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Abstract—Building climate data records of soil moisture (SM)
requires computing long time series by merging retrievals from
sensors on-board different satellites, which implies to perform a
bias correction or rescaling on the original time series. Due to
their long time span and high temporal frequency, model data
could be used as a common reference for the rescaling. However,
avoiding model dependence in observational climate data records
is needed for some applications. In this article, the possibility of
using as reference remote sensing data from one of the L-band
sensors specifically designed to measure SM is discussed. Advanced
Microwave Scanning Radiometer 2 SM time series were rescaled
by matching their cumulative distribution functions (CDFs) to
those of Soil Moisture and Ocean Salinity (SMOS), Soil Moisture
Active Passive (SMAP), and Global Land Data Assimilation System
(GLDAS) NOAH model time series. The CDF computation was in-
vestigated as a function of the time series length, finding significant
differences from four to nine years. Replacing temporal by spatial
variance does not allow us to compute better CDFs from short time
series. The rescaled time series show a high correlation (R > 0.8)
to the original ones and a low bias with respect to the reference
(<0.03 m 3· m−3). The time series rescaled using several SMOS or
SMAP datasets were also evaluated against in situ measurements
and show performances similar to or slightly better than those
rescaled using the model GLDAS. The impact of random errors
and gaps of the observational data into the rescaling was evaluated.
These results show that it is actually possible to use L-band data
as reference to rescale time series from other sensors to build long
time series of SM.
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I. INTRODUCTION

SOIL moisture (SM) was identified as one of the 50 “essential
climate variables” (ECVs) by the Global Climate Observing

System in the context of the United Nations Framework Con-
vention on Climate Change [1]. It interacts in many hydrological
processes, such as infiltration, runoff, precipitation, and evapora-
tion [2], and SM estimates are needed in weather forecasting [3]–
[5], in agriculture applications [6], and to monitor extreme
climate events, such as floods and droughts [7]–[11]. Long time
series of SM are crucial to monitor the Earth’s climate evolution,
and this is the goal of initiatives such as the European Space
Agency’s Climate Change Initiative (ESA CCI) program [12].
Since 2012, this project has been aiming at developing consistent
satellite-based long-term climate data records (CDRs) of SM
from active, passive, and combined instruments [13]–[18].

Remote sensing from space allows a global monitoring of
SM, but due to the relatively short operational life of space
missions, merging data from different instruments is required. To
effectively detect SM trends and changes, it is crucial to benefit
from the longest time series possible because natural short-term
variations can hide the longer ones. For instance, the strategy
developed by the ESA CCI [17] consists of merging different
SM datasets obtained with different algorithms applied to mea-
surements from active and passive sensors, on-board satellites,
that have different characteristics (frequency, spatial resolution,
temporal and spatial coverage, polarization, revisit time, etc.). It
is then necessary to apply a bias correction (commonly referred
to as scaling or rescaling) on the time series obtained with
different sensors to provide a consistent merged dataset.

Different methods can be used [19], [20], but bias correction
is frequently performed by matching the cumulative distribution
function (CDF) of the source time series to that of a reference
time series. This is, for example, the approach used for debiasing
satellite data before data assimilation into numerical weather
prediction models [4], [21], [22] or into hydrological mod-
els [10], [23]. In these cases, the model time series are naturally
used as the reference to individually rescale the different remote
sensing datasets. CDF matching is also the method selected to
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rescale SM time series from different microwaves sensors within
the ESA CCI SM project.

First, passive and active products are rescaled using the time
series from a passive and an active sensor, respectively, as
reference. Finally, a combined product is computed by rescaling
the passive and the active using the NOAH Global Land Data
Assimilation System (GLDAS) land surface model as refer-
ence [13], [17], [24].

CDRs of ECVs have to be extensively validated both us-
ing direct (comparison to measurements) and indirect methods
(comparison to other CDRs) [25]. For example, observational
CDRs of ECVs are needed to evaluate modeled CDRs and to
perform data assimilation into models [26], [27]. Therefore,
observational CDRs should be as independent to models as
possible. In the case of the ESA CCI SM dataset, using the
GLDAS model data to rescale active and passive time series
introduces, in a statistical sense, information of a model product
in the final ESA CCI merged dataset. This drawback is actually
discussed by users of the ESA CCI SM for different applica-
tions, such as surface and root zone SM monitoring [28], [29],
large-scale long-term SM variability studies [17], [30], model
evaluation, and data assimilation [26], [31], [32]. The growing
need for model-free observational CDRs of ECVs, in particular
for SM, is discussed in [16] and in the ESA SM CCI user
requirement document, which summarizes the ESA CCI SM
user requirement surveys.

As an alternative to rescaling the data using the GLDAS
model, it has been proposed to use L-band data from one of
the two instruments specifically designed to measure SM, i.e.,
on-board ESA soil moisture and ocean salinity (SMOS) and
National Aeronautics and Space Administration (NASA) Soil
Moisture Active Passive (SMAP) satellites, as the reference to
rescale other time series [33].

To investigate this approach, in the current article, the Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2) SM time
series were rescaled using as the reference different datasets
from SMAP, SMOS, and the GLDAS NOAH model. A trend
and seasonality decomposition of the rescaled time series was
performed, and they were evaluated against in situ measure-
ments. The effects of the length of the time series used as the
reference to compute the CDF were evaluated using the longest
coherent L-band SM time series, those based on SMOS, and
by comparing the CDFs in different time periods. Finally, the
presence of random error and a reduced temporal sampling in
satellite-based products was also studied.

The rest of this article is organized as follows. Section II
presents the different remotely sensed and model- and ground-
based data that were used in this article. Section III describes the
different CDF matching approaches applied on the AMSR2 time
series and how data were selected for the evaluation. Section IV
shows the performances of the reference and rescaled time
series with respect to in situ measurements. The results of the
time-series decomposition and the random error propagation
assessment are also presented. Section V discusses the pros
and cons of using an L-band dataset as the reference for the
rescaling and the impact of having long time series on the CDF
computation. Finally, Section VI concludes this article.

