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Abstract: Availability of global satellite based Soil Moisture (SM) data has promoted the emergence
of many applications in climate studies, agricultural water resource management and hydrology.
In this context, validation of the global data set is of substance. Remote sensing measurements
which are representative of an area covering 100 m2 to tens of km2 rarely match with in situ SM
measurements at point scale due to scale difference. In this paper we present the new Indian Cosmic
Ray Network (ICON) and compare it’s data with remotely sensed SM at different depths. ICON is
the first network in India of the kind. It is operational since 2016 and consist of seven sites equipped
with the COSMOS instrument. This instrument is based on the Cosmic Ray Neutron Probe (CRNP)
technique which uses non-invasive neutron counts as a measure of soil moisture. It provides in
situ measurements over an area with a radius of 150–250 m. This intermediate scale soil moisture
is of interest for the validation of satellite SM. We compare the COSMOS derived soil moisture to
surface soil moisture (SSM) and root zone soil moisture (RZSM) derived from SMOS, SMAP and
GLDAS_Noah. The comparison with surface soil moisture products yield that the SMAP_L4_SSM
showed best performance over all the sites with correlation (R) values ranging from 0.76 to 0.90.
RZSM on the other hand from all products showed lesser performances. RZSM for GLDAS and
SMAP_L4 products show that the results are better for the top layer R = 0.75 to 0.89 and 0.75 to 0.90
respectively than the deeper layers R = 0.26 to 0.92 and 0.6 to 0.8 respectively in all sites in India.
The ICON network will be a useful tool for the calibration and validation activities for future SM
missions like the NASA-ISRO Synthetic Aperture Radar (NISAR).
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1. Introduction

Surface Soil Moisture (SSM) plays an important role in the water cycle and surface
energy balance [1], it is as such identified as an Essential Climate Variable (ECV) [2]. The
deeper layers Soil Moisture (SM) is a critical variable for the identification of the available
water for agricultural activities and natural ecosystems, it is referred to in this context as the
Root Zone Soil Moisture (RZSM). The knowledge of SSM and RZSM at both fine (ranging
from cm to 100’s of m) and coarse scale (ranging from 100’s of m to tens of km) find their
applications in various fields like water resource management [3], flood risk assessment [4],
fire risk [5], landslide prediction [6], and vehicle maneuverability [7].

While Thermo-gravimetric technique (oven-drying) and lysometric installation are
the two classical direct in situ methods to measure SM, there exist several means to
measure soil moisture indirectly. These are either via in situ installations or remote sensing
technology [8]. A comprehensive critical review of point-scale methods to measure in
situ SM was provided by Su et al. [9]. Their study included: thermogravimetric and
calcium carbide test, neutron scattering, gamma attenuation, dielectric techniques (Time
Domain Reflectometry-TDR, Frequency Domain Relfectometry-FDR), capacitance probe,
electrical impedance, Ground Penetrating Radar (GPR), electrical resistivity, heat pulse,
MEMS (Microelectromechanical systems), tensiometer and optical reflectance techniques.
They concluded that while none of the techniques fully covers all the requirements, the
most reliable and commonly employed local SM measurement techniques are dielectric
based. These sensors like the Theta Probe (Delta-T Instruments, UK) or the Stevens Hydra
Probe link the electromagnetic propagation of the signal in the soil to the soil water content.

More recently there is the development of novel in situ techniques to estimate soil
moisture locally but at a impact area of 10 to 250 m radius. These techniques include GNSS-
R [10], L-Band UAV radiometers [11], and Cosmic Ray Neutron Probe (CRNP) [12]. Focal
to this paper, are the CRNP which measures the reflected neutrons above ground which
is then correlated to soil moisture. The instrument is called COSMOS (COsmic ray Soil
Moisture Observation System) [12,13]. COSMOS is providing intermediate scale average
soil moisture (250 m radius) [12] which vary spatial between 150–250 m radius [14] weakly
dependent on SM and 0.3–0.7 m depth strongly dependent on SM. While CRNP has the
advantage of being non-invasive it is still impacted by biomass, mineral content in the soil,
organic matter, intercepted water and water in the litter. However, using temporal analysis
these impacts can be subtracted from the signal in order to retrieve the SM [13]. Baatz
et al. [15] developed an empirical formula to calculate the neutron counts for dynamically
changing biomass to apply correction for COSMOS retrieved SM.

Many SM validation networks were developed across the globe for validation purpose
(AMBHAS-Assimilation of Multi-satellite data at Berambadi watershed for Hydrology And
land Surface experiment, NAFE-The National Airborne Field Experiment , SMAPEX-Soil
Moisture Active Passive Experiment, SGP-The Southern Great Plains). Other international
networks like the FLUXNET and the Integrated Carbon Obervation System (ICOS) include
SM measurements and contribute to the validation efforts. The International Soil Moisture
Network (ISMN) collects, consolidate and distributes the data from several of these net-
works [16]. The aforementioned, in situ soil moisture observation are used for crop water
need at plot scale and for enhancing the understanding of local vadose zone hydrology, to
determine spatial soil moisture at large scales. Their main application for large scale is the
validation of spatially distributed SM estimates from remote sensing [17,18].

SM measurements with moderate to good temporal resolution (<3 days) and at coarse
scale (>40 km resolution) can be measured using microwave remote sensing preferably
in microwave frequencies. Several operational satellite missions provide global surface
soil moisture products, such as: the Soil Moisture and Ocean Salinity (SMOS) [19], the Soil
Moisture Active Passive (SMAP) [20], the METOP—A/B Advanced Scatterometer (AS-
CAT) [21], and the Advanced Microwave Scanning Radiometer 2 (AMSR2) [22]. Literature
highlights that the L-Band based products perform better over India when compared with
in situ point measurements [23–25]. It is useful to add that the prediction of SM provided
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by Land Surface Models (LSM) with or without assimilation of SM Earth Observation (EO)
datasets. Attada et al. [26] highlighted the use of coupled LSM and atmospheric models
for the assessment of Indian summer monsoon and determines several factors affecting
the estimates of soil moisture like vegetation, soil properties and irrigation practiced in
the agricultural site. In these conditions, in situ data becomes very critical to assess the
reliability of the models.

Many studies show comparison and validation of satellite SM to the in situ observa-
tions for long time series and a variety of sites. SMEX02 [27] and SMEX03 [28] campaigns
were used to validate AMSR—E, X and C—band soil moisture. SMOS validation is done
over Continental US [29], Australia [30], Europe [31] and China [32], globally [33] to name
a few. Colliander et al. [34] presented an overview of the SMAP validation sites across the
globe. Suman et al. [25] have compared SMAP—L4 product to in situ observations using
data from international soil moisture network (ISMN) and showed the usefulness of the
data. Chakravorty et al. [24] showed SMOS—D has less error than SMOS—A over India
using triple collocation approach with LSM results.

