N
N

N

HAL

open science

Evref: Reflective Evolution of Ever-running Software
Systems

Stéphane Ducasse

» To cite this version:

Stéphane Ducasse. Evref: Reflective Evolution of Ever-running Software Systems. Inria Lille - Nord

Europe. 2023. hal-04527877

HAL Id: hal-04527877
https://hal.science/hal-04527877v1
Submitted on 31 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04527877v1
https://hal.archives-ouvertes.fr

EVREF: REFLECTIVE EVOLUTION OF EVER-RUNNING SOFTWARE SYSTEMS

Team leader: Stéphane Ducasse
Inria research center: Lille - Nord Europe

Field: check |https://www.inria.fr/en/list-projects-teams-fields-and-themes

Theme: check https://www.inria.fr/en/list-projects-teams-fields-and-themes
In partnership with CRIStAL (UMR 9189, Université de Lille) and Berger-Levrault DRIT

Genealogy: this team is a follow-up of rmod

Summary: The objectives of EVREF are to study and support the continuous evolution of large software systems in a
holistic manner following three main axes: (1) analyses and approaches for migration and evolution of existing (legacy)
systems, (2) new tools to support daily evolution, and (3) infrastructure to build language runtimes to support software
evolution, new tools, frugal systems, and security language features. In the context of the first axis, EVREF proposes a
specific research agenda with Berger-Levrault R&D.

Evolving large software systems is a challenge. Decades of academic research have somehow produced tools and platforms
that help companies to maintain their systems. But keeping legacy systems active and relevant is still a really complex
task [?]. An aggravating challenge is that some of these systems can never stop (production lines, wafer production
systems, auction managers, etc) and need to be updated while running at production sites. In addition, because the
production environment is not the same as the development environment, the only way to spot and fix a bug is often by
directly accessing software in production, while running.

Supporting the evolution of such ever-running systems is an important challenge for our industry because it must deal
with more and more changing requirements and the need for dynamic adaptation. To address this challenge EVREF will
work on (1) analyses and approaches based on language-specific metamodels and their accompanying processes such as
test generation, semi-automated migration, or business rule identification; (2) new generation debuggers, profilers, and
tools for reverse engineering — we will tackle new areas such as the support for non-functional requirements (robustness,
memory consumption, ...) —, (3) language and runtime infrastructure to support evolution, green computing, security,
and tooling as a step towards self-evolvable runtimes. EVREF approach is reflective in the sense that controlling the
underlying execution engine it will explore different facets of evolution and tooling. From that perspective its sum will
be more than its parts. A specific research agenda with Berger-Levrault will take place in the context of the first point.
Intended audience: The expected reader of this document is a software engineering researcher or language
implementors. Still, we encourage experts from other fields to read it.

About the document size: We are sorry but the process basically forced us to produce a long document. Its
initial version was a lot shorter but after each feedback step, reviewers wanted to know more.

Proposal outline:
Last updated: 31/03/2024

Contact: Stéphane.Ducasse@Qinria.fr

http://stephane.ducasse.free.fr
http://www.inria.fr/en/centre/lille
https://www.inria.fr/en/list-projects-teams-fields-and-themes
https://www.inria.fr/en/list-projects-teams-fields-and-themes
https://www.inria.fr/en/list-projects-teams-fields-and-themes
https://www.inria.fr/en/list-projects-teams-fields-and-themes
https://www.lelabo.fr/
https://www.inria.fr/rmod
mailto:St�phane.Ducasse@inria.fr

1 Team members

The team is composed of members of the previous RMOD team. Some members will work in the partnership
with Berger-Levrault. EVREF continues to work on software evolution and language design but also opens its
horizon to new research axes: how to rethink traditional tools to help software developers, how to build Virtual
Machines and how such an infrastructure can help building new tools and more evolvable languages. In addition
EVREF goes deeper in the use of IA for Software engineering challenges.

Steven Costiou (the only french researcher in debuggers) and Vincent Arenaga expertise on building tools
reinforces the old RMOD team (Nicolas Anquetil, Marcus Denker, Stéphane Ducasse and Anne Etien). Finally,
for several years now, Guillermo Polito invested in Virtual Machines construction. He became one of the only
Virtual Machine researcher in France, his presence in EVREF is essential.

1.1 Permanent members

We list separately the members of the Evref-BL subproject with the R&D members of Berger-Levrault for the
sake of clarity.
Faculty:

e Head, Stéphane Ducasse, HDR, DR1, Inria, Team leader, 2007 — ...
e Anne Etien, Professor, Univ. Lille, 2012 — ...
e Nicolas Anquetil, HDR, Associate Professor, Univ. Lille, 2009 — ...
e Marcus Denker, CRCN, Inria, Researcher, 2009 — ...
e Steven Costiou, CRCN, Inria, Researcher 2019 — ...
e Guillermo Polito, CRCN, Inria, Researcher 2022 — . ..

Research Engineers:

e Christophe Demarey, Inria, Engineer 60%

1.2 Contractual members

Engineers:
e Clotilde Toullec, Inria, Engineer, June 2021 — June 2025
e Sebastian Jordamont, Inria, Engineer, July 2021 — July 2023
Pharo consortium engineers:
e Esteban Lorenzano, Inria, Engineer
e Pablo Tesone, PhD, Inria, Engineer
Ph.D. students:
e Théo Rogliano - (50 % S. Ducasse, 50% L. Fabresse - IMT), Multiple language kernels, 10/2019.
e Pierre Misse - (50 % S. Ducasse, 50% N. Bouraqadi - IMT), Transpilation for Modular Green VMs, 10,/2019.
e Honoré Mahugnon - (50 % S. Ducasse, 50 % N. Anquetil) - CIM CIFREH - Powerbuilder 05/2019.

e Oleksandr Zaytsev - (50 % S. Ducasse, 50 % N. Anquetil) - Arolla CIFRE - ML and Software Evolution,
07/2019.

e Santiago Bragagnolo - (50 % S. Ducasse, 50 % N. Anquetil) - Berger-Levrault CIFRE, Automatic software
migration, 07,/2020.

e Nour-Dijhene Agouf - (50 % S. Ducasse, 50 % A. Etien) - Arolla CIFRE, DSL for visualizations, 01/2021.
e Maximilian Willembrinck - (50 % S. Costiou, 50 % A. Etien), Queryable time-traveling Debuggers, 10,/2020.

1.3 Berger-Levrault (Evref-BL) partnership
We list the members of the Evref-BL roadmap that we will present in the first research axis in Section 77 and
their planned implications in the subproject (in bold).

e Co-head. Stéphane Ducasse, HDR, DR1, Inria, 20%

e Co-head. Christophe Bortolaso: PhD, Head of Research, Berger-Levrault: 10%.

LCIFRE is a PhD paid by a company.

e Anne Etien, Professor, Univ. Lille, 75%

e Nicolas Anquetil, HDR, Associate Professor, Univ. Lille, 75%

e Benoit Verhaeghe: PhD, Research manager at Berger-Levrault. 80%. Co-Directing PhD Students during
the partnership.

e Abderrahmane Seriai: PhD, Research manager at Berger-Levrault. 80%. Co-Directing PhD Students
during the partnership.

e Anas Shatnawi: PhD, R&D Engineer at Berger-Levrault. 20%.

e Florent Mouysset: PhD, R&D Engineer at Berger-Levrault: 20%. He will focus on TA based tests generation.

Ph.D. students:

e Santiago Bragagnolo: Industrial PhD thesis (CIFRE) in preparation. From the end of 2023 will be part of
the R&D at Berger-Levrault: 80%.

2 Context and challenges

The context of EVREF is software evolution and the tooling it requires. By tooling we mean tools but also
infrastructure to execute programs. We identify three main challenges: how to support evolution, what are the
missing tools and how can the runtime infrastructure can sustain all this?

2.1 Challenge 1: Software evolution is still a challenge

Computer and information systems are the key elements and exo-skeletons of our societies. They are omnipresent
and manage the data of our lives and activities: insurance, billing, customer management, hospitals, HR, mass
distribution, commerce, ... They are the keystone of organizations and their businesses. They have a life time
expectancy of decades during which they must evolve to adapt to the world they model. Evolution is ineluctable
[?]. In 2014, Deloitte placed reverse engineering, and evolution of software in the top 10 themes that will impact
organizations in information technology.

Evolution has detrimental effects on software quality: developer turnover results in a loss of knowledge of the
system which leads to sub-optimal or plainly wrong code modifications; new development directions may conflict
with the original goals of the system and require to break fundamental design decisions resulting in architectural
drift and architectural decay; general software quality decrease makes any evolution more risky and more likely
to introduce new bugs or new security breaches.

Software evolution is a large research domain and we will focus on the most important or promising areas:
(1) Software migration to other languages/frameworks, (2) Semi-automatic library update, (3) Non-functional
requirements during software evolution, and (4) Validation of produced artefacts (testing)

2.1.1 Software migration to other languages/frameworks

The migration of software system is an important challenge faced by companies. Migration is still a really
underestimated challenge [?]. Such migrations may happen between different languages for example from
Delphi to C# [?]. However, it happens also between different frameworks such as UI frameworks (e.g., GWT
to Angular). This is a challenge for multiple reasons: (1) mismatches between the manipulated concepts
(Procedural vs. O0), (2) language idioms and specific constructs, (3) library specificities (for example different
event raising approaches) or even (4) paradigmatic approach between architectural styles. On top of these
conceptual points, research on migration faces the fact that just supporting the migration of a single case
is a large effort due to the interaction between the features. The validation of a migration is also difficult
because decomposing the problem into smaller ones may not be adapted. Validation implies either to generate
tests or to migrate tests setup which can be extremely costly when transpiling (for example there is no direct
transformation between the setup of a simulated system and its transpiled version [?]).

We have experience in GUI migration which consists in reimplementing a GUI using a more recent framework.
To do so, [?] first split the GUI into the visual code and the behavioral code: The visual code is composed
of the widgets and the layout. [?, ?, 7, ?, 7, ?] and [?] proposed approaches to migrate the widgets parts.
Additional work [?, ?] also deals with the layout to migrate accurately the visual code. Behavioral code requires
a specific migration approach [?], and, to the best of our knowledge, no specific approach has been proposed
yet. Moreover, in an industrial context, additional constraints to the existing GUI migration approach must be
tackled. For instance, handling several GUI frameworks as input enable incremental migrations [?, ?]. Finally,
once the application is migrated, the company still needs to maintain it. Thus, the migration must not prevent
future developments but should provide support to it.