II. DATA

A. Japan Aerospace Exploration Agency (JAXA) AMSR2

The AMSR2 instrument is a conical scanning passive mi-
crowave radiometer built by the JAXA and launched on board the
Global Change Observation Mission 1–Water satellite (GCOM–
W1) on May 18, 2012 [34], [35]. The instrument still operates,
and the GCOM–W1 satellite provides a complete coverage of the
Earth every two days since May 2012 (see Fig. 1). Ascending
and descending orbits cross the equator at 1:30 P.M. and 1:30
A.M., respectively. AMSR2 follows on the objective of the NASA
AMSR-E on board the Aqua satellite and observes brightness
temperatures in vertical and horizontal polarizations at seven
frequencies: 6.9 (C1), 7.3 (C2), 10.7 (X), 18.7 (Ku), 23.8 (K),
36.5 (Ka), and 89.0 (W ) GHz, of which only the first four are
used as a base for SM retrievals and only the first three (C1, C2,
and X) were considered in this article, as only these three bands
are used in the ESA CCI SM products [36]. The JAXA Earth
Observation Research Center provides SM datasets retrieved
from the AMSR2 X-band using a radiative transfer model [37]
and the JAXA algorithm [38]. However, in the current article,
the AMSR2 SM obtained within the framework of the ESA CCI
project were used. These retrievals are computed using the Land
Parameter Retrieval Model (LPRM) algorithm version 6 [39],
and they are available in a 0.25◦ regular latitude–longitude grid
as daily files. Only descending overpasses (morning orbits)
from July 2012 to June 2020 were considered in this article.
A comparison between the JAXA and LPRM algorithms can be
found in [34]. Hereafter, AM2 refers to the AMSR2 SM time
series and data.

B. ESA SMOS

The SMOS mission is part of the Earth Explorer program from
the ESA, with contributions from the Centre National d’Etudes
Spatiales, France, and the Centro Para el Desarrollo Tecnológico
Industrial, Spain. The satellite was launched on November 2,
2009 to measure globally and frequently the surface SM over
land and sea surface salinity over the oceans [40], with a revisit
period of one to three days and Equator crossings at 6:00
A.M. and 6:00 P.M. for ascending and descending overpasses,
respectively. The SMOS mission relies on a 2-D interferometric
instrument operating at the L-band (21 cm, 1.4 GHz) able to
measure brightness temperatures in both vertical and horizontal
polarizations, at incidence angles from 0◦ to 60◦ and with a
spatial resolution of 40 km on average. SMOS still operates and
provides the longest homogeneous L-band record of SM. To be
consistent with the AM2 overpasses considered in this article,
only the ascending overpasses of SMOS were taken into account
as they correspond to the morning orbits. The following four SM
datasets derived from different retrieval algorithms were used for
the evaluation and as the reference for the rescaling of AM2.

1) Centre Aval de Traitement des Données (CATDS) SMOS-
L3 SM: The daily CATDS SMOS Level-3 V300 SM prod-
uct [41] is a multiorbit Level-3 SM product provided by the
CATDS. The SM retrieval process is based on the algorithm used
for the SMOS Level-2 product [42] and focuses on the iterative
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Fig. 1. Temporal coverage of the different datasets used in the article. Acronyms are explained in Section II.

minimization of the difference between a forward model and
the brightness temperatures. The model uses the τ–ω (optical
depth-single scattering albedo) approach to take into account
the effect of vegetation. The data are provided in the 25-km
EASE-Grid v2.0 [43] as NetCDF files, and only SM retrievals
from January 2010 to July 2019 (see Fig. 1) were considered in
the different computations and analysis. Hereafter, ESL3 refers
to the ESA SMOS CATDS L3 SM time series and data.

2) SMOS-LPRM: The daily SMOS-LPRM SM product has
been derived using LPRM version 6 and SMOS Level-3 bright-
ness temperatures. This is the same LPRM algorithm as that
used for AM2, but the parameters have been optimized for
L-band sensors [44]. It is the SMOS dataset that is currently
used in the ESA CCI project and is produced in a 0.25◦ regular
latitude–longitude grid. All the available data from January 2010
to December 2018 (see Fig. 1) were taken into account in this
article. Hereafter, ESLP refers to the ESA SMOS-LPRM SM
time series and data.

3) SMOS-NRT: The ESA SMOS Near Real-Time (NRT)
Level-2 V100–V200 SM Neural Network product [45] provides
SM estimates computed using statistical coefficients estimated
by a neural network trained on the nominal ESA SMOS Level-2
SM, but in NRT for operational applications. The data are
provided in the ISEA4H9-grid common to other ESA Level-1
and Level-2 SMOS products. The NRT files contain data for
fractions of orbits, and they are distributed in NetCDF format.
Only SM estimates from January 2016 to July 2019 (see Fig. 1)
were considered in this experiment. Hereafter, ESNRT refers
to the ESA SMOS-NRT SM time series and data.

4) SMOS-IC: The INRA-CESBIO SMOS-IC V105 prod-
uct [46] is a simplified research product that considers aggre-
gated surface emissions at 25-km resolution. The algorithm was
designed by the Institut National de la Recherche Agronomique
and the Centre d’Etudes Spatiales de la Biosphère to perform
global retrievals of SM and L-band VOD. It is based on the
two-parameter inversion of the L-MEB model, as defined in [42]
and [47], and considers the satellite footprint as homogeneous.

The data are provided in the 25-km EASE-Grid v2.0, as NetCDF
files. SM retrievals from January 2010 to December 2018 (see
Fig. 1) were used in the different computations and analysis.
Hereafter, ESIC refers to the ESA SMOS-IC SM time series
and data.

C. NASA SMAP

SMAP was launched on January 31, 2015 by NASA. It
carries on board a passive radiometer operating at 1.4 GHz
(L-band) and a synthetic aperture radar, an active instrument
operating at 1.2 GHz. The respective spatial resolutions of the
two instruments are 40 km and 1–3 km; however, the radar
stopped working a few months after launch. SMAP provides
passive measurements of the land surface SM in vertical and
horizontal polarizations at a fixed incidence angle of 40◦ [48].
SMAP ascending and descending orbits cross the equator at
6:00 P.M. and 6:00 A.M., respectively, and the revisit period is
between two and three days. To be consistent with the AM2
overpasses considered in this article, only the descending over-
passes of SMAP were taken into account as they correspond to
the morning orbits. The following two SM datasets derived from
different retrieval algorithms were used for the evaluation and
as the reference for the rescaling of AM2.

