate (BEC) is described by a complex-
valued wave function ψ(x, t) : D × R+ → C, where D ∈ Rd and d is the spatial dimension,
i. e. d = 1, 2, 3. In the mean-field approximation for the interparticle interactions in a BEC,
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the wave function ψ(x, t) is a solution of the Gross-Pitaevskii (GP) equation Pitaevskii and
Stringari (2015):

i∂ψ
∂t

= −1
2∇2ψ + Ctrapψ + β|ψ|2ψ, (1)

where ∇2 stands for the Laplacian, β is the nonlinearity strength corresponding to repulsive
(β > 0) or attractive (β < 0) interactions and i is the imaginary unit (i2 = −1). The external
potential Ctrap(x) confining the atoms in the condensate is taken to be the harmonic oscillator
potential

Ctrap(x, y, z) = 1
2
(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

, (2)

where ωx,ωy,ωz are the trapping frequencies. Note that the interplay of different aspect ratios
of the trapping frequencies can lead to difference BEC scenarios P. G. Kevrekidis and Carretero-
González (2015). For example, the case ωx ≡ ωy ≫ ωz leads to 1D BEC configurations (ideal
to study bright/dark solitons), whereas ωx ≡ ωy ≪ ωz leads to 2D configurations (e. g. ideal
to study vortices). For 3D configurations (e. g. where vortex lines and vortex rings could be
observed), usually ωx ≡ ωy ∼ ωz (the interested reader may also want to see the so-called
dimension-reduction approach in (Frantzeskakis, 2010; Bao and Cai, 2013)).

Stationary solutions to Eq. (1) are sought by using the standing wave ansatz

ψ(x, t) = ϕ(x)e−iµt, (3)

where µ is the chemical potential. The stationary GP equation is then obtained:

−1
2∇2ϕ+ Ctrapϕ+ β|ϕ|2 = µϕ. (4)

The presence of the external potential Ctrap in (4) makes the atomic density n(x) = |ϕ(x)|2
vanish rapidly outside the condensate. This necessitates the use of homogeneous Dirichlet
boundary conditions for the stationary wave function, i. e. we impose ϕ = 0 on ∂D.

In this work, we compute stationary solutions for fixed µ. Branches of such solutions
are obtained by performing numerical continuation Allgower and Georg (1990) over µ, which
corresponds here to a bifurcation parameter. At each step in the continuation process, we
monitor the energy

E(ϕ) =
∫

D

(1
2 |∇ϕ(x)|2 + Vtrap(x)|ϕ(x)|2 + β

2 |ϕ(x)|4
)
dx, (5)

and the L2-norm of the solution ϕ

N(ϕ) =
∫

D
ϕϕdx =

∫
D

|ϕ|2dx, (6)
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the latter representing the total number of atoms in the condensate (the overbar stands for
complex conjugation). Note that both the energy and number of atoms are conserved quantities
for the time-dependent GP equation (1).

We proceed with the setup of the spectral stability analysis problem. This is obtained by
linearizing Eq. (1), and this process gives the Bogoliubov-de Gennes (BdG) problem we aim to
solve. We first consider the ansatz

ψ(x, t) =
[
ϕ(x) + δ

(
A(x)e−iωt +B(x)eiωt

)]
e−iµt, δ ≪ 1, (7)

where ϕ(x) is a stationary state (that we linearize the GP equation about), A and B are
complex-valued functions, and ω is a complex number. Upon inserting (7) into (1), we obtain at
order O(δ) the linear eigenvalue problem called the BdG equation:(

H − µ+ 2β|ϕ|2 βϕ2

−βϕ2 −(H − µ+ 2β|ϕ|2)

)(
A
B

)
= ω

(
A
B

)
, (8)

where
H ≡ −1

2∇2 + Ctrap. (9)

The present toolbox computes the eigenvalue-eigenvector pair (ω,A,B) for a given stationary
solution ϕ ∈ C. Note that A and B represent the components of the eigenvector (A,B) in Eq.
(8). We direct the reader to SADAKA et al. (2024) for a detailed discussion on the properties
of the BdG problem mentioned above. We recall the definition of the Krein signature

K = sign(ω
∫

D

(
|A|2 − |B|2

)
dx). (10)

If
∫

D
(
|A|2 − |B|2

)
dx ̸= 0, only real eigenvalues ω are possible and K becomes an important

diagnostic tool assessing on the energetic stability of a solution ϕ: if K > 0 for all modes, then
ϕ is the global minimum of the energy, i. e. the ground state; if there exists a mode with K < 0,
then the excitation reduces the energy of the system and the stationary state is thus energetically
unstable, i. e. excited state (or local minimum of the energy). If

∫
D
(
|A|2 − |B|2

)
dx = 0, complex

eigenvalues ω = ωr + iωi are possible; moreover, if ωi ̸= 0, then the BdG mode is dynamically
unstable.

2.2 The two-component case: Gross-Pitaevskii and Bogoliubov-de Gennes
equations

In the mean-field approximation, a mixture of two BECs (e. g. different hyperfine states of
the same species) is described by a coupled system of GP equations Pethick and Smith (2011);
Pitaevskii and Stringari (2015). We consider here two wave functions ψ1 and ψ2 accounting
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for the two components and satisfying the dimensionless coupled system of GP equations
P. G. Kevrekidis and Carretero-González (2015):

i∂ψ1
∂t

=
(

−1
2∇2 + Ctrap + β11|ψ1|2 + β12|ψ2|2

)
ψ1,

i∂ψ2
∂t

=
(

−1
2∇2 + Ctrap + β21|ψ1|2 + β22|ψ2|2

)
ψ2.

(11)

Coefficients β11 and β22 in (11) represent the interaction strengths between atoms of same
species (or spin states) whereas the β12 and β21 represent the ones between different species.
Note that Eqs. (11) consider (for the sake of simplicity) the same trapping potential Ctrap (given
by Eq. (2)) across the two components. If necessary, the user of the present toolbox can easily
implement different potentials in the provided scripts (see the next section).

Similarly to the one-component case, we compute stationary states to Eqs. (11) by using
the separation of variables Ansätze

ψj(x, t) = ϕj(x)e−iµjt, j = 1, 2, (12)

with chemical potentials µ1 and µ2. Indeed, if we plug (12) into (11), we obtain the following
coupled system of (stationary) GP equations

µ1ϕ1 =
(

−1
2∇2 + Ctrap + β11|ϕ1|2 + β12|ϕ2|2

)
ϕ1,

µ2ϕ2 =
(

−1
2∇2 + Ctrap + β21|ϕ1|2 + β22|ϕ2|2

)
ϕ2,

(13)

with homogeneous Dirichlet boundary conditions, ϕj = 0 on ∂D for j = 1, 2. The system (13)
is solved (for fixed values of µ1 and µ2) using a Newton method that we discuss in the next
section. The characterization of a stationary solution (and branches of solutions thereof) to the
GP system (13) is based on the total energy

E(ϕ1,ϕ2) =
∫

D

2∑
i=1

1
2 |∇ϕi|2 + Ctrap |ϕi|2 + 1

2

2∑
j=1

βij |ϕi|2|ϕj |2
 dx, (14)

as well as the total number of atoms

N(ϕ1,ϕ2) = N(ϕ1) +N(ϕ2), (15)

where N(·) is given by Eq. (6).
To study the spectral stability of the solutions we proceed as follows. We consider the

perturbation Ansätze

ψ1(x, t) =
[
ϕ1(x) + δ

(
A(x)e−iωt +B(x)eiωt

)]
e−iµ1t, (16a)

ψ2(x, t) =
[
ϕ2(x) + δ

(
C(x)e−iωt +D(x)eiωt

)]
e−iµ2t, (16b)
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where A,B,C,D,ω ∈ C. After plugging Eqs. (16a)-(16b) into Eqs. (11), we obtain the BdG
equations at order O(δ) for the two-component case, conveniently written as

M


A
B
C
D

 = ω


A
B
C
D

 , (17)

where the matrix M is:

M =


M11 β11ϕ

2
1 β12ϕ1ϕ2 β12ϕ1ϕ2

−β11ϕ1
2

M22 −β12ϕ1ϕ2 −β12ϕ1ϕ2
β21ϕ1ϕ2 β21ϕ1ϕ2 M33 β22ϕ

2
2

−β21ϕ1ϕ2 −β21ϕ1ϕ2 −β22ϕ2
2

M44

 , (18)

with matrix elements 
M11 = H − µ1 + 2β11|ϕ1|2 + β12|ϕ2|2,
M22 = −M11,
M33 = H − µ2 + β21|ϕ1|2 + 2β22|ϕ2|2,
M44 = −M33,

(19)

and H is given by Eq. (9).

3 The computation of stationary solutions to the GP equations

In this section we discuss the computational methods we employed in FreeFem++ in order to
obtain stationary solutions to the GP equations. We begin our discussion by considering the
existence problem for the one-component setting in Sec. 3.1 first, and then move on with the
two-component case in Sec. 3.2. Both implementations in FreeFem++ are discussed in Sec. 3.3.

3.1 Newton’s method for a single-component BEC

For the computation of stationary solutions to Eq. (4), we use Newton’s method Kelley (2003).
We first split the complex-valued wave function ϕ into real and imaginary parts via ϕ = ϕr + iϕi

and obtain from (4) the following coupled system of nonlinear equations
−1

2∇2ϕr + Ctrapϕr + βf(ϕr,ϕi)ϕr − µϕr = 0,

−1
2∇2ϕi + Ctrapϕi + βf(ϕr,ϕi)ϕi − µϕi = 0.

(20)
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We introduced in (20) the (scalar) function f(ϕr,ϕi) = |ϕ|2 = ϕ2
r + ϕ2

i f that corresponds to the
cubic nonlinearity in the GP equation. Note that the expression of f has been programmed in
the toolbox in a general way; other types of expressions (corresponding to the GP equation
with different nonlinearity than cubic) can be used and easily adopted in the toolbox.

The homogeneous Dirichlet conditions for the complex-valued wave function ϕ translate
into imposing the same boundary conditions for ϕr and ϕi, that is ϕr = ϕi = 0 on ∂D. After
setting the classical Sobolev spaces Adams and Fournier (2003) V = H1

0 (D) for ϕr and ϕi, we
define the weak formulation (mandatory for the finite-element implementation) of Eq. (20) as:
find (ϕr,ϕi) ∈ V × V = V 2, such that for all test functions (vr, vi) ∈ V 2

Fr(ϕr,ϕi, vr) =
∫

D
(Ctrap − µ)ϕrvr +

∫
D

1
2∇ϕr · ∇vr +

∫
D
βf(ϕr,ϕi)ϕrvr = 0,

Fi(ϕr,ϕi, vi) =
∫

D
(Ctrap − µ)ϕivi +

∫
D

1
2∇ϕi · ∇vi +

∫
D
βf(ϕr,ϕi)ϕivi = 0.