A common critical issue that arises in these validation exercises is the consideration
of the scale mismatch between in situ measurements and EO datasets [17,25,29]. Most
of the satellite soil moisture are validated using point-scale in situ measurements while
the EO estimates are representative of an area from several squared m to several squared
km [35]. In fact, using point-scale sensors it is difficult to measure long temporal data with
regular tillage in agricultural plots and in such situations the sensors will be placed away
from the agricultural field and the soil moisture measurements become approximate [36].
This raised the interest in the Cosmic Ray Neutron Probe (CRNP) observations as it
extends the SM measurements to several 100 of meters. Evans et al., [1] used the COSMOS
data for evaluating JULES (Joint UK Land Environment Simulator) model results in UK.
Kedzior [37] using CRNP data to compare SMOS_L3 and the Global Land Data Assimilation
System (GLDAS) data in triple collocation framework found that SMOS and CRNP has
correlation of 0.59. Kim [38] evaluated AMSR2 data using COSMOS data. Montzka et
al. [36] have compared AMSR2, ASCAT, SMAP, SMOS and GLDAS data with in situ SM
using CRNP over 6 catchments which includes one catchment Singanallur in India and
using triple collocation shows that the SMAP product has less error compared to others.
Although global products are available, few in situ moisture networks are available for
validation purposes in India [23–25,36,39].

In this paper we present the Indian COSMOS Network (ICON) implemented in the
context of a collaboration between UKCEH (UK Centre for Ecology and Hydrology) and
several Indian institutes namely the Indian Institute of Science-Bangalore (3 sites), the
Indian Institute of Technology-Kanpur, the Indian Institute of Tropical Meteorology-Pune,
the National Institute of Hydrology-Roorkee and the University of Agricultural Science-
Dharwad.

The aim of this paper is to present the ICON network and provide a comparison
between the ICON SM versus SSM and RZSM delivered from the SMOS, SMAP, and
GLDAS from 2016 up to 2020. The paper thus investigates whether the COSMOS sensors
are more representative of the surface SM or deeper layers. The performances are analysed
with respect to soil properties and climate. The paper is structured as follows. First the
ICON network and the Soil moisture data sets for SM and RZSM are introduced. Second,
the SM retrieval from COSMOS and the evaluation metrics are detailed. Third the results
and discussion are presented for each site and then a cross the sites with a focus on the
impact of soil depth, climate and soil properties. The paper ends with the conclusions and
recommendations.

2. Description of ICON

COSMOS is based on CRNP theoretical basis which is discussed in detail in [12]. In
brief, the origin of primary cosmic rays used in CRNP can be either from galactic or solar
sources. But the cosmic rays from galactic origin have higher energy and both produce
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neutrons from cascading particle interactions and collisions in the Earth’s atmosphere.
Thus, a source of naturally occurring fast neutrons is generated by the cosmic rays. Fast
neutrons are scattered (losing energy and becoming thermalized) as a result of collision of
particles in the atmosphere and at the ground level. These fast neutrons are very efficiently
scattered by the hydrogen atoms present. In the soil, a major part of hydrogen atoms
present is in the form of soil water and hence the SM changes are inversely related to the
intensity of fast neutrons, measured by the CRNP close to the ground surface [12].

The ICON consists of 7 stations installed across India (see Figure 1). Each station
is equipped with a COSMOS instrument that uses CRNP to sense SM over an area of
approximately 20 hectares (0.2 km2). SM data is produced at a 15 min temporal frequency
and data is made available on daily time scale. The location of all the seven sites are
indicated in Figure 1 with the associated Google Earth aerial photography. Sites cover
latitudes 11◦N to 30◦N and excludes the extreme East and west of India. The location
details and identifications of the stations are mentioned in Table 1. The climate and soil
characteristics of the sites are presented in Table 2. The table shows the diversity of the
regions covered by the network. The access to the details and resources are provided in the
web portal https://cosmos-india.org/. Below, a detailed description of the COSMOS sites
is presented.

Figure 1. Location of the Indian COSMOS Network (ICON) sites. Indian Map is overlayed with the soil texture map of
India (NRSC) where Cl-Clay, Lo-Loam, Sa-Sand, Si-Silt. Photos show the precise location inside the google-earth maps with
a 50 m and 200 m impact area.

https://cosmos-india.org/
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• Berambadi-BMB: The Berambadi watershed (89 km2) is located in the Gundlupet
taluk, Chamrajanagara district of Karnataka in South India and belongs to Kabini
critical zone observatory. The Kabini Critical Zone Observatory is monitored under
the project AMBHAS. The catchment has been instrumented as a Calibration and
Validation (CAL/VAL) site for various satellite missions like SMOS and RISAT-1 under
AMBHAS [40]. The climate in the catchment is sub-humid with annual precipitation
of 800 mm and annual potential evapo-transpiration of 1539 mm based on MOD16
(MODIS global evapotranspiration data). The Köppen Climate Classification is “Aw”:
Tropical Savanna climate. The soil type in the catchment comprises of red soil to
black soil near valley. The major soil types in the region include sandy clay loam,
sandy loam and sandy clay (see Figure 1). Average farm size in the catchment is about
1.2 hectares [40] and about 60% of land is under ground water irrigation and 40% is
rain fed. The major crops in the catchment are turmeric, sunflower, maize, marigold
and vegetables. The main crop in the catchment is grown during Kharif season (May
to September). Rabi crop (October to December) and summer crop (January to April)
is practiced in case if the farmer has access to irrigation [41]. Site is equipped with
flux towers at 10 m height. Weather parameters like global radiation, wind speed,
relative humidity and rainfall are monitored in the tower. SM (Stevens Hydra Probe
and COSMOS), ground water fluctuation and crop dynamics (LAI and crop type) are
monitored in the site.

• Madahalli-MDH: Madahalli microwatershed is located in Gundlupet taluk of Cham-
rajanagara district close to the BMB site. It is an agricultural area. The climate in the
region is semi-arid and the annual precipitation is about 734 mm and annual PET
is 1530 mm (MOD16). The major crop in the area include ragi, sunflower, red gram,
maize and vegetables. Groundwater irrigation is practiced in the catchment. The
Köppen Climate Classification is “Aw”. The weather variables are measured using
flux tower. SM at point scale is monitored using Stevens Hydra Probe and at field
scale is monitored using COSMOS sensor. Crop monitoring and ground water level
monitoring is also carried out in the sites.

• Singanallur-SGR: Singanallur watershed is located in Kollegala Taluk of Chamarajana-
gara district in the southern part of Karnataka state. The annual rainfall in the area
is found to be 780 mm. The potential evapotranspiration in the region is 1476 mm
based on MOD16 data. It is an agricultural area. The major crops grown in the region
are vegetables, sunflower, ragi and maize [42]. The Köppen Climate Classification
is “Aw”: Tropical Savanna climate. Weather variables, crop monitoring and ground
water level monitoring is carried out. SM is monitored using Stevens Hydra Probe
and COSMOS.