1) SMAP-LPRM: The SMAP-LPRM SM product provides
daily SM estimates using LPRM version 6 and brightness
temperatures. This is the same LPRM algorithm as that used
for AM2, but the parameters have been optimized for L-band
sensors [44]. It is the SMAP dataset that is currently used in
the ESA CCI project, and it is produced in a 0.25◦ regular
latitude–longitude grid. SM estimates from April 2015 to May
2019 (see Fig. 1) were considered in this experiment. Hereafter,
NSLP refers to the NASA SMAP-LPRM SM time series and
data.

2) SMAP-L2: The daily NASA SMAP Level-2 V005 SM
product [49] provides SM estimates using the single- and
double-channel algorithms [50] and water-corrected brightness
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TABLE I
IN SITU NETWORKS FROM THE ISMN THAT WERE USED IN THIS ARTICLE

Depths are quoted as two numbers: the first one is the upper depth, and the second one
is the lower depth of the sensor. Both numbers are equal when the sensor is placed
horizontally. The third column gives the number of sensors remaining for each network
after applying all of the criteria used for the evaluation that are discussed in Section III-A.

temperatures measured at the L-band. The data are provided
in the 36-km EASE-Grid v2.0 as NetCDF files, and only SM
retrievals from the single-channel algorithm for V polarization
were considered. In this article, the data used cover the time span
from April 2015 to June 2019 (see Fig. 1). Hereafter, NSL2
refers to the NASA SMAP-L2 SM time series and data.

D. GLDAS NOAH Model

SM model simulations representative of water in the top soil
layer (0–10 cm depth) from the GLDAS NOAH-3.6 version 2.1
model [51] were also used as the reference for the CDF matching
and compared to remote sensing datasets. These model data
result from remotely sensed and ground-based measurements
combined together using advanced land surface modeling and
data assimilation techniques. They are provided in a 0.25◦ regu-
lar latitude–longitude grid as NetCDF files. Only SM predictions
from January 2000 to April 2019 (see Fig. 1) were taken into
account for the comparisons and rescaling. The GLDAS NOAH
model was chosen in this article because it is the one currently
used as the reference to rescale the other sensors time series
within the ESA CCI project for SM. Hereafter, GLDAS refers
to the GLDAS NOAH model SM time series and data.

E. In Situ Measurements

Ground-based measurements retrieved from the International
Soil Moisture Network (ISMN) were used to assess the perfor-
mances of the rescaled AM2 [52], [53]. Since the microwave
radiation detected from space comes from the top surface of the
soil, only sensors between 0 and 5 cm depth were considered.
In total, there were 1740 sensors time series available, but only
a few hundred were selected to be compared to remotely sensed
and model data (see Section III-A). Table I presents the networks
used in this article.

TABLE II
IGBP LAND COVER CLASSES OF THE LOCATIONS OF THE ISMN SENSORS

USED IN THIS ARTICLE

Second column is the number of sensors remaining for each class after
applying all of the criteria used for the evaluation that are discussed in
Section III-A.

F. Land Cover and Climate Classifications

Two well-known classifications were used to assess the per-
formances of the rescaling of AM2 during this article.

The first one is the land cover classification from the In-
ternational Geosphere Biosphere Programme (IGBP) that is
based on the Moderate Resolution Imaging Spectroradiometer
data [54], [55]. It consists of classifying the Earth land surface
into categories that describe the type of observed vegetation,
such as croplands, forests, or barrens.

The second classification is the Köppen–Geiger climate clas-
sification [56]. This system divides the Earth land surface into
fives main climate groups (tropical, dry, temperate, continental,
and polar), with each group being divided based on seasonal
precipitation and temperature patterns.

According to the locations of the ISMN sensors and the data
selection explained in Section III-A, not all the classes from both
classifications were represented (see Tables II and III).

III. METHODS

A. Data Selection and Evaluation Against In Situ
Measurements

The purpose of this article is to evaluate the performances
of the original AM2 time series as well as those rescaled
using ESL3, ESLP , ESNRT , ESIC, NSLP , NSL2, and
GLDAS. Hence, it was chosen to compare remotely sensed and
model time series to independent in situ measurements retrieved
from the ISMN.

The first step was to spatially interpolate all the datasets on the
0.25◦ spaced grid of AM2 using the nearest neighbor approach.
Then, the remotely sensed and model time series at the closest
grid node to each of the 1740 ISMN sensors locations (1397
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TABLE III
KÖPPEN–GEIGER CLIMATE CLASSES OF THE LOCATIONS OF THE ISMN

SENSORS USED IN THIS ARTICLE

Last column is the number of sensors remaining for each class after applying all of the
criteria used for the evaluation that are discussed in Section III-A.

sites) were retrieved. A maximal radial distance of 25 km was
set as the threshold for this selection.
AM2 time series were rescaled following the different

methods discussed in Section III-B. Hereafter, AM2ESL3,
AM2ESLP , AM2ESNRT , AM2ESIC , AM2NSLP ,
AM2NSL2, and AM2GLDAS refer to AM2 rescaled using
ESL3, ESLP , ESNRT , ESIC, NSLP , NSL2, and
GLDAS as the reference, respectively.

The original AM2, ESL3, ESLP , ESNRT , ESIC,
NSLP , NSL2, and GLDAS time series as well as
the AM2ESL3, AM2ESLP , AM2ESNRT , AM2ESIC ,
AM2NSLP , AM2NSL2, and AM2GLDAS time series were
compared to the ground-based time series by computing the
Pearson correlation, the standard deviation of the difference
(STDD), and the bias. A minimum of 100 SM samples in
common with the in situ measurements for each reference and
rescaled time series were required to compute those statistical
metrics. A maximum difference of 1 h between the acquisition
times of the remotely sensed retrievals and ground-based
measurements was set as the threshold for the selection. Then,
only sensor locations for which all the time series to compare
fulfilled the previous condition were used. In the end, the
evaluation was done at 297 sensors locations (253 sites; see
Fig. 2) from the networks listed in Table I. It is worth mentioning
that while these networks cover a large array of climatic zones
and soil conditions (see Tables II and III), they are restricted to
two continents.

The results of the evaluation with respect to in situ measure-
ments were analyzed in three different ways:

1) by considering all the networks at once;
2) for each network independently;
3) as a function of the IGPB land cover and Köppen–Geiger

climate classifications (see Tables II and III).

