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Abstract: Hydrological models are useful tools for water resources studies, yet their calibration is still
a challenge, especially if aiming at improved estimates of multiple components of the water cycle.
This has led the hydrologic community to look for ways to constrain models with multiple variables.
Remote sensing estimates of soil moisture are very promising in this sense, especially in large areas
for which field observations may be unevenly distributed. However, the use of such data to calibrate
hydrological models in a synergistic way is still not well understood, especially in tropical humid
areas such as those found in South America. Here, we perform multiple scenarios of multiobjective
model optimization with in situ discharge and the SMOS L4 root zone soil moisture product for
the Upper Paraná River Basin in South America (drainage area > 900,000 km2), for which discharge
data for 136 river gauges are used. An additional scenario is used to compare the relative impacts
of using all river gauges and a small subset containing nine gauges only. Across the basin, the joint
calibration (CAL-DS) using discharge and soil moisture leads to improved precision and accuracy for
both variables. The discharges estimated by CAL-DS (median KGE improvement for discharge was
0.14) are as accurate as those obtained with the calibration with discharge only (median equal to 0.14),
while the CAL-DS soil moisture retrieval is practically as accurate (median KGE improvement for soil
moisture was 0.11) as that estimated using the calibration with soil moisture only (median equal to
0.13). Nonetheless, the individual calibration with discharge rates is not able to retrieve satisfactory
soil moisture estimates, and vice versa. These results show the complementarity between these two
variables in the model calibration and highlight the benefits of considering multiple variables in the
calibration framework. It is also shown that, by considering only nine gauges instead of 136 in the
model optimization, the model is able to estimate reasonable discharge and soil moisture, although
relatively less accurately and with less precision than for the entire dataset. In summary, this study
shows that, for poorly gauged tropical basins, the joint calibration of SMOS soil moisture and a few
in situ discharge gauges is capable of providing reasonable discharge and soil moisture estimates
basin-wide and is more preferable than performing only a discharge-oriented optimization process.
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1. Introduction

Hydrological models are powerful tools for water resources management and compre-
hension of the water cycle, yet the estimation of realistic model parameters and prediction
in ungauged basins (PUB) [1] are still great challenges for hydrologists, even though
major advances have been made in understanding such processes [2]. While the typical
calibration process for hydrological models mainly involves the use of discharge data,
recent efforts by the hydrological community have aimed at simultaneously correcting the
representation of the water cycle components (e.g., soil moisture and evapotranspiration
dynamics) instead of focusing only on discharge estimation. This leads to parsimonious
models that are capable of providing the right estimates for the right reasons [3,4].

While hydrological data scarcity has always been an issue for hydrological model-
ing [1], the era of open-access earth observation (EO) data [5] has brought about a wealth
of observations to address this topic [6,7], especially for large basins. Remote sensing soil
moisture observations can be retrieved using microwave techniques, such as synthetic
aperture radar (SAR) (e.g., ERS-1, ERS-2) or passive radiometer (e.g., AMSR-E) techniques.
Combinations of multiple active and passive sensors are also possible (e.g., ESA-CCI). More
recently, the first missions dedicated to estimating global soil moisture from L-Band obser-
vations were launched: the Soil Moisture Ocean Salinity Mission (SMOS) [8], launched in
2009, which provides soil moisture information every three days with a spatial resolution
of 40 km; and the Soil Moisture Active and Passive (SMAP) [9] mission, launched in 2015.
These advances have contributed to the development of global multidecadal datasets of
soil moisture [10], fostering the hydrological monitoring of agricultural lands [11] and
extreme events such as droughts and floods [12,13], as well as offering the potential to
better inform and constrain hydrological models [14], particularly for explicitly accounting
soil moisture models, where the soil water balance is the core of the model structure.

The integration of remotely sensed (RS) soil moisture data with hydrological models has
been addressed through validation [15], calibration [16–22], and data assimilation [19,23–30]
frameworks. Model calibration and data assimilation experiments have not been conclu-
sive and have suggested both moderate improvements [16,22,29,31] and also no impact in
terms of model performance [20,21]. On one hand, Campo et al. [17] and Nijzink et al. [32]
observed improvements in streamflow prediction when coupling remotely sensed soil mois-
ture to discharge data in a calibration scheme. Parajka et al. [16] and Tong et al. [22] found
that the coupled approach resulted in more robust model parameters, while Milzow et al. [18]
highlighted the importance of soil moisture data to identify errors in precipitation inputs.

Conversely, López et al. [20] found that even though the coupled approach resulted in
reasonable estimates of streamflow, better model performance was achieved when remote
sensing observations were not included in the calibration scheme. Li et al. (2018) reported
degradation of the streamflow performance with the joint approach at some locations, while
Koppa et al. [21] reported that the coupled calibration strategy might not always be valuable
because of the trade-offs in accuracy among model responses. These trade-offs were also
discussed by Dembélé et al. [33], in which the model performance in terms of discharge
was decreased, but a simultaneous increase in performance for soil moisture indicated the
benefits of using multiple spatially distributed observations for model calibration. The
conclusions related to the added value of soil moisture for hydrological modeling depend
on factors such as the model structure, applied techniques, how the model performance
is evaluated, the observation operator (rescaling and filtering), and the scale mismatch
between observations and models [6,34].