(21)

The above coupled system of nonlinear equations is discretized using finite elements in
FreeFem++ (see Sec. 3.3), and solved by means of Newton’s method which requires a sufficiently
good initial guess. For a given value of µ and an initial guess (ϕ0

r,ϕ0
i ), Newton’s method

computes corrections to the solution components (ϕr,ϕi) iteratively via

q = ϕk
r − ϕk+1

r , s = ϕk
i − ϕk+1

i , k ≥ 0, (22)

where q and s are solutions of the linearized equations
(
∂Fr

∂ϕr

)
ϕr=ϕk

r ,ϕi=ϕk
i

(
∂Fr

∂ϕi

)
ϕr=ϕk

r ,ϕi=ϕk
i(

∂Fi

∂ϕr

)
ϕr=ϕk

r ,ϕi=ϕk
i

(
∂Fi

∂ϕi

)
ϕr=ϕk

r ,ϕi=ϕk
i


(
q
s

)
=
(

Fr(ϕk
r ,ϕk

i , vr)
Fi(ϕk

r ,ϕk
i , vi)

)
, (23)

with the corresponding weak formulation

∫
D

(Ctrap − µ)qvr +
∫

D

1
2∇q · ∇vr +

∫
D
β

(
∂f

∂ϕr
(ϕk

r ,ϕk
i )ϕk

rq + ∂f

∂ϕi
(ϕk

r ,ϕk
i )ϕk

rs+ f(ϕk
r ,ϕk

i )q
)
vr

=
∫

D
(Ctrap − µ)ϕk

rvr +
∫

D

1
2∇ϕk

r · ∇vr +
∫

D
βf(ϕk

r ,ϕk
i )ϕk

rvr,∫
D

(Ctrap − µ)svi +
∫

D

1
2∇s · ∇vi +

∫
D
β

(
∂f

∂ϕr
(ϕk

r ,ϕk
i )ϕk

i q + ∂f

∂ϕi
(ϕk

r ,ϕk
i )ϕk

i s+ f(ϕk
r ,ϕk

i )s
)
vi

=
∫

D
(Ctrap − µ)ϕk

i vi +
∫

D

1
2∇ϕk

i · ∇vi +
∫

D
βf(ϕk

r ,ϕk
i )ϕk

i vi.

(24)

Note that the implementation of Eqs. (24) in FreeFem++ takes a form very similar to the
mathematical formulation of the problem due to its versatile metalanguage used therein. This
is an advantage for the user who can thus build bug-free numerical codes when cumbersome
mathematical expressions are coded.
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3.2 Newton method for the two-component BEC

The two-component GP system (13) is solved similarly by means of Newton’s method, after
splitting ϕ1 and ϕ2 into real and imaginary parts via ϕ1 = ϕ1r + iϕ1i and ϕ2 = ϕ2r + iϕ2i.
Equations (13) are thus converted into a system consisting of four real-valued (nonlinear)
equations:

−1
2∇2ϕ1r + (Ctrap − µ1)ϕ1r + β11f(ϕ1r,ϕ1i)ϕ1r + β12f(ϕ2r,ϕ2i)ϕ1r = 0,

−1
2∇2ϕ1i + (Ctrap − µ1)ϕ1i + β11f(ϕ1r,ϕ1i)ϕ1i + β12f(ϕ2r,ϕ2i)ϕ1i = 0,

−1
2∇2ϕ2r + (Ctrap − µ2)ϕ2r + β21f(ϕ1r,ϕ1i)ϕ2r + β22f(ϕ2r,ϕ2i)ϕ2r = 0,

−1
2∇2ϕ2i + (Ctrap − µ2)ϕ2i + β21f(ϕ1r,ϕ1i)ϕ2i + β22f(ϕ2r,ϕ2i)ϕ2i = 0.

(25)

Again, homogeneous Dirichlet boundary conditions on ϕ1 and ϕ2 are imposed: ϕ1r = ϕ1i =
ϕ2r = ϕ2i = 0 on ∂D. The weak formulation of Eqs. (25) can be written as follows: find
(ϕ1r,ϕ1i,ϕ2r,ϕ2i) ∈ V 4, such that for all test functions (v1r, v1i, v2r, v2i) ∈ V 4

F1r =
∫

D
(Ctrap − µ1)ϕ1rv1r +

∫
D

1
2∇ϕ1r · ∇v1r +

∫
D

(β11f(ϕ1r,ϕ1i) + β12f(ϕ2r,ϕ2i))ϕ1rv1r = 0,

F1i =
∫

D
(Ctrap − µ1)ϕ1iv1i +

∫
D

1
2∇ϕ1i · ∇v1i +

∫
D

(β11f(ϕ1r,ϕ1i) + β12f(ϕ2r,ϕ2i))ϕ1iv1i = 0,

F2r =
∫

D
(Ctrap − µ2)ϕ2rv2r +

∫
D

1
2∇ϕ2r · ∇v2r +

∫
D

(β21f(ϕ1r,ϕ1i) + β22f(ϕ2r,ϕ2i))ϕ2rv2r = 0,

F2i =
∫

D
(Ctrap − µ2)ϕ2iv2i +

∫
D

1
2∇ϕ2i · ∇v2i +

∫
D

(β21f(ϕ1r,ϕ1i) + β22f(ϕ2r,ϕ2i))ϕ2iv2i = 0.

(26)

Newton’s method computes, for fixed chemical potentials µ1 and µ2 and given initial guess(
ϕ0

1r,ϕ0
1i,ϕ0

2r,ϕ0
2i

)
, the corrections

q1 = ϕk
1r − ϕk+1

1r , s1 = ϕk
1i − ϕk+1

1i , q2 = ϕk
2r − ϕk+1

2r , s2 = ϕk
2i − ϕk+1

2i , (27)

which are solutions to the following system of linear equations:∫
D

(Ctrap − µ1)q1v1r +
∫

D

1
2∇q1 · ∇v1r +

∫
D

(β11f(ϕk
1r,ϕk

1i) + β12f(ϕk
2r,ϕk

2i))q1v1r

+
∫

D
β11

(
∂f

∂ϕr
(ϕk

1r,ϕk
1i)ϕk

1rq1 + ∂f

∂ϕi
(ϕk

1r,ϕk
1i)ϕk

1rs1

)
v1r

+
∫

D
β12

(
∂f

∂ϕr
(ϕk

2r,ϕk
2i)ϕk

1rq2 + ∂f

∂ϕi
(ϕk

2r,ϕk
2i)ϕk

1rs2

)
v1r

=
∫

D
(Ctrap − µ1)ϕk

1rv1r +
∫

D

1
2∇ϕk

1r · ∇v1r +
∫

D
(β11f(ϕk

1r,ϕk
1i) + β12f(ϕk

2r,ϕk
2i))ϕk

1rv1r,

(28)
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∫
D

(Ctrap − µ1)s1v1i +
∫

D

1
2∇s1 · ∇v1i +

∫
D

(β11f(ϕk
1r,ϕk

1i) + β12f(ϕk
2r,ϕk

2i))s1v1i

+
∫

D
β11

(
∂f

∂ϕr
(ϕk

1r,ϕk
1i)ϕk

1iq1 + ∂f

∂ϕi
(ϕk

1r,ϕk
1i)ϕk

1is1

)
v1i

+
∫

D
β12

(
∂f

∂ϕr
(ϕk

2r,ϕk
2i)ϕk

1iq2 + ∂f

∂ϕi
(ϕk

2r,ϕk
2i)ϕk

1is2

)
v1i

=
∫

D
(Ctrap − µ1)ϕk

1iv1i +
∫

D

1
2∇ϕk

1i · ∇v1i +
∫

D
(β11f(ϕk

1r,ϕk
1i) + β12f(ϕk

2r,ϕk
2i))ϕk

1iv1i,

(29)

∫
D

(Ctrap − µ2)q2v2r +
∫

D

1
2∇q2 · ∇v2r +

∫
D

(β22f(ϕk
2r,ϕk

2i) + β21f(ϕk
1r,ϕk

1i))q2v2r

+
∫

D
β21

(
∂f

∂ϕr
(ϕk

1r,ϕk
1i)ϕk

2rq1 + ∂f

∂ϕi
(ϕk

1r,ϕk
1i)ϕk

2rs1

)
v2r

+
∫

D
β22

(
∂f

∂ϕr
(ϕk

2r,ϕk
2i)ϕk

2rq2 + ∂f

∂ϕi
(ϕk

2r,ϕk
2i)ϕk

2rs2

)
v2r

=
∫

D
(Ctrap − µ2)ϕk

2rv2r +
∫

D

1
2∇ϕk

2r · ∇v2r +
∫

D
(β21f(ϕk

1r,ϕk
1i) + β22f(ϕk

2r,ϕk
2i))ϕk

2rv2r,

(30)

∫
D

(Ctrap − µ2)s2v2i +
∫

D

1
2∇s2 · ∇v2i +

∫
D

(β22f(ϕk
2r,ϕk

2i) + β21f(ϕk
1r,ϕk

1i))s2v2i

+
∫

D
β21

(
∂f

∂ϕr
(ϕk

1r,ϕk
1i)ϕk

2iq1 + ∂f

∂ϕi
(ϕk

1r,ϕk
1i)ϕk

2is1

)
v2i

+
∫

D
β22

(
∂f

∂ϕr
(ϕk

2r,ϕk
2i)ϕk

2iq2 + ∂f

∂ϕi
(ϕk

2r,ϕk
2i)ϕk

2is2

)
v2i

=
∫

D
(Ctrap − µ2)ϕk

2iv2i +
∫

D

1
2∇ϕk

2i · ∇v2i +
∫

D
(β21f(ϕk

1r,ϕk
1i) + β22f(ϕk

2r,ϕk
2i))ϕk

2iv2i.

(31)

Again, the implementation of Eqs. (28)-(31) with FreeFem++ is very similar to the mathematical
formulation.

3.3 Finite-element implementation with FreeFem++

We now present the finite-element implementation in the free software FreeFem++ (Hecht, 2012)
of the weak formulations for the one- and two-component GP equations solved with Newton’s
method. Note that the main principles of programming and numerical settings presented herein
are shared with the implementation of the BdG problem, see Sec. 4.