B. Rescaling by CDF Matching

The CDF is a specific way to describe the distribution of a
discrete or continuous variable X . The purpose of this function
is to give the probability that X will take a value less than or
equal to a certain threshold. The CDF of an SM time series can
be written as

CDFSM(X) = P (SM <= X) (1)

where X is a given value of SM and P is the probability. The
CDF of a distribution is usually plotted as a curve, where the
vertical and horizontal axes show the percentage of samples and
the value of the variable, respectively.

Fig. 3 presents the median difference between ESIC from
the SMOS launch date (nine years of data) and ESIC from the
SMAP launch date (four years of data). Examples of the nine-
and four-year long CDF were also displayed and compared at
selected locations around the world. In some cases, there are
significant differences between the two CDFs, meaning that
the time period can greatly affect the CDF computation. These
differences are discussed in Section V.

As mentioned in [22], CDF matching consists of transforming
the CDF of one variable X (source data) to mimic that of
another variable Y (reference data) by using a function f . This
process can serve many objectives, but in this article context,
it is used to correct for systematic differences between source
and reference datasets that are both supposed to describe SM
dynamics. Indeed, bias between SM time series can be observed
due to differences in designs, incidence angles, spatial footprints,
or frequencies used between sensors. According to the nature of
the data and the application, different versions of f can be used
for the CDF matching. CDF matching is sometimes done as a
simple linear transformation using the mean (μ) and the standard
deviation (σ) of the source and reference as follows:

Sm = A+B × S (2)

whereS andR are the source and the reference data, respectively,
and Sm is the source data after being matched and coefficients
A and B are computed as

B = σR/σS

A = μR +B × μS .
(3)

As explained by Aires et al. [22], this rescaling assumes that
both the source and the reference distributions are Gaussian.
In this article, the SM random variable distributions from the
different datasets were not considered as Gaussian, and hence,
this approach will not be discussed further. Empirical CDFs
were considered, and the CDF matching was applied using
linear piecewise and polynomial transformations. These two
techniques are discussed in Sections III-B1 and III-B2.
AM2 at C1-, C2-, and X-bands (source data) were rescaled

following those techniques on a per-pixel basis, using alterna-
tively all the datasets presented in Section II as the reference
data. In addition, the CDF matching process was performed at
different time scales.
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Fig. 2. Locations of the in situ sensors and networks from the ISMN that were used in this article.

Fig. 3. Map of the mean of the ESIC SM computed in the 2015–2018 period minus the mean computed in the 2010–2018 period. The surrounding panels
show a comparison between the ESIC CDF computed in the 2015–2018 period (red line) with respect to that computed in the 2010–2018 period (blue line) for a
selected set of locations shown as red dots in the map. The ESIC CDF computed in the 2015–2018 period using all data in a 2◦ radius is also shown in green line.

1) The source CDF is matched to the reference by computing
only one set of scaling parameters for all the days of the
year.

2) The source CDF is matched to the reference on a seasonal
basis. A specific set of scaling parameters is computed
independently for each of the following monthly sets:
January, February, March; April, May, June; July, August,
September; and October, November, December.

3) The source CDF is matched to the reference on a monthly
basis. A specific set of scaling parameters is computed for
each month of the year.

One must bear in mind that AM2 were rescaled from 2012
to 2020 in all cases, even when the reference time series did

not cover this entire period of time. In other words, this means
that the scaling parameters are applied to this entire period even
though they may be computed from shorter periods.

1) Linear Piecewise CDF Matching: The piecewise ap-
proach focuses on the matching of the empirical CDF of the
source data with those of the reference data [13], [21], [57].
In this case, both the source and reference data are sorted in
increasing order, and a binning process is performed on them
according to a predefined set of percentiles. Once the empirical
CDF are built, there are many ways to apply the transformation
on the source data.

The chosen method here is the one currently used in the ESA
CCI project and consists of a piecewise linear interpolation [58].
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The idea is to compute a specific slope and intercept between
the source and reference data for each percentile. Then, the
rescaling of the source data is performed individually for each
percentile by using the corresponding linear coefficients. An
additional linear least-squares regression is applied between
the source and reference data by using the values smaller to
the second percentile with an intercept through the second
percentile [58]. This is also undertaken for values above the
second latest percentile. The computed slope and intercept are
then used to rescale the source data below the first and above the
last percentile, respectively. The aim of this process is mainly
to reduce the impact of potential outliers during the rescaling.
Following [58], in this article, a set of 12 percentiles bins is used
as default: [0–5, 5–10, 10–20, 20–30, 30–40, 40–50, 50–60,
60–70, 70–80, 80–90, 90–95, 95–100]. Each percentile bin was
required to include at least 20 SM observations. If this is not the
case for any of the percentile bins, the number of bins is reduced
until there are at least 20 SM samples in each of them.

Hereafter, ILPW CDF matching refers to the improved linear
piecewise CDF matching technique.

2) Polynomial Fitting CDF Matching: The polynomial fit-
ting CDF matching, explained in [23], uses a function approx-
imation technique to find the relationships between the source
and the reference data CDF. First, the source and reference CDFs
are computed with the number of percentiles equal to the number
of SM observations in their respective time series. Second, the
source CDF is linearly interpolated on the percentiles of the
reference CDF, and the difference between the two is computed.
Then, the difference is plotted against the interpolated source
CDF, and a polynomial fit is performed. Finally, the polynomial
function is used to compute the correction to apply to the source
data. As mentioned in [22], this method has the advantage to
provide a continuous transformation, but it is more complex to
control. Indeed, it can be subjected to instabilities, and extreme
events are not sure to be well preserved. A polynomial fit of
degree 5 was used to rescale AM2 in this article. In the case
there was fewer than 15 percentiles in the reference CDF, the
data were not rescaled and were discarded.

Hereafter, PF CDF matching refers to the polynomial fitting
CDF matching technique.

C. Trend and Seasonality Decomposition

For climate analysis and applications, it is essential that the
CDF matching does not alter the long-term SM trends of the
source time series. The dynamic range is subjected to change to
become consistent with the reference data, but the trend and sea-
sonality must remain the same between the source and rescaled
time series. Hence, a time-series decomposition was performed
on AM2 and AM2NSL2. The time series were deseasonalized
following an additive decomposition method explained in [59]
and implemented in MATLAB under the name of Seasonal
Adjustment Using a Stable Seasonal Filter. This method consists
of a trend and seasonality parametric decomposition. A convolu-
tion is performed on the time series to extract the long-term trend.
Then, the trend is subtracted from the original time series, and

the detrended data are averaged on a monthly basis to provide
an estimation of the seasonality.