Major gaps remain in the context of model calibration with RS data. To our knowledge,
no previous study has properly investigated the use of remotely sensed soil moisture for
hydrological model calibration in South America. Meyer Oliveira et al. [35] reported the
benefits of using soil moisture observations for an Amazonian sub-basin (Purus River
Basin), but did not explore the spatial information for remotely sensed observations to
its potential, so major questions remain as to whether model calibration is feasible in
such humid areas and to what extent can remotely sensed soil moisture observations
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contribute to improve model realism. Studies on the calibration of models for very large
domains (>100,000 km2) are also scarce (e.g., Koppa et al. [21] in the Mississippi basin
(3.3 million km2), Sutanudjaja et al. [23] in the Rhine-Meuse basin (200,000 km2), Milzow
et al. [18] in the Okavango river (170,000 km2), and Xu et al. [36] in the Great Lakes basin
(1 million km2)), as the application of such techniques faces challenges regarding landscape
heterogeneity and the need to correctly represent river water transport processes. Here, we
present a case study in the Upper Paraná River Basin (~910,000 km2), a major tropical basin
that poses several challenges for soil moisture representation at large scales, including its
heterogeneous lithology and the presence of multiple dams, urban areas, and irrigation
schemes that have the potential to hinder RS soil moisture retrieval. We also investigate
for the first time the use of the SMOS L4 root zone soil moisture product [37] to calibrate
a hydrological model. Our goal is to investigate the complementarity between in situ
discharge and RS soil moisture for estimating large-scale distributed model parameters,
improving the accuracy of the predictions of both variables, reducing parameter equifinality,
and improving the water cycle representation in general. The model calibration is assessed
in a distributed way in order to assess the impacts of the basin heterogeneity into the
algorithm performance.

2. Materials and Methods
2.1. Research Overview

The MGB hydrological model [38] was applied to the Paraná River Basin and calibrated
with in situ discharge and SMOS L4 root zone soil moisture data. Because of its large
extents and peculiar characteristics, the Paraná River Basin covers a wide range of climatic,
topographic, and pedological characteristics, which result in a variety of hydrological
responses. The MOCOM-UA automatic calibration procedure [39] is used here to evaluate
the impacts of using both soil moisture and discharge data to improve the hydrological
model estimates. Figure 1 summarizes the adopted methodology, which is detailed in the
following sections.

2.2. SMOS L4 Root Zone Soil Moisture Product

The L4 Root Zone Soil Moisture (L4 RZSM) [40] data used in this study were derived
from the SMOS L3SM soil moisture product [41]. The SMOS mission [8] is part of the
European Space Agency (ESA) earth explorer mission, with contribution from the French
Space Agency (CNES) and the Spanish Centre for the Development of Industrial Technology
(CDTI). It was specifically designed for the monitoring of surface soil moisture at the
global scale, with a 3-day revisit at the equator at a nominal resolution of 40 km. The
SMOS instrument is a 2D interferometric radiometer operating at 1.4 GHz (L-band) and
providing multiangular full-polarization acquisitions. The SMOS L3SM product contains
soil moisture maps over the EASE 25 km grid for ascending and descending orbits with a
vertical sampling rate of 0–5 cm [42]. The L4 RZSM product provides volumetric root zone
soil moisture (m3/m3) by applying a modified implementation of the Stroud exponential
model [43] to the L3SM by considering a hydraulic-conductivity-based lag function. The
product is provided with a quality flag that depends on error prone features such as the
radio frequency interference (RFI), fraction of forested areas, and surface temperature.
The L3SM is filtered for RFI in the pre-processing stage (RFI_Prob < 0.3). The hydraulic
conductivity is computed based on the soil texture. The root zone soil moisture is obtained
from the layer thickness weighted average of two layers (0–30 cm and 30 cm–1 m). It
is available as operational daily and open data from the Centre Aval de Traitement des
Données SMOS (CATDS) production center at Ifremer (L’Institut Français de Recherche
pour l’Exploitation de la Mer), starting January 2020 (available at ftp://ext-catds-cpdc:
catds2010@ftp.ifremer.fr/Land_products/GRIDDED/L4SM, accessed on 17 August 2021).
Data from 2010 to 2020 are also available from CATDS at ftp://ext-catds-cecsm:catds201
0@ftp.ifremer.fr/Land_products/L4_Root_Zone_Soil_Moisture/ (accessed on 17 August

ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/Land_products/GRIDDED/L4SM
ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/Land_products/GRIDDED/L4SM
ftp://ext-catds-cecsm:catds2010@ftp.ifremer.fr/Land_products/L4_Root_Zone_Soil_Moisture/
ftp://ext-catds-cecsm:catds2010@ftp.ifremer.fr/Land_products/L4_Root_Zone_Soil_Moisture/
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2021). Daily data were downloaded in NetCDF format from the link above and processed
in MATLAB (reading and extraction of points of interest inside our study area).
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2.3. In Situ Discharge Data

A total of 136 in situ gauges from ANA (Brazilian National Water Agency; http:
//www.snirh.gov.br/hidroweb/; accessed on 17 August 2021) and ONS (Brazilian Electric
System National Operator; http://www.ons.org.br/; accessed on 17 August 2021) were
used. Since discharges in the basin are largely regulated by several reservoirs, naturalized
streamflow series were used in the model calibration and verification, which were obtained
from ONS. The gauges were split into two groups for the calibration scenarios: (i) a set of

http://www.snirh.gov.br/hidroweb/
http://www.snirh.gov.br/hidroweb/
http://www.ons.org.br/
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nine gauges associated with the most downstream gauges for each of the major Paraná
tributaries plus the naturalized flow data for the Itaipu dam location in the downstream
Paraná river (G9); (ii) a set containing all 136 available gauges (G136). The G9 set ensures
an even distribution of gauges basin-wide, instead of G136, which is unevenly distributed,
with a higher density in the left riverbank tributaries due to political borders.