• Dharwad-DWD: Dharwad is situated in northern part of Karnataka state which is in
south Indian region with annual rainfall of about 761 mm and min temp 20 °C and
max temperature being 35 °C. The potential evapotranspiration in the region 1639 mm
(MOD16). The major soil type in the region is vertisol. The area is under University of
Agricultural Science (UAS) Dharwad, and is mainly used for scientific studies in the
agricultural sector. The major crops grown in the area are cotton, jowar, maize, wheat,
rice etc. Surface water irrigation is practiced in the region (District Irrigation Plan).
The Köppen Climate Classification is “Bsh”: Hot semi-arid climate. Weather variables
are collected in the site.
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Table 1. Location of the COSMOS sensors across India.

No. Acronym City, State Latitude Longitude Start Date End Date Number of

for Comparison for Comparison Observations

1 BMB Berambadi, Karnataka 11.76◦N 76.58◦E 20 September 2015 19 December 2019 490
2 MDH Madahalli, Karnataka 11.73◦N 76.78◦E 5 February 2016 19 December 2019 1193
3 SGR Singanallur, Karnataka 12.14◦N 77.22◦E 9 June 2015 19 December 2019 1513
4 DWD Dharwad, Karnataka. 15.29◦N 74.59◦E 12 February 2016 19 December 2019 576
5 PNE Pune, Maharashtra 18.32◦N 73.48◦E 29 January 2017 31 May 2019 719
6 KPR Kanpur, Uttar Pradesh 26.30◦N 80.13◦E 19 February 2016 19 December 2019 945
7 HNL Chamba, Uttrakhand 30.33◦N 78.36 ◦E 18 June 2017 19 December 2019 723

Table 2. Characteristics of ICON sites in terms of Climate, Soil properties, and land cover.

No. Name Climate a Soil Type b Rainfall (mm/y) PET (mm/y) LU@ 100 m c LC@ 20 km d

1 BMB * Aw SaL to SaC 800 1539 Crops C & F
2 MDH * Aw SaL to SaC 730 1530 Crops C & F
3 SGR * Aw SaL to SaC 780 1476 Crops C
4 DWD Bsh Clay 760 1639 Trees C
5 PNE Am Sandy Clay loam 650 1699 Trees C & U
6 KPR * Cwa Clay loam 650 1700 Crops (Rice) C & U
7 HNL * Cwa Sandy loam 1120 1791 Crops M & W

0 Köppen Climate Classification: (Aw: Tropical Savanna climate , Bsh: Hot semi-arid climate, Am: Tropical monsoon climate, and Cwa: Humid subtropical climate); 1 SaL: Sandy Loam, SaC: Sandy Clay; 2 Land
use in the proximity of the COSMOS sensor; 3 Major land cover types (+15%) for a 40 km footprint (C: Crops and agricultural fields, F: Forested areas, M: Mountainous region, U: Urban and W: presence of >5%
open water cover); ∗: Presence of Irrigation.
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• Pune-PNE: Pune is located in the central part of India in Maharashtra state. COSMOS
is located inside the campus of Indian Institute of Tropical Meteorology (IITM) and
is mostly covered by vegetation with sparse trees (see Figure 1). The major soil
type in the area is sandy clay loam. The annual average rainfall is about 650 mm.
The potential evapotranspiration in the region 1699 mm (MOD16). The Köppen
Climate Classification is “Am”: Tropical monsoon climate. The site belongs to Indian
Institute of Tropical Meteorology, Pune and is majorly used for scientific research. The
COSMOS sensor is located in the middle of natural vegetation with shrubs and some
small trees to around 4 to 6 m height. The field SM monitored using COSMOS.

• Kanpur-KPR: Kanpur is located in northern part of India in Uttar pradesh state
with average annual rainfall of 650 mm. The soil type in the region is fluvisol (silty
loam) [43]. The potential evapotranspiration in the region 1700 mm (MOD16). The
Köppen Climate Classification is “Cwa”: Humid subtropical climate. COSMOS is
located in an agricultural area maintained by Indian Institute of Technology, Kanpur
which is majorly used for scientific purposes. The site is in an area with sparse trees
adjacent to agricultural plots, and at 2 km to dense urban areas. Weather variables in
the site are collected using flux station.

• Henval-HNL: Henval Valley is located near Chamba town in the Uttarakhand state in
northern India with minimum temperature of 1.1 °C and max temperature of 32.9 °C.
The site is situated on the banks of Henval river. The major soil types in the region are
sandy loam, loam and sandy clay loam. Annual average rainfall is about 1120 mm.
The potential evapotranspiration in the region 1791 mm (MOD16). Irrigation in the
region is either done by tapping spring water or by using surface water.The Köppen
Climate Classification is “Cwa”: Humid subtropical climate.

3. Spatial Soil Moisture Datasets
3.1. Satellite Data

Remote sensing data can be either passive or active based on whether the satellite
instrument measures naturally emitted electromagnetic radiation from the Earth or its
atmosphere, or whether the satellite instrument sends out a beam of radiation and detects
its backscatter. In the present work passive remote sensing data has been used. The soil
moisture analysis is done at both microwave and optical wavelengths of electro magnetic
spectrum. Optical wavelengths are obstructed by cloud cover and hence only microwave
wavelength is used in the current study. The naturally emitted radiation from Earth's sur-
face and overlying atmosphere is a complex function of the microwave radiative properties
of the emitting body [44]. In passive microwave methods, the thermal emission of land
surface is measured as brightness temperature (TB) at microwave wavelengths, using a
radiometer and can be described as a simple function of the physical temperature of the
emitting body and the emissivity of the body. The brightness temperature received at
the sensor depends on many factors such as surface roughness, vegetation and relative
permittivity (dielectric constant) related to soil texture [45]. Longer wavelengths can pene-
trate deeper and can also penetrate vegetation [46]. In the literature studies already show
how SMOS and SMAP are showing promising data sets over India [23,24] and hence in
the current study these two passive microwave remote sensing satellites are used and are
explained in this section. Thus in our study we wanted to examine how SM from COSMOS
is comparing with respect to satellite soil moisture and land surface model mentioned in
the table (see Table 3).
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Table 3. Description of satellite products and LSM data used in the study for surface SM comparison.

Product Sensor Resolution Grid Resolution Temporal Resolution Start Date End Date
for Comparison for Comparison

SMOS_L2_SM_A 40 km 15 km 2–3 d 1 January 2016 31 December 2019
SMOS_L2_SM_D 40 km 15 km 2–3 d 1 January 2016 31 December 2019
SMOS_L4_RZSM - 25 km 3 d 1 January 2016 31 December 2019
SMAP_L3_SM_A 40 km 36 km 2–3 d 1 April 2015 16 May 2020
SMAP_L3_SM_D 40 km 36 km 2–3 d 1 April 2015 16 May 2020

SMAP_L4 - 9 km 3 h 1 January 2016 7 August 2020
GLDAS_Noah - 22 km 3 h 1 January 2016 30 March 2020

A: Ascending, D: Descending; SMAP_L4 includes 2 minor products SSM (0–5 cm) and RZSM (0–100 cm); GLDAS includes 4 minor products
layer 1 SM at (0–10 cm), layer 2 SM at (10–40 cm), layer 3 SM at (40–100 cm) and layer 4 SM at (100–200 cm); SMOS_L4 has one product
RZSM (0–100 cm).