D. Random Error and Temporal Frequency of the
Observational Data

In contrast to models, for which errors are mostly of system-
atic nature, errors in observational data are mostly of random
nature. In addition, while several global land surface models
run with a few hours time steps, microwave sensors on-board
polar-orbiting satellites have a revisit frequency of one to three
days. Therefore, it is important to study the impact of the random
errors and the revisit frequency when observational data are used
as reference for the rescaling process. Both effects were studied
with a numerical experiment using synthetic data. Starting with
GLDAS time series, they were altered in two different ways to
simulate the observational effects mentioned above.

1) The temporal frequency of GLDAS time series was de-
creased from one observation per day to one observation
every three days to simulate the usual revisit of satellites
(hereafter, referred as GLDASf=1/3).

2) A Gaussian noise with mean μ = 0 and sigma σ =
0.02 m3/m3 was added to the GLDAS time series for
each time step to simulate random errors in L-band data
(hereafter, referred as GLDASσ0.02

). With a 3σ distribu-
tion of 0.06 m3/m3, this noise is representative of SM
retrievals by the current generation of microwave sensors.
However, Gaussian noise with a larger σ of 0.04 m3/m3

was also tested (GLDASσ0.04
). A total of 100 draws were

computed both forGLDASσ0.02
) andGLDASσ0.04

) time
series.

Finally, AM2 time series over North America were rescaled
using the perturbed time series GLDASf =1/3,

GLDASσ0.02
,

and GLDASσ0.04
as reference and compared to AM2 rescaled

with the original GLDAS (AM2GLDAS) in terms of STDD.
In all cases, the monthly PF CDF matching was used, and the
periods considered for the AM2 and GLDAS time series were
those shown in Fig. 1.

IV. RESULTS

This section describes the performances ofAM2, the rescaled
AM2, as well as the reference time series with respect to the in
situ measurements from the networks shown in Table I. Since
the results are similar for the C1-, C2-, and X-bands of AM2,
only those of the C1-band are shown here. The results obtained
by using all the networks together are very consistent with those
obtained for each network independently. Consequently, only
the results considering all the networks at once are presented,
and conclusions drawn in the next sections remain valid at a
network scale. The performances according to the IGBP land
cover classes and Köppen–Geiger climate classification (see
Tables II and III) are also addressed in this section.

A. Assessment of the Source and Reference Data

Fig. 4 presents the performances of AM2 (source), ESL3,
ESLP , ESNRT , ESIC, NSLP , NSL2, and GLDAS with
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Fig. 4. Evaluation of the source, reference, and rescaled time series with respect to in situ measurements by considering all the networks at once. The Pearson
correlation (R), bias (m3/m3), and STDD (in m3/m3) are computed for the 297 ISMN sensors locations and plotted as box plots. The first column presents the
performances of AM2C1-band, ESL3, ESLP , ESNRT , ESIC, NSLP , NSL2, and GLDAS. The second and third columns present the performances of
the rescaled AM2 using the ILPW and PF CDF matching, respectively (see Sections III-B1 and III-B2). Acronyms of the datasets are explained in Sections II
and III. On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th (q25) and 75th (q75) percentiles, respectively.
Points are considered as outliers if they are greater than q75 + 1.5× (q75 − q25) or less than q25 − 1.5× (q75 − q25). The whiskers extend to the most extreme
data points not considered outliers. (a), (d), and (g) No CDF matching. (b), (e), and (h) ILPW CDF matching. (c), (f), and (i) PF CDF matching.

respect to in situ measurements through three statistical metrics:
the Pearson correlation [R; see Fig. 4(a)], the bias [see Fig. 4(d)],
and the STDD [see Fig. 4(g)]. As shown in Fig. 4(a), ESIC,
NSL2, and NSLP show the highest correlations among all the
datasets, while AM2 and ESL3 give the lowest ones. ESLP ,
ESNRT , and GLDAS show intermediate values. Fig. 4(d)
shows thatESLP gives the lowest bias, whileNSLP shows the
highest one. In general, the SMOS datasets have negative bias
with respect to in situ measurements, while AM2, GLDAS,
NSLP , andNSL2 have positive bias. Regarding STDD,AM2,
ESL3, ESLP , and GLDAS show higher values than the other
datasets [see Fig. 4(g)]. The STDDs are similar for ESNRT ,
ESIC, NSLP , and NSL2.

In Fig. 5, the results are analyzed as a function of the IGBP
land cover classes that are the most represented by the ISMN
sensors used in this article. Overall, the source and reference
time series show correlations close to 0.5 or above except for the
Evergreen Needleleaf Forest class [see Fig. 5(e)]. In addition, the

performances of the reference time series are similar to or better
than those ofAM2 for almost all the classes. The correlations of
the reference data are above 0.70 and significantly higher than
those of AM2 for the Savannah class [see Fig. 5(c)]. Due to
the change in the number of sensors available for the different
classes (see Table II), results shown in Fig. 5(a)–(c) might be
more significant than those shown in Fig. 5(d)–(f).