2.4. MGB Model

MGB is a semi-distributed hydrological model [44] that has been widely used for large-
scale simulations in South America [38,44,45] (model available at https://www.ufrgs.br/lsh/;
accessed on 17 August 2021). The model was chosen for this study given its previous
satisfactory applications in South America and its recent use for automatic calibration with
remote sensing data [35]. Within the model, the basin is divided into unit catchments,
while each one is divided into hydrologic response units (HRUs). The runoff generated in
each HRU is routed through three linear reservoirs within the unit catchment (i.e., hillslope
routing; the reservoirs are divided into surface, subsurface, and groundwater reservoirs)
and then along the stream network with either Muskingum–Cunge or hydrodynamic
methods [46,47]. The runoff generation mechanism is based on the ARNO saturation
excess model [48], while the soil reservoir is conceptualized as a bucket with only one soil
layer. The energy budget and evapotranspiration from the soil, vegetation, and wet canopy
to the atmosphere are estimated using the Penman–Monteith equation, following the
approach by Wigmosta et al. [49]. Soil moisture simulated by the MGB model is evaluated
here in terms of the soil saturation degree. For a given unit catchment and time step, the
soil saturation degree is computed as the ratio between the average available water in the
soil and the average maximum storage capacity, both weighted by the HRU fraction within
the unit catchment. For a given unit catchment and HRU, Equation (1) shows how the soil
water balance is computed:

Wt
i,j = Wt−1

i,j +
(

Pi,j − ETi,j − Dsupi,j − Dinti,j − Dbasi,j + Dcapi,j
)

(1)

where Wt
i,j is the water stored in the soil layer at the end of the time step at unit catchment

i, in HRU j; Wt−1
i,j is the water stored in the soil layer at the beginning of the time step; Pi,j

is the precipitation reaching the soil; ETi,j is the evapotranspiration; Dsupi,j is the surface
runoff; Dinti,j the subsurface flow; and Dbasi,j and Dcapi,j are the flow to the aquifer and
from the aquifer to the soil layer, respectively. All variables are in mm.

2.5. Model Application to the Upper Paraná River Basin

The Paraná is one of the longest rivers in the world (second in South America) and
the main tributary of the La Plata Basin in South America (the fifth largest basin in the
world) [50,51] (Figure 2). This study focuses on the Upper Paraná Basin (drainage area
~910,000 km2), which includes the most industrialized and urbanized region in Brazil. The
basin supplies water for intensively irrigated agriculture, industry, and human supply and
plays an important role in the Brazilian hydropower system, including the large Itaipu
dam. Climate variability in the Upper Paraná Basin is pronounced due to its large spatial
extent—the northern region has a warm, strongly seasonal precipitation regime, while the
southern part features a more temperate climate and more evenly distributed precipitation
over the year. From a hydrogeological perspective, the basin is also very heterogeneous,
ranging from highly permeable sandstone rocks in the western regions to an impermeable
igneous geology in the north, east, and part of the south. The basin was selected due
to its heterogeneity in multiple aspects, which poses major challenges for soil moisture
representations at large scales in hydrological models.

https://www.ufrgs.br/lsh/
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Figure 2. The Upper Paraná River Basin in South America. The 136 river gauges used are presented
as green circles or highlighted as purple circles for nine gauges of interest. The location of the Itaipu
dam is also presented.

Regarding the model setup, the basin was divided into 1424 unit catchments mea-
suring 641 km2 in area on average each (standard deviation of 573 km2). The model was
forced with daily precipitation from MSWEP 2.1 [52], which was interpolated to the unit
catchment centroid with the inverse distance weighting (IDW) method. A major distinction
in terms of data availability occurs from the left (highly dense) to the right margins of
the Paraná Basin, in accordance with the Brazilian political borders. In situ estimates of
climate normals (1960–1990 long-term averages) for surface air temperature, wind speed,
atmospheric pressure, relative humidity, and solar radiation were obtained from 195 sta-
tions from the Brazilian National Institute of Meteorology (INMET). These data were used
to estimate evapotranspiration with the Penman–Monteith equation. The SRTM digital
elevation model [53] was used to extract stream networks and delineate unit catchments
with 90 m spatial resolution. The HRU map was derived from the South American product
used by Fan et al. [54] at 400 m resolution (available at www.ufrgs.br/lsh/products; ac-
cessed on 17 August 2021), based on the combination of soil (classified into shallow and
deep soils) and land use maps (classified into forest, agriculture, grasslands, wetlands,
and urban areas). The Muskingum–Cunge routing method was adopted (instead of the
hydrodynamic method) because of its much lower computational burden, which enables
automatic calibration for large basins such as the Paraná. Table 1 summarizes the used
input data.

2.6. Calibration Experiments and Assessed Metrics

The MOCOM-UA optimization algorithm (multiple-objective complex evolution–
University of Arizona [39]) was adopted for automatic calibration in the MGB model. In
a nutshell, the algorithm evolves a set of different initial parameters (i.e., initial guess
individuals) towards the Pareto front. It treats the global search as a process of natural
evolution, where each individual of the initial guess is a potential “parent” with a probabil-
ity of participating in a process of reproduction. It uses rank-based selection to produce
new points (i.e., the offspring) that are on average better than the original ones (parents) by
using concepts of the SCE-UA (shuffled complex evolution [56]) scheme. The evolution

www.ufrgs.br/lsh/products
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stops when none of the individuals outperforms the others considering all of the evaluated
objective functions. Here, a total of 500 individuals were adopted.

Table 1. Input data used in this study.