One of the main advantages while programming in FreeFem++ is that cumbersome formulas
are coded in a compact form, and close to their mathematical formulation. For example, the
weak form of the system of linear equations given by Eqs. (24) and used in Newton’s method
is conveniently implemented as a list of rules and expressions embodied in a Macro (see, in
particular, BdG 1comp ddm/A macro/Macro problem.edp) in which integral terms are easy to
identify:
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NewMacro problemGP
macro f(ur ,ui) (urˆ2 + ui ˆ2) //
macro dfdur(ur ,ui) (2.* ur)//
macro dfdui(ur ,ui) (2.* ui)//

varf vGP ([q,s],[vr ,vi]) =
intN(Th , qforder =ord)(( Ctrap - mu)*q*vr + .5* grad(q) ’*grad(vr)
+ (Ctrap - mu)*s*vi + .5* grad(s) ’*grad(vi)
+ beta * (f(phir ,phii)*q*vr + f(phir ,phii)*s*vi)
+ beta * phir*vr*( dfdur(phir ,phii)*q + dfdui(phir ,phii)*s)
+ beta * phii*vi*( dfdur(phir ,phii)*q + dfdui(phir ,phii)*s))
+ intN(Th , qforder =ord)(( Ctrap - mu)*phir*vr + .5* grad(phir) ’*grad(

vr)
+ (Ctrap - mu)*phii*vi + .5* grad(phii) ’*grad(vi)
+ beta * f(phir ,phii) * (phir*vr + phii*vi))
BCGP;

EndMacro

Another advantage of this formulation in FreeFem++ is that it can be invariantly used in any
(spatial) dimension (d = 2 or d = 3), and for any available type of finite elements. This is
accomplished by simply declaring respective values in the files defining the computational case.
Indicatively, for the computation of the 2D ground state using a P2 finite-element space, the
user can declare (see, in particular, the file BdG 1comp ddm/INIT/2D TF.inc):
macro dimension 2//
macro FEchoice P2//

These choices are transmitted in the main programs, see, e. g. FFEM GP 1c 2D 3D ddm.edp:
func Pk = [FEchoice , FEchoice ];
...
meshN Th; // Local mesh
meshN ThBackup ; // Global mesh
fespace Wh(Th , FEchoice );
fespace Whk(Th ,Pk);
fespace WhBackup (ThBackup , FEchoice );
fespace WhkBackup (ThBackup ,Pk);
...
Wh <complex > phi , phitemp ; // Wavefunction
Whk [q,s], [phir ,phii ];
WhBackup <complex > phiBackup , phitempBackup ; // Wavefunction

Similarly, for the two-component case, the macro formulation for the linear system given by
Eqs. (28)-(29) can be found in the file BdG 2comp ddm/A macro/Macro problem.edp, and reads

13



NewMacro problemGP
macro f(ur ,ui) (urˆ2 + ui ˆ2) //
macro dfdur(ur ,ui) (2.* ur)//
macro dfdui(ur ,ui) (2.* ui)//

varf vGP ([q1 ,s1 ,q2 ,s2],[v1r ,v1i ,v2r ,v2i ])=
intN(Th , qforder =ord)(
1./2.* grad(q1) ’*grad(v1r) + (Ctrap - mu1)*q1*v1r + ( beta11 *f(phi1r ,

phi1i) + beta12 *f(phi2r ,phi2i))*q1*v1r
+ beta11 *( dfdur(phi1r ,phi1i)*phi1r*q1 + dfdui(phi1r ,phi1i)*phi1r*s1

)*v1r
+ beta12 *( dfdur(phi2r ,phi2i)*phi1r*q2 + dfdui(phi2r ,phi2i)*phi1r*s2

)*v1r
+1./2.* grad(s1) ’*grad(v1i) + (Ctrap - mu1)*s1*v1i + ( beta11 *f(phi1r

,phi1i) + beta12 *f(phi2r ,phi2i))*s1*v1i
+ beta11 *( dfdur(phi1r ,phi1i)*phi1i*q1 + dfdui(phi1r ,phi1i)*phi1i*s1

)*v1i
+ beta12 *( dfdur(phi2r ,phi2i)*phi1i*q2 + dfdui(phi2r ,phi2i)*phi1i*s2

)*v1i
+1./2.* grad(q2) ’*grad(v2r) + (Ctrap - mu2)*q2*v2r + ( beta22 *f(phi2r

,phi2i) + beta21 *f(phi1r ,phi1i))*q2*v2r
+ beta22 *( dfdur(phi2r ,phi2i)*phi2r*q2 + dfdui(phi2r ,phi2i)*phi2r*s2

)*v2r
+ beta21 *( dfdur(phi1r ,phi1i)*phi2r*q1 + dfdui(phi1r ,phi1i)*phi2r*s1

)*v2r
+1./2.* grad(s2) ’*grad(v2i) + (Ctrap - mu2)*s2*v2i + ( beta22 *f(phi2r

,phi2i) + beta21 *f(phi1r ,phi1i))*s2*v2i
+ beta22 *( dfdur(phi2r ,phi2i)*phi2i*q2 + dfdui(phi2r ,phi2i)*phi2i*s2

)*v2i
+ beta21 *( dfdur(phi1r ,phi1i)*phi2i*q1 + dfdui(phi1r ,phi1i)*phi2i*s1

)*v2i
)
+ intN(Th , qforder =ord)(
1./2.* grad(phi1r) ’*grad(v1r) + (Ctrap - mu1)*phi1r*v1r + ( beta11 *f(

phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*phi1r*v1r
+ 1./2.* grad(phi1i) ’*grad(v1i) + (Ctrap - mu1)*phi1i*v1i + ( beta11 *

f(phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*phi1i*v1i
+ 1./2.* grad(phi2r) ’*grad(v2r) + (Ctrap - mu2)*phi2r*v2r + ( beta22 *

f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*phi2r*v2r
+ 1./2.* grad(phi2i) ’*grad(v2i) + (Ctrap - mu2)*phi2i*v2i + ( beta22 *

f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*phi2i*v2i
)
BCGP;

EndMacro
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We highlight here that the user has the flexibility to consider different trapping in the two-
component case if necessary. This can be accomplished by modifying the .inc files located in
the INIT subdirectories, and consider, for example, Ctrap1 and Ctrap2 for the first and second
components, respectively.

The programs that we deliver with this toolbox consider P2 (piece-wise quadratic) finite
elements. The mesh in FreeFem++ (generically identified as Th) is made of triangles in 2D
and tetrahedra in 3D. A fast mesh generator with a simple syntax is built in FreeFem++ . A
striking feature of FreeFem++ is the ability to perform adaptive mesh refinement: the grid is
refined in regions of large gradients and coarsened in low gradients ones. This is of paramount
importance, especially for high-dimensional problems where a sufficiently good resolution of the
solution is required. Using a very fine mesh (with no mesh adaptation) for the entire domain
would lead to a large memory consumption and an excessively long computational time. With
the implementation of adaptive mesh refinement in the present toolbox in FreeFem++ , we
maintain reasonable problem sizes, and thus computational time, while keeping a high degree of
accuracy. We briefly discuss next the key points of the mesh adaptation techniques the toolbox
employs (further details can be found in our recent contribution (SADAKA et al., 2024)).

For solutions to the 2D GP equations at hand, the mesh is adapted by using the built-in
adaptmesh command in FreeFem++ . In short, the underlying algorithm modifies the inner
products (which consider the Hessian of the solution by default) in the mesh generator to
evaluate distance and volume (Borouchaki et al., 1996; Frey and George, 1999; Mohammadi
and Pironneau, 2000). This way, quasi-equilateral elements are constructed, accordingly to
the new metric. On the other hand, and for 3D configurations, adaptive mesh refinement in
FreeFem++ is performed through the use of the libraries mshmet and mmg (Dapogny et al., 2014)
where similar algorithms are employed. Note that the user can adjust the values of hmax and
hmin representing the maximum and minimum edge sizes of the triangular mesh, respectively
during the mesh adaptation process. This offers the possibility to control the size of the mesh,
and thus find a trade-off between accuracy and computational cost. While performing mesh
adaptation, however, one faces with the important question about what is the right choice of
variables that is suitable for controlling mesh adaptivity. In the present implementation for
computing stationary 2D and 3D configurations to the GP equations, we use adaptive mesh
refinement based on the density of the solution as well as its real and imaginary parts. This
approach has been considered in Danaila and Hecht (2010), and has been proven quite effective
in computing complicated vortex solutions.

The underlying nonlinear equations are solved by means of Newton’s method which is fed by
an initial guess (with fixed chemical potential(s)), see Secs. 5 and 6 for example cases. Newton’s
iterations are stopped when one of the following criteria is satisfied:∥∥∥∥∥

(
q
s

)∥∥∥∥∥
∞
< ϵq,

∥∥∥∥∥
(

Fr

Fi

)∥∥∥∥∥
2
< ϵF , (32)

The former controls the convergence (in the infinity norm) in Newton’s method whereas the
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latter checks the accuracy of the solution (the residual in the L2 norm). In practice, we use
ϵq = 10−8 and ϵF = 10−16 but we found that both criteria are satisfied simultaneously in all
the cases we have considered in this paper. Moreover, we note that convergence in Newton’s
method depends crucially on the choice of the linear solver we employ. Specifically, in 2D, we
use an exact LU decomposition, as computed (within the SLEPc library) by the MUMPS solver
with options:
"-pc type lu -ksp type preonly"
The computational cost in 2D is thus manageable. For 3D cases, we switch to a more economical
preconditioner, and in particular, the algebraic multigrid method being available in HYPRE
with options:
"-pc type hypre -ksp type gmres -ksp atol 1e-12 -ksp rtol 1e-6 -ksp gmres restart
50 -ksp max it 500 -ksp pc side right -sub pc type lu
-sub pc factor mat solver type mumps".

The toolbox can trace branches of stationary configurations to the GP equations by per-
forming numerical continuation (Allgower and Georg, 1990) over the parameters of the model.
For the one-component case, we consider the chemical potential µ as our principal continuation
parameter. In particular, we start from a value of the chemical potential µ0 for which the initial
guess is sufficiently close to the stationary state of interest. Upon convergence in Newton’s
method (discussed above), we use the resulting converged state as an initial guess for the next
step in the continuation process with chemical potential µ0 + δµ. We highlight the fact that we
include a simple adaptive strategy for the selection of the increment δµ in the toolbox, and it
is described briefly next. Initially, the δµ is fixed to 10−3 when µ0 is close to the respective
state’s linear limit. It then gets doubled, i. e. δµ = 2δµ, at every 10 steps in the continuation
process until it reaches δµmax = 0.015 whereupon it remains fixed, and the continuation stops
when the final value µf specified by the user is reached.