2.1.2 Semi-automatic library update

Library update is concerned with the fact that when a library evolves its clients should be updated. Many
approaches have been proposed to help developers. Those approaches extract information from the source code,
commit history [?], or code documentation. Kim et al. [?] proposed to find matches between the two versions of
API by calculating textual similarities of method signatures collected from the source code of the two versions of
the library. They defined a set of low-level API transformations (e.g., package replacement, argument deletion,
etc.) and performed a rule-based matching to find a mapping between the two versions of a library API. Xing et
al. [?] compare two versions of the library’s source code, detect changes to the API, and propose transformation
rules together with working usage examples. Unlike Kim et al. they calculated the structural similarity of source
code and not only the textual similarity of method signatures. The SemDiff tool [?], unlike other automatic
approaches to library update, which compared two versions of library’s source code, extracts information on a
more granular level from the commit history of the library. It recommends changes to client systems based on

how the library reacts to its own evolution. Meng et al. [?] proposed a history-based matching approach which
compares consecutive revisions of a library obtained from its commit history and supplies this information with
the analysis of commit messages to generate transformation rules for client systems. Hora et al. [?] find method
mappings between different releases of the same library. They analyzed the commit history to detect frequent
method call replacements. This way, they mined the transformation rules by learning from the way the library
adapts to the changes in its own API.

Teyton et al. [?] turned to the problem of library migration — replacing client dependency on a third-party
library in favor of a competing library. They adopted and improved the approach of Schifer et al. [?], but
extracted method call changes from a commit history of clients that were already migrated. In their study,
Alrubaye et al. [?] proposed a novel machine learning approach. They extracted features such as the similarity
of method signatures and documentation, represented them as numerical vectors, and trained a machine learning
classifier to label method mappings as “valid” or “invalid”. Alrubaye et al. [?] mined the commit history of client
systems that were already migrated from one third-party library to a different one and generated mappings for
method replacements.

Even with all the previous works, it is really a real hurdle for companies to effectively migrate software and
most of the time they solve just a part of the problem. The challenge still exists.

2.1.3 Non-functional requirements during software evolution

Software development methodologies strive to support the development of safe and secure software. However,
ensuring security and safety in the long run is hard. Regularly, new security threats are discovered that must
be corrected in existing systems. In addition, some threats are system or application domain-specific. For these,
the number of security experts is much smaller which makes it more difficult to find and correct the threats.
Concurrently, software systems are living entities that must evolve to accompany the needs of their users (new
functionalities, new regulations, new running environments, . ..). As any Non-Functional Requirements (NFRs),
safety /security issues introduce a real challenge to evolve software systems because they areapplication specific
and often not explicit and tractable at the code level. Developers are often left to trial and error or hacks.

A large body of research exists to support the evolution of large software systems. The existing tools are generic
and difficult to tune to specific contexts. Developers are often left with little, ad hoc, tooling.

1. A large body of research is concerned with software quality. Companies start to use open-source static
analyzers and dashboard such as Sonar, PMD, FindBugs (for Java). However, while technical debt and
design flaws are now well known, security and safety issues are still not linked to the gemeral notion of
software evolution. An important aspect that did not receive enough attention is the fact that old and
evolving applications are more fragile with respect to security and safety breaches.

2. From an evolution standpoint, NFRs (safety/security, efficiency, memory) are difficult to handle in a
generic way because they are often “hidden”, being a by-product of implementation decisions all over
the source code. There is no general methodology and tools to handle them during software evolution.
NFRs are well understood at the modeling phase but little work considers NFRs during maintenance and
evolution. Some work started to offer specific profiling tools [?].

There is no unified tools for developers to get at the same time (i) an overview of NFRs at the level of a
large application, and (ii) fine-grained understanding of a local and specific situation [?]. Our experience
working with team of developers is that the cost of formulating and validating an hypothesis at the level
of a NFRs is prohibitive: developers may lose weeks trying to understand and characterize a situation.
There is no tool to express and query NFRs and give an understanding within the developer focus.

3. Security threats are often managed as external information: databases of attacks are used by tools but (i)
they can only identify what has been already reported, and (ii) there is a gap between the threats and their
manifestation at the code level.

4. Previously identified threats in security databases are generic, not considering the specific domain or
context of a software application. Organizational security analysts recognize the need for Domain-Based
Security approaches (e.g., [?]), but security threat databases only cover generic security flaws. We iden-
tified a similar issue in the past with bad smell detection tools [?].

2.2 Challenge 2: Daily development tooling is still in its infancy

The second challenge of EVREF is to consider that software developers should be equipped with adequate tools
to perform their tasks. Even if some advances were made in the areas of refactorings or metrics (technical

debt, automatic smell detection), there is still many of domains where software engineers should be helped.
We identified the following three main areas we will focus on. Note that reverse engineering and program
understanding challenges are also part of the first axis:

(1) New challenges for debugging, (2) Multi-layer profilers, and (3) Reverse engineering.

2.2.1 New challenges for debugging

Debugging is difficult and costly: developers debug more than 50% of their time [?, ?, ?, ?]. Hard bugs are
particularly difficult to understand, and without understanding bugs, it is impossible to fix them [?]. In 1997,
it was observed that more than 50% of hard bugs were difficult to understand because of a distance between
their source and the observable error they produce [?]. In other words, it is hard to identify the source of hard
bugs, and thus to understand them. This is still a difficult problem today [?, ?], as mainstream debuggers are
not adapted to several hard bugs scenarios [?].

When debugging object-oriented programs, one may identify a suspicious object that needs to be investigated.
However, mainstream debuggers only provide a call-stack based perspective that shows the executed code in
sequential order (what code called what code). From stack-based perspectives, it is difficult to know where to
apply debugging operations because one cannot know at run time where a suspicious object is used in the code.
A typical example is the debugging of complex user interfaces where thousands of objects of the same class are
involved. Traditional tools such as breakpoints are impractical to use: it is impossible to break the execution
for each one of the objects. To debug only the right object, developers have to manually filter the objects by
inserting complex conditional instructions into the source code. In the case of hard bugs, it is common that
they cannot express those conditions due to a lack of information or tools [?].

Another common problem with hard bugs is their reproducibility [?]. Reproducing bugs traditionally requires to
stop the program and run it again many times under controlled parameters to narrow down the exact conditions
causing the bug [?, ?]. But some real world hard bugs are not easily reproducible because they happen only
from time to time, under obscure conditions [?, ?, ?|. This hinders their understanding and makes bug fixing
extremely hard.

2.2.2 Multi-layer profilers

Profiling program is an important activity that is often relegated to second-zone practice. However, it is central
to understand the actual behavior of programs. The performance of a given application can be measured in
terms of speed, memory, or other resource consumption (e.g., disk, network, energy) [?, 7, ?|.

The action of profiling a program introduces a measuring perturbation. The action of measuring impacts the
results of the measure. For example, collecting samples of a program introduces pauses in the execution of
the program, so these pauses affect the measured time. It is not possible to minimize the impact of measuring
problems and maximize the precision of the measure [?, 7, ?].

For minimizing the impact of the measuring problem, there are different techniques that combine different levels
of measuring impact and precision. For example, timing-based sampling may be affected by the measurement
granularity. If the sampling time is bigger than the execution time of some pieces of code, these pieces of code
are never registered by the profiler [?, ?, ?|. Profiling techniques are categorized in the following general families:

Timing-based sampling techniques. Every given period, They use a parallel thread /process to take samples
of the process stack under analysis. Their precision depends on the sampling rate and the granularity of the
code under analysis. This technique does not modify the existing code [?, ?, ?].

Instrumentation techniques. These techniques instrument the code under analysis to interweave the col-
lection of samples. These techniques allows the user to get precise information but can affect the overall
execution performance of the code under analysis [?, 7, 7, 7.

Memory leak detection techniques. They include variation of timing techniques, but with the objective to
detect the allocation and free of memory structures. They are used to detect object life-cycle and provide
dynamic escape-analysis information [?, 7, 7, ?, ?|.

Event-based techniques. They are based on the generation and storage of discrete events during the exe-
cution of the analyzed program. The resulting set of events is later analyzed to reconstruct the behavior
of the analyzed application. They allow the detection of existing relations between the events and complex
interactions of the given program. They require to modify the runtime environment to generate a rich set
of events [?, 7, ?].

Hardware-assisted techniques. To overcome some of the limitations, some techniques use hardware specific
features to measure. They use information available in the architecture such as execution counters, cache

statistics, and memory manager events [?, 7, ?, ? ?]. These same techniques can be extrapolated to get
information from Virtual Machines [?, ?].

Finally, there is a large body of work on the data analysis of profiling. Bergel proposed [?] to use profiler
to identify where caches can get an impact. Sandoval [?, ?| worked on identifying speed regression between
consecutive versions. Bertuli et al. used metrics to quantify the mass of (often repetitive) generated information
[?, 7, ?]. Nagarajan et al. used profiling information to improve the automatic-refactoring experience [?]. And,
profiling has been used to measure the power performance of different algorithms and implementations [?, ?].

2.2.3 Reverse engineering

Program understanding is a large and important field. It ranges from identifiers identification to software
visualization. Many publications analyze program identifiers [?, ?, ?] and some focus on the analysis of class
names [?, ?|. For instance, Osman et al. show, through a survey that involved 32 developers, that good
class names improve comprehension and are within the most important elements in class diagrams [?]. On the
contrary, when a class is badly named, a developer may have to check carefully its definition and analyze how it
is related to its superclass [?]. For example, quickly understanding whether an abstraction is a model or a view
in a MVC triad is key to avoid mistakes or misinterpretations. Butler [?] shows that bad identifiers affect code
quality and is correlated to bugs. There is a plethora of publications about program visualization [?, 7, ?]. S.
Ducasse worked on some program visualizations: class blueprints to understand the internal logic of a class [?],
polymetric view (to get a first understanding of hierarchies) [?], package blueprints (to help remodularizing),
distribution maps (to understand the spread of a property on a system) [?]. More recently, Merino et al. [?]
proposed an ontology to discover visualizations. This work reinforces the idea that there is a large body of
research and that visualizations should be adapted to the task. Recently Slater et al. [?] proposed corpusVis
to analyze the metrics of large system. There is also work on evaluating visualizations [?, 7, ?, 2, ?, 7, 7, ?|.

2.3 Challenge 3: Language virtual machine development incurs high cost

The third EVREF axis covers Language Virtual Machines (VMs) i.e., the environment needed to execute pro-
grams (composed of a virtual machine and language core). Language Virtual machines allow application porta-
bility between different platforms and better usage of resources, making them an ideal target for programming
language implementation. For example, they are needed to run Java, Javascript or Python. For these reasons
language VMs are nowadays pervasive in every laptop, server, web browser, and smartphone, and are used in
critical applications such as stock exchange, banking, insurance and health [?].

As such, Virtual Machines are important as a vector of research in other fields and they cross-cut the other
axes of EVREF. For example, we will design dedicated virtual machines for new tools, ever-running systems,
security and green computing. It is then crucial to be able to easily build customized Virtual Machines. The
field is large so we focus on (1) Virtual machine construction and (2) Dynamic and adaptive optimizations in
virtual machines.