Information Data Source

Precipitation 0.1◦ daily precipitation from MSWEP 2.1 [52]
Climatic variables (surface temperature, relative humidity, solar

radiation, wind speed, atmospheric pressure) INMET stations (195 gauges)

HRU classes (combination of land use and soil types) South America HRU map (400 m) [54]
Digital elevation model SRTM v4 (90 m) [55]

Remotely sensed soil moisture SMOS L4 Root Zone Soil Moisture (RZSM) product (25 km) [40]

Observed discharge ANA in situ discharges and ONS naturalized flows
(136 in situ gauges) (snirh.gov.br/hidroweb/)

Three calibration scenarios were carried out according to the following objective func-
tions: (i) minimize the discharge errors (i.e., calibration with discharge only; hereafter
CAL-D); (ii) minimize the simulated soil moisture errors (i.e., calibration with soil mois-
ture only; hereafter CAL-S); (iii) minimize both discharge and soil moisture errors (i.e.,
calibration with both variables; hereafter CAL-DS). The errors were evaluated using the
Kling–Gupta efficiency metric (KGE [57]). For the calibration scenario (iii), two objective
functions were used: the KGE between SMOS RZSM and MGB soil moisture; and the KGE
between the simulated and observed river discharge. As MOCOM-UA is a multiobjective
procedure, for calibrations (i) and (ii) the KGE metrics were split into three cost functions
(OF1, OF2, and OF3):

OF1 =

(
σsim
σobs

− 1
)2

(2)

OF2 = (r − 1)2 (3)

OF3 =

(
usim
uobs

− 1
)2

(4)

where σsim and σobs are the standard deviation values for the simulated and observed
variables, respectively; r is the Pearson linear correlation; usim and uobs are the long term
averages for the simulated and observed variables, respectively.

To ensure comparability between soil moisture and discharge estimates and to make
the best use of the spatially distributed nature of the remote sensing data, the calibration
was performed in a gauge-oriented way, i.e., soil moisture values were averaged for the
upstream area of each assessed gauge. For each gauge, the SMOS pixel centroids that
fell within the upstream drainage area were considered for computing the soil moisture
average. Furthermore, SMOS RZSM data were rescaled to MGB maximum and minimum
soil saturation degree values. In addition, the three calibration scenarios were performed
twice, firstly for the set of 136 discharge gauges (G136) and then for the set with nine
selected gauges (G9). The set with nine gauges is only used in Section 3.4, which compares
the performances for the two cases of gauge availability. Seven model parameters were
calibrated (Table 2), which were set as uniform for the whole basin. The a priori parameter
distribution followed a uniform distribution, with parameter sampling within a range of
10% to 400% of the average parameter values obtained from the MGB South American
application [45]. The calibration was run for the period 1 January 2010–31 October 2017,
which was chosen based on the precipitation, discharge, and SMOS data availability.

snirh.gov.br/hidroweb/
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Table 2. Reference values for the a priori distribution (initial guess) of MGB parameters for each HRU
(except for CS, CI, and CB parameters, which were constant for the whole basin), derived from the
average values of the MGB model application for South America [45]. Each initial set of parameters
(total of 500 sets for each of the three calibration scenarios) was obtained by estimating the parameter
values with a uniform distribution within a range of 10% to 400% of the reference value defined by
this table.

Parameter Reference Value

Wm (maximum water storage capacity in the soil) [mm] 585
b (parameter related to variable infiltration curve) [-] 0.26

Kbas (percolation rate from soil to groundwater) [mm·day−1] 0.65
Kint (saturated hydraulic conductivity) [mm·day−1] 9.48

Cs (adjustment factor for surface linear reservoir residence time) [day] 15.6
Ci (adjustment factor for subsurface linear reservoir residence time) [day] 105.7

Cb (groundwater reservoir residence time) [day] 2547.0

The results were evaluated in terms of soil moisture and discharge KGE values for
each gauge. Figure 3 provides an example for a hypothetical gauge for a given calibration
scenario, with 500 individuals used for the initial sets and 500 used for the optimized sets.
To summarize all individuals, three metrics were computed: (i) improvement in discharge
accuracy (∆KGED in Figure 3), which quantifies the overall performance of the solution;
(ii) improvement in soil moisture accuracy (∆KGES), which represents the dispersion
around the solution; (iii) overall precision gain (Distini / Distend), which accounts for the
combined increase in both discharge and soil moisture performance precision with the
optimization procedure. We stress that this metric is based on the increase of performance
precision. The improvements in discharge and soil moisture accuracy are evaluated by
the difference between the average of the optimized KGE values and the average of initial
KGE values.
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The overall precision gain is assessed firstly by computing the average distance
between all individual initial KGE values and the median value (Distini in Figure 3), then
by dividing it by the average distance obtained for the optimized KGE values (Distend in
Figure 3). This is summarized in the scheme in Figure 3. The improvement in discharge
accuracy (∆KGED) is computed as (KGED,end − KGED,ini), where KGED,end is the average
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discharge KGE for all optimized individuals and KGED,ini is the average KGE for the initial
sets. The same is computed for the soil moisture accuracy (∆KGES = KGES,end − KGES,ini).

Finally, to understand the effects of landscape and climate heterogeneity on the
optimization results, three aspects were considered: lithology types, irrigation areas
from ANA [58], and precipitation seasonality computed with the method by Walsh and
Lawler [59].