3.1.1. Soil Moisture and Ocean Salinity Satellite (SMOS) Data

The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009 is
a joint earth explorer mission of ESA (European Space Agency), Centre National d'Etudes
Spatiales (CNES) and Centro para el Desarrollo Tecnologico Industrial. It is the first
space borne mission dedicated to soil moisture mapping. SMOS retrieves soil moisture
and vegetation optical depth (g) simultaneously using multi-angular full-polarization
observation from an L-band 2D interferometric radiometer. The nominal spatial resolution
of SMOS is 40 km with a revisit of 3 d at the equator (see Table 3). The SMOS SM retrieval
algorithm assumes default values for certain units of target (default contribution) and
estimates the state of the soil moisture dependent unit surfaces by minimizing the difference
between the observed and modeled signal derived from the last best guess [47]. SMOS data
over India is impacted by Radio Frequency Interference (RFI) at variable levels. In this study,
SM was extracted from the SMOS_L2 UDP SM product version 650. A threshold of 0.5 for
RFI— probability and 0.5 of goodness of fit Chi2—prob was used to filter the data. The data
can be downloaded from website https://smos-diss.eo.esa.int/oads/access/. Apart from
SMOS_L2, SMOS_L4 RZSM product was also used in the study for comparison. SMOS_L4
which is obtained from SMOS surface soil moisture with complementary information from
soil texture, MODIS LAI, and the European Center Medium Weather Forcast ECMWF
center weather data [48]. The product consist of daily global root zone soil moisture over
the EASEV2 25 km Cylindrical grid. It is representative of 0 to 1 m soil depth. The data can
be downloaded from website https://www.catds.fr/Products/Products-access/.

3.1.2. Soil Moisture Active Passive (SMAP) Data

The Soil Moisture Active Passive (SMAP) mission is the first Earth observation satellite
dedicated to SM developed by the United States National Aeronautics and Space Adminis-
tration (NASA). It was launched in January 2015. SMAP mission provides high resolution
soil moisture data and freeze/thaw state globally every 2–3 days with 3, 9, and 36 km
resolution (see Table 3). SMAP supposed to operates in both active and passive modes, as
the payload included a radar and a radiometer, both operating at L-band (at incidence angle
\ = 40°) but the radar stopped acquisition after 3 month of the mission. SMAP radiometer
is equipped with a spectral filtering which can mitigate for the impact of low to mild RFI
sources. The spatial resolution of the radiometer is ≈39 km × 47 km. The main input
to the SM retrieval algorithm are the time-ordered, geo—located, calibrated brightness
temperatures at top of atmosphere. In addition to TB observations, the algorithm uses
ancillary data sets for the SM retrieval. These include surface temperature, opacity of vege-
tation, vegetation scattering albedo, roughness, soil texture, data flags for identification of
land cover. Both ascending orbit and descending orbit data are now available [49]. In this
study, SMAP_L3_SM, version 6.0 from ascending and descending orbits are evaluated over
experimental sites. In addition, the SMAP_L4_SSM and SMAP_L4_RZSM [50] which are
based on data assimilation into a GEOS Catchment Land Surface and Microwave Radiative

https://smos-diss.eo.esa.int/oads/access/
https://www.catds.fr/Products/Products-access/
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Transfer Model are used in the comparison. The SMAP data can be downloaded from
website https://smap.jpl.nasa.gov/data/.

3.2. Land Surface Model

Global Land Data Assimilation System (GLDAS) is generating optimal fields of land
surface states and fluxes, by combining satellite and ground based observational data
products using advanced land surface modeling and data assimilation techniques [51].
The forcing into the models are from Princeton meteorological forcing input data and
provides data from 2000 till present. In the current study, GLDAS_Noah version 2.1
products were downloaded from the NASA EARTHDATA webportal. The product is
off-line (i.e., not coupled to the weather model) and it is a gridded 1D model (vertical fluxes
only). GLDAS 2.1 includes three LSM: Noah-3.6, Community Land model(CLM-F2.5) and
Variable Infiltration Capacity (VIC-4.1.2). The Noah-3.6 selected for this study, provides a
full set of hydro-meteorological data including SM at 3 h time intervals over a regular grid
at 0.25◦ spatial resolution (see Table 3). The model gives output in four soil layers, 0–10
cm, 10–40 cm, 40–100 cm and 100–200 cm. In this study, all layers were considered for the
COSMOS data comparison separately and no further filtering is applied to the dataset. The
data can be downloaded from website https://ldas.gsfc.nasa.gov/gldas/.

4. Methodology
4.1. Calibration of the COSMOS

The calibration of the soil moisture estimation from COSMOS is done using the
calibration function proposed by [52].

\E =
d13

dF

(
00

(
#2>AA

#0
− 01

)−1

− 02

)
(1)

where \E is volumetric water content (m3/m3), #0 is ref count rate over dry soil, 00, 01, 02
are fitting parameters, d13 is dry bulk density of soil in (g/cm3), dF is the density of liquid
water (≈1 g/cm3), and #2>AA is the neutron count rate corrected for humidity at the time
of measurement.

#0 is calibrated for every site by taking in situ SM at the time of measurement of
neutron intensity. At each site 3 circles were marked with radius of 5 m, 30 m and 105 m
(see Figure 2) from the location of sensor. In each circle 6 sampling points were marked at
equal distances to each other. At each point (total 18 points) 6 sampling depths considered
at 5 cm distance. Thus making it total of 108 samples per site for calibration. These are
calibrated against #0 value over dry soil. The fast neutron counts were corrected for
humidity. The processing of the data collected from site was done at Centre for Ecology
and Hydrology (CEH) in UK following procedure given in [12]. All retrieved values that
corresponded to non-physical values (SM > Saturation capacity of the soil) were filtered
out. This mainly occur during very wet conditions. The processed data (Supplementary
Material Figures 1.1 to Figure 1.7) is analysed in this study. The SM data acquired from the
above mentioned sources were tested at seven different locations across India in this paper.

 https://smap.jpl.nasa.gov/data/
https://ldas.gsfc.nasa.gov/gldas/
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Figure 2. Soil sample strategy for the calibration of the COSMOS sensors. Sampling locations are
marked with red circles.

4.2. Evaluation Metrics

Validation of the data between observed and product is commonly carried out using
metrics like RMSE (Root Mean Squared Error), Pearson’s correlation coefficient (R), bias
and unbiased RMSE (ubRMSE) [20,25,53]. The same set of metrics were considered in
this study.

• RMSE: Root Mean Squared Error

'"(� =

√
�

[
(\?A>3D2C − \�$("$()2

]
(2)

where, �[.] is expectation operator. \?A>3D2C is the SM from spatial products, and
\�$("$( is ICON-COSMOS soil moisture.

• R: Pearson’s correlation coefficient

' =
2>E

(
\?A>3D2C , \�$("$(

)
f\?A>3D2C ∗ f\�$("$(

(3)

where f\?A>3D2C and f\�$("$( are variances of time series of \?A>3D2C and \�$("$(

respectively.