2.3.1 Virtual machine construction

Recent work acknowledges that Virtual Machine construction incurs a high cost in practice [?] because of the
complexity and inter-dependence of its many components [?] i.e., interpreter, compilers, garbage collectors,
concurrency model are all tailored to each other in the search for performance. It is indeed a case where
the whole is more than the sum of its parts. Virtual Machines are indeed highly complex engineering pieces,
often handcrafted by experts, that mix state-of-the-art compilation techniques with operating-system resource
management. However, besides some well-known techniques, published in research venues, most knowledge and
technology around virtual machines is concentrated in large companies such as Microsoft, Google, and Oracle,
making Virtual Machine construction difficult, and experiments on them difficult to reproduce and replicate.
Wimmer et al. argue that components can be pre-built and, up to some degree, generated automatically from
specifications. In this direction, VMKit [?] and MMtk [?] attempt to provide generic components that can be
used to build Virtual Machines. The LLVM compiler infrastructure [?] provides generic components to build
compilers, but is more adapted to ahead-of-time compilation scenarios and thus generally not used in Virtual
Machines.

In contrast, other solutions propose to generate components. For example, Pypy [?] generates ahead-of-time a
language JIT compiler from a bytecode interpreter, and Truffle [?] generates at runtime a language JIT compiler
from an AST bytecode interpreter. In the opposite direction, recently [?] proposed to generate an interpreter
from a compiler. However, these specifications are partial: they mainly allow one to refine the execution engine,

showing a degradation in memory management in some cases [?], and their underlying technology lies in some
cases in the control of private companies. It is also worth noticing that most efforts cited above target only
speed improvements. However, in nowadays applications other constraints have emerged, such as space and
energy efficiency, for example in the fields of IoT, robotics and green computing [?].

There is a need for a better way to design and build dedicated virtual machines. Such virtual machines should
be able to expose specific information to tool builders or language designers to model new security abstractions,
to support the evolution of ever-running system or to propose alternate consumption power for green computing
or IoT devices.

2.3.2 Dynamic and adaptive optimizations in virtual machines

Virtual Machines achieve high performance thanks to aggressive optimization techniques that observe and
adapt the execution through runtime adaptations such as just-in-time compilation [?]. Inline caches [?] and
polymorphic inline caches [?] are dynamic compiler optimizations for object-oriented code, where function calls
depend on the receiver types. Using these techniques, code is first compiled using a generic slow version, and
dynamically-linked using code patching techniques based on types observed at runtime. Inline caches show very
good results at optimizing polymorphic code by avoiding the cost of method lookups.

Polymorphic inline caches are useful for capturing fine-grained runtime statistics per call-site, needed by spec-
ulative optimizers [?]. Speculative or adaptive optimizers use the execution statistics and generate specialized
machine code by speculating on previous execution patterns: the types found, the paths taken. Different JIT
compilation strategies and frameworks have been shown effective for different kinds of applications. Method-
based compilers [?] take as compilation units a single method. Method granularity is a popular approach
amongst compilers because methods have well-established boundaries. Trace-based compilers [?, ?| take linear
execution traces that start at any point during the execution and end at any other point, even cross-method,
and specialize those traces that are very common during the execution. Region-based compilers [?] use regions
of code such as inter-method traces and loops as their compilation units.

Adaptive optimizations and compilers present many challenges that make their usage and implementation
difficult in practice [?], for example:

Statistics quality vs. runtime profiling cost. Execution statistics are taken at run-time using similar tech-
niques than those explained in Section ?7. However, runtime-profiling is generally the cause of large
execution overheads, especially when done improperly. For example, many works report slowdowns rang-
ing between 30%-100%, and some report overheads of over 100x [?]. At the same time, incomplete or
misleading statistics can be the cause of performance degradations.

Generated code quality vs. compilation cost. Several techniques have been developed over the years to
improve compiled code quality with low compilation costs. For example, selective optimizations and
compilations propose to optimize only a sub-set of the code [?]. Code specializations and customiza-
tions propose to generate specialized versions of code depending on several runtime properties such as
receiver types or runtime values observed [?]. More recently, Chevalier-Boisvert et al. proposed lazy block
versioning, i.e., to use multiple versions of basic blocks as a way to avoid type checks [?, ?].

3 A holistic research agenda articulated around 3 axes

EVREF is built around a holistic vision of the eternal software challenge. It acknowledges that we need to be
able to work on different levels to support the evolution of software under different scenarios. The fact that we
will work on a full software stack (still making progress in each area) creates a situation where the team will be
in the position to think and propose solutions that would not be possible otherwise. The reflective stress in the
project title is that the axes can reflect and influence each other and can help each other in client/provider of
problems or solutions.

The agenda defined with Berger-Levrault offers a set of evolution challenges faced by real business units of
information systems. Such challenges are still unresolved challenges that any software company has to struggle
with: testing to control migration, migration to new technology, business rule identification and software maps
are key challenges. In addition and while this is not considered within the BL axis, it should be noted that
evolution can happen when the software to be updated is running and that migration should happen while the
system is executing.

3.1 Research axes within EVREF

The research axes in EVREF are built to form an articulated whole around the challenges of evolution of
constantly changing and running systems. They are based on the experience and research made in RMOD
during 12 years. The three axes are interconnected, often in client relationships e.g., profilers requires low-level
information provided by virtual machines but virtual machines require advanced profilers. Controlling virtual
machines opens the doors of many possibilities both at the level of tools but also language design for isolation
or security.

e Axis 1 — Evolution of ever-running systems. This axis is about how to effectively evolve large and
complex software. This covers a large spectrum of topics such as visualization, metrics, analysis, ... This
includes for example migration from one language to other one or from a library version to another one. This
is within this axis that the team will work in partnership with Berger-Levrault. The axis is built around the
Moose platform and its current redesign effort.

e Axis 2 — New generation tools for daily tasks. This axis is about how to offer advanced tools for
everyday development: it focuses on debuggers, profilers and tools to reverse engineer code. It follows the
work around debugging started in RMOD.

e Axis 3 — A generative approach to modular and versatile virtual machines. This axis is about how
to improve the building of virtual machines to support their exploration and application to tools, security,
green computing, ... This axis is also providing infrastructure for the other axes. The exploratory action is
an important basis for this axis. In addition, interactions with the Pharo consortium engineers and the use
of the industry level Pharo virtual machine will naturally take place.

Evolution of ever-r unning Systems New gener ation tools for dally tasks
i i on Functional T .
volution usiness |REV5 se E_;I_EE ing R2| AOT C

Rules Requirements
hN Pharo
[Multi-focused Profillers |
| Green]

| Testing | | Update | | Tools | | NG Debuggers |S/ \ Ml

% loT
AN
Berger-Levrault g Production Virtual / \
3 Machine 4
- - Benchmark / Evaluation
gl | C transpiler |-=7 Platform
2 7 [spacg
= VM Distiller
2 .
g Alamvic

A Generative Approach to Modular and Versatile Virtual Machines

Figure 1: EVREF’ vision: Three interacting axes.

There are possible and welcomed overlaps between areas covered in the interaction with Berger-Levrault: for
example transpilation is the basis of the Pharo VM compilation tool chain, migration is a topic of interest for
Berger-Levrault. Still we list such items in their respective axis because the research agenda of EVREF is larger
than its interaction with Berger-Levrault. A cross-fertilization oo the same topic will naturally happen but
without one taking over the others.

The third axis, A generative approach to modular and versatile virtual machines, will also support the other axes
by exposing specific runtime information (such as exposing Polymorphic inline caches, possibility of instrument
object creation,...), or offering the possibility to extend the virtual with new or modified low-level functionality.
It will also take into account the needs and feedback from the tool builders.

In each of the axes, we expect to have several PhDs, build research prototypes with potential transfer to the
corresponding platforms.

EVREF is the continuity of RMOD with the emergence of two new domains. The main differences
(besides the roadmap with Berger-Levrault) are the emphasis on new tools (axis - 2) and virtual machine
design(azis - 8) in place of the language design axis of RMOD.

3.2 About EPC and synergy with Berger-Levrault

EVREF is one of the first joint team with a SME. This is new and this raises challenges. We are not naive but
the RMOD team members agreed that this adventure is worth. In addition we will do retrospective analyses.
Even though intellectual property issues, access to private data, and actual work with the Berger-Levrault team
could have happened via bilateral contracts as we did in the past, having a joint team has a real added value
at multiple levels:

e Gain of energy. When we sign bilateral contracts, there are always details that should be re-examined.
With the current setup the team sets a frame once for all.

e Cross fertilisation. Even we have designed specific topics to work on, our seminar will systematically
include works from both sides that are not related to the exact topics of the collaboration. For example,
we plan to present the transpilation chain of the Pharo VM and its challenges, the work on Concolic
Testing but also any work related to test analysis, selection, and new tools.

e Closer connection. We will have regular seminars, workshops and visits. In addition, B. Verhaeghe
previously RMOD’s PhD will be member of Berger-Levrault R&D. Other EVREF students or engineers
will have the possibility to present their work and get in touch with the company. In the opposite, some
members of Berger-Levrault R&D can benefit from a more experimental research process and possibly
enroll in a PhD thesis.

¢ Financial stability. Finally, not having to look for contracts to be able to do what we planned is a
chance for the team to get focused and work. In addition, being able to hire engineers will push the Moose
platform. In addition making sure that Moose can be used by others will favor its further adoption.

e About freedom. RMOD has a long history and practice of working with companies, it will continue.
The intellectual property model that we use makes sure that all the partners of the team benefit from all
the results and development efforts. Therefore, we create a clear win-win situation and avoid a competition
between our partners. Berger-Levrault will benefit, as any other partners, from the development effort
and results made in the context of other contracts.

EVREF will benefit from the synergy with Berger-Levrault R&D. Now EVREF’s roadmap has been designed to
be a superset of the roadmap identified with Berger-Levrault. We believe that it will give enough freedom to
the team members to work on challenges of interest and have access to shared resources to achieve this goal.

3.3 Axis 1 — Evolution of ever-running systems

Members: N. Anquetil, S. Ducasse, A. Etien — on some subtopics (tests/bugs/transpilation): G. Polito, P.
Tesone, M. Denker and S. Costiou

Supporting software evolution is an important and challenging topic inherently linked to software. Indeed,
software models the world and the world is changing. Therefore software evolution is ineluctable. In EVREF we
will work on fundamental aspects of software evolution:

e Towards automatic evolution. We will work on supporting semi-automated evolution in the case of
libraries update. We will extend our work and support both the library developers and their users to
migrate to more recent versions by analyzing past activities and learning automated rules.

e Migration. We will enhance our metamodel-based approach of front-end migration to support interlanguage
migration.

e Non-functional requirement identification and extraction. To help developers during their mainte-
nance tasks we will take into account non-functional requirements (NFR) and propose software maps and
reverse engineering techniques to reveal such hidden software aspects.

e NFR aware code transformations. We will extend refactorings to support domain-specific and non-
functional requirements.