3. Results
3.1. Calibration Results and Model Performance Improvement

Overall, both discharge and soil moisture predictions were improved basin-wide
in all calibration scenarios when compared to the initial random estimation (Figure 4).
Since soil moisture data were aggregated at the sub-basin scale, in order to ensure the
comparability between the calibrations with discharge gauges and distributed soil moisture
data (see Section 2.6), the model performance for soil moisture is also presented at the gauge
locations. As expected, the CAL-D scenario led to more accurate discharge and the CAL-S
to more accurate soil moisture estimates. The CAL-DS scenario, which considered both
discharge and soil moisture in the objective function, was able to improve both variables,
leading to discharge estimates as accurate as those obtained with CAL-D, with the same for
soil moisture in the CAL-S scenario. CAL-DS led to performance degradation for a limited
number of gauges. The median improvements in discharge accuracy were 0.14, −0.02
and 0.14 for CAL-D, CAL-S, and CAL-DS, respectively; while the median values for soil
moisture accuracy were 0.05, 0.13 and 0.11, for CAL-D, CAL-S, and CAL-DS, respectively.
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Figure 4. Spatial assessment of 136 gauges for overall performance precision gain (i.e., the joint improvement in pre-
cision of soil moisture and discharge) (first row) and accuracy improvement for discharge (second row) and soil mois-
ture (third row) data for the calibration scenarios involving discharge only (first column; CAL-D), soil moisture only
(second column; CAL-S), and the combination of both (third row; CAL-DS). The circle size refers to the gauge drainage
area, while the maximum circle size is limited for drainage areas > 10,000 km2.
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When analyzing individual gauges, a relatively well-defined Pareto region was iden-
tified for the CAL-DS estimates (Figure 5). This led to higher precision (i.e., smaller
dispersion) among optimized parameter sets for both soil moisture and discharge, as
evidenced by the higher median overall precision gain obtained with the CAL-DS scenario;
the median values were 4.42, 3.10, and 9.20 for CAL-D, CAL-S, and CAL-DS, respectively.
This also led to improvements in both soil moisture and discharge accuracy. CAL-S not only
led to less accurate discharge estimates but also to more disperse ones, while the opposite
occurred for CAL-D. It is interesting to note that CAL-D led to more dispersed discharges
(in terms of model performance) than did CAL-S for soil moisture, for which all of the opti-
mized solutions converged to very similar soil moisture KGE values (e.g., KGES,end around
0.92 for gauge 9 in Figure 5 for the CAL-S scenario). This may have been related to the
different sensitivity levels of the soil moisture and discharge to the KGE metric. The most
downstream gauge, close to Itaipu dam (gauge 7 in Figure 5; 827,000 km2), clearly showed
that the calibration with discharge largely improved the discharge results, although much
less so for soil moisture and vice versa, while CAL-DS improved both. Supplementary
Figure S1 shows discharge and soil moisture time series for Itaipu, depicting the relatively
smaller dispersion in the CAL-DS scenario in comparison to CAL-D and CAL-S. The poor
discharge representation by the CAL-S scenario for Itaipu (gauge 7 in Figure 5) occurred
because of underestimated values during the low flow periods (Figure S1).

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 22 
 

 

gauges, i.e., for these specific locations the optimization led to more precise yet less 
accurate estimates. 

 
Figure 5. Soil moisture and discharge KGE values for initial and optimized solutions at nine selected gauge locations when 
calibrated with 136 river gauges (see the locations of all 136 gauges in Figure 2). The upstream drainage area (km2) for 
each gauge is also presented. Each set of points refer to one calibration scenario (with soil moisture, discharge, and both). 

3.2. Impacts of Geology, Anthropogenic Activities, and Precipitation Seasonality on Model 
Optimization 

Many factors can explain the model responses to different calibration setups. The 
different calibration setups in the Paraná Basin were analyzed with respect to 
homogeneous regions of geological (lithology) and anthropogenic activities (irrigation 
areas), as well as precipitation (seasonality) characteristics (Figures 6 and 7). The results 
showed that the most relevant feature that affected the optimization outputs was 
lithology, which was tightly related to soil and groundwater storage dynamics. 

Regarding lithology types, six main regions were defined in the basin (Figure 6). The 
CAL-DS scenario led to very similar behavior to the CAL-D when assessing discharge 
accuracy improvements (i.e., greatest improvement for lithology type 5) and to the CAL-
S scenario when assessing soil moisture improvements (i.e., greatest improvement for 
lithology type 1). 

When calibrating with both discharge and soil moisture (CAL-DS) parameters, the 
greatest precision improvements were mostly obtained for sandstone areas (regions 3, 5, 
and 6; Figure 7a) and regions with high irrigation rates (Figure 7b). The calibration with 

Figure 5. Soil moisture and discharge KGE values for initial and optimized solutions at nine selected
gauge locations when calibrated with 136 river gauges (see the locations of all 136 gauges in Figure 2).
The upstream drainage area (km2) for each gauge is also presented. Each set of points refer to one
calibration scenario (with soil moisture, discharge, and both).

At the entire basin scale, there was an overall precision gain, estimated as (Distini / Distend),
for all gauges, which is a natural outcome of the optimization procedure; however, while
the gain was higher than 8 for most gauges in the CAL-DS scenario (Figure 4), this was
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also associated with degradation in the discharge accuracy for a few gauges, i.e., for these
specific locations the optimization led to more precise yet less accurate estimates.

3.2. Impacts of Geology, Anthropogenic Activities, and Precipitation Seasonality on
Model Optimization

Many factors can explain the model responses to different calibration setups. The
different calibration setups in the Paraná Basin were analyzed with respect to homogeneous
regions of geological (lithology) and anthropogenic activities (irrigation areas), as well
as precipitation (seasonality) characteristics (Figures 6 and 7). The results showed that
the most relevant feature that affected the optimization outputs was lithology, which was
tightly related to soil and groundwater storage dynamics.

Regarding lithology types, six main regions were defined in the basin (Figure 6). The
CAL-DS scenario led to very similar behavior to the CAL-D when assessing discharge
accuracy improvements (i.e., greatest improvement for lithology type 5) and to the CAL-
S scenario when assessing soil moisture improvements (i.e., greatest improvement for
lithology type 1).