In Fig. 6, the results are analyzed as a function of the Köppen–
Geiger climate classes that are the most represented by the ISMN
sensors used in this article. All the source and reference time
series show correlations close to 0.5 or above except for the two
classes with Snow as main climate [see Fig. 6(e) and (f)], which
are between about 0.25 and 0.5. Moreover, the performances of
the reference time series are similar to or better than those of
AM2 for almost all the classes. However, ESL3 and ESIC
show the lowest correlations in Fig. 5(e). The correlations of the
reference data are above 0.70 and significantly higher than those
of AM2 for the climate class shown in Fig. 6(c). After further
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Fig. 5. (a)–(f) Evaluation of AM2 C1-band, ESL3, ESLP , ESNRT , ESIC, NSLP , NSL2, GLDAS, as well as the rescaled AM2 with respect to in
situ measurements according to the IGBP land cover classification (see Table II). The Pearson correlation (R) is shown as box plots for the six classes that are
the most represented by the ISMN sensors locations used in this article. The ILPW CDF matching is considered in this figure, and acronyms of the datasets are
explained in Sections II and III. The structure of the box plots is described in the caption of Fig. 4.
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Fig. 6. (a)–(f) Evaluation of AM2 C1-band, ESL3, ESLP , ESNRT , ESIC, NSLP , NSL2, GLDAS, as well as the rescaled AM2 with respect to in
situ measurements according to the Köppen–Geiger climate classification (see Table III). The Pearson correlation (R) is shown as box plots for the six classes that
are the most represented by the ISMN sensors locations used in this article. The ILPW CDF matching is considered in this figure, and acronyms of the datasets
are explained in Sections II and III. The structure of the box plots is described in the caption of Fig. 4.
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Fig. 7. (a)–(d) Different maps show the Pearson correlation with respect to in situ measurements of AM2 after rescaling (R) minus the Pearson correlation of
AM2 (R0). All the locations for which the difference in correlation is not significant are plotted in white. Left panels: AM2NSL2. Right panels: AM2ESIC .
In both cases, the PF CDF matching at a monthly time scale was used (see Section III-B2). Acronyms of the datasets are explained in Sections II and III.

analysis, it was found that all the sensors locations representing
the IGBP Savannas class [see Fig. 5(c)] are also included in
this climate class. Taking into account the number of sensors
available for each of those classes (see Table III), the results
shown in Fig. 6(f) might be less significant than those shown in
the other box plots.

B. Assessment of the Rescaled Data

1) CDF Matching Techniques and Time Scale Comparison:
Fig. 4(b), (e), (h), and 4(c), (f), (i) present the performances of
the rescaled AM2 with respect to in situ measurements using
the ILPW and PF CDF matching at a monthly time scale,
respectively. The results of the CDF matching performed on a
seasonal basis and using the full length of the time series are not
presented here because the values of the different metrics do not
change significantly according to the used time scale. Besides,
it is interesting to note that there is almost no difference in terms
of correlation, bias, and STDD between the two CDF matching
approaches.

From Fig. 4(b) and (c), the correlation distributions of
all the rescaled AM2 and AM2 are quite similar. Only
AM2ESL3 give slightly lower values. AM2NSLP , AM2NSL2,
and AM2GLDAS show a positive bias, while AM2ESL3,
AM2ESLP , AM2ESNRT , and AM2ESIC give negative bias
[see Fig. 4(e) and (f)], as expected from the results discussed in
Section IV-A and plotted in Fig. 4(d). The STDD is a bit higher
forAM2ESL3 andAM2ESLP than for the other rescaledAM2,
but, again, it was expected from the results in Fig. 4(g).

2) Effect of the Reference Dataset on the CDF Matching:
The best performances of the rescaled time series with respect
to the in situ measurements were found for AM2ESNRT ,

AM2ESLP , AM2ESIC , AM2NSLP , and AM2NSL2, which
show overall performances similar or somewhat better than those
obtained for AM2GLDAS (see Fig. 4).

The same conclusion holds when the rescaled AM2 are ana-
lyzed as a function of the IGBP land cover and Köppen–Geiger
climate classifications (see Figs. 5 and 6).

In addition to the box plots showing the distribution of differ-
ent metrics for all the sites, the results were also analyzed site
by site. Fig. 7 shows the differences between the correlation of
AM2ESIC or AM2NSL2 with respect to in situ measurements
and those of the source AM2. The PF CDF matching at a
monthly time scale was considered in this example, and all the
differences that are not significant are plotted in white.

According to Fig. 7(a) and (b), there is an increase in cor-
relation in the west part of the USA. However, a decrease in
correlation is observed in the south of France [see Fig. 7(c) and
(d)].

Taking into account the confidence intervals of the correla-
tions, with respect to AM2, AM2ESIC (AM2NSL2) shows a
significant increase in correlation for 17% (18%) of the sites,
while a significant decrease in correlation is observed for 9%
(8%) of the locations. In summary, for most of the sites (74%),
the correlation difference is not significant when the confidence
intervals are taken into account. For the sites where the difference
is significant, most of them (66–68%) show an increase in
correlation with respect to the in situ measurements.

Most of the significant increases in correlation (54% for
AM2ESIC and 50% for AM2NSL2) are observed for the grass-
lands IGBP class (see Fig. 5). The significant decreases (42%
for AM2ESIC and 38% for AM2NSL2) mainly belong to the
croplands class [see Fig. 5(a)]. Most of the significant increases
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Fig. 8. Slopes of the trends of AM2 and AM2NSL2 using the ILPW CDF
matching are plotted against each other for the 297 ISMN sensor locations (see
Sections III-B1 and III-C). Acronyms of the datasets are explained in Sections II
and III.

in correlation (26%, 22%, and 18% for AM2ESIC and 25%,
23%, and 17% for AM2NSL2) are observed for the Köppen–
Geiger classes shown in Fig. 5(b), (d), and (e), respectively. The
significant decreases (15% and 38% for AM2ESIC and 25%
and 21% for AM2NSL2) mainly belong to the classes shown in
Fig. 5(a) and (b), respectively.

3) Effect of the CDF Matching on the Time Series Trend: For
applications such as building long time data records, the goal of
the rescaling is just to perform a bias correction. It is important to
ensure that possible trends in the source data are conserved in the
rescaled data. Therefore, a trend and seasonality decomposition,
as explained in Section III-C, was applied to AM2 and to
one of the rescaled time series (AM2NSL2) using the ILPW
CDF matching at a monthly scale. After the decomposition, a
linear regression was computed to fit the trends. The slopes of
the trends of the source and of the rescaled time series were
compared site by site and plotted in logarithmic scale (see Fig. 8).
The scatter plot shows that all the points are close to the 1:1 line,
implying that trends are preserved. The bigger differences are
found for sites that show very low trends, being very low in
absolute value (less than 0.001 m 3· m−3·yr−1) with respect to
geophysical SM trends found in other studies [8], [14], [30],
[60].