First period PhD: Within the first periocﬂ of the team we will propose a PhD on "Non-functional require-
ment identification”.

2A team is evaluated every four years and we consider it as a period.

3.3.1 Towards semi-automatic evolution

We focus on how to automatically identify mandatory changes to migrate an application from one version of
the library it uses to another. We will extend our previous work on machine learning techniques based on
association rule discovery to support the identification and automatic inference of automated migration rules
using a language semantics analysis [?]. We want to extend this approach to the full stack (taking into account
deprecation, API changes, and library migration).

Learning migrations from past activities. We will extend our preliminary work on the automated gener-
ation of automatic transformation rules. Our approach takes the developer activities made on a system to
generate migration rules to be applied to the clients of the system. For example, we analyzed all the activ-
ities to produce Pharo 3.0 from Pharo 2.0 and we learned transformation rules to apply to systems built
on top of Pharo 2.0. Our approach learns, using association rules, the most appropriate transformations to
migrate from one version to the other. We will take into account language specific semantics (overloading,
overwriting) as well as coarser-grained changes such as library API changes.

Learning migrations from other migrations. To complement our approach, we will learn from migrations
already performed between pairs of libraries to propose new migration plans and enhance our migration
model.

Library characterization and API transformation. To be able to migrate from one library to another,
we need to be able to characterise it in terms of API and features if offers. We will use natural language
processing techniques to characterize libraries. We will use static analysis and automata to identify more
complex transformations on argument use.

Leveraging tests and dynamic information. Most of the migration strategies take a static perspective on
a software system. We will enhance this with a dynamic perspective. We will take as input the fact that
Unit Tests cover the migrated system. We will use program traces and dynamic information as input for
our machine learning techniques. In addition, we will perform transformations while the system is running.
This way we minimise false positives in dynamically typed languages such as JavaScript or Pharo.

3.3.2 Non-functional requirement identification and extraction

Non-functional requirements includes security, safety, speed/memory optimizations ... Such non-functional
requirements may be captured by design document and methodologies, however their exact knowledge rarely
survives fifteen years of evolution.

Quali-secure flaws identification. Security is a subset of software quality and we will treat it using software
quality paradigms. From that perspective we coined the term quali-secure flaws to name the software quality
issues that may lead to security or safety issues. Of course, the purists will say that there is a difference
between safety and security issues. Yes there are. Neverthlesse, we take the perspective that in a first period
identifying them requires the same logic. As such we will work on the identification of software quality issues
(“bad smells” or “anti-patterns”) that may lead to security or safety threat. In particular we will work on
learning quali-secure flaws and not just rely on external threat databases that cannot cover in house specific
concerns [?]. This will result in a list of such quality issues but also in a methodology and tools to identify
system specific quali-secure flaws [?].

Operationalizable non-functional requirements. Identifying software quality issues that may lead to se-
curity threats (first point) is a way to make security operationalizable: able to be manipulated directly [?, ?].
Software benchmarking is a way to operationalize another NFR: efficiency under heavy load. We want to
take into account different kinds of NFRs (security, efficiency, memory consumption) because they can rep-
resent other aspects of general software robustness. We will expand and generalize the results of the first
point (detecting quali-secure flaws with anti-patterns) to identify other concrete manifestations of NFRs in
the source code. We propose to do this by identifying specific design patterns. For example patterns of code
used to save memory or to save computation time. Once NFRs are made explicit, they should be exposed
to developers, so that they can take adequate actions.

From the results of the first two problems, we will propose NFR aware tools to manipulate the source code.
Such tools will include: (1) tools to automatically detect security threats in the source code from software
quality issues, (2) tools to support software engineers in understanding NFR (memory consumption, security,
efficiency) and (3) tools to transform source code while preserving a NFR (such as security or efficiency).

10

3.3.3 Practical testing

Tests are a key asset to support software evolution and software development. They are also extremely important

in the context of dynamically typed languages and promoted by agile methodologies. We will work on how to

improve test quality (coverage), test generation but also how tests can be used as seeds for sources of dynamic
type.

Bug view coverage. We will work on a bug coverage: Lot of works have been made on test coverage i.e., how
a piece of code is covered by tests. Now there is catch. Sometimes developers have tests for a given piece of
code and still bugs occur inside that piece of code. We want to guide developers to enhance their tests by
analysing existing tests using the presence of bugs on the exact same tested code. We want to understand
how tests assessed according to the bugs they cover and not such the paths or other structural properties of
the code.

Automatic test selection. We will revisit our previous work on automated test selection for dynamically
typed languages [?, ?]. The idea is to assess the heuristics to select tests to execute after a change oc-
curred. In particular, we will also revisit the implementation strategies to compute selected tests: Indeed in
dynamically-typed languages static analysis is not powerful enough to decide exactly how to detect depen-
dencies (to compute which tests should be rerun), so other techniques such as program spies should be used
and such spies can change program executions.

Flaky test identification. A flaky test is a test that intermittently fails often due to external reasons such as
firewall, limited memory, speed limitations on test servers.... Flaky tests are difficult to identify because they
do not fail all the time, and on different occasions. They force developers to allocate resources to address
their failures while this is often not necessary, because flaky tests are not bogus tests per se. The Pharo
consortium is facing flaky tests in its production servers and will provide data to us. We will investigate the
possibilities to use Al techniques to identify them.

Test generation. Often software does not have tests or has poor tests. There is a need of approaches to
support test generation on one hand and test improvement on the other (such as test amplification [?, 7],
carving [?, ?], pseudo test [?]). We will investigate how AI can be applied to such areas both learning from
existing tests or based on tests of the libraries that are used. A particular scenario we will study is the
possibility to generate tests for the evolution of used libraries. We are currently evaluating Concolic testing
to generate better inputs [?, ?, 7].

3.4 Axis 1 — Software evolution with Berger-Levrault

Members: N. Anquetil, C. Bortolaso, S. Ducasse, A. Etien, F. Mouysset, A. Seriai, A. Shatnawi, B. Verhaeghe

A special roadmap has been designed with the first Software Evolution axis to handle the interaction with
Berger-Levrault R&D in the context of an EPC (Equipe Projet Commune). As its title number shows it, this
roadmap is included in the first research axis.

EVREF will focus on designing tools to help software teams in handling technical debts, software evolution,
and migration. In fact, while tools are available on the market to design and implement new and up-to-date
software, there are still a very limited number of methods and tools to deal with legacy code and its migration
to new technological stacks. Managing legacy code and maintaining existing software represent nevertheless a
crucial activity for the software market. This is particularly the case of administration software systems which
often need to be maintained for several decades.

Following this perspective, the following topics will be the focus of our interaction and research:

e Objective 1 - Al-based tests generation: Automatically generate software tests from existing code and
execution contexts.

e Objective 2 - Supporting migration / tools for transpilation: Defining a set of tools and methods
to assist the migration of legacy software (language, frameworks, architectural style).

e Objective 3 - Business rule extraction: Being able to identify the part of code modeling business rules.

e Objective 4 - Software systems maps: How to extract specific information in source code for a given
task.

3.4.1 Al-based tests generation

Testing is very often underestimated by software development teams because it is difficult. Writing tests is also
experienced as a very time-consuming task, in particular, because tests need to be maintained along with the

11

source-code modifications. In practical industrial developments, the writing of test cases is often pushed aside
the development of new features and correction of bugs. Yet testing remains essential to ensure that a system
behaves correctly. This is also true in the case of migration (See Objective 2), for which all the unit tests have
to be generated to verify that generated code is correct.

We, therefore, seek to generate unit tests for existing systems that do not have them. The problem can be broken
down into (1) identifying part of code (functions, methods) to be tested, (2) generating a credible test context,
(3) generating a test case (input data), and (4) generating the oracle that validates the correct execution of the
system in the test case.

The objective is to use Machine Learning (ML) algorithms to abstract system states from real execution traces.
This involves modeling the data and the problem to adapt the right ML algorithm.

The subject is rich and we believe that such a thesis will be only a first step.

3.4.2 Support for migration / transpilation

Ensuring the durability of an application in the long term is a real challenge. High-profile problems such as the
Y2K bugﬂ have shown that replacing these old applications is not easy. Even today, many information systems
rely on applications developed in the 60s and 70s, in COBOL, a technology that is too old and yet still very lively
because of the sheer size of the source code it represents. For example, according to Reuters, in the USA, 43% of
American banking systems are based on Cobol, 95% of machine cash withdrawals are based on Cobol, 220 billion
lines of code are used daily (http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/)). Many
Berger-Levrault’s solutions are in this situation. Several BL’s solutions in human resources, public finance,
health care, etc. have been designed and developed decades ago. They rely on obsolete monolithic architectural
styles and rich clients, old programming languages and technology such as PowerBuilder, Delphi, Visual Basic
6 and Access. Some of these solutions are used by several thousands of public administrations and represents
millions of lines of code. The volume and layered complexity make their redevelopment from scratch impossible
even with large amount of resources.

This is why automatic migration appears to be the right approach to migrate millions of lines of code from old
languages to recent technologies. Berger-Levrault and RMOD have experienced this problem together several
times and it is now the time to look for a generic and perennial solution. It is indeed very likely that these
problems of technological obsolescence will occur again in 10 years with current technologies. This is a vast
subject with many ramifications that will justify further work:

e Migration of architectural style and framework;
e Migration with a paradigm shift (e.g., procedural to object-oriented);

e How to support the migration of a system, for example how to migrate its tests, or how to debug the
generated code;

e How to define a reusable approach (tools and methodology) that can be instantiated every time such problem
occurs with various languages and technologies.

RMOD already has some experience in this field with:

e A CIFRE thesis (at Berger-Levrault), soon to be completed, which gave very good results on the migration
from GWT to Angular;

e A CIFRE thesis (at Berger-Levrault), initiated this year, also dealing with code migration;

e A thesis in-progress (independent of Berger-Levrault) tackles the transpilation from Pharo to C for our
virtual machine;

e A CIFRE thesis (independent of Berger-Levrault) in progress works on automatic migration (adapting a
system from one version of a library to the next). This approach could be adapted to the problem of
transpilation by learning from one transpilated system to help transpilate the next.

3.4.3 Extracting business rules

In public administration, software is regularly exposed to incremental evolutions, because behavior have to stay
in line with regulation and law. Consequently, after twenty years of incremental modifications and extensions
of new features the source code embeds a very large quantity of knowledge. It results in complete dissemination
of business logic in the code of applications. A typical example is a 20 years old medical billing management
tool for which the knowledge of business rules is extremely diluted in its development teams, among users
(external customers), or sometimes completely lost. Consequently, the reimplementation of such a system

3Year 2000 bug, when years expressed on two digits (98 for 1998) would create problems.