When calibrating with both discharge and soil moisture (CAL-DS) parameters, the
greatest precision improvements were mostly obtained for sandstone areas (regions 3, 5,
and 6; Figure 7a) and regions with high irrigation rates (Figure 7b). The calibration with
discharge data led to similar behavior for the lithology types, although no distinction oc-
curred regarding irrigation areas and precipitation seasonality. In turn, the calibration with
soil moisture led to a different result, with the highest precision improvement occurring in
the upstream granitoid and volcanic areas (region 1), as well as in regions with the highest
seasonal precipitation (Figure 7c). No clear relationships were obtained when relating
overall precision gain and accuracy improvements for discharge and soil moisture with
the upstream drainage area, irrigation areas, and precipitation seasonality for the set of
136 gauges (Figure S2), except that for small drainage and irrigation areas the performance
was very noisy, which was not observed for the precipitation seasonality.
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Figure 7. Performance precision improvements according to (a) geological characteristics (six lithology classes), (b) water
use for agriculture (irrigation areas, divided into three groups of irrigation areas—most irrigated, intermediate, and least
irrigated upstream areas), and (c) precipitation characteristics (seasonality, divided into three groups—high, intermediate
and low seasonality in upstream areas). In the second and third rows of maps, each point refers to one of the 136 gauge
locations used for the model calibration. Each boxplot refers to a different class (geological characteristics, irrigation areas
and precipitation seasonality).

3.3. Estimated Parameter Values

The optimized values of the Wm parameter (maximum soil water storage), which is
MGB’s most sensitive parameter, are addressed in this section (Figure 8). The optimization
outputs for the other calibrated parameters (b, Kbas, Kint, CS, CI, and CB) are presented in
Figures S3–S6, while their optimized behaviors lead to similar conclusions. For most HRUs,
the Wm calibration led to narrower optimized ranges for the CAL-DS, followed by CAL-D.
The CAL-S scenario led to the most disperse parameter values for most HRUs. For many
cases (shallow soil HRUs and forests with deep soils) CAL-D and CAL-DS converged to
the same region of the parameter space (i.e., parameter values relatively similar), while
for others (e.g., agriculture with deep soil) the CAL-DS converged to similar values as for
CAL-S. Furthermore, it is interesting that CAL-DS led to values close to the bottom or top
limits of the Wm parameter range, except for grassland with deep soils.

3.4. Number of Adopted Gauges for Calibration

It is paramount in the context of hydrological model calibration to understand the
impacts of gauge sampling on the optimization results. Here, a calibration scenario with
136 gauges (G136) was compared to a simpler one where only nine gauges were considered
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(G9). The sampling of the nine gauge locations was also applied to the CAL-S scenario by
using the average upstream soil moisture values for only nine locations in the basin instead
of considering 136 locations. Small differences were obtained for model accuracy improve-
ments between G136 and G9 (Figure 9); however, a major gain in the overall performance
precision was obtained when considering the large dataset (G136), even when analyzing
the same gauge locations used for the calibration (see black circles in Figure 9). A similar
conclusion was obtained for the CAL-D and CAL-S scenarios (Figures S8 and S9). It can
also be noted that the calibration with nine gauges led to a slightly poorer discharge perfor-
mance in the south Paraná tributaries, such as the Iguaçu river, where the precipitation is
not seasonal, in contrast to the rest of the basin.
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Figure 9. Spatial assessment of discharge and soil moisture accuracy improvements (∆KGE) and
overall precision gain when performing calibrations with nine and 136 gauges. The results are
presented for the calibration scenario with both discharge and soil moisture (CAL-DS), while the
results for CAL-D and CAL-S scenarios are shown in Supplementary Figures S8 and S9. The circle
size refers to the gauge drainage area, while the black open circles are the locations of the nine gauges.
A maximum circle size is limited for drainage areas > 10,000 km2.
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4. Discussions
4.1. Combining Discharge and Soil Moisture Data Leads to Optimized Solutions

The largest benefits for model performance were obtained when both discharge and
soil moisture data were considered in the calibration. When looking at discharges, this
strategy led to the highest overall precision gains in KGE and flow estimates as accurate as
those in the calibration scenario with discharge only. Similarly, it resulted in soil moisture
estimates as accurate as those obtained in the calibration with soil moisture only. This
shows that the calibration acts as a combination of the individual calibrations, since it
improved both variables without degrading either of them, i.e., the model was constrained
toward more satisfactory estimates. These results are coherent with recent studies [23,60,61].
Calibrating the model with only one data type allows error transference among parameters,
and consequently for the model state variables. Constraining the model in different aspects
minimizes this type of error.