Finally, for the two-component setting, we follow different continuation strategies that
involve relevant principal continuation parameters in order to match the toolbox’s results
with ones that exist in the literature. For example, the 2D ring-antidark branch is traced by
performing continuation over µ1 and µ2 first, and then over the inter-component interactions
β12 and β21 (with fixed µ1 and µ2).The 2D vortex-antidark branch is traced by fixing µ1
and µ2 first, and continuation over the inter-component interactions β12 and β21 (as for the
2D) is performed afterwards. Ultimately, various continuation strategies can be conveniently
designed and implemented in the toolbox by the user involving different principal continuation
parameters.
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4 Solving the BdG equations

We solve the BdG problems for the one- and two-component cases of using the SLEPc library
(Hernandez et al., 2005) which is now interfaced with FreeFem++ . First, we need to write the
weak form of the BdG problems that will be supplied to the solver. Indicatively, and for the
one-component case, the weak formulation of the BdG problem associated with Eq. (8) reads:

∫
D

1
2∇A · ∇v1 +

∫
D

(Ctrap − µ)Av1 +
∫

D
2β|ϕ|2Av1 +

∫
D
βϕ2Bv1 = ω

∫
D
Av1,

−
∫

D

1
2∇B · ∇v2 −

∫
D

(Ctrap + µ)Bv2 −
∫

D
2β|ϕ|2Bv2 −

∫
D
βϕ

2
Av2 = ω

∫
D
Bv2.

(33)

The bilinear terms in the left hand side of this equation form the finite-element matrix M
that is fed to SLEPc library. The implementation of the BdG problem of Eq. (33) can be
straightforwardly made now in FreeFem++ :
NewMacro problemBdG

varf vBdGMat ([A,B],[v1 ,v2]) =
intN(Th , qforder =ord)(.5* grad(v1) ’*grad(A) +( Ctrap -mu)*A*v1 ’
+ 2.* beta*abs(phi)ˆ2*A*v1 ’ + beta*phi ˆ2*B*v1 ’
- .5* grad(v2) ’*grad(B) - (Ctrap -mu)*B*v2 ’
- 2.* beta*abs(phi)ˆ2*B*v2 ’ - beta *(phi ’) ˆ2*A*v2 ’)
BCBdG;

varf vBdGVec ([A,B],[v1 ,v2]) = intN(Th , qforder =ord)(A*v1 ’ + B*v2 ’);
EndMacro

It is easy to see the correspondence between the weak formulation of Eq. (33) and its imple-
mentation in the above macro (see, also, the file BdG 1comp ddm/A macro/Macro problem.edp).
For the computation of the BdG spectrum, we apply a small shift, e. g. σ = 10−4 or σ = 10−2

that is implemented in the EPSSolve function of SLEPc by using the parameters:
"-st type sinvert -eps target sigma"
to slightly regularize the eigenproblem.

Upon computing the eigenvalues and eigenvectors of the BdG problem in SLEPc, we further
check their accuracy by displaying the residual or Eq. (8):∥∥∥∥∥M

(
A
B

)
− ω

(
A
B

)∥∥∥∥∥
∞

(34)

by using the SLEPc parameters: "-eps error backward ::ascii info detail".
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Finally, we present the weak formulation in the two-component case emanating from Eqs.
(17)-(19):

∫
D

1
2∇A · ∇v1 +

∫
D

(Ctrap − µ1)Av1 +
∫

D

(
2β11|ϕ1|2 + β12|ϕ2|2

)
Av1

+
∫

D
β11ϕ

2
1Bv1 +

∫
D
β12ϕ1ϕ2Cv1 +

∫
D
β12ϕ1ϕ2Dv1 = ω

∫
D
Av1,

−
∫

D

1
2∇B · ∇v2 −

∫
D

(Ctrap − µ)Bv2 −
∫

D

(
2β11|ϕ1|2 + β12|ϕ2|2

)
Bv2

−
∫

D
β11ϕ1

2
Av2 −

∫
D
β12ϕ1ϕ2Cv2 −

∫
D
β12ϕ1ϕ2Dv2 = ω

∫
D
Bv2,∫

D

1
2∇C · ∇v3 +

∫
D

(Ctrap − µ)Cv3 +
∫

D

(
2β22|ϕ2|2 + β21|ϕ1|2

)
Cv3

+
∫

D
β21ϕ1ϕ2Av3 +

∫
D
β21ϕ1ϕ2Bv3 +

∫
D
β22ϕ

2
2Dv3 = ω

∫
D
Cv3,

−
∫

D

1
2∇D · ∇v4 −

∫
D

(Ctrap − µ)Dv4 −
∫

D

(
2β22|ϕ2|2 + β21|ϕ1|2

)
Dv4

−
∫

D
β21ϕ1ϕ2Av4 −

∫
D
β21ϕ1ϕ2Bv4 −

∫
D
β22ϕ2

2
Cv4 = ω

∫
D
Dv4.

(35)

Again, the implementation of the BdG problem of Eq. (35) is easy in FreeFem++ (see
BdG 2comp ddm/A macro/Macro problem.edp):
NewMacro problemBdG

varf vBdGMat ([A,B,C,D],[v1 ,v2 ,v3 ,v4]) =
intN(Th , qforder =ord)(.5* grad(v1) ’*grad(A) + (Ctrap - mu1)*A*v1 ’ +

(2.* beta11 *un2(phi1 ,phi1) + beta12 *un2(phi2 ,phi2))*A*v1 ’
+ beta11 *phi1*phi1*B*v1 ’ + beta12 *phi1*phi2 ’*C*v1 ’ + beta12 *

phi1*phi2*D*v1 ’
-.5* grad(v2) ’*grad(B) - (Ctrap - mu1)*B*v2 ’ - (2.* beta11 *un2(

phi1 ,phi1) + beta12 *un2(phi2 ,phi2))*B*v2 ’
- beta11 *phi1 ’*phi1 ’*A*v2 ’ - beta12 *phi1 ’*phi2 ’*C*v2 ’ - beta12

*phi1 ’* phi2*D*v2 ’
+.5* grad(v3) ’*grad(C) + (Ctrap - mu2)*C*v3 ’ + (2.* beta22 *un2(

phi2 ,phi2) + beta21 *un2(phi1 ,phi1))*C*v3 ’
+ beta22 *phi2*phi2*D*v3 ’ + beta21 *phi1 ’* phi2*A*v3 ’ + beta21 *

phi1*phi2*B*v3 ’
-.5* grad(v4) ’*grad(D) - (Ctrap - mu2)*D*v4 ’ - (2.* beta22 *un2(

phi2 ,phi2) + beta21 *un2(phi1 ,phi1))*D*v4 ’
- beta22 *phi2 ’*phi2 ’*C*v4 ’ - beta21 *phi1 ’*phi2 ’*A*v4 ’ - beta21

*phi1*phi2 ’*B*v4 ’
)
BCBdG;
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varf vBdGVec ([A,B,C,D],[v1 ,v2 ,v3 ,v4]) = intN(Th , qforder =ord)(A*v1 ’ +
B*v2 ’ + C*v3 ’ + D*v4 ’);

EndMacro

The validation of the new toolbox is a necessary task for assessing its performance, fidelity
and reliability. In Secs. 5 and 6, we perform a series of validation tests that exist in the
literature. Note that the test cases we present next for the one-component case are the same as
the ones considered in (SADAKA et al., 2024).

5 Validation test cases for the one-component BEC

We begin our discussion on validation test cases of our toolbox by considering first the one-
component GP model in 2D and 3D. We note that all the cases we present below consider
repulsive interactions (we fix β = 1) and an isotropic trap Ctrap = 1

2ω
2
⊥r

2, with r2 = x2 +y2 +z2.
To ease our discussion, we further present a summary of the considered cases, together with

typical computational times and mesh sizes (i. e. the number of elements), in Table 1. Table
2 contains the number of unknowns (ndof), the number of tetrahedra (nt), and the number
of non-zero elements (nnz) of the matrix used for the computation of the BdG spectra. The
toolbox initially builds a mesh by taking into account the topology of the solution. For example,
a disk-shaped mesh with smaller triangles and minimum edge size hmin = hmax/45 in its center
is used for studying a 2D vortex configuration. The mesh is refined at each iteration in Newton’s
method in regions of large gradients (e. g. around solitons or vortices) and de-refined otherwise
(zones of constant density) when adaptive mesh refinement is chosen, see Sec. 3.3. For a given
case, we draw comparisons in Table 1 between results that were obtained with 4 MPI processors
and without MPI using adaptive mesh refinement. We draw also comparisons in Table 2 for
more complex 3D cases. We note too, however, that it is safer to use adaptive mesh refinement
while exploring branches of solutions for which their topology is unknown.
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without MPI 4 MPI processors
CPU time CPU time CPU time CPU time

niter GP BdG mesh size GP BdG mesh size
2D ground state 1 00:00:05 00:00:26 10,900 00:00:03 00:00:12 10 866
2D dark soliton 208 00:19:12 00:58:18 20,912 00:06:58 00:26:01 19 859
3D ground state 133 01:09:16 05:51:27 46,681 00:14:44 04:58:57 47 097

Table 1: Results on test cases for the one-component GP and BdG problems with mesh
adaptivity. Results are presented with (4 MPI processors) and without MPI. The computational
time, the mesh size (number of elements) and the number of continuation steps (niter) performed
for each case are shown. When using mesh adaptivity, the size of the mesh for the last step of
the continuation is depicted in the mesh size column. For 2D cases we compute 100 eigenvalues
whereas for the 3D ground state, we compute 40 eigenvalues only. the user can compute more
eigenvalues if more memory is available. The BdG spectrum is computed every other two
(continuation) steps in µ. The computations were performed on a Macbook pro M1, 16GB of
DDR4 2400 MHz RAM.

GP test cases Processors CPU time niter ndof nt maxRSS
3D dark soliton 28 00:01:01 168 205,822 76,455 0.78 Gb
3D vortex line (1VL) 28 00:04:02 168 329,988 122,969 0.79 Gb
3D vortex ring + 2VLs 56 00:05:19 201 654,802 244,597 1.10 Gb

BdG test cases Processors CPU time niter ndof nnz maxRSS
3D dark soliton 28 00:01:30 56 103,116 11,782,505 3.07 Gb
3D vortex line (1VL) 28 00:03:41 56 165,362 18,934,023 7.09 Gb
3D vortex ring + 2VLs 56 00:08:02 67 327,887 37,600,455 8.57 Gb

Table 2: Summary of results on 3D test cases for the one-component GP and BdG problems
with mesh adaptivity. The number of processors, the mean CPU time per each continuation
step, the total number of continuation steps performed (for tracing the respective branches)
are shown. Moreover, the table contains the number of times the BdG problem was solved
(we computed the eigenvalues at every 3 continuation steps in µ), the number of unknowns
(ndof), the number of tetrahedra (nt), the number of non-zero elements (nnz) of the matrix
used for the computation of the BdG spectra, the estimated memory used for each processor
maxRSS. For all test cases, 80 eigenvalues were computed in the BdG problem only. Again,
the user can compute more eigenvalues if more memory is available. The present computations
were performed on the CRIANN Computing Center and MATRICS platform utilizing an Intel
Broadwell E5-2680 v4 @ 2.40GHz (14 cores per socket) architecture with two sockets per node
and 128 GB of DDR4 2400 MHz RAM. An Intel Omnipath 100Gb/s low latency network was
used for communications.