12

http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/

appears particularly tricky. Worse, the loss of know-how and subtleties relative to the dilution of this business
logic in these management software systems could lead to situations where modification would be impossible
or extremely complex without functional regressions. This type of scenario is unacceptable for software that
must constantly adapt to changes in practices and regulations. For that type of reason, we want to build
mechanisms able to re-extract and re-model the business logic from the existing source-code. This problem
remains a well-known major concern underlying any code evolution or migration operation.

RMOD, on its side (independently of Berger-Levrault), initiated work in this direction:

e Submission of an ANR project on the creation of support tools for software evolution taking into account
non-functional requirements. The project wants to enable developers to make changes to the applica-
tion code by understanding their implications on non-functional requirements (e.g., security, use/abuse
of CPU/memory/disk/network resources).

e A thesis has been initiated in the past on the understanding of algorithms to improve their quality without
impacting performance. But there is still the will to develop this subject and we are working on alternatives,
for example by developing our capacities for fine code analysis.

3.4.4 Software system maps

Software systems and in particular the ones having a long life-time are full of hidden knowledge and design
choices. Such information can be of diverse sources such as the architecture, communication protocols (socket,
JSON web services, files), exposition of API, but also non-functional requirements such as the adherence to old
conventions, use of old components, etc. Often such important knowledge is simply lost, even when developers
put significant efforts in writing and maintaining documentation. Software developers responsible of evolution
do not have access to the big picture and work with limited local and often too generic information.

Do we imagine being treated by a surgeon that would not have X-rays to get information from our body before
an important surgery? This is exactly what is happening when modifying software systems. There is a clear
need for a systematic approach to extract dedicated tailorable knowledge software maps.

Reverse engineering consists of applying specialized analyses to extract more abstract views [?, ?]. These
analyses are often dependent on the objective sought and the technology used in the analyzed system [?]. We
note that the tools proposed by the scientific community are over-specialized, making it possible to meet a very
specific need under very constrained conditions. To be able to leave the laboratories and enter the industrial
world, such tools must be gain in flexibility and adaptability to a wider range of situations.

Extracting the key views that enable decisions to be made remains a scientific challenge. Indeed, these views
depend on the local context (business, domain, process, constraints related to the technology used) and must
take into account different sources of information such as structural information [?, ?], data flows between
components, bug reports [?], profilers [?, ?] and others.

There is a plethora of works dealing with program visualization and their introduction [?, ?, ?]. S. Ducasse
has worked on a certain number: class blueprints (to understand how a class is structured), polymetric view
(to get a first understanding of hierarchies), package blueprints (to assist remodularization), distribution maps
(to understand how a property is distributed over a system). These visualizations cover different levels of
abstraction and objectives. However, they raise a certain number of questions:

e Which visualization is relevant for a given task?
e What information should be collected, filtered, and transformed for what task?

e How can a visualization be adapted for a specific case? (Which visualization for the identification of archi-
tectural deviations? For the identification of microservices and data flows between subsystems?)

e To which extent, the graphic visualization of source code and its properties will help development teams in
enhancing their architectural styles, code quality, refactoring, solving bugs, etc.?

Our scientific hypothesis, to help the understanding of the applications, is to propose an infrastructure for the
definition of software maps that are adaptable and scriptable by users: this adaptability will be based on two
points: (1) the extensibility of a code metamodel and (2) the definition of a visualization framework based on
a metamodel for visualizations.

First period PhDs: The PhDs on Test generation and Business rule extraction will start in October 2022.

3.5 Axis 2 — New generation tools for daily tasks

Members: S. Costiou, S. Ducasse, A. Etien — on some subtopics (profilers): G. Polito, M. Denker, N. Anquetil
and P. Tesone (Pharo consortium)

13

Designing a tool is bold: it requires to have a really working solution to a problem, to have validated it, and to
be able to expose it to its users. We use the term tool here, not in a reductive and pejorative definition but in
its bold sense: working tools to empower end-users. We will work on tools to support developers with a focus
on improving daily development tasks.

e New generation debuggers will propose new debugging techniques such as object-centric and back-in-
time debuggers.

e Multi-layered profilers will rethink profilers and how systems are benchmarked.

e Reverse engineering revisited will revisit reverse engineering techniques taking into account non-functional
requirements such as memory consumption, security concerns and others.

First Period PhDs: We will propose the following PhDs on "Practical back in time debuggers" and "Advanced
multi-stagged profilers”.

3.5.1 New generation debuggers

Back-in-time debuggers record executions to exploit them afterward. A recorded execution can be nav-
igated post-mortem, guaranteeing to observe the exact same behavior, state, and output as the original one.
Developers are certain to deterministically observe buggy behaviors, and they can therefore study them at will.
Like any system, ever-running systems are subject to non-reproducible bugs and would greatly benefit from a
deterministic way of reproducing those bugs. For example, imagine a satellite having a bug when in a certain
orbit position every year. Using a back-in-time debugger, rewinding the execution to the point in time where
the bug occurred avoids waiting for bug reproduction for a year.

However, we face several challenges when recording and navigating executions of ever-running systems, whose
execution never ends. First, back-in-time debuggers are not mainstream. It is unclear what are their require-
ments from the execution engine point of view, nor how to build robust and efficient back-in-time debuggers.
Second, ever-running systems have a potentially infinite execution. The amount of recorded data cannot be
anticipated and is potentially huge. Therefore, those executions cannot be fully recorded and we have to scope
that recording to important debugging information. It is a major problem to define what a back-in-time de-
bugger should record and in the same time make sure to avoid losing relevant execution data. Finally, even a
scoped record of an ever-running system’s execution might produce a massive data dump. Developers need to
query those recorded executions to obtain the most relevant debugging information [?]. Today, little is known
about querying executions for debugging, and that topic remains totally unexplored in the case of ever-running
systems.

Dynamic information and advanced debugging. Tracing execution produces large amounts of data
[?]. First, such information should be interpreted in the context of its static counterpart [?]. Second, it
requires filtering or query languages to identify meaningful parts and bugs. Over the years new approaches to
debugging have emerged: Lencevius proposed using a query language to navigate stack traces [?] and Zeller
proposed automated debugging [?]. Back-in-time debuggers are examples of new ways to support debugging by
supporting navigation in the past of the computation [?]. Lienhard proposes taking into account object aliases
to enhance debugging [?]. More recently, Object-centric debuggers proposed interesting debugging facilities
centered around single objects and execution flow scope [?]. Yet other approaches to building debuggers are
emerging with moldable tooling [?]: debuggers can be adapted to specific frameworks or libraries.

We are building experience in back-in-time and alias-based debugging and we want to extend this with the
idea of moldable debuggers to adapt to domain-specific or compilation-specific techniques. We will propose
query-based languages to filter and aggregate dynamic information.

Object-centric debugging. The objective is to deliver the full potential of object-centric debugging. In
EVREF, we will set the first generation of object-centric debuggers. For this, we will shape systematic methods
for developers to choose when and how to use object-centric debuggers for maximum debugging efficiency. These
debuggers will lower the cost of tracking and understanding hard bugs in object-oriented programs.

To that end, we will cover the lack of knowledge (fundamental, practical and empirical) and definition that
hinders the implementation, the evaluation, the dissemination, and the adoption of the technique. Namely, we
will define how to identify and to obtain objects to debug. We will define and study object-centric concurrent
operators for the tracking and the understanding of concurrency bugs. Finally, we will identify the scenarios
for which object-centric debugging provides a significant advantage compared to traditional call stack-based

14

debugging. We will evaluate the technique through large-scale empirical evaluations and industrial use cases.
We will build debuggers, not only prototypes but real software for real users that will be transferred into the
open-source and the industrial worlds. We will build advanced debugger prototypes, but they could later become
real software for real users.

3.5.2 Multi-focus profilers

We will work on the design of profilers both from a memory and execution speed point of view.

Speed profilers. For speed monitoring, one of the difficulties is to fusion important information such as the
number of times a message is sent [?| with the real execution speed [?, ?]. Indeed one is often collected on a
call-site basis while the second is one based on stack sampling, therefore there is one-to-one mapping. This
has an impact on the comparison between the two forms of information.

We will work on an important aspect that tools should offer: multiple connected layers of abstractions — a
developer should be able to profile high-level code and get reports at the level of the used language. However,
such results should also be exposed at a lower level of abstractions such as bytecode level for compiler designer
or even further down at the level of IR (intermediate representation) or assembly for developers working on
JIT. Tools often exist but they are disconnected forcing developers to make ad-hoc bridges with potential
mismatches and gaps when switching levels. Virtual Machine benchmarking gets impacted by the crossing
and transformations done during such abstraction traversal.

Memory profilers. In languages with managed memory, the memory consumption, i.e., the creation of newly
allocated objects, is transparent for developers [?, ?]. Such transparency is a problem because developers do
not get proper feedback. There is no visible difference between a method creating 100 objects and a method
creating and reusing one. It may be the case that 100 objects are needed or it can be simply plain wrong.
We want to provide feedback to the developers in their default tools and, for example, annotate method
ASTs with memory consumption or the number of created objects. The garbage collector (GC) stress and
fluctuations induced by the GC are also important information that it is not easy to report and monitor
between multiple versions.

Evolution monitoring. In addition, we will explore how to measure and report speed/memory changes over
versions [?]. There are several difficult points to explore: (1) how to compare multiple version executions
[?], because we cannot just compare the speed/memory spent in a single method because calls can be nested
or moved around. It means that a drop of time spent in a method may be due to fewer invocations or cache
impact, (2) building benchmark environments is difficult in particular when we are talking about managed
runtime with peak performance warm-up phase [?]. Such profilers also require to rethink the notion of
benchmarks. Dacapo Benchmarks [?] are an initial step in that direction. Our first experiment convinced
us that more efforts are needed.

3.5.3 Revisiting reverse engineering: a dynamic perspective

Developers are daily reading code that they do not know. Still, there is really limited support to help to
understand and reverse engineer knowledge [?]. This topic is partly related to the non-functional treatment
described in previous sections and also the profiling.

Leverage dynamic information. In a dynamically-typed language, it is difficult to statically identify meth-
ods really invoked during execution, many false positives can appear. Tools should take advantage of previous
executions, test availability, and also VM runtime internal information exposition such as PICs (polymorphic
inline caches). Refactorings, system navigation can take advantage of such information. We will design and
measure new navigation and reverse engineering browsers.

Presenting hidden aspects. In managed runtimes, concurrency and memory consumption are information
that is not exposed to the developer. The developer has to read between the lines and know that a given
method may be involved in a critical section to take such important information into account. We will
work on ways to present execution-related information. A particularly challenging scenario is the design (or
refactoring) of a thread-safe collection hierarchy.

“Smarter” navigation. Reverse engineering can be supported not only by having more information but also
by exposing and navigating such information in better ways [?]. The window or tab plague is not solved
in modern IDEs. The developer tends to open too many tabs and only uses a couple of them. We will
revisit the Autumn Leaves concept to automatically discard hidden/unused/obsolete tabs and keep relevant
information [?]. We will enhance the concept with domain semantic elements to guide reverse engineering.