The larger difficulty of the calibration procedure to estimate soil moisture (which led
to more dispersed estimates) may be related to the limited comparability between MGB
and SMOS RZSM soil moisture estimates, as the first is associated with a bucket soil with
one only layer, while the second with a simple filter used to extrapolate topsoil moisture
estimates to the whole root zone profile. In addition, the intrinsic nature of the variables
may have also played a role here, since soil moisture is more likely to be variable in time
and space, while discharge is an aggregation variable of upstream areas. To overcome
this, a typical approach is to rescale the satellite-derived soil moisture to the hydrological
model max–min range, as applied in the observation operators in data assimilation [24,62],
which was carried out here and which makes the remote sensing observations vary for each
new model run in the optimization procedure. These constant changes in the ‘observed’
variable may hinder the calibration algorithm to achieve a more optimal parameter set.
The conceptual nature of the MGB model also makes it difficult to draw a conclusion on the
link between physical processes and the optimized parameter values and to understand
whether the calibration is effectively reducing equifinality. An important limitation of this
study is that the soil moisture estimated by the hydrological model and by SMOS were
spatially aggregated in the upstream areas of the gauge stations. There are still important
questions regarding the mechanisms and factors controlling the spatial distribution of this
variable (e.g., Srivastava et al. [63]) and how these automatic calibration strategies are
able to capture the related physical processes. Our results, however, confirm that both
model accuracy and precision are improved with the combined used of discharge and
soil moisture data, which in the context of explicit soil moisture accounting models such
as the MGB, suggests a reduction in equifinality by constraining different model state
variables. This is in accordance with Nijzing et al. [32], who showed that the combination
of multiple datasets such as soil moisture and GRACE total water storage data can help
estimate parameters within a narrow parameter search space. Recent studies involving
model calibration have also shown the improved water cycle representation when using
multiple hydrological variables in combination [33,64].

This study adopted multiobjective functions for both calibrations with individual
variables and their combination, which may have helped constrain the model. By using
one only variable to define objective functions, errors can be more easily propagated for
different model parameters. The use of other variables than discharge and soil moisture
is also promising (e.g., evapotranspiration [65–68] and total water storage [69,70]) for not
only estimating the discharge [32,71], but for also improving the model realism [35,64],
reducing uncertainty [72,73], and improving the spatial representation of variables [33,74].

Finally, the calibration with 136 gauges reduced to some extent the optimized disper-
sion in comparison to the scenario with 9 gauges, yet the difference was not very large,
meaning the calibration with only a few gauges can be assumed to be satisfactory. This has
implications for estimations in poorly gauged basins. For instance, in a more operational
scenario, one could use the results of the G9 calibration to estimate the prior parameter
sets of the SM-related parameters.
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By improving the estimations of water quantity in poorly gauged basins and im-
proving the model realism, this study represents as a potential tool for water resource
management, which is linked to the Sustainable Development Goals (SDG) for clean water
and sanitation, affordable and clean energy (related to hydropower plants), and life on
land, since biodiversity is related to water availability.

4.2. Calibrating a Heterogeneous Large Basin Affected by Anthropogenic Activities

Even though this study focuses on the Upper Paraná Basin, it is worth mentioning that
the large extents of the basin encompass characteristics from many catchments worldwide
in terms of lithology (permeable sandstones to less permeable basalts), precipitation sea-
sonality (high in the north to low in the south), and irrigation schemes (dense in the north,
less dense in the south). Model calibration studies involving remotely sensed soil moisture
data are becoming more common for large basins, with examples including the studies by
Okavango [18] and Volta [33] in Africa, Quijang and Ganjiang [75] in Asia, Moselle [64] and
Rhine-Meuse [23] in Europe, Mississippi [21] in North America, and Purus [35] in South
America. Several of these studies covered basins impacted by anthropogenic activities,
showing that the exploitation of soil moisture for model calibration or data assimilation
improves the model predictability in complex environments; however, the question of the
capability of soil moisture to improve the representation of discharges in human-affected
basins is still not fully answered. Our results showed that the impacts of irrigated areas
on the model calibration outputs were not very relevant; this conclusion may not be ap-
plied to basins in semi-arid and arid environments, for which further analyses need to be
applied. Basin-wide, the parameters’ values mainly reflected different lithology types and
the resulting impact of the geological controls (which varied from sandstones to basalts in
the Upper Paraná Basin) on the hydrological regime.

4.3. Uncertainties in MGB and SMOS RZSM

Remote sensing products are limited in spatial and temporal resolution and are subject
to a series of error sources. SMOS can be particularly impacted by RFI, which is not
very frequent in South America [76]. Furthermore, while L-Band radiometry has a high
observation capacity over vegetation cover, it still exhibits saturation over very dense
vegetation [77]. The surface roughness, topographic index, water ponding, soil moisture
regime, and soil texture are other features that can impact the soil moisture retrievals [78,79].
In turn, the soil water dynamics are usually misrepresented in large-scale hydrological
models. Complex models, representing the dynamics between soil moisture and plant
growth, require more data and involve larger sets of parameters than simpler water balance
models do, often relying on the upscaling of functions developed for local scales (e.g.,
Richard’s equation). The use of root zone soil moisture estimates is a better match with
the soil moisture capacity of the MGB model, although such estimates also have their own
limitations. For instance, the SMOS RZSM uses the surface soil moisture data, even though
in semi-arid to arid regions the link between surface and root zone soil moisture is weak.
Additionally, the empirical approach is based on coarse-resolution texture maps, which
can add errors to the estimates; therefore, the use of both types of information combined
(remotely sensed and simulated soil moisture) and cross-validation between them is an
interesting approach to improve model predictions.

For areas with strongly seasonal precipitation, despite being able to represent the
general behavior of soil moisture variations throughout the year, the degree of MGB satu-
ration increases more slowly when the rainy season starts and decreases faster than SMOS
RZSM when the dry season arrives. These results reflect a limitation of MGB related to
its single soil layer [35]. The implementation of a multilayer approach could reduce the
errors associated with a simplified representation of soil water dynamics [80]. Further-
more, the employed model setup does not represent basin-wide anthropogenic impacts as
irrigation schemes and reservoirs, and if performed this may especially enhance the repre-
sentation of river discharges, which are largely affected by reservoirs in its downstream
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reaches [81]. To overcome this issue, here we have used only in situ river discharge data in
non-regulated reaches, while for regulated reaches we have adopted the naturalized flows
estimated by ONS.