4) Comparison of the Source, Reference, and Rescaled Time
Series at the Globe Scale: The first part of this article was
devoted to comparing the source, reference, and rescaled time
series only at locations for which independent in situ measure-
ments are available. However, it is also necessary to get more
insight into the rescaled AMS2 at a global scale. Therefore, a
global rescaling ofAM2was done usingESIC as the reference
and applying both the ILPW and PF CDF matching at a
monthly time scale. Fig. 9(a) shows the bias of the source data
with respect to the reference data. There is significant positive
bias in the northern regions and a negative bias in the equatorial
region. These biases are in agreement with those found between

Fig. 9. Comparison of AM2, ESIC, and AM2ESIC at the scale of the
Globe. Map (a) shows the bias between AM2 and ESIC. Map (b) shows
the bias between AM2ESIC and ESIC. Maps (c) and (d) show the Pearson
correlation between AM2 and AM2ESIC . The ILPW CDF matching was
used to compute AM2ESIC in maps (b) and (c), while the PF CDF matching
was used in map (d) (see Sections III-B1 and III-B2). Acronyms of the datasets
are explained in Sections II and III.
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Fig. 10. (a)–(d) Impacts of using a reference dataset with a reduced temporal frequency and random errors for the CDF matching. Top left: average SM
value of GLDAS. Top right: STDD between AM2GLDASf=1/3

and AM2GLDAS . Bottom left: Average of 100 STDD values between GLDASσ0.02 and
AM2GLDAS . Bottom right: Average of 100 STDD values between GLDASσ0.04 and AM2GLDAS . Acronyms of the datasets are explained in Sections II
and III.

ASMR-E and SMOS SM in other studies [61]. After the rescal-
ing, the bias drops to ±0.04 m 3· m−3 for more than 90% of the
regions [see Fig. 9(b)], while the dynamics of the source data
are preserved in the rescaled dataset as shown by the Pearson
correlation maps [see Fig. 9(c) and (d)]. It is interesting to note
that AM2ESIC are better correlated to AM2 in some regions
such as Sahara and in Australia when the PF CDF matching is
used for the rescaling. The map of the biases between ESIC
and AM2ESIC using the PF CDF matching is not shown here
because it is quite similar to Fig. 9(b) (ILPW CDF matching).

5) Impacts of the Temporal Sampling and Random Errors
of Observational Data: The effect of random errors and of the
reduced temporal sampling of observational data with respect
to models on the rescaled time series was studied following
the methodology presented in Section III-D. The numerical
experiments were computed over the part of North America
displayed in Fig. 10. Fig. 10(a) shows the mean SM in the
2010–2019 period. The effect of the temporal sampling of
remotely sensed SM time series is shown in Fig. 10(b). The
STDD betweenAM2GLDASf=1/3

andAM2GLDAS is very low,
below 0.005 m3/m3. This result is expected since the revisit time
of microwave sensors used to estimate SM is studied to be able
to capture the SM dynamics with a higher temporal frequency
than the characteristic drying times after precipitation events.
However, it is interesting to note that the regions in Fig. 10(b),
with slightly higher STDD, correspond to sandy soil regions.
This is also expected as the soil surface memory to precipitation
events is shorter than for other types of soil. In summary, using

observational time series as reference to compute the CDF
matching does not affect significantly the results with respect
to using a model time series with a denser temporal sampling.

Regarding the effect of random errors on the observational
time series, they have been modeled as explained in Section III-
D. The GLDAS time series were perturbed with Gaussian noise
representative of the error of SM time series computed from
remotely sensed data, with a σ representative of retrieved time
series GLDASσ0.02

and a higher value GLDASσ0.04
.

Fig. 10(c) shows the average of the STDD between
AM2GLDASσ0.02

and AM2GLDAS for the 100 draws com-
puted. A gradient is observed from West to East. The difference
of the time series after rescaling against the noisy GLDAS time
series is higher in wetter areas with more vegetation in the East
(0.006–0.008 m3/m3) than in dry areas with less vegetation in
the center and the West [0.002–0.004 m3/m3; see Fig. 10(a)].
The same behavior but with higher absolute values of the differ-
ences is found forAM2GLDASσ0.04

[see Fig. 10(d)]. The STDD
values are from around 0.01 m3/m3 in the dry areas in the center
and up to 0.025 m3/m3 in the West. Modeled and remotely
sensed SM series are in better agreement in dry regions with
low vegetation as shown by different evaluation studies [44],
[61]–[64], and this is also the case for the rescaled time series
even in the presence of noise in the reference data. For both σ
values, the impact of adding noise to the GLDAS time series
is larger than the impact of reducing the temporal sampling,
and it becomes significant when the noise in the reference time
series has a distribution with σ = 0.04 m3/m3. In this case, the
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error introduced in the rescaled time series should be taken into
account in the total error budget of the SM CDR.

V. DISCUSSION

In contrast to models such as GLDAS, remote sensing re-
trievals can be relatively noisy and can present gaps due to a
limited revisit frequency of the satellite and possibly due to
low-quality retrievals that have been flagged out; this latter effect
depends on the selected algorithm even when applied to the same
sensor.

Therefore, in the context of removing model dependence from
CDRs by using an observational dataset as the reference for the
rescaling of other sensors time series, it is necessary to evaluate
the time series rescaled using different L-band products.

Taking into account the different L-band SM datasets avail-
able, it has been shown in Section IV-A that, in general, SM time
series computed from L-band data show better performances
with respect to in situ measurements than AM2 time series.
Overall, NSL2 and NSLP followed by ESLP , ESNRT ,
and ESIC show the best performances, similar to or better
than GLDAS. The good results obtained for ESLP confirm
previous evaluations [39], [61], and the results for ESNRT
and ESIC are in agreement with other studies [45], [46].

The AM2 time series rescaled using different L-band SM
datasets were evaluated against in situ measurements (see Sec-
tion IV-B). The best performances were found when the products
used as the reference are those that show the best performances
against in situ measurements. It is noteworthy that theAM2 time
series rescaled using GLDAS also show good performances,
confirming the pertinence of using this model within the ESA
SM CCI [17]. However, removing all possible model depen-
dence in CDRs is necessary for some applications such as data
assimilation in climate models. In this context, van der Vliet
et al. [65] discussed how to homogenize in flagging strategies
in between sensors without using external datasets coming from
models and van der Schalie et al. [66] discussed strategies to use
the 36.5-GHz band to estimate soil temperature needed as input
to estimate SM from lower frequencies without requiring model
estimations. The current article shows that it is actually possible
to use L-band data as the reference to rescale other remotely
sensed time series instead of using the GLDAS model. This is
also possible independently of the approach and time scale used
for the CDF matching. Despite the differences between the time
series used as the reference for the CDF matching such as the
time coverage or the revisit frequency, several SMOS and SMAP
datasets are legitimate candidates to replace the GLDAS model.