15

3.6 Axis 3 — A generative approach to modular and versatile virtual machines

Members: G. Polito, S. Ducasse and P. Tesone (Pharo Consortium) — on some subtopics (tests): A. Etien

Virtual machines are key assets both from an engineering and research point of view. As extremely complex
pieces of software (advanced virtual machines include a garbage collector, multi-layered interpreters, and a
speculative inliner), they raise the question of their definition, construction, and validation. As a research
vehicule, they are keys for innovation at the level of language design, security, ever-running systems, or green
computing. This axis is based on the work the team did together with the Pharo consortium and the support
of the Alamvic Inria Exploratory Action led by G. Polito.

Main objective. EVREF will explore how Virtual Machines are designed as a whole, and how they are
optimized for a large range of concerns that include not only execution speed but also energy and space con-
sumption, for applicability in security, green computing, IoT and robotics. Such research effort will take place
in the context of the Pharo virtual machine and its associated production chain.

e A transpilation chain. Based on our current architecture, we will design a transpilation chain that will
take into account heuristics (memory, concurrency, chipset, speed).

e Metamodeling and DSL for VM building. VM optimizations are complex and spread over many aspects
of the logic, we will evaluate how such optimizations can be represented and extracted to be recomposed
using a domain-specific language.

e JIT compilers and optimizers. Building modern Just in time compilers and native dynamic optimizer is
a difficult task but key to support modern language execution, we want to assess the design and architecture
of alternative dynamic optimizer.

e New evaluation methodologies. A VM is a complex piece of software with adaptative behavior we will
work on ways to measure performance to be able to gather actionable information.

First period PhDs: During the first period of the team we will propose the following PhDs: "Virtual machine
transpilation chain” and "Revisiting speculative inlining architecture”.

3.6.1 A transpilation chain to produce a VM

Based on the current rudimentary but working transpilation chain of the Pharo open-source VM, we will create
a VM compilation toolchain where a VM is generated from a high-level language specification plus optimization
hints. Imagine for example constructing a Javascript VM for an IoT device. Our application has no specific
speed considerations nor energy consumption restrictions because it’s not on battery. In such a case, our
compilation toolchain takes a specification of the Javascript language accompanied by the disk and memory
restrictions of the device and produces a dedicated VM for such constraints.

The compilation chain will be based on program transformations (DSL AST to C-AST, C-AST to optimized /modi-
fied C-AST, C-AST to C). A particular focus will be put on the clear identification of phases, the injection
and composition of heuristics (hints such as speed optimization, memory consumption, concurrency model),
and the early feedback to the VM designer. Indeed transpiling implies that the designers are using a different
language than the one executed and it is challenging to report errors from the base language to their source in
the high-level language.

We will model heuristics to the as optimization heuristics. In contrast with existing approaches that aim at
reusing VM components, we aim at reusing knowledge encoded as optimization heuristics. Ideally, heuristics
are language independent and thus applicable to different programming languages. There is a definitive link
with the GWT to Angular transpilation approach with BL.

3.6.2 Metamodeling and DSL for VM building

VM optimizations are complex and spread over many aspects of the logic, we will evaluate how such optimiza-
tions can be represented and extracted to be recomposed using a domain-specific language.

Optimization heuristic sxtraction. We will extract optimizations from existing Virtual Machine compo-
nents and express them as heuristics that are then recombinable to produce a working VM. Currently,
language-specific Virtual Machine optimizations are encoded and diluted in the Virtual Machine source
code. Such optimizations are encoded by programming language designers and Virtual Machine experts,
and include for example the separation of slow execution paths from fast execution paths [?, ?], determining
the compilation scope of the JIT compiler [?] and the modeling of the life cycle of memory [?]. Initially, we

16

will cover heuristics about execution speed as they are the best known and used, to focus on how they are
expressed. A second step involves finding new heuristics about space and energy consumption.

Domain-specific language for virtual machine specification. We will define one (or more) domain-specific
language (DSL) to specify Virtual Machines. Virtual Machines will be expressed in an optimization agnostic
fashion. A translator will take a specification and a set of heuristics and generate a Virtual Machine that
maximizes the outcome for the given heuristics, similarly to how a Meta Object Protocol or open imple-
mentation behave [?, 7, 7, ?]. This objective is particularly counterintuitive and controversial, as Virtual
Machine experts usually want to have full control over the Virtual Machine behavior, and we propose a radi-
cally opposite optimization agnostic approach, where optimizations are introduced as crosscutting concerns.
This will be based on the transpiling toolchain mentioned above.

Combining heuristics for emergent fields (fusion with above). We will define combinations of heuris-
tics to make VMs practical in emergent fields such as IoT and robotics. This task involves studying how
optimization heuristics combine and conflict with each other (e.g., it is common that modularity has a cost in
performance [?]), define a formal framework for their combination such as the one by Click [?], and establish
a first set of heuristics that are applicable in the named fields.

3.6.3 JIT compilers and dynamic optimizers

Modern virtual machines such as V8 are often built around multiple tiers: an optimized interpreter (Ignition in
the case of V8 with TurboFan), a baseline JIT whose purpose is to natively compile methods without execution
profiles, and a speculative optimizer that performs more advanced optimizations based on program execution
[?]. The overall design of such important components is often at the cost of duplicating logic and internal
representation.

Architecture and modeling of dynamic optimizations. The internals of a JIT, like any modern compiler,
is based on intermediate representations (IR). Such IRs are used to represent control flow graphs and
instructions. Many different designs of compiler IRs exist both in the literature and in industrial Virtual
Machines: low vs. high level, linear vs. tree vs. DAG IRs, with stack vs. register machines, infinite vs. fixed
registers. The choice of an internal representation impacts the possible optimizations it supports and their
definitions. For example, new approaches like sea of nodes mix control flow and instructions at the same
level of abstraction and efficiently encode instruction dependencies, allowing for better instruction scheduling
and simpler implementations of optimizations. We will use the infrastructure developed in Section ?? to
evaluate such architectural choices.

Another important aspect of this architecture is the different tiers and their interactions. For example, during
RMOD C. Béra proposed in his PhD [?] (based on the idea of E. Miranda who engineered 5 industrial virtual
machines) that the speculative optimizer (Sista) would work on producing unsafe bytecodes [?, ?] and reuse
the first tier JIT as a native code generator. Sista is in essence a reflective JIT compiler since it can modify
the optimization logic of program execution. We will reassess Sista’s architecture. In Sista, the optimizer
transforms unoptimized stack-based linear bytecode into a high-level infinite register-based linear IR with
basic blocks, applies transformations on top of this IR, and then transforms the optimized code back to stack-
based linear bytecode. This also means that much of the information Sista obtains during the optimization
phase (e.g., register calculations, control flow structure), that could be beneficial to the code generation tier
is discarded. We want to compare such an approach with more traditional approaches such as the one of
modern Javascript or Java Virtual. When comparing approaches, an important factor is often neglected:
this factor is the development cost.

Compiler and memory manager cross-benefits. Modern garbage collection schemes are, as well as mod-
ern JIT compilers, also based on runtime statistics and optimization heuristics [?]. We will explore how
memory management and adaptive optimizations can have a positive symbiotic impact on each other. Sev-
eral systems have explored the idea of using adaptive compilation to remove pressure on the memory manager,
and vice-versa using memory management statistics to drive compiler decisions. Escape analysis allows one
to inline object state in the execution stack to avoid heap allocations [?, ?, ?]. Dynamic object-allocation
strategies adapt object storage on a per-object granularity based on their runtime usages [?]. Pre-tenuring
optimizes object allocation in generational garbage collections based on previous observations of object
life-cycles [?].

Domain-specific learning/profiling/optimising. Dynamic optimizers are inherently [?] auto-adaptative
systems. We will explore the mechanisms to support dedicated object layout [?, ?]. This implies under-
standing what aspects to profile and how to convert such profiling information into tractable transformations
at the object layout and memory organization levels.

17

Free MOPs. Reflective operations are costly when they are used. In addition, when implemented naively, they
are costly when they are not used [?]. We want to revisit the ideas of zero-cost reflective operations with a
traditional JIT compiler. In particular, we want to see how we propose the possibility to design dedicated
MOPs and support also reflective virtual machine [?] only paying for the used features.

Development cost. Strangely enough, it is accepted that building a virtual machine incurs large teams of
dedicated developers as this is the case in Google around V8, Oracle around the JVM. We are interested in
measuring the engineering cost of developing and validating dynamic optimizations [?, ?]. The hypothesis
behind the infrastructure we will develop as mentioned in Section 7?7 is that level of abstractions should
support developers in the development of virtual machines. Jikes [?] or VMKit [?| wanted to offer a platform
for the exploration of VMs. We share the goal with such now terminated projects. In addition, the tooling as
mentioned in Sections ?? and 77 plays also an important place. The moldability [?] of the tools is important
and letting developers the possibility to develop their own tooling is a key aspect of productivity.

3.6.4 New evaluation methodologies

Finally, an important objective, although cross-cutting, is to define new methodologies and metrics to evaluate
VMs as they exist today to evaluate execution speed [?, ?, ?|. Besides execution speed, the JVM Spec bench-
marks measure different qualities of a program [?]| but they present micro benchmarks that have been argued
not representative of real applications. This point is related to the challenge of multi-profilers exposed in the
second axis and the challenges of monitoring reliably execution information.

To add to the previous point, but in a pervasive manner through this axis, there is an important challenge both
from a engineering and research point of view that we are starting to address: how to (1) be able to change an
aspect in a VM (GC, object representation, optimisation strategies, internal compiler representation (e.g., sea of
nodes, basic blocks)), and (2) assess the impact of a change. We were among the first researchers proposing the
validation of JIT dynamic optimisations [?]. With the help of the Pharo consortium and the Alamvic project we
are investigating different approaches to test Virtual Machines. We are currently evaluating differential testing
using concolic testing [?, 7, ?] in the context of compiler testing [?].

3.6.5 Enabling research venues

Besides the four topics identified above, our work on Virtual Machines will fuel research on other topics:

e Ever-running systems. We want to explore how we can execute multiple versions of the same language
and its runtime. In Erlang [?], two different versions of a module can be active at the same time. When code
is loaded, the runtime retains both the old and new versions. Calling conventions define which version is
called. This allows a module to continue executing old code until it is restarted. If a third version is loaded,
all processes executing the oldest code are killed. Erlang focuses on providing a robust model for dynamic
code loading.

Modifying a running application requires adapting the structure of objects to a new class version. Multiple
versions of the same class can coexist and instances of these different versions should migrate [?]. There
has been work on schema evolution for OODS such as O2 [?], GemStone [?] or Objectivity /DB, Versant [?].
Gemstone supports the management of multiple versions of the same class with transparent migration.

e Dynamic software update. Without requiring a specific VM as in [?], Rubah [?] is one of few systems
which supports dynamic software updates of Java code. However, it does not support core library updates.
We designed Espell, an infrastructure that supports dynamic software updates even of core libraries [?, 7, ?].
We may revisit such a domain.