• Bias
�80B = �

[
\?A>3D2C

]
− � [\�$("$(] (4)

• ubRMSE: Unbiased RMSE

D1'"(� =

√
�

[ [ (
\?A>3D2C − � [\?A>3D2C ]

)
−

(
\�$("$( − � [\�$("$(]

) ]2
]

(5)

5. Results

The comparison plots for all the sites are given in this section site wise. The R, RMSE,
ubRMSE and bias are shown in Tables 4–6 for the all SSM products, for the SMAP_L4 and
SMOS_L4, and GLDAS against ICON-COSMOS data respectively. Figures 3–6 provide
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time series plots over each ICON site for the ICON-COSMOS data and SSM from SMAP
and SMOS products, SMAP_L4 and SMOS_L4 products, and GLDAS data, respectively.
Below is the site by site description of the results.

• Berambadi-BMB: COSMOS SM time series (see Figure 6a) over BMB show high fluctua-
tions during crop growth season, which can be explained by the impact of irrigation as
the instrument is installed in a groundwater irrigated agricultural plot. The mean, max-
imum and minimum COSMOS SM over this site are 0.16 (m3/m3), 0.42 (m3/m3) and
0.07 (m3/m3), respectively. SM in Berambadi from different satellite and GLDAS prod-
ucts showed R values of 0.62, 0.66, 0.41, 0.52 and 0.76 for SMAP_L3_A, SMAP_L3_D,
SMOS_L2_A, SMOS_L2_D and GLDAS respectively. The performance of GLDAS
shows the best results, followed by SMAP and then SMOS products. Comparison of
COSMOS with GLDAS RZSM data set (see Figure 6a) shows R values of 0.76, 0.77, 0.73
and 0.69 for (0–10 cm), (10–40 cm), (40–100 cm) and (100–200 cm) respectively. The
performances for first and second layers are similar. For deeper layers the correlation
decreases significantly. In the case of SSM and RZSM from SMAP the R values were
of 0.8 and 0.72 respectively. The RZSM from SMOS_L4 shows R value of 0.67. The
SSM has a significantly higher correlation (see Figure 5a).

Table 4. Comparison matrix between COSMOS and satellite products.

Sites

SMAP_L3_A SMAP_L3_D

RMSE bias R ub n RMSE bias R ub n
( m3

m3 ) ( m3

m3 ) RMSE ( m3

m3 ) ( m3

m3 ) RMSE

BMB 0.05 0.01 0.62 0.05 152 0.05 −0.01 0.66 0.05 352

MDH 0.05 0.02 0.73 0.05 143 0.05 0.00 0.76 0.05 321

SGR 0.08 0.06 0.71 0.04 163 0.07 0.05 0.81 0.04 367

DWD 0.06 −0.03 0.87 0.05 142 0.07 −0.04 0.82 0.05 319

PNE 0.06 0.04 0.83 0.04 92 0.03 0.01 0.88 0.03 198

KPR 0.33 0.18 0.89 0.12 141 0.23 0.19 0.82 0.14 318

HNL 0.21 0.17 0.73 0.11 103 0.21 0.19 0.74 0.10 206

Sites

SMOS_L2_A SMOS_L2_D

RMSE bias R ub n RMSE bias R ub n
( m3

m3 ) ( m3

m3 ) RMSE ( m3

m3 ) ( m3

m3 ) RMSE

BMB 0.10 −0.02 0.41 0.09 386 0.07 −0.002 0.52 0.07 563

MDH 0.08 0.00 0.52 0.08 393 0.06 0.01 0.62 0.06 540

SGR 0.09 0.03 0.42 0.09 391 0.08 0.03 0.52 0.07 539

DWD 0.08 −0.02 0.66 0.08 419 0.07 0.02 0.79 0.07 532

PNE 0.13 −0.07 0.50 0.11 164 0.07 −0.01 0.74 0.07 314

KPR 0.28 0.23 0.71 0.16 316 0.24 0.18 0.68 0.15 497

HNL NA NA NA NA NA NA NA NA NA NA

n: the number of mutual observations between product and in-situ observations.
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Table 5. Comparison matrix between COSMOS SMAP_L4 and SMOS_L4 root zone soil moisture products.

Sites

SMAP_L4_SSM SMAP_L4_RZSM SMOS_L4_RZSM

rmse bias R ub n rmse bias R ub n rmse bias R ub n
( m3

m3 ) ( m3

m3 ) ( m3

m3 ) ( m3

m3 ) ( m3

m3 ) ( m3

m3 )

BMB 0.07 −0.05 0.80 0.05 1415 0.10 −0.09 0.72 0.04 1425 0.05 -0.01 0.67 0.05 1448

MDH 0.06 −0.03 0.80 0.05 1380 0.09 -0.08 0.72 0.05 1390 0.09 0.06 0.54 0.06 1413

SGR 0.08 0.06 0.81 0.04 1415 0.04 0.01 0.74 0.04 1425 0.07 0.04 0.42 0.05 1448

DWD 0.09 −0.06 0.90 0.07 1373 0.10 −0.09 0.86 0.04 1383 0.03 0.01 0.89 0.03 1406

PNE 0.08 −0.05 0.83 0.06 853 0.11 −0.10 0.75 0.05 845 0.04 0.01 0.89 0.04 853

KPR 0.29 0.25 0.79 0.14 1366 0.27 0.21 0.74 0.17 1376 0.28 0.20 0.66 0.19 1399

HNL 0.14 0.09 0.76 0.10 915 0.13 0.06 0.66 0.11 903 0.32 0.28 0.20 0.14 915
ub: ubRMSE, n: the number of mutual observations between product and in-situ observations. rmse: RMSE

Table 6. Comparison matrix between COSMOS and GLDAS root zone soil moisture products.

Sites

GLDAS_Layer1 (0 to 10 cm) GLDAS_Layer2 (10 to 40 cm)

RMSE bias R ub n RMSE bias R ub n
( m3

m3 ) ( m3

m3 ) RMSE ( m3

m3 ) ( m3

m3 ) RMSE

BMB 0.14 −0.13 0.76 0.06 1449 0.14 −0.13 0.77 0.06 1449

MDH 0.07 −0.04 0.70 0.06 1414 0.07 −0.04 0.69 0.06 1414

SGR 0.06 −0.01 0.78 0.06 1449 0.06 0.00 0.71 0.06 1449

DWD 0.07 −0.03 0.82 0.06 1407 0.06 −0.03 0.85 0.05 1407

PNE 0.06 −0.05 0.89 0.03 853 0.08 −0.08 0.94 0.02 853

KPR 0.26 0.20 0.63 0.17 1400 0.26 0.20 0.62 0.17 1400

HNL 0.16 0.12 0.75 0.11 915 0.16 0.12 0.78 0.11 915

Sites

GLDAS_Layer3 (40 to 100 cm) GLDAS_Layer4 (100 to 200 cm)

RMSE bias R ub n RMSE bias R ub n
( m3

m3 ) ( m3

m3 ) RMSE ( m3

m3 ) ( m3

m3 ) RMSE

BMB 0.14 −0.12 0.73 0.07 1449 0.19 −0.19 0.69 0.05 1449

MDH 0.08 −0.02 0.61 0.08 1414 0.12 −0.10 0.60 0.06 1414

SGR 0.08 0.02 0.58 0.08 1449 0.10 −0.09 0.50 0.05 1449

DWD 0.07 −0.03 0.85 0.06 1407 0.10 −0.10 0.84 0.03 1407

PNE 0.08 −0.07 0.92 0.03 853 0.14 −0.13 0.86 0.05 853

KPR 0.27 0.21 0.52 0.18 1400 0.23 0.13 0.39 0.20 1400

HNL 0.18 0.13 0.62 0.12 915 0.18 0.12 0.26 0.14 915

n: the number of mutual observations between product and in-situ observations.