20



5.1 2D case: Ground state

The distribution of the BdG modes for oscillations of the ground state in the TF limit for
repulsive BECs was derived in (Kevrekidis and Pelinovsky, 2010), and is given by

ωTF
m,k = ω⊥

√
m+ 2k2 + 2k(1 +m), (36)

where m, k ≥ 0 are integers.
In Table 3, we present the first 20 BdG modes our toolbox computed for µ = 6 and ω⊥ = 0.2.

Moreover, we compare results that were obtained with 4 MPI processors and without MPI
against the ones from Eq. (36). The Krein signatures (see, Eq. (10)) were computed too by the
toolbox, and found all to be 1, thus suggesting the absence of negative energy modes. Note
the perfect match between numerical and theoretical results together with the fact that mesh
adaptation provides the same results as computations with a refined fixed mesh.

5.2 2D case: Dark soliton

We test next the 2D dark soliton known also as the dark-soliton stripe (see Charalampidis et al.
(2018) and references therein). At the linear limit, this state is constructed as

ϕDS =
√
ω⊥
2π H0(√ω⊥x)H1(√ω⊥y)e− 1

2 ω⊥(x2+y2), (37)

where Hn are Hermite polynomials of degree n. Similarly as before, we set ω⊥ = 0.2, and
perform a numerical continuation over µ all the way up to µ = 3 in order to trace the entire
branch.

We present the numerical results we obtained from the toolbox in Figs. 1-b) and 2-c)-d),
and we compare them to the ones reported in (SADAKA et al., 2024) in Figs. 1-a) and 2-a)-b).
Note that we used the new µ-continuation strategy, with adapted step (see the last paragraphs
in Sec. 3.2). In particular, the real and imaginary parts of ω as a function of µ are depicted in
panels a) and b) of Fig. 1 without MPI and with 4 MPI processors, respectively.The results are
identical to the results of Middelkamp et al. (2010) (note also the emergence of a cascade of
pitchfork, i. e. symmetry-breaking bifurcations). Panels a) and c) (resp. b) and d)) in Fig. 2
show the final adapted mesh and the respective density |ϕ|2 of the solution for µ = 3 without
MPI and with 4 MPI processors, respectively. A few remarks are in order. Per the discretized
problem the toolbox solves, there exists a preferred direction along which the configuration will
tend to align itself. When we adapt the mesh, this direction changes, and the wave function
will then rotate. We overcome this issue by allowing the toolbox to perform mesh adaptation
at each continuation step. Note that mesh adaptivity is performed at every step in Newton’s
method, especially, when the norm of the correction is greater than 0.1.
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without MPI with 4 MPI processors
Re(ω) Im(ω) K Re(ω) Im(ω) K ωm,k from (36)

ω1 -5.86493e-07 8.69311e-14 1 -6.15872e-07 8.07869e-14 1
ωTF

0,0 = 0
ω2 5.86493e-07 -8.69062e-14 1 6.15872e-07 -8.07646e-14 1
ω3 -0.200005 4.07202e-15 1 -0.200005 8.1375e-15 1

ωTF
1,0 = 0.2ω4 0.200005 7.56706e-16 1 0.200005 7.12452e-15 1

ω5 -0.200005 2.10494e-15 1 -0.200005 -5.09397e-15 1
ω6 0.200005 -8.97438e-18 1 0.200005 4.42765e-15 1
ω7 -0.283448 -1.87346e-14 1 -0.283448 -3.8324e-16 1

ωTF
2,0 = 0.28284271ω8 0.283448 2.15388e-15 1 0.283448 7.56616e-16 1

ω9 -0.283467 1.286e-14 1 -0.283467 -1.40959e-15 1
ω10 0.283467 8.67883e-15 1 0.283467 -2.90574e-15 1
ω11 -0.348769 -5.37074e-16 1 -0.348769 1.69936e-16 1

ωTF
3,0 = 0.34641016ω12 0.348769 -6.03743e-15 1 0.348769 -1.13813e-15 1

ω13 -0.348769 -4.43208e-15 1 -0.348769 -9.10584e-17 1
ω14 0.348769 2.56399e-15 1 0.348769 -3.7267e-16 1
ω15 -0.400018 -5.01133e-15 1 -0.400018 -1.45788e-14 1

ωTF
4,0 = ωTF

0,1 = 0.4

ω16 0.400018 -5.34787e-15 1 0.400018 -3.09639e-14 1
ω17 -0.405642 -4.75383e-15 1 -0.405642 3.36622e-16 1
ω18 0.405642 -3.58917e-15 1 0.405642 2.00132e-16 1
ω19 -0.405679 1.04733e-15 1 -0.405679 1.19496e-17 1
ω20 0.405679 7.04663e-15 1 0.405679 -2.51016e-16 1

Table 3: Numerical results on the BdG modes that were obtained with and without parallelization
for the 2D ground state and with the same shift σ = 0.01. In addition, the Krein signatures
shown as K are included in the table together with the theoretical prediction of Eq. (36).
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Figure 1: BdG results for the 2D dark soliton: a) real and imaginary parts of the eigenvalues,
i. e. ωr and ωi, respectively, as a function of µ, and without using MPI; b) same as panel a)
but using 4 MPI processors. Blue open and dark filled circles in both panels depict ωi and ωr,
respectively.
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Figure 2: 2D dark soliton for µ = 3: without MPI a) adapted mesh, b) density |ϕ|2 and with 4
MPI processors c) adapted mesh, d) density |ϕ|2.
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5.3 3D case: Ground state

Considering 3D configurations renders the computation of the BdG spectrum a very challenging
problem. This is the case because even with mesh adaptation, the number of degrees of freedom
is still high, and increases with the size of the BEC which is controlled by the chemical potential
µ (or, equivalently, by the number of atoms). In our previous contribution (SADAKA et al.,
2024), as a prototypical case to test the published toolbox therein, we considered the 3D ground
state whose BdG spectrum was computed for ω⊥ = 1. We argued that the computation of more
complex states requires the use of parallelization which is capable of reducing the computational
time and memory requirements. Indeed, with the present parallel toolbox, we accomplish this
goal. Illustratively, we compute the BdG spectrum of the 3D ground state, and respective
results are shown presented in Fig. 3. The real part of the eigenvalues (ωr) as a function of
µ computed without MPI (using the sequential toolbox published in (SADAKA et al., 2024))
and with 4 MPI processors (and the µ-adaptivity continuation strategy discussed previously)
are shown in the same panel. Both numerical results are in full agreement with the numerical
results reported in (Bisset et al., 2015).

µ
1.5 1.8 2.1 2.4 2.7 3

0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

ω
r
 without MPI

ω
r
 4 MPI proc.

Real eigenvalues comparison

Figure 3: 3D ground state. Variation of the real part ωr of the BdG spectrum as a function of µ.
Results obtained using 4 MPI processors (black triangles) and without MPI (blue open circles).
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5.4 Dark soliton in 3D

We now proceed with another 3D case to validate our parallel toolbox. The existence and BdG
analysis of the dark soliton in 3D was considered in (Bisset et al., 2015), where the azimuthal
symmetry of the state was taken into account in order to reduce the 3D BdG problem to a 2D
one. Here, we perform a full 3D BdG analysis by using (similarly to (Bisset et al., 2015)) an
isotropic potential with ω⊥ = 1. We note that the 3D dark soliton (or planar dark soliton) can
be constructed in the linear limit by the Cartesian eigenstate |0, 0, 1⟩ (bearing a zero cut in
the z direction), and can be expressed in terms of Hermite polynomials (Bisset et al., 2015)
(see also (Boullé et al., 2020)). This state emanates from the linear limit at µ = 5/2, and it is
degenerate; the eigenstates |1, 0, 0⟩ and |0, 1, 0⟩ produce the same solution although they now
have zero cuts along the x and y directions, respectively. Upon using this eigenstate as a seed
to Newton’s method, we performed a continuation over µ. The results are shown in Fig. 4: the
left panel depicts the BdG spectrum of the state (real and imaginary parts of the eigenvalues
are shown with black filled circles and blue open circles, respectively); the right panel shows
the isosurface of the density |ϕ|2 for µ = 4.5. It can be discerned from the left panel that our
results match perfectly the ones published in (Bisset et al., 2015) (see Fig. 1 therein).
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Figure 4: 3D dark soliton. a) The BdG spectrum and b) density |ϕ|2 for µ = 4.5. The
computational domain is the cube [−5.4, 5.4]3.
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5.5 3D case: Vortex-lines and beyond

We conclude our series of validation cases for the single-component GP equation in 3D by
considering two extra cases (we set ω⊥ = 1 as previously): a single-charged vortex-line (VL)
state (Bisset et al., 2015), and a vortex-ring (VR) configuration bearing two (oppositely
charged) VL handles Boullé et al. (2020). The former state bifurcates from the linear limit
at µ = 2.5 (i. e. 1st-excited state), and can be classified in terms of cylindrical coordinates
as |0, 1, 0⟩cyl = r2L1

0(x2 + y2)eiθe−(x2+y2+z2)/2 Boullé et al. (2020) (where L1
0 stands for the

associated Laguerre polynomial). Similarly, the vortex-ring (VR) with two handles bifurcates at
µ = 3.5 from the linear limit, and is constructed by the combination of Hermite polynomials (in
Cartesian coordinates) |2, 0, 0⟩ + |0, 2, 0⟩ + i|1, 0, 1⟩. Our toolbox was capable of tracing branches
of solutions for both cases where the respective results are shown in Figs. 5 and 6, respectively.
In particular, the panel a) in the figure depicts the BdG spectra of the pertinent states that
match with the findings in (Bisset et al., 2015) and Boullé et al. (2020). Panel b) shows two
snapshots of isosurfaces of the densities |ϕ|2 of the solutions for µ = 4.5 and µ = 6, respectively.
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Figure 5: 3D single-charged vortex-line (VL) configuration inside a cube [−5.4, 5.4]3. The format
of the figure is the same as in Fig. 4 with the density |ϕ|2 shown in b) for µ = 4.5.
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Figure 6: 3D vortex-ring (VR) with two (oppositely charged) VL handles configuration inside
a cube [−6.23, 6.23]3. The format of the figure is the same as in Fig. 4 with the density |ϕ|2
shown in b) for µ = 6.
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6 Validation test cases for the two-component BEC

We now move on to the study of localized configurations in two-component GP equations
(13). Admittedly, the study of their existence, and more crucially, their BdG spectrum (upon
solving Eqs. (17)-(19)) places them in an one level harder category. Indeed, the size of the
BdG problem for 2D and (even more) 3D configurations becomes quite large, especially when
one wants to provide a detailed and accurate description of the spectral properties of such
configurations. However, the combination of mesh adaptivity implemented in FreeFem++ with
parallelization tools provided by PETSc makes the present toolbox a great candidate to compute
such challenging 3D cases. Table 4 summarizes the test cases we considered, and has the same
format as Table 2.