¢ VM API for tool builders. While existing information extracted by systems like JVMTTI is rich, it does
not extract alias information. In addition, we should control the influence of probes on the program behavior,
this is crucial for concurrency issues. We will work on ways to support the users to select which information
should be extracted, at which point in time, and at which scope. In particular, we will work on support for
back-in-time debuggers.

e Low-level abstractions for security. Process isolation is an old technique for providing more secure sys-
tems, pioneered by operating systems: a running program in an OS process cannot reference the memory of
another process. Several proposals for memory isolation at language level exist including the Java specifica-
tion for isolates [?], MVM [?] (which pioneered the isolate abstraction), KaffeOS, JX, and O-JVM. Microsoft
developed an operating system called Singularity [?]. In Singularity, Software Isolated Processes (SIP) are
holders of processing resources. We want to explore how we can support different levels of isolation: From

18

isolated spaces to hardware supported security. Several systems support side-by-side applications. But the
interoperability between such systems is often not possible.

e Support for green computing. Building systems going faster and faster is one goal but we would also
like to explore how we can build more eco-friendly execution engines and tools providing more adequate
information to the developer.

4 Application domains

EVREF does not have specific application domains per se. In the past, we worked on missile sending devices,
industrial robots, information systems, insurance, banking and open-source software. We will work on open-
source and proprietary software to help companies with which we interact. We usually work on large and old
systems.

Nevertheless, we see several areas of application domains.

e Understanding and maintaining Al-based software systems. There will be more and more software systems
using Al and their evolution and maintenance will have to take into account their particularity.

e Frugal or green virtual machines. Most virtual machines are optimized for execution speed, still we would
like to explore frugal VM.

e More secure runtime. From a security point of view, we would like to see how Virtual machines can take
advantage of dedicated hardware.

There are also problems we do not plan to address:

e Our software analyses are not good for pointer analysis or template-based programming and we do not intent
to work there.

e We do not plan to work on fine-grained execution analysis such as maximal stack consumption because this
is highly dependent of the language analyzed and we are focusing on the evolution of large systems.

e We do not plan to work on concurrency or race condition analysis, even if supporting debugging concurrent
program is a topic on which we are planning to work in another iteration of the team.

5 Software

Software plays a central role in EVREF. First as input but also as produced artefact. However the production
of software is not a goal by itself, it is a means to get concrete feedback on real data (often large software
systems). To reduce the time required to be in a situation to design and evaluate a new approach, the team
built over the years two important platforms: Moose and Pharo. In addition, such platforms are the substrate
of team member collaboration. Often Pharo engineers are getting feedback from Moose developers and this is
an important feedback loop.

Moose (http://www.moosetechnology.org) is a data analysis and software platform. It is composed of several generic
and scriptable engines (visualization, interface construction, modular parser-combiner, ...). Moose is used
by several research groups and some companies such as Berger-Levrault. Moose has been used for more
than 300 research papers including master’s degrees http://scg.unibe.ch/scgbib? k=phspe-mp&query=moose.
We are currently revisiting Moose to make it more modular. Moose is under BSD license.

For the Moose platform, Clotilde Toullec is the engineer helping to develop it and another engineer will
reinforce the effort.

Pharo (http://www.pharo.org) is a dynamically-typed object language, development environment, and a virtual ma-
chine. It runs on the following platforms: mac, linux, windows, android, and iOS on Intel32/64,ARM32/64.
Pharo is composed of several frameworks (compiler tool chain, IDE, Networking libraries, graphic libraries
...). Pharo is supported by an industrial consortium: http://consortium.pharo.org. The consortium is now
composed of 28 industrial members, 24 academic members. The consortium pays two full-time expert
engineers. Core development is supported by 3 or 4 engineers. Pharo includes an industrial-strength
virtual machine running on Mac, Windows, Raspberry, in 32/64bits, and Intel/ARM. Pharo is under MIT
license.

Pharo9.0 :
e is composed of 730 packages for 9,000 classes and 120,000 methods,

19

http://www.moosetechnology.org
http://scg.unibe.ch/scgbib?_k=phspe-mp&query=moose
http://www.pharo.org
http://consortium.pharo.org

e has around 230 forks on |http://www.github.com /pharo-project/pharo,
e more than 30 universities are using it to teach in the world.

For Pharo, the consortium is a strong help. We will help the consortium growing to able to hire a third engineer.

Software as a central asset. EVREF will continue to develop the two main software platforms Moose and
Pharo produced by RMOD. Their development is a large investment but it is needed to be able to realize our
scientific roadmap and to create a feedback loop from the practice to fuel future research ideas.

Each of our research effort, being it a PhD or not, is based on developing some sort of software. Most of the
time, the development effort can be consequent but it is needed to be in a position to validate research ideas.
The use of our platform reduces the time to develop and avoids the reimplementation of the lower layers helping
to focus on the new and valuable part. Our process is then to assess whether there is a value in the developed
artefact, if it can be reused, extended and be the basis for further research. When this is the case, we go over
an extra effort to consolidate it and integrate it in our platform. Such effort can be consequent and may require
the help of a platform engineer.

Most of the development made in the context of the first research axis (software evolution) will be integrated
into the Moose platform. The development made on the second axis (new generation tools) will happen and
transferred to Pharo when mature enough. The work of the third axis (Virtual Machines) will take its root
from VMMaker, the current Virtual Machine transpilation chain of the open-smalltalk VM that the Pharo VM
inherits from. New development will take place in this context. We started to work on a new version and will
create step by step a new transpilation chain as well as a new virtual machine family to be able to experiment
new approaches. Moose being developed on top of Pharo, it will also indirectly benefit from work of the second
and third axis.

6 Transfer

RMOD the previous team produced two startups (Synectique and Codaxis), two startup projects (Cells, Pharo-
pro), created an industrial consortium, several CIFREs, and bilateral contracts. For EVREF, we plan the same
because the transfer is really important for the team. The creation of the team with Berger-Levrault is already
a large effort of transfert.

We will

e Continue growing the open-source communities around Moose and Pharo.
o Work with companies via direct contracting and bilateral contracting such as CIFRE PhD program.
e Work with Berger-Levrault.

e Interact with companies via the Pharo consortium and continue growing the Pharo consortium. It is impor-
tant to consider that the Pharo consortium is a kind of separate team managed by S. Ducasse and living
symbiotically with EVREF. So it is another layer of work. The consortium is in a post bootstrap phase
where it is in need of more engineering power and at the same time would benefit from a dedicated person
working full time on promoting Pharo and meeting Pharo customers, but the need for engineering power
makes that we focus on the engineer effort.

e We would like to support another startup, but for that we would need people with time and will.

7 Positioning and collaborations

EVREF is clearly positioning itself in the scientific challenge: "Eternal software systems" of the Inria strategic
plan 2018-2022. In France, there is no team working on the challenges we identified, the closest one are
Diverse and the software engineering group of the Labri. Diverse has a focus on devops and variability and the
software engineering group of the Labri shares some interest in software quality and analyses but also focuses
on distributed systems.

7.1 Positioning within Inria

There is no team tackling software evolution and tooling/infrastructure the same way as we propose. Still
related the following teams share some experience with EVREF research efforts:

20

http://www.github.com/pharo-project/pharo

The approach of DIVERSE is completely different from the one of EVREF. The management of the diversity,
through variability is the leading idea of the DIVERSE team. In particular, they focus on how to auto-
matically compose and synthesize software diversity from design to runtime. Evolution, language and tools
are somehow a side effect. In EVREF, evolution, language and tools are the fundamental focus of the team.
Nevertheless, we join each other on some topics like Modeling and Languages Engineering and advanced
testing that we tackle differently. Moreover, if they use VM, or debuggers for example, they do not focus on
these topics.

The Whisper Inria team is working on patch identification and applications (via the Coccinelle tool). In addi-
tion, Whisper focuses on infrastructure such as resources access, hypervisors, managed runtime.... Whisper,
similarly to EVREF is at the interface operating systems, software engineering and programming languages
— EVREF focusing on dynamically-typed languages and deploying Pharo.

Indes Inria team work on language security for languages in the cloud. Indes has knowledge on compila-
tion, JIT and dynamically-typed languages like EVREF. We want to see how virtual machines design and
implementation can be made "easier" or at least more accessible.

7.2 Positioning within cristal

None of the Cristal teams is working on software evolution per se and the tooling/infrastructure aspect EVREF
takes.

Sycomore, a new Inria team of Cristal, is focusing on real-time scheduling analysis. EVREF has some
expertise but limited to concerns around virtual machine thread scheduling.

2XS is working on detecting intrusion in the Internet or radio protocols.

EVREF (mostly axis 1) and Caramel are manipulating models and metamodels. However, the purposes are
different. Caramel develops theory on models to compose and reuse them. EVREF massively uses models
and metamodels to manage software evolution.

Carbon is focusing on modeling aspects and its links with users. Once again, the links between the two
teams rely on the massively use of models and metamodels but for different purposes. Moreover, thematics
and challenges around axes 2 and 3 are not considered neither by Caramel nor Carbon.

Spirals (Inria team) is working on security aspects (such as browser fingerprints), cloud and formalisation
of components. Objectives of Spirals are completely different from those of EVREF. Nevertheless, in some
contexts Spirals members may have to manage evolution or maintenance but it is at the margins. In the
opposite, EVREF challenges may tackle security but it is just an example of non-functional requirements and
not a target per se.

7.3 Positioning at international

Research groups on software evolution. There is a number of research groups on reengineering. Here a
list of the most important ones, even if they are not exactly working on software evolution and migration.

SERG: The Software Engineering Research Group |https://se.ewi.tudelft.nl is working on software evolution.
They do not really have a focus on tools and do not look at infrastructure of languages.

The Seal group from the University of Zurich is focusing on technologies related to the development of large,
complex, and long-living software systems. For that purpose, software development methodologies and
paradigms are needed to provide evolvability and maintainability characteristics of software. Recently they
proposed a runtime architecture-based approach for the dynamic evolution of distributed component-based
systems.

M. Lanza and his group at University of Lugano is focusing on software visualization.
LORE (Lab On REengineering) of the University of Antwerp focuses mostly on clones and tests (mutation).

Geodes (headed by H. Sahraoui) and his team of the University of Montreal are working on search-based
techniques for Software engineering (multiobjectives search applied to refactorings) but also in the past
quality models and visualizations.

Y .-G. Guéhéneuc of the University of Concordia is focusing on the identification of design patterns and lack
of design quality. We want to focus on larger abstractions and not only focus on design patterns. We are in
contact in the context of the SadPC associated team.