• Madahalli-MDH: COSMOS sensor located in Madahalli site is also in an agricul-
tural field (see Figure 1). The site is close to the Berambadi site. The mean, maxi-
mum and minimum SM from COSMOS sensor are 0.18 (m3/m3), 0.40 (m3/m3) and
0.065 (m3/m3) which very close to the Berambadi site. SM comparison with different
SSM products SMAP_L3_A, SMAP_L3_D, SMOS_L2_A, SMOS_L2_D and GLDAS
shows R value of 0.73, 0.76, 0.52 0.62 and 0.70 respectively. This shows the product
SMAP_L3_D and GLDAS are performing equally well in this site for SM comparison
(see Table 4). RZSM analysis shows that for GLDAS product at (0–10 cm), (10–40 cm),
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(40–100 cm) and (100–200 cm) shows R values of 0.7, 0.69, 0.61 and 0.6 respectively
(see Figure 6. In Madahalli site the best performance is obtained like for BMB at
(0–10 cm) and (10–40 cm) depths. For SMAP_L4 product R value was of 0.8 and 0.72
for SSM and RZSM respectively, showing significantly better performances for SSM
(see Figure 5b). SMOS_L4 RZSM showed R value of 0.54 which is significantly less
compared to SMAP_L4.

• Singanallur-SGR: Singanallur site is an irrigated agricultural plot (see Figure 1) with
mean, maximum and minimum SM from COSMOS of 0.244 (m3/m3), 0.44 (m3/m3)
and 0.11 (m3/m3), respectively. The higher mean value is consistent with the fact that
this soil in the site has a higher percentage of clay than the Berambadi and Madahalli
sites (see Figure 1). SSM from SMAP_L3_A, SMAP_L3_D, SMOS_L2_A, SMOS_L2_D
and GLDAS show values of R 0.71, 0.81, 0.42, 0.52 and 0.78 respectively (see Table 4).
From the values in the Tables 5 and 6 it can be seen that the performance of SMAP_L4
SSM and GLDAS are giving best performance (see Figures 5 and 6). The RZSM from
GLDAS at (0–10 cm), (10–40 cm), (40–100 cm) and (100–200 cm) shows R values of
0.78, 0.71, 0.58 and 0.5 respectively, (see Figure 6c) showing close results for (0–10 cm)
and (10–40 cm) depth. The COSMOS value is comparable to 0–40 cm from GLDAS
product with good performance. The SMAP_L4 SSM and RZSM comparison shows
values of R as 0.81 and 0.74, respectively (see Figure 5c), which is close to GLDAS
performance.SMOS_L4 RZSM shows R value of 0.42 which is lower as compared to
SMAP_L4 and GLDAS products.

• Dharwad-DWD: The COSMOS data time series shows a mean value of 0.17, maximum
of 0.34 and minimum of 0.08 (m3/m3), respectively. SMAP_L3_A (R = 0.87) outper-
forms other products followed by GLDAS (R = 0.82) then SMAP_L3_D (R = 0.82) then
SMOS_L2_D (R = 0.79) and SMOS_L2_A (R = 0.66) (see Table: 4). All SSM products
have good performances over this site. The RZSM comparison between GLDAS
products and COSMOS (see Figure 6d) showed best comparison at all depths indicat-
ing minor differences in soil moisture across depths. The performance at all depths
showed higher R values 0.82, 0.85, 0.85 and 0.84 respectively at depths (0–10 cm),
(10–40 cm), (40–100 cm) and (100–200 cm) (see Table 6). Comparison of RZSM from
SMAP_L4 and COSMOS (see Figure 5d) products showed better results at top layer
with R value of 0.9 compared to deeper (R = 0.86) and from SMOS_L4 showed R value
of 0.89 close to SMAP_L4.

• Pune-PNE: The site is located in a vegetated cover with sparse trees. The mean
COSMOS SM value was 0.238 (m3/m3), maximum was 0.404 (m3/m3) and minimum
0.142 (m3/m3). The higher mean and minimum value can be attributed to the presence
of sparse trees that preserve the soil moisture combined to the higher percentage clay
in this site (see Figure 1). Over this site the SSM performance of GLDAS (R = 0.89) is
best followed by SMAP_L3_D (R = 0.88) then by SMAP_L3_A (R = 0.83), SMOS_L2_D
(R = 0.74), SMOS_L2_A (R = 0.50) (see Table: 4). The RZSM data comparison between
GLDAS and COSMOS (see Figure 6e) is showing very good performance at all depth
with best performance at depth 10–40 cm with R value of 0.94. Comparison with
SMAP_L4 and COSMOS (see Figure 5e) data showed better performance at top layer
(R = 0.83) in comparison to the deeper layer (R = 0.75). Comparison of COSMOS with
SMOS_L4 showed R value of 0.89.

• Kanpur-KPR: The comparison of SM from COSMOS sensor to spatial SM at the Kanpur
site poses several challenges, the sensor is a non-representative area in a rice field
with high dense urban areas (25% of the satellite footprint). The maximum value of
soil moisture reported in this site reaches extremely high values above soil saturation
(>0.50 (m3/m3)) because of standing water and was filtered out. The minimum is
0.117 (m3/m3) and the average 0.40 (m3/m3). The effect of irrigation is captured in
the COSMOS measurements and not by any other products considered in the study
indicated by peaks in COSMOS data when compared to products. All products show
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high bias that is explained by the reasons presented above, in fact the impact of urban
areas is similar to bare rocks and induces negative bias in the retrieved SM. SMOS data
shows some outliers (see Figure 3f). The performance of SMAP_L3_A (R = 0.89) shows
the best performance followed by SMAP_L3_D (R = 0.82) then SMOS_L2_A (R = 0.71),
SMOS_L2_D (R = 0.68) and then GLDAS (R = 0.63) (see Table 4). This shows that urban
areas impacts the bias of the retrievals and to a much lesser extent the correlation as
the urban environment is static bare rocks in passive microwave. This is true provided
that zero to low levels of RFIs are from the urban environment. The RZSM comparison
with GLDAS and COSMOS (see Figure 6f) showed best performance at depths 0–10 cm
and 10–40 cm. The R values were 0.63 and 0.62 respectively. Comparison of SMAP_L4
and COSMOS (see Figure 5f) showed better R values for top layer as compared to
deeper layer (0.79 and 0.74 respectively). Comparison of COSMOS with SMOS_L4
show R value of 0.66.