GP test cases Processes CPU time niter ndof nt maxRSS
2D vortex-antidark state 4 00:00:17 46 30,506 3,744 1,11 Gb
2D ring-antidark state 4 00:00:09 105 37,847 4,634 4,53 Gb
2D Hermite LL 1 4 00:00:12 81 27,775 3,399 0,34 Gb
2D Hermite LL 7 4 00:00:29 81 58,081 7,175 2,22 Gb
2D Hermite LL 8 4 00:00:28 81 41,717 5,131 1,42 Gb
3D Hermite LL 1 28 00:02:18 81 24,698 3,936 1,22 Gb
3D Hermite LL 7 28 00:03:52 81 24,578 3,935 1,16 Gb

BdG test cases Processes CPU time niter ndof nnz maxRSS
2D vortex-antidark state 4 00:00:31 46 27,787 5,125,301 0,78 Gb
2D ring-antidark state 4 00:00:41 91 37,791 6,946,743 1,02 Gb
2D Hermite LL 1 4 00:00:33 81 25,303 4,644,479 0,75 Gb
2D Hermite LL 7 4 00:01:03 81 55,155 10,136,839 1,43 Gb
2D Hermite LL 8 4 00:00:37 81 38,882 7,142,816 1,11 Gb
3D Hermite LL 1 28 00:03:56 81 72,202 32,963,342 6,70 Gb
3D Hermite LL 7 28 00:03:21 81 71,627 32,681,221 7,03 Gb

Table 4: Same as Table 2, but for the two-component GP and BdG problems (again, with mesh
adaptivity). Note that 100 and 60 eigenvalues were computed for all 2D and 3D test cases,
respectively. The continuations (and thus BdG computations) were performed over β12 for the
2D vortex-antidark and 2D ring-antidark states whereas for the rest of the cases, over µ2.

6.1 2D two-component case: vortex dark-antidark configurations

For illustration purposes, we consider two test cases taken from (Danaila et al., 2016) correspond-
ing to 2D vortex-antidark and dark-antidark ring solutions (see also Tab. 4 for a summary of our
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results). Such bound modes emerge in two-component GP equations due to the inter-component
interaction. Indeed, a dark soliton or a vortex (or a ring) in ϕ1 will induce an effective potential
through the inter-component nonlinearity which itself “traps” a localized mode in ϕ2. As a
consequence, atoms in ϕ2 “fill-in” the density dip of ϕ1 through this (effective) trapping process.
We consider the GP system (13) in the case of repulsive inter-component interactions with
miscibility condition 0 ≤ β12 <

√
β11β22 which ensures that the two components co-exist outside

the dark-antidark state. To simplify the case study (and following SADAKA et al. (2024)),
we set β11 = β22 = β = 1, β12 = β21, and 0 < β12 < β since the ratio between non-linear
interaction coefficients matters only.

For this two-component case in 2D, we compute the BdG spectra of the vortex-antidark and
dark-antidark ring solutions studied in (Danaila et al., 2016). The respective BdG results we
obtained from our toolbox are summarized in panels a) and b) of Fig. 7, and densities of bound
modes are shown in Figs. 8 (vortex-antidark states) and 9 (dark-antidark states). Note that
ϕ1 contains a ring soliton whereas ϕ2 corresponds to the ground state in Fig. 9. Finally, we
highlight the additional feature of our toolbox in considering distinct values of the interaction
coefficients βij , 1 ≤ i, j ≤ 2. This way, the user has the flexibility to adjust these values according
to other configurations of interest (and potentially, experimental setups) for performing distinct
numerical studies other than those reported in (Danaila et al., 2016).
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Figure 7: 2D two-component vortex dark-antidark configurations. The BdG spectrum of a)
vortex-antidark and b) dark-antidark ring states as a function of β12. Black filled and blue open
circles correspond to the real (ωr) and imaginary parts (ωi) of the eigenvalues, respectively.
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Figure 8: 2D two-component vortex-antidark case. Densities of components |ϕ1|2 (top) and
|ϕ2|2 (bottom) corresponding to the vortex-antidark bound mode for different values of β12.
The computational domain is a disk centered at the origin and with radius 19.

6.2 2D two-component case: from soliton necklaces to multipoles

The last 2D cases that we considered for testing our parallel toolbox stem from Charalampidis
et al. (2020). At first, we construct the ground state of Eq. (4) by

ϕ =
√
ω⊥
2π H0(√ω⊥x)H0(√ω⊥y)e− 1

2 ω⊥(x2+y2), (38)

and use it to seed Newton’s method with β = 1.03 and ω⊥ = 0.2. The branch of the ground
state is traced from µ ≈ 0.202, i. e. close to the linear limit where this state bifurcates from,
until µ = 1. The terminal profile ϕ, now called ϕ1, is extracted while setting µ1 = µ = 1. Then,
we focus on Eq. (13) with β11 = 1.03, β22 = 0.97, and β12 = 1 (ω⊥ = 0.2 and µ1 = 1 are as
before). Following the approach discussed in Charalampidis et al. (2015), we plug the (terminal)
profile ϕ1 into the equation for ϕ2 [cf. Eq. (13)], and linearize it with respect to ϕ2. This process
results in the following eigenvalue problem for (µ2,ϕ2)

−1
2∇2ϕ2 + Ceffϕ2 = µ2ϕ2 (39)

with Ceff = Ctrap + β21|ϕ1|2 being the effective potential Charalampidis et al. (2015) which is
responsible for “trapping” bound modes in the ϕ2 component of Eq. (13). Upon solving Eq. (39)
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Figure 9: 2D two-component dark-antidark ring case. Same legend and computational domain
as in Fig. 8.

numerically, we obtain eigenvalue-eigenvector pairs (µ2,ϕ2), that together with (µ1,ϕ1) form
the initial guess that we seed to Newton’s method. We then trace branches of bound modes of
the coupled system of Eq. (13), over the principal continuation parameter µ2. Note that upon
selecting a pair (µ2,ϕ2), we perform continuation from µ2 until µ2 + 0.4 in all the cases that we
present next.

The results for these test cases are depicted in Fig. 10 and Figs. 11-13 showcasing the
BdG spectra and density profiles of the components, respectively. Specifically, the panels a),
b), and c) of Fig. 10 are associated with density profiles of Figs. 11, 12, and 13, each of the
latter shown for different values of µ2. The bound mode depicted in Fig. 11 corresponds to the
dark-bright branch that bifurcates from the linear limit at µ2 ≈ 1.05133. This state is unstable
over µ2 (see, panel a) of Fig. 10) except from a very narrow window of stability close to the
linear limit (see also Fig. 2(a) in Charalampidis et al. (2020), and references therein). Our
toolbox traced the branch of Fig. 12 that bifurcates at µ2 ≈ 1.23276, and involves a soliton
necklace in ϕ2 (note its imprint on ϕ1). Similar to the case of Fig. 10, this state is unstable (see
also Fig. 1(a) in Charalampidis et al. (2020)) but features a very narrow window of stability
as is shown in panel b) of Fig. 10. Finally, the so-called multipole branch (see Fig. 16(c) in
Charalampidis et al. (2020)) was traced by our toolbox, with BdG spectrum and density profiles
shown in the panel c) of Fig. 10, and Fig. 13, respectively. This state bifurcates from the linear
limit at µ2 = 1.29325, and can be described by the combination of Cartesian (i. e. Hermitian)

32



eigenstates |2, 1⟩+ |0, 3⟩. All the cases that we discussed here match perfectly with the numerical
results of Charalampidis et al. (2020).
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Figure 10: 2D two-component soliton and necklace configurations. The BdG spectra as functions
of µ2 corresponding to a) the dark-bright soliton branch, b) ground state (ϕ1) and soliton
necklace (ϕ2) branch, and c) the multipole branch. Each of these branches bifurcate from
(µ1,µ2) ≈ (1, 1.05133), (1, 1.23276), and (1, 1.29325). Their respective density profiles (for
different values of µ2) are shown in Figs. 11, 12, and 13.

6.3 3D two-component case: ground state, planar dark soliton, and vortex-
ring state

We conclude our discussion on test cases for validating our toolbox by presenting two 3D
two-component configurations. Note that we employ the same “trapping” technique that was
discussed for the 2D, two-component cases, where the ϕ1 carries the ground state, but now in 3D.
The latter is continued over µ from its linear limit, i. e. µ ≈ 1.501, and in the single-component
case first [cf. Eq. (4)] with β = 1.03 and ω⊥ = 1, until µ = 2. Then, the eigenvalue problem
(39) is solved to obtain the eigenvalue-eigenvector pairs (µ2,ϕ2).This way, and upon selecting
an eigenvalue-eigenvector pair of our choice, we trace branches of 3D bound modes of Eq. (13)
by performing continuation over µ2 (while setting β11 = 1.03, β22 = 0.97, β12 = 1) for fixed
ω⊥ = 1 and µ1 = 2. We stop the continuation process when the continuation parameter reaches
µ2 + 0.4, i. e. being 0.4 units far away from the respective linear limit of ϕ2.

The first case we considered involves the ground state in ϕ1, and the planar dark soliton
P. G. Kevrekidis and Carretero-González (2015) in ϕ2, i. e. a dark-bright soliton stripe in 3D.
The latter bifurcates from its linear limit at µ2 ≈ 2.79467, and can be classified in terms of
Cartesian eigenfunctions as |0, 1, 0⟩. Our numerical results on its BdG spectrum depicted in
panel a) of Fig. 14 show that the state is stable from its inception until µ2 ≈ 2.902 when it
becomes unstable. Snapshots of densities |ϕ1|2 and |ϕ2|2 are shown in the top and bottom rows

33



Figure 11: 2D two-component dark-bright soliton. Density profiles of each of the components,
i. e. |ϕ1|2 (top row) and |ϕ2|2 (bottom row), for different values of µ2. For this case µ1 = 1 (see
text), and the computational domain is [−11.62, 11.62]2.

of Fig. 15, respectively, for different values of µ2. Finally, the panel b) of Fig. 14 and Fig. 16
present the BdG spectrum and density profiles corresponding to the bound mode involving
the ground state in ϕ1, and the vortex-ring state in ϕ2, i. e. a vortex-ring-bright state. This
configuration (obtained for µ1 = 2), bifurcates from the linear limit of ϕ2 at µ2 = 3.67602, and
is generically unstable as shown in the panel b) of Fig. 14. Note that in the one-component
setting, the vortex-ring state can be classified in terms of a combination of Cartesian eigenstates
as 1√

2 (|2, 0, 0⟩ > +|0, 2, 0⟩) + i|0, 0, 1⟩Boullé et al. (2020). Density profiles |ϕ1|2 and |ϕ2|2 of this
bound mode are shown for different values of µ2 in the top and bottom rows, of Fig. 16.
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Figure 12: 2D two-component ground-state-soliton-necklace case. Same caption and computa-
tional domain as in Fig. 11. As the chemical potential µ2 increases, the imprint of ϕ2 on ϕ1
becomes more apparent (see the third column).