SMAP data have a larger spatial coverage than that of SMOS
in regions affected by radio frequency interference. In contrast,
SMOS time series are longer than those of SMAP by a factor
of 2. Long time series are necessary to capture the long-term
SM variability for climate applications. This is shown in Fig. 3,
where the CDF of ESIC computed from the date of SMAP
launch (2015) was compared to the CDF of the full length
of ESIC (starting in 2010). Fig. 3 shows the median bias
between the “short” and “long” ESIC over the entire globe.
Overall, the bias is mainly in a range between −0.01 and 0.01

m3/m3. However, some regions show high bias values reaching
±0.05 m3/m3 such as in the Great Lakes area, Argentina, North
India, China, etc. Moreover, the behavior of the two CDFs is also
quite different at some locations, implying that four-year-long
time series are not long enough to be representative of the SM
dynamics in many places of the globe. Of course, as pointed out
by other studies, the time length of the reference dataset used
for the CDF matching should be as long as possible to be able to
compute robust results (see [67]–[69]). Reichle and Koster [21]
proposed that in case of short time series, an alternative could be
to replace temporal variance by spatial variance by computing
the CDF, including the data in a 2◦ circle around each grid
point. This approach was tested here computing the CDF of
SMOS time series since the date of the SMAP launch using all
data in a 2◦ radius. Fig. 3 also shows the CDFs of the short
time series using the spatial variability (green lines). Actually,
the approach gives CDFs similar to those of the long SMOS
time series in some locations (Points 1, 5, 7, 9, 10, and 12).
However, for many of them, the CDF of the short time series
was already in good agreement with the CDF of the long time
series (Points 1, 5, 7, 9, and 12). Finally, the CDF using the
spatial variance is very different to that of the long one for many
points (Points 2, 3, 4, 8, 10, and 11). Therefore, this method
cannot effectively provide more robust CDFs when the time
series are short. Since both SMOS and SMAP presents pros and
cons, an L-band fusion product may be the best option to serve
as the reference to rescale other SM time series when building an
SM CDR.

The ESA CCI retrieves SM observations from active and
passive microwaves sensors since the end of the 1970s. Before
being merged, these data are rescaled against the GLDAS model
that has the advantage to provide time series covering this period
of roughly 40 years. However, L-band data are only available
since the end of 2009 with the launch of the SMOS mission.
Thus, replacing the GLDAS model by an L-band sensor could
be an issue for the rescaling of other sensors that operated before
2010. To make up for the lack of overlapping period between
L-band data with several active and passive products, an iterative
backward scaling approach could be considered. SM retrievals
from sensors that overlap in time with SMOS and SMAP will
be CDF matched against the L-band data. The scaling reference
would be updated and include the newly scaled retrievals in
addition to the L-band data. This reference would then be used
for the rescaling of retrievals from older sensors that share a
common period with it. Nevertheless, this iterative approach
could lead to a flattening of the original dynamics and to a
suboptimal error transfer and should be evaluated further in
subsequent studies.

VI. CONCLUSION

Different approaches to rescale remotely sensed SM observa-
tions were discussed and evaluated in this article. The ESA CCI
currently rescales different SM datasets by CDF matching using
the GLDAS land surface model as the reference to produce long
and consistent SM time series. A rescaling experiment was per-
formed on the ASMR-2 data using different SMOS and SMAP
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datasets as the reference to investigate the feasibility to replace
the GLDAS model by an L-band sensor. Both the reference and
rescaled time series were assessed against ground-based mea-
surements of SM retrieved from the ISMN. In addition, a linear
piecewise and polynomial fitting CDF matching were compared
at different time scales (computing one single set of rescaling
coefficients, computing four sets of seasonal coefficients, or
computing 12 sets of monthly coefficients).

The results show that SMOS, SMAP, and GLDAS time series
give better performances with respect to in situ measurements
than those of AMSR2. The SMAP-LPRM time series get the
highest correlations. The performances of the rescaled data do
not change significantly depending on the time scale and the
approach used for the CDF matching. In general, the rescaled
time series using L-band data as the reference provide per-
formances similar to or a slightly better than those rescaled
using the GLDAS model. Through this experiment, SMAP-
LPRM, SMAP-L2, SMOS-IC, SMOS-LPRM, and SMOS-NRT
products provide the most promising L-band datasets to re-
place the GLDAS model as the reference to rescale other re-
motely sensed time series. However, an actual implementation
of this approach to compute multi-instrument long time series
of SM within projects such as the ESA CCI or the Copernicus
Climate Change Service would require more validation and
evaluation. More specifically, the lack of overlapping period
between SMOS and SMAP with the other active and passive
products, that are merged into the COMBINED ESA CCI SM
product, should be addressed. Using an L-band dataset as the
reference will also affect the triple collocation (TC) approach
that it is currently used to assign errors to individual datasets
to compute a weighted mean for the COMBINED product, as
the products to be used as input for the TC will not be fully
independent.

In addition, random errors of the scaling L-band reference
should be properly taken into account since they can significantly
affect the CDF matching process and alter the rescaled datasets.

Finally, the effect of the time series length on the CDF was
also studied as SMAP time series are shorter by a factor of
2 than those from SMOS. The CDFs of SMOS time series
were computed within the SMAP dates and compared to the
CDF using the full length of the SMOS time series. Significant
differences were found in some regions of the globe arguing
that four-year long time series are not long enough to capture
the entire SM dynamics globally. These results show that the
length of the time series used as the reference for the rescaling
could be a crucial issue for the CDF matching to be reliable.
Replacing temporal by spatial variance in the short time series
does not allow, in general, to compute CDFs closer to those of
the long time series.

Future studies will be dedicated to the conception of a merged
L-band dataset as the reference for the rescaling to benefit from
both SMAP and SMOS advantages. This could be achieved by
applying the same physical-based algorithm such as LRPM to
SMOS and SMAP brightness temperatures after intercalibra-
tion or by merging two SM datasets with a machine learning
algorithm. In addition, as mentioned above, the use of SMOS
and SMAP data to rescale SM time series from older sensors,
which do not share a common operation period, needs further
investigation.
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