• Henval-HNL: The time series of COSMOS SM at the site has a mean value of 0.416
(m3/m3), maximum of 0.812 (m3/m3), and minimum of 0.183 (m3/m3). These high
values are expected as the site is in a subtropical humid region in the Himalayas
with 1120 mm/y of rainfall. Moreover the site is situated in a high altitude valley
that experiences snow melting (see Figure 1). Rice cultivation is practiced in plots
in the footprint of the COSMOS sensor and periodic irrigation for rice crops is seen.
The local irrigation effect is very well captured in the COSMOS measurements and
is not reflected to the same extent in the spatial products. This can be explained
by the relatively small surface cover of the agricultural area when compared to the
footprint of the satellite data. It is also worth mentioning that the site is located over
mountainous region that impacts the SM retrieval in microwave. The performance
of GLDAS (R = 0.75), SMAP_L3_A (R = 0.73) and SMAP_L3_D (R = 0.74) shows
similar results with slight variations (see Table 4). SMOS data is not valid for this
site (see Figure 3g) due to very high levels of RFIs and high topographic index. The
RZSM comparison between GLDAS and COSMOS (see Figure 6g) showed better
performance at depth of 10–40 cm. The R values at depths (0–10 cm), (10–40 cm),
(40–100 cm) and (100–200 cm) show 0.75, 0.78, 0.62 and 0.26 respectively. Comparison
with SMAP_L4 data and COSMOS data showed better result for top layer with R value of
0.76 in comparison to deeper layer which reported 0.66 R value (see Figure 5g).
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 3. Time series of surface soil moisture from SMAP_L3 data and ICON-COSMOS for Berambadi(BMB) (a), Mada-
halli(MDH) (b), Singanallur(SGR) (c), Dharwad(DWD) (d), Pune(PNE) (e), Kanpur(KPR) (f), and Henval(HNL) (g) sites.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 4. Time series of surface soil moisture from SMOS_L2 data and ICON-COSMOS for Berambadi(BMB) (a), Mada-
halli(MDH) (b), Singanallur(SGR) (c), Dharwad(DWD) (d), Pune(PNE) (e), Kanpur(KPR) (f), and Henval(HNL) (g) sites.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 5. Time series of root zone soil moisture from SMAP_L4 SSM, SMAP_L4 RZSM, SMOS_L4 RZSM and ICON-COSMOS
for Berambadi(BMB) (a), Madahalli(MDH) (b), Singanallur(SGR) (c), Dharwad(DWD) (d), Pune(PNE) (e), Kanpur(KPR) (f),
and Henval(HNL) (g) sites.
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(a) (b)

(c) (d)

(e) (f)

(g)
Figure 6. Time series of soil moisture at (0–10cm) and (10–40cm) depth from GLDAS and ICON-COSMOS for Beram-
badi(BMB) (a), Madahalli(MDH) (b), Singanallur(SGR) (c), Dharwad(DWD) (d), Pune(PNE) (e), Kanpur(KPR) (f), and
Henval(HNL) (g) sites.
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6. Discussions
6.1. Surface and Root-Zone SM versus COSMOS Measurements

We have a network of cosmos sites (ICON), and we are using this to validate EO and
model SM. From the site-by-site results of SMAP_L4 SSM and RZSM based on Table 5, it is
clear that the performances depend on the associated soil depth of the SM. The correlation
was higher for the SSM compared to RZSM for all sites with the following differences
(RSSM-RRZSM): 0.08, 0.08, 0.07, 0.04, 0.08, 0.05, and 0.10 for BMB, MDH, SGR, DWD, PNE,
KPR and HNL respectively. Also when considering the four different soil depths associated
with GLDAS dataset (see Table: 6) the correlation decreases systematically with soil depth
for BMB (from R = 0.76 to R = 0.69), MDH (from R = 0.7 to R = 0.6), SGR (from R = 0.78 to
0.5), KPR (from R = 0.63 to 0.39), and HNL (from R = 0.76 to 0.26). The only two sites where
the correlation didn’t show this pattern are DWD (from R = 0.82 to 0.5) and PNE (from
0.89 to 0.86). Our results show that when comparing COSMOS measurements to spatial
soil moisture data at coarse scale that SSM is a better match than RZSM. Yet, interestingly,
the SMAP_L4 SSM provided a better match than SMAP_L3 SSM and GLDAS first layer.
And the SMAP products show better results in all sites compared to SMOS products.
SMOS_L4 RZSM shows good performance in two sites DWD and PNE. Also the bias
from SMOS_L4 is lower compared to SMAP_L4 product. The SMAP_L4 SSM is provided
by assimilation of SMAP data into a LSM with a first layer at a deeper representative
depth than SMAP_L3 SSM. So, while the correlation was higher for SSM, the best match
with COSMOS was an intermediate information provided by modeling and corrected
by the remote sensing data via assimilation. Moreover, as mentioned in [54], while the
majority of the measured COSMOS signal originates from the near-surface of the soil, a
finite influence of deeper soil layers is present. The effective sensing depth will depend
on surface conditions and soil properties. Since soil properties profile shows a strong
transition at around 20–25 cm depth in the agricultural fields at ICON, this can have an
impact on the effective sensing depth. The notion of effective sensing depth concerns also
the L-Band microwave observation from remote sensing. [55] found a 2.5 cm effective
depth over frozen and thawed soils in the Tibetan Plateaus. While [56] associated a more
commonly admitted 5 cm effective depth over South-west of France in temperate climate.
Indeed, microwave radiative transfer theory in remote sensing shows that the effective
depth is variable and can even reach more than 1 m in very special cases of dry desert
sand (not encountered over ICON sites) [57]. One last component that can intervene in this
comparison is the spatial aggregation through the impact area of COSMOS (200 m), and
antenna footprint (40 km) for the remote sensing data. In the two cases, the aggregation
(convolution) of the sensed signal over heterogeneous surfaces to determine soil moisture
can redefine the final effective sensing depth.