Figure 13: 2D two-component groud-state-multipole case. Same caption and computational
domain as in Fig. 11. The ground state in depicted by ϕ1 and the multipole state by ϕ2.
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Figure 14: 3D two-component cases. The BdG spectra over µ2 for a) the dark-bright soliton
stripe (with the ground state in ϕ1 and the planar dark soliton in ϕ2), and b) vortex-ring-bright
state (with the vortex-ring state in ϕ2). These states bifurcate from (µ1,µ2) = (2, 2.79467) and
(2, 3.67602), respectively. Their density profiles (for distinct values of µ2) are shown in Figs. 15
and 16.
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Figure 15: 3D two-component dark-bright soliton stripe state. Density profiles |ϕ1|2 and |ϕ2|2
are shown in the top and bottom rows, respectively, and for different values of µ2. Note that
the ϕ1 component carries the ground state whereas the ϕ2 one the planar dark soliton (with
a zero cut in the y direction). The computational domain was the cube [−4.4, 4.4]3, and the
above profiles are zoom-ins in [−2, 2]3.
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Figure 16: 3D two-component vortex-ring-bright state. Same caption and computational domain
as in Fig. 15. Note that the ϕ1 component carries (again) the ground state whereas the ϕ2 one
the vortex-ring state.
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7 Description of the programs

In this section, we first describe the architecture of the programs and the organization of the
provided files. We then present the input parameters and the structure of the output files.

7.1 Program architecture

Codes and data files forming the BdG problem with the domain decomposition method
(DDM) are stored in the FFEM BdG ddm toolbox directory. The latter is organized in two
main subdirectories: BdG 1comp ddm and BdG 2comp ddm, corresponding to the one- and two-
component codes. Each subdirectory contains two main files: FFEM GP $case ddm.edp,
which is the main FreeFem++ script file for the computation of the stationary state, and
FFEM BdG $case ddm.edp which is the main FreeFem++ script file for the computation of the
BdG eigenvalues ($case=1c 2D 3D for the one-component case and $case=2c 2D 3D for the
two-component case).

To run these codes, first of all, the user must install FreeFem++ with PETSc following the
instructions in https://doc.freefem.org/introduction/installation.html. Then, the
user can run the FreeFem++ code for the computation of the GP stationary state by using
either the command
mpirun -np 4 FreeFem++-mpi FFEM GP $case ddm.edp
or
ff-mpirun -np 4 FFEM GP $case ddm.edp.
The BdG eigenvalues can then be computed by typing (in terminal) either
mpirun -np 4 FreeFem++-mpi FFEM BdG $case ddm.edp
or
ff-mpirun -np 4 FFEM BdG $case ddm.edp.
Parameter files for the examples presented in this paper are stored in the INIT folder.

The obtained solutions are saved in the dircase directory. Depending on the output format
selected by the user, data files are generated in specific folders for visualization with Tecplot3,
Paraview4, and Gnuplot5. We also provide ready-made layouts for visualization with Tecplot in
the folder Figures. The user can thus obtain the figures from this paper using newly generated
data. More details about the output structure are given in Sect. 7.4.

The complete architecture of the BdG 1comp ddm directory is the following (the architecture
of the BdG 2comp ddm directory is almost identical):

1. FFEM GP $case ddm.edp: the main script for computing GP stationary states.

2. FFEM BdG $case ddm.edp: the main script for computing the BdG spectrum.
3https://tecplot.com
4https://www.paraview.org
5http://www.gnuplot.info
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3. FFEM LL $case ddm.edp: the main script for solving the eigenvalue problem of Eq. (39)
(i. e. for finding the eigenvalue-eigenvector pairs (µ2,ϕ2)).

4. param num common.inc: a parameter file containing main numerical parameters.

5. INIT: directory storing the parameter files for the examples presented in Sects. 5 and 6.

6. Figures: directory containing Tecplot layouts used to replot the figures shown in Sects. 5
and 6. The main code must be run with the associated example before opening the layout
to replot the figure.

7. A macro: directory containing macros used in the main scripts for GP and BdG problems.

8. A macro LL: directory containing macros used in the main scripts for the study of respective
linear limits (LL).

7.2 Macros and functions

The different macros and functions used in the toolbox for the sequential code are stored in the
A macro folders:

• Macro BdGsolve.edp: macro for computing the BdG eigenvalues associated with matrices
of Eqs. (33) and (35).

• Macro createdir.edp: macro for creating the file structure of the dircase folder.

• Macro globalpartition.edp: macro for creating a partition of the global mesh, and sending
the solution from the global mesh to the local one.

• Macro GPsolve.edp: macro for computing the GP stationary state with Newton’s method
(see Eqs. (24) and (28)-(31)).

• Macro LLsolve.edp: macro for computing the eigenvalues of Eq. (39).

• Macro meshAdapt.edp: macro for adapting the mesh to the wave function.

• Macro onedomainsol.edp: macro for sending the solution from the local domain to the
global one.

• Macro operator.edp: collection of useful macros and functions: gradients, energy (5),
chemical potential, Hermite polynomials, etc. Also contains a macro creating a spherical
mesh for 3D problems.

• Macro output.edp: macros used for saving data in Tecplot and Paraview formats.
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• Macro plotEigenvector.edp: macro for plotting the real and imaginary parts of a BdG
eigenvector.

• Macro plotphi.edp: macro for plotting the complex wave function. The user can press ”k”
to alternate between plots of the density, phase and real and imaginary parts of the wave
function.

• Macro problem.edp: definitions of the weak formulations for the GP [cf. Eqs. (24) or (35)],
the BdG problems [cf. Eqs. (33) or (28)-(31)] and the linear limit problem [cf. Eq. (39)].

• Macro readmu.edp: macro to read the µ from dircase/Gnuplot/GP results.dat, and
compute the corresponding BdG eigenvalues.

• Macro readmubeta.edp: macro to read the values of µ or β from GP mucont results.dat
or GP betacont results.dat that are contained in dircase/Gnuplot/ in order to
compute the corresponding BdG spectrum.

• Macro restart.edp: macros used to save and load the wave function to or from FreeFem++
files.

• Macro saveData.edp: macro for saving the stationary wave function.

• Macro saveEigenvalues.edp: macro for saving the BdG eigenvalues and eigenvectors.

7.3 Input parameters

Parameters are separated in two files. Numerical parameters used in all computations are
specified in param num common.inc. Files in the INIT directory specify physical parameters
associated with the state of interest, computation and numerical parameters specific to this
problem. The files distributed with the toolbox provide a variety of examples that can be used
as a starting point when selecting parameters for the study of new states.
(1) In the file param num common.inc, the parameters are:

• displayplot: controls the output information to plot. Possible values range from 0 (no
plots), to 2 (plots data at all iterations of Newton’s method, and all eigenvectors computed
by the BdG code).

• iwait: Boolean indicating if the code must wait for user’s input when a plot is shown
(true) or it can continue (false) with the next plot.

• cutXY, cutXZ, cutYZ: (only for 3D cases in the one-component case) Booleans indicat-
ing whether to plot cuts of the wave function along the different axis at x = 0, y = 0 or
z = 0.
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• Tecplot: Boolean indicating whether to save data in the Tecplot format.

• Tecplotddm: for saving solution for Tecplot with DDM or not.

• Paraview: Boolean indicating whether to save data in the Paraview format (only in 2D
and 3D).

• adaptinit: if true, the initial solution is recomputed after the first mesh adaptation.

• adaptmeshFF: determines if mesh adaptation is used (true) or not (false).

• useShift: Boolean indicating whether to use a shift when computing the BdG eigenvalues
(see, Sec. 4).

• Nadapt: if mesh adaptation is used, then the mesh is adaptated every Nadapt iterations
during the continuation.

• Nplot: the wave function is plotted every Nplot iterations during the continuation.

• Nsave: the wave function is saved for Paraview or Tecplot every Nsave iterations during
the continuation.

• Nrst: the wave function is saved for the BdG computation every Nrst iterations during
the continuation.

• tolerrF: the tolerance value ϵF in Eq. (32).

• tolNewton: the tolerance value ϵq in Eq. (32).

• shift: the value of the shift σ used when computing eigenvalues.

• shiftLL: the value of the shift σ used when computing eigenvalues close to the linear
limit.

• shiftFLL: the value of the shift σ used when computing eigenvalues far from the linear
limit.

• adaptboundary: to adapt (==0) or not (==1) the boundary of the mesh in 3D.

• skipBdG: the value to skip µ or β12 computed with GP for BdG computation.

• muL, mubetaL: to switch between using shiftFLL or shiftLL, if µ or µ1 or µ2 or
β12 <mubetaL we use shiftLL otherwise we use shiftFLL.

• LL: Boolean indicating whether we want to compute the linear limit, i. e. eigenvalue
problem for (µ2,ϕ2) for the second component or no.
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• NNZ: contain the non zero elements (nnz) for the BdG matrix.

• dmuk: counter for dmu adaptation.

• FINAL: Boolean to run the final solution of endmu in the GP continuation or to stop
the BdG computation.

• newtonMax: the maximum number of Newton iterations.

(2) In the file $case.inc, stored in the INIT directory, the parameters are:

• General parameters for the case:
• dimension: the dimension of the problem (2 or 3).
• FEchoice: the type of finite element used. Usually P2.
• nev: the number of eigenvalues computed by the BdG code.

• Parameters used to restart a computation:
• restart: Boolean indicating if the initial solution is a restart from a previous computation.
If true, the solution and mesh stored in dirrestart for the value of µ given by murestart
will be used as initial solution.
• murestart: the initial value of µ in the case of a restart.
• dirrestart: the folder where the initial solution is stored in the case of a restart.

• Parameters of the continuation:
• kpol, lpol, mpol: integers defining the initial state in the linear limit.
• startmu: the initial value of µ.
• endmu: the final value of µ.
• dmu: the increment in µ during the continuation.
• facmu: when using the linear limit, the initial value of µ is given by facmu · µ|klm⟩.
• mubeta: a macro that contains the name of the variable that we want to do the
continuation over it: µ1,µ2,β12 or β21.

• Coefficients of the GP equation:
• beta: the nonlinear coefficient (we set β = 1 in all test cases except for the linear limit
cases where β = 1.03).
• ax, ay, az: the frequencies of the trapping potential along the three coordinate axes.
• Ctrap: a function defining the trapping potential.