J. Maletic of the Kent State University is working on templates migration and other code analysis to
support the understanding and evolution of application. We are evaluating the use of the SrcML tools to

21

https://se.ewi.tudelft.nl

parse C/C++ code.

e In France, the team Génie Logiciel of Labri led by J.-R. Falleri is working on software evolution and software
quality. Concerning software evolution and quality, they mostly adopt an empirical software engineering
approach.

Research groups on tools. We do not know any research groups on debuggers in France. Microsoft Research
is currently working on back-in-time debuggers such as Tardis, and on REPT (2018) and Kernel-REPT (2020),
reverse debuggers for software and kernel failures in deployed systems. They ship REPT with the Windows
operating system and stress the importance of reverse and back-in-time debuggers for investigating failures in
real-life deployed systems. The only team in europe we know are:

e The team of A. Zeller is expert on tests such as test carving and delta debugging techniques.

e The team of E. Gonzalez-Boix from VUB is working on debugger for concurrent programming systems as
well as map/reduce applications. We collaborate with them.

Research groups on virtual machines. There is a limited number of research groups on virtual machines.

e L. Tratt has been working on Virtual Machines (mainly benchmarking) at King’s College. The team is now
working on a Tracing JIT for RUST.

e S. Marr at Kent University is working on Virtual Machines with a focus on concurrency issues. He is using
simple VM (SOM) and collaborate with the Truffle group. He is also working on benchmarking.

e The software system group led by H.P. Mossenbock of Kepler Universitat Linz is using the Graal Java VM
(mainly Oracle) to rewrite program ASTs at runtime and invoke the underlying JIT.

e In France, G. Thomas worked on Garbage collection. Parkas’s Inria team worked on compiler optimization
such as loop unrolling. M. Serrano is working on ahead of time compilation. But this is not really Virtual
Machines as a whole.

In EVREF (and in collaboration with the Pharo consortium), we are building a full VM from top to bottom: it
comprises GC and memory management, FFI, object representation, optimizing compilers (JIT). We hope to
restart to work on dynamic optimization.

7.4 Collaborations

VUB - SOFT — E. Boix Gonzalez and Coen De Roover. We collaborate since several years with the
Soft team (previously PROG) of the Vrije Universiteit Brussels. We got a large number of exchanges between
our two teams. G. Polito co-supervise the PhD of Matteo Mara with E. Boix Gonzales on debugging map
reduce applications. The COVID blocked our recent effort to launch a new period.

Université du Chili & Santiago — A. Bergel. A. Bergel is working on software analyses. The Moose plat-
form heavily uses Roassal developed in the team of Bergel. We will continue our collaboration. We will use
their knowledge on profilers.

Université de Chicoutimi au Québec — F. Petrillo. We started to collaborate with F. Petrillo, who
builds cloud infrastructures for large-scale evaluation of debuggers. We use these infrastructures for the
empirical evaluation of our debugging tools.

Thales DMS, Brest, France — E. Le Pors. We collaborate with Dr. E. Le Pors, leader of the Thales
DMS software prototyping team. His team builds complex industrial systems, source of hard bugs that we
study for the design and the empirical evaluation of new debuggers.

Montreal. C. Furhman ETS - Y.-G. Guéhéneuc / Columbia. We started to collaborate with several
groups in Montreal and the SADPC associated team should have started in 2020 but was postponed due to
COVID.

NoviSad. G. Rakic and G. Milosavljevic. We started to collaborate with two groups of NoviSad Univer-
sity. We hope post COVID will let us restart our efforts.

Working on new collaborations. Prof. J.P. Sandoval is taking a new position in Chile. We plan to continue
working with his team on Profilers.

7.5 National networks

e Steven Costiou is co-responsible of the working group of the GDR GPL on debugging.

22

e Anne Etien is co-responsible of the working group of the GDR GPL on Software Engineering and Artificial
Intelligence.

23

A CVs

N. Anquetil (HDR). He completed my PhD in 1996 at University of Montréal. Since then, he worked successively
at University of Ottawa (Canada), Federal University of Rio de Janeiro (Brazil), Catholic University of Brasilia
(Brazil), and Ecole des Mines de Nantes (France). I am now Associate Professor (MCF / HDR) at University of
Lille. He co-founded Synectique: a company that was selling software analysis tools. He is now working on the
new generation Moose software analysis platform.

S. Costiou. He is a permanent Inria researcher (CRCN). Before that, he worked six years in the industry as a software
developer in various areas (defense, aerospace, point-of-sale software, etc.). I then did research on unanticipated
software adaptation during my PhD at Université de Bretagne Occidentale (France), before becoming a permanent
researcher at Inria Lille - Nord Europe. Today, he is working on finding new ways of debugging. He is interested in
the identification and the study of the properties that programming languages and their infrastructure (i.e., virtual
machines) must exhibit to support new debugging features that effectively help debugging. This research spans
different topics: reflection and meta-programming, object-centric instrumentation, dynamic software adaptation,
dynamic languages, and virtual machines.

M. Denker. He is a permanent researcher (CRCN) at Inria Lille - Nord Europe. His research focuses on reflection and
meta-programming for dynamic languages. He is an active participant in the Pharo open source community and
a Pharo core developer. Before joining Inria, he was a postdoc at the PLEIAD lab/DCC University of Chile and
the Software Composition Group, University of Bern. Marcus Denker received a Ph.D. in Computer Science from
the University of Bern/Switzerland in 2008 and a Dipl.-Inform. (MSc) from the University of Karlsruhe/Germany
in 2004. He co-founded ZWEIDENKER GmbH (Cologne, Germany) in 2009. He is a member of ACM, GI, and a
board member of ESUG.

C. Demarey. He is an Inria engineer. He worked on Virtual Machines for embedded devices. He was responsible for the
CI inria infrastructure. With RMOD he worked on supporting the bootstrap, package management and the Pharo
Launcher. Christophe participated to the development of TousAnticovid, the national french COVID application
of the french government.

A. Etien. She is currently full Professor at the University of Lille. She is doing research in the RMOD team since 2012
on software maintenance of large legacy software systems and more specifically on software quality, tests, software
cartography. . . She regularly works with companies to answer their requirements around these problematics. Be-
fore she worked on model-driven engineering and more specifically on model transformations. And before that,
she worked during her PhD at the University Paris 1 on the evolution of Information systems and requirement
engineering. Finally, she published around hundred research papers and supervised eight PhD students.

G. Polito (Ph.D.). He is currently CNRS research engineer. Guillermo holds a PhD from the University of Lille.
He did a postdoc at the Free University of Brussels where he is supervising Matteo Marra with Prof. Gonzales-
Boix. He co-supervised three PhD with Prof. Fabresse and Bouragadi from IMT Douai. His thesis results (a
bootstrapping architecture and applications) are used daily to produce Pharo. He is expert in language design,
compiler, and leading the effort around Virtual Machine: the emergent field of EVREF.

C. Bortolaso (Ph.D.). He is the head of research programs at Berger-Levrault. He holds a Ph.D. in Computer
Science focused on human computer interaction. He has contributed for more than 10 years to numerous research
and software development projects in France and Canada, in various industrial sectors such as defense, culture,
energy, public services, and healthcare. Today, in charge of research programs at Berger-Levrault, he coordinates a
team of researchers in multiple domains ranging from software engineering, human-computer interaction, artificial
intelligence, and natural language processing.

A. Seriai (Ph.D.). He is in charge of software engineering research programs at Berger-Levrault. Abderrahmane Seriai
holds a Ph.D. in computer science from the University of Montreal (Canada) and University of Bretagne Sud
since 2015. His doctoral studies focused on the problem of migrating from object-oriented to component-oriented
applications. He worked at Orange-Labs and CEA as a research and development engineer in the fields of software
engineering and embedded systems security. He joined Berger-Levrault in 2017 to focus on applied research in the
field of software engineering. He actively participates in the design, analysis, and development of use cases for new
technologies (migration, software architecture, security technologies (migration, software architecture, blockchain,
product line, AT for software engineering, etc.).

24

STEPHANE DUCASSE

Senior Researcher (Directeur de recherche de premiére classe) 53 years old
Inria Lille Nord Europe - Cristal laboratory University of Lille mailto:stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr

Keywords: Dynamically typed languages, Language Design and Security, Software Engineering, Object-
Oriented Programming, Reflective Programming, Meta-Object Protocol, Meta-Modeling, Reengineering, Re-
verse Engineering, Program Understanding, Integrated Development Environments, Teaching Novices.

Indexes: According to Google Scholar, H-indez: 58 for 15000 citations.
Education and Titles

May 2002 PrivatDozent of the University of Bern.
Sep 2001 Habilitation & diriger des recherches of Université Pierre et Marie Curie (Paris 6).
1993,/1996 Ph.D. Thesis of the Université de Nice-Sophia Antipolis (Laboratoire 13S).

Professional Employment History

2013 Co-Founder of Synectique (spinoff).

2012 Promoted First Class Inria Research Director (only a 1/3 of directors are first class).

2011 — 14 Scientific Deputy Director of Inria Lille-Nord Europe Research Lab.

2007 — ... Inria Research Director (equiv. to Full Professor). Founder and leader of the RMOD) Inria

team: 6 permanent researchers, 2 postdocs, 4 engineers, 7 Ph.Ds.

2005 — 07 Full Professor of Université de Savoie, Leader of the Software Engineering team (5 permanent
members, 3 Ph.Ds, 1 postdoc).

2002 - 05 Swiss National Foundation Professor at University of Bern (20% accept). Leader of RECAST
project and jointly in charge of the Software Composition Group|directed by Prof. O. Nierstrasz.

1996 — 02 Lecturer at the University of Bern in the Software Composition Group.

Awards
2012 Inria Prime d’excellence scientifique - Scientific Excellence Award.
2011 Distinguished Visiting Fellowship Award of the Royal Academy of Engineering.
2010 ESUG 2010 best Smalltalk book for Dynamic Web Development with Seaside, 2010.
2008 Best award paper of IEEE Working Conference on Reverse Engineering 2008.
2003 Best award paper of Joint Modular Language Conference 2003.

Funding ID

2021. Thales 55 K / Siemens 110 Keuros

2019-2020. Lifeware 220 Keuros / Arolla 320 Keuros

2018-2019. CIM 160 Keuros

2017-2018. Utocat 160 Keuros / Berger-Levrault 320 Keuros

2015-2018. Thales 45 KEuros + 120 Keuros - WordLine 45 KEuros + 120 Keuros

2012-2015. SafePython - FUI Systematic - 120 Keuros

2011-2014. Resilience project - Security in Javascript - FUI Systematic - 240 Keuros

2010-2014. ANR Project Cutter - Reengineering (LIRMM + INRIA) - 150 Keuros (one Ph.D.)
2008-2010. Squale project - Reengineering (AirFrance, Peugeot, Qualixo) - 260 Keuros (1 Ph.D. 1 postdoc)
2