6.2. Performances with Respect to Soil Properties and Climate Information

Here we attempt to assess the relation between the soil properties and climate condi-
tion (Climate class, Rainfall and PET). We consider the most performing dataset namely
SMAP_L4 SSM for SMAP products and SMOS_L4 RZSM for SMOS products in this analy-
sis. It is also important to bear in mind that the results are obtained based on the seven
COSMOS stations and therefore can be under-sampled. Nonetheless, the following re-
marks can be stated. In Figure 7a, there is a tendency to have increased correlation with
clay % and the best correlation are obtained for clay >40%. When compared between
SMOS_L4 RZSM and SMAP_L4 SSM at lower % clay SMOS is showing lower R values in
comparison to SMAP. The tendency is less visible in the ubRMSE. This suggests that the
soil retention capacity which increases with % clay and which also increases the time of
residence of the water in the depth (0–5 cm) of the soil enhances the match between the
satellite SM and the COSMOS data. Figure 7b shows performance metrics as a function
of the climatic classes. The comparison is highest for the Bsh: Hot to semi-arid climate,
but represented by one site which makes it difficult to draw conclusions. Same can be
said for Am: Tropical monsoon climate. Cwa:Humid subtropical climate and Aw: Tropical
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Savanna climate are represented by several sites. The results show that the drier Aw has
better R and lower ubRMSE than the wetter Cwa. So the drier conditions present better
performances. This slightly confirmed by Figure 7c where we see lower correlation for
high rainfall. Unfortunately the sampling off the ICON network is not dense enough to
draw major conclusions on this section, but the results suggest that a global analysis with
other COSMOS networks is of interest. However, SMOS_L4 RZSM shows lower R values
for Aw and Cwa climate and bias is also in the same range. Climate classes Am and Bsh
are showing similar R values, rather a little higher and bias is also lower from SMOS_L4
RZSM data. This may be due to lower RFI interferences in Am and Bsh climate. Lower
correlation values are seen for lower rainfall and PET values from SMOS_L4 RZSM.

(a) (b)

(c) (d)

Figure 7. Performance Analysis of SMAP_L4 SSM and SMOS_L4 RZSM over the ICON sites with
respect to % of Clay (a), Köppen Climate classification (b), Average yearly Rainfall (c), and Average
yearly PET (d). R1 and ubRMSE1 corresponds to SMAP_L4 SSM and R2 and ubRMSE2 corresponds
to SMOS_L4 RZSM which are the best performing products among SMAP and SMOS.

6.3. Matching In Situ and Satellite Data Footprint

The case of the BMB and MDH provides a an opportunity for inter-comparison as the
two sites are separated by ≈ 20 km which gives a 30% common surface footprint for the
microwave sensors. The SMAP_L3 and SMOS_L2 SM still shows a significant difference
in terms of correlation X(SM(BMB)-SSM(MDH)) ≈ 0.11 while the bias remains low. This
difference can be mainly explained by the difference of the complementary land cover. As
BMB and MDH have 53% and 33% contribution associated to the “Bandipur National Park”
forest land cover respectively. This comparison raises the question of the impact of the
match between the land use at the COSMOS footprint and the land cover of the satellite
data footprint across all the stations (see Table 2). When looking at the statistical results
across all dataset it seems that the retrievals are not highly impacted with this mismatch
in terms of correlation. The most notable difference is the bias over the two northern
sites (KPR and HNL) which were analyzed in the previous section. The two sites have
in common a “Cwa” climate class and are near the Himalayan mountain chain that may
impact the microwave signal. [25] evaluated SMAP_L3 SM products with in situ point
measurements and reported R values of 0.72, 0.71 and 0.67 over Uttarpradesh (UP) and
Madyapradesh (MP) and Gujrat, respectively. Our results over KPR which is in UP shows
higher R values for both SMAP_L3_A and SMAP_L3_D of 0.893 and 0.818, respectively.
Also the metrics over PNE site in Maharashtra located the central part of India close to MP
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shows higher R value of 0.827 and 0.877 for SMAP_L3_A and SMAP_L3_D respectively.
These results can be attributed partially to the better sampling footprint of the COSMOS
sensor. SMAP_L3 showed better performance than SMOS _L2 but at a smaller extent
than [25,36] that used SMOS_L3 products. Worth mentioning that the spatial mismatch of
the footprint can be traded for temporal resolution as in the case of SMAP, SMOS also shows
higher values of R when average soil moisture is used as compared to point scale [53].
Considering the size of the COSMOS footprint it is clear that disaggregated SM products
like in [23] and future products from the Indian Space Research Organisation (ISRO) and
NASA, Synthetic Aperature Radar (SAR) - NISAR - will be a better fit. In fact disaggregated
product combining microwave and SAR are at good accuracy for 500 m resolution and the
NISAR mission is expected to provide SSM maps at 200 m spatial resolution and 12 days
revisit from L-Band and S-band SAR.

7. Conclusions

ICON, a COSMOS based monitoring network was installed across seven locations in
India covering four climate classes and a variety of soil properties. This paper presents the
seven sites and the first results from the seven sites of the network. Satellite SSM and RZSM
from SMAP and SMOS and GLDAS SM product were evaluated against the COSMOS in
situ soil moisture from 2016 to end of 2019. Hereby a summary of the main results in this
paper are presented.

While the COSMOS sensor provides an intermediate resolution, one sensor cannot
provide a proper sampling of the passive microwave footprint. Still, our results show
that surprisingly the comparison between the spatial datasets and the COSMOS sensors
provides high correlation and low bias in the majority of the cases. The urban cover had a
low impact on correlation and induce a high negative bias, provided that low level of RFI
are present.

The SM analysis shows best performance for SSM SMAP_L4 with R values 0.76 to 0.9
and GLDAS (0–10 cm) with R values 0.75 to 0.89. Our results also show that the COSMOS
sensors are systematically more highly correlated to SSM than RZSM. The RZSM in GLDAS
at depth 10-40 cm with R values 0.66 to 0.86 showed better performance than SMAP_L4 at
deeper layers 0.62 to 0.94. Performances seemed to increase with %clay in the soil texture
with best performances for %clay more than 40%. However, the performance of COSMOS
is affected by structure of the soil, water content and depth hence more research in this area
is necessary. In conclusion, ICON proves to be a very important asset for the CAL/VAL of
SM products. Clearly, the optimal usage of the ICON Network for validation would be to
use <500 m spatial resolution SSM. The good performances of the coarse resolution soil
moisture products proves their usefulness for agricultural drought monitoring applications.
A way forward is to disaggregate the microwave product with complementary information
from optical or SAR before validation. But also if maintained the ICON network will be
very useful for the validation of the SSM maps at 200 m resolution every 12 days that the
NASA-ISRO SAR mission NISAR will provide.
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SM Soil Moisture
SSM Surface Soil Moisture
RZSM Root Zone Soil Moisture
ICON Indian COSMOS Network
AMBHAS Assimilation of Multi-satellite data at Berambadi watershed for Hydrology

And land Surface experiment
NAFE The National Airborne Field Experiment
SMAPEX Soil Moisture Active Passive Experiment
SGP The Southern Great Plains
ICOS Integrated Carbon Obervation Network
ISMN International Soil Moisture Network
MDPI Multidisciplinary Digital Publishing Institute
CRNP Cosmic Ray Neutron Probe
COSMOS COsmic ray Soil Moisture Observation System
SMOS Soil Moisture Observation System
SMAP Soil Moisture Active Passive
GLDAS Global Land Data Assimilation System
ASCAT Advanced Scatterometer
AMSR Advanced Microwave Scanning Radiometer
LSM Land Surface Modelling
KSNDMC Karnataka State Natural and Disaster Mangement Centre
TB Brightness Temperature
NASA National Aeronautics and Space Administration
ISRO Indian Space Research Organisation
NISAR NASA-ISRO Synthetic Aperture Radar mission
RFI Radio Frequency Interference
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