5. Conclusions

In this study, we have presented large-scale model calibration experiments with
distributed in situ discharge and remote sensing soil moisture data from the new SMOS L4
RZSM product. The study area was the Upper Paraná Basin in South America (drainage
area > 900,000 km2), the heterogeneity and dimensions of which make its sub-basins
equivalent to large basins elsewhere.

While most calibration experiments focus on accuracy improvement, here we moved
beyond this and showed the impacts of model calibration on improving not only the
accuracy, but also the precision of the estimates (measured in terms of performance preci-
sion) across the whole basin. The joint calibration with both discharge and soil moisture
data improved the accuracy of both variables to the same level as the calibrations per-
formed individually with each variable and additionally led to more precise estimates,
highlighting the benefits of using soil moisture data as additional information to constrain
hydrological models.

Regarding the basin heterogeneity, the main factor that led to the different calibrated
parameter sets was the lithology type, e.g., the highest precision improvements were
obtained for sandstone areas. Furthermore, the choice between a few (9) and many
(136) gauges for calibration was also investigated, showing that the calibration with
136 gauges reduced to some extent the optimized dispersion in comparison to the sce-
narios with 9 gauges, yet the difference was not very large and calibration with only a few
gauges is already satisfactory for defining an initial a priori parameter set.

While this was one of the first model calibration experiments involving remotely
sensed soil moisture data performed in South America, future studies should move forward
and evaluate the added benefits of using other relevant water cycle variables, such as
evapotranspiration and total water storage. A better understanding of the uncertainty
of the SMOS RZSM product is also necessary, as well as its propagation throughout the
hydrological modeling cascade. The recently available high-resolution SMOS-based surface
water product [82] may be used in combination with SMOS soil moisture estimates for
large river–floodplain systems, which also occur in the La Plata Basin and in South America
in general. In this context, coupled hydrologic–hydrodynamic models can be used to better
represent the processes occurring in these areas, opening up the possibility for the use of
other remote sensing variables (e.g., satellite altimetry and future SWOT observations) to
constrain calibrations of hydraulic parameters, such as the ones related to river geometry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13163256/s1. Figure S1. Time series of discharge (upper panel) and soil moisture (bottom
panel) for the initial and final calibration generations, for the location of Itaipu dam close to the basin
outlet. The calibration with all 136 gauges (G136) and 9 selected gauges (G9) are presented. CALD
refers to calibration with discharge only, CALS to calibration with soil moisture only, and CALDS to
the joint calibration with both. Given the rescale of SMOS data to the MGB model min/max values,
SMOS initial and final generations are different and plotted as green and blue lines, respectively.
Figure S2. Relation between drainage area (first row), upstream irrigation areas (second row) and
precipitation seasonality index (third row) with overall precision, and accuracy improvement for
discharge and soil moisture. Results presented for the scenario of calibration with 136 gauges. In the
first row, the maximum drainage area is truncated at 10.000 km2; to improve visualization of most
gauges. Figure S3. Initial (ini) and optimized (end) values for the b parameter (unit: adimensional)
for the three calibration scenarios (discharge only (D); soil moisture only (S); and calibration with
both (DS)) and six HRU’s: (1) Forest with shallow soils; (2) Forest with deep soils; (3) Agriculture with
shallow soils; (4) Agriculture with deep soils; (5) Grasslands with shallow soils; and (6) Grasslands
with deep soils. “b” is the shape parameter of the ARNO model, which defines the sensitivity of
runoff generation on saturated areas. Figure S4. Initial (ini) and optimized (end) values for the Kint

https://www.mdpi.com/article/10.3390/rs13163256/s1
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parameter (unit in mm.day-1) for the three calibration scenarios (discharge only (D); soil moisture
only (S); and calibration with both (DS)) and six HRU’s: (1) Forest with shallow soils; (2) Forest with
deep soils; (3) Agriculture with shallow soils; (4) Agriculture with deep soils; (5) Grasslands with
shallow soils; and (6) Grasslands with deep soils. This parameter refers to the subsurface flow (i.e.,
it is a proxy of soil conductivity). Figure S5. Initial (ini) and optimized (end) values for the Kbas
parameter (unit in mm.day-1) for the three calibration scenarios (discharge only (D); soil moisture
only (S); and calibration with both (DS)) and six HRU’s: (1) Forest with shallow soils; (2) Forest with
deep soils; (3) Agriculture with shallow soils; (4) Agriculture with deep soils; (5) Grasslands with
shallow soils; and (6) Grasslands with deep soils. This parameter refers to the groundwater flow (i.e.,
it is a proxy of groundwater conductivity). Figure S6. Initial (ini) and optimized (end) values for the
CS, CI and CB parameters (unit in days) for the three calibration scenarios (discharge only (D); soil
moisture only (S); and calibration with both (DS)). These parameters refer to the outflow of the three
linear reservoirs (i.e., MGB hillslope routing): surface reservoir (CS), intermediate (CI) and baseflow
(CB). Figure S7. Soil moisture and discharge KGE values for the nine gauge locations used for the
9-only calibration scenario; results for the 9-only scenario. Figure S8. Spatial assessment of discharge
and soil moisture accuracy improvement (∆KGE) and overall precision gain, when calibrating with
nine and 136 gauges (including the nine ones). Results are presented for the calibration scenario
with discharge only (CAL-D). The circle size refers to the gauge drainage area, and the black open
circles are the location of the nine gauges. Figure S9. Spatial assessment of discharge and soil
moisture accuracy improvement (∆KGE) and overall precision gain, when calibrating with nine and
136 gauges (including the nine ones). Results are presented for the calibration scenario with soil
moisture only (CAL-S). The circle size refers to the gauge drainage area, and the black open circles
are the location of the nine gauges.
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