• Parameters for the mesh generation:
• Dx: the distance between points on the mesh border.
• scaledom: a coefficient used to control the size of the domain: the mesh radius is given
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by Rdom = scaledom · rTF, where rTF is the Thomas-Fermi radius.
• createMesh: a macro creating the initial mesh Th.

• Parameters for the mesh adaptation:
• errU: the interpolation error level.
• hmin: the minimum length of a mesh element edge in the new mesh.
• hmax: the maximum length of a mesh element edge in the new mesh.
• adaptratio: the ratio for a prescribed smoothing of the metric. No smoothing is done
if the value is less than 1.1.

• Parameters for the initial solution:
• initname: the name given to the initial solution.
• initcond: a macro defining the initial solution for the phi variable.

• Definitions of the boundary conditions:
• BCGP: the boundary conditions used in the GP code for Eqs. (24) and (28)-(31).
• BCBdG: the boundary conditions used in the BdG code for Eqs. (33) and (35).
• BCLL: the boundary conditions used in the LL code for Eqs. (39).
• fcase: the name given to the current computation.
• dircase: the directory where the results are stored.

(3) In a two component case, some new parameters are defined in the $case.inc file:

• Parameters used to restart a computation:
• mu1restart, mu2restart: initial values of µ1 and µ2 in the case of a restart.
• beta12restart, beta21restart initial values of β12 and β21 in the case of a restart.

• Parameters of the continuation:
• startmu1, startmu2: initial values of µ1 and µ2.
• endmu1, endmu2: final values of µ1 and µ2.
• dmu1, dmu2: increments of µ1 and µ2 during the continuation.
• startbeta12, startbeta21: initial values of β12 and β21.
• endbeta12, endbeta21: final values of β12 and β21.
• dbeta12, dbeta21: increments of β12 and β21 during the continuation.

• Coefficients of the GP equation:
• beta11, beta12: nonlinear coefficients β11 and β22.

• Parameters for the initial solution:
• initname1: the name given to the initial solution for the first component.
• initname2: the name given to the initial solution for the second component.
• initcond: a macro defining the initial solution for [phi1,phi2] variables.
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7.4 Outputs

When a computation starts, the OUTPUT $case directory is created. It contains up to eight
folders. The RUNPARAM GP, RUNPARAM BdG, and RUNPARAM LL directories contain a copy of the
code and data files, thus allowing an easy identification of each case, and preparing an eventual
rerun of the same case at a later time. The other folders contain different output format files of
the computed solution for its visualization using Tecplot, Paraview or Gnuplot. The content of
these subfolders depends on the case and on the computation parameters (differences in the
two component code are given in parenthesis):

1. The Gnuplot folder contains two files:
• Information about the stationary states are stored in the GP results.dat file (GP mucont results.dat
or GP betacont results.dat file). The columns appear in the following order: the non-
linear coefficient β (β12 and β21), the imposed chemical potential µ (µ1 and µ2), the
number of Newton iterations used for this value of µ, the norms associated with ϵF and ϵq

in Eq. (32), the computed value of the chemical potential (computed values of µ1 and µ2),
the number of atoms (6) (the number of atoms in the two components), the GP energy,
the mesh size, the number of degrees of freedom, the CPU time to compute the stationary
state, and the value of the current δµ (δµ1, δµ2).
• BdG eigenvalues are stored in the BdG results.dat file. The columns appear in the
following order: the non-linear coefficient β (β12 and β21), the imposed chemical potential
µ (µ1 and µ2), the eigenvalue number between 0 and nev, the real and imaginary part of
the eigenvalues, the Krein signature and its sign (the Krein signature and its sign for the
two components).
• BdG’s numerical information is stored in the BdG num results.dat file. The columns
appear in the following order: the non-linear coefficient β (β12 and β21), the imposed
chemical potential µ (µ1 and µ2), the non zero element for the BdG matrix, the number
of degrees of freedom, the CPU time to compute the eigenvalues, and the cumulative CPU
time.

2. The Paraview folder contains the wave functions stored as .vtk or .vtu and .pvd files:
• phi init.vtu and phi final.vtu are the initial and final solutions.
• phi mu $mu.vtu contains the stationary wave function for a given value of µ.
• phi mu1 $mu1 mu2 $mu2.vtu contains the stationary wave function for given values of
µ1 and µ2 in the first continuation.
• phi beta12 $beta12 beta21 $beta21.vtu contains the stationary wave function for
given values of β12 and β21 in the second continuation.

3. The Paraview Eigenvectors folder contains the eigenvectors stored as:
• eVec mu $mu $nev.vtu in the one-component code.
• eVec beta12 $beta12 beta21 $beta21 mu1 $mu1 mu2 $nev.vtu in the two-component
code.
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4. The RST folder contains the stationary states stored as FreeFem++ files. The names are:
• RST-$mu.rst or RST-$mu1-$mu2-$beta12-$beta21.rst for the data.
• RSTTh-$mu or RSTTh-$mu1-$mu2-$beta12-$beta21 for the mesh files. The file exten-
sions are .msh (in 2D) or .meshb (in 3D).

5. The RST LL folder contains the stationary states stored as FreeFem++ files. The names
are:
• LL mu1-$mu1 ip-$mu2.rst for the data.
• LLTh mu1-$mu1 ip-$mu2 for the mesh files. The file extensions are .msh (in 2D) or
.meshb (in 3D).

6. The Tecplot folder contains the wave functions stored as .dat Tecplot files:
• phi init.dat and phi final.dat are the initial and final solutions.
• phi mu $mu.dat contains the stationary wave function for a given value of µ.
• phi mu1 $mu1 mu2 $mu2.dat contains the stationary wave function for given values of
µ1 and µ2 in the first continuation.
• phi beta12 $beta12 beta21 $beta21.dat contains the stationary wave function for
given values of β12 and β21 in the second continuation.

7. The Tecplot Eigenvectors folder contains the eigenvectors stored in the Tecplot format:
• eVec mu $mu $nev.dat in the one-component code.
• eVec beta12 $beta12 beta21 $beta21 mu1 $mu1 mu2 $nev.dat in the two-component
code.

8. The Tecplot Eigenvalues folder contains the file BdG results eig.dat that contain all
the eigenvalues stored in the Tecplot format.

8 Summary and conclusions

The experimental realization of single- and two-component BECs in higher spatial dimensions
has admittedly been an exciting journey in understanding the fundamental properties of matter
at ultracold temperatures. In parallel, however, this journey has posed computational challenges
pertaining about not only the existence of matter waves in GP equations (single and two-
component versions thereof) but more crucially, their spectral stability analysis, i. e. BdG
spectrum. The study of the BdG spectrum often results in solving a very large eigenvalue
problem, a task that is quite computationally demanding and requires the use of parallelization.
With the present work, we took up this challenge, and presented as well as delivered a parallel
finite-element toolbox for computing the BdG spectrum of stationary solutions to one- and
two-component GP equations in 2D and 3D.

The toolbox was created with the open-source, finite-element software FreeFem++ which
is now interfaced with parallel libraries such as PETSc and SLEPc. The ability of FreeFem++
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to perform adaptive mesh refinements, together with the use of parallel linear solvers such as
domain decomposition and algebraic multigrid methods in PETSc, makes the present toolbox a
versatile tool for studying 2D and 3D configurations to GP equations within reasonable CPU
times. The computation of the BdG spectrum that is carried out in the present toolbox consists
of two steps. At first, stationary states are identified by using Newton’s method which now
has access to parallel linear solvers from PETSc. Moreover, a natural parameter continuation
method is adopted to obtain branches of solutions to GP equations over the chemical potential µ
or the inter-component interaction parameters β12 and β21. Upon tracing branches of solutions,
the BdG spectrum is computed afterwards by solving the associated eigenvalue problem with
SLEPc.

We successfully verified our toolbox’s results against known theoretical and numerical
findings that have been published in the open literature. We reported typical CPU times that
render the toolbox to be used on ordinary laptops and small workstations (of course, depending
on the complexity of the state of interest). The parameter files of the toolbox correspond
to the test cases we presented in this paper, and they can be used by the user to reproduce
the results. We further provide these files from the scope of getting used as templates, if the
user intends to compute a new BEC setup or case of interest. We hope that the description
and documentation of the toolbox will allow the user in a convenient way to consider other
types of trapping potentials e. g. quartic ± quadratic trapping ones (Bretin et al., 2004), and
nonlinearities, such as the non-local ones appearing in dipolar settings, e. g. see (Tang et al.,
2022).

There is clearly a broad array of future computational explorations and developments
stemming from this work that we briefly mention here. First, we implemented a natural (or
sequential) continuation approach to trace branches of solutions in the present toolbox. It will
be quite interesting to consider other types of continuation approaches in FreeFem++ including
the pseudo-arclength continuation Doedel and Tuckerman (2000); Seydel (2010), asymptotic
numerical method (ANM) Ventura et al. (2020), and deflation-based techniques (Charalampidis
et al., 2018, 2020; Boullé et al., 2020, 2023), among many others. Another possibility concerns
about the interfacing of other libraries for eigenvalue computations, including the FEAST
eigenvalue solver (Polizzi, 2009) which enjoys multiple levels of parallelization(Polizzi, 2023).
Finally, with the recent experimental developments on spinor condensates (Xiao et al., 2021,
2022) described by more than two GP equations (see, e. g. Mithun et al. (2022) where the
authors considered a three-component GP system for studying monopoles and Alice rings), it is
thus timely to bring forth state-of-the-art computing methodologies in order to elucidate the
configuration space of solutions in these experimentally accessible systems. Such computational
studies and software development in FreeFem++ are currently in progress and will be reported
in future contributions.
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P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, I. G. Kevrekidis, Vortices
in bose-einstein condensates: Some recent developments, Mod. Phys. Lett. B 18 (2004)
1481–1505.

A. L. Fetter, Rotating trapped bose-einstein condensates, Rev. Mod. Phys. 81 (2009) 647–691.

M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, E. A. Cornell,
Vortices in a bose-einstein condensate, Phys. Rev. Lett. 83 (1999) 2498–2501.

48



A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, W. Ket-
terle, Imprinting vortices in a Bose-Einstein condensate using topological phases, Phys. Rev.
Lett. 89 (2002) 190403.

C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.-M. Richter, J. Kronjäger,
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D. Vudragović, I. Vidanović, A. Balaz, P. Muruganandam, S. K. Adhikari, C programs for
solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap, Comput.
Phys. Comm. 183 (2012) 2021 – 2025.

L. Kong, J. Hong, J. Zhang, LOD-ms for Gross-Pitaevskii equation in Bose-Einstein condensates,
Communications in Computational Physics 14 (2014) 219–241.

U. Hohenester, OCTBEC a Matlab toolbox for optimal quantum control of Bose-Einstein
condensates, Comput. Phys. Comm. 185 (2014) 194–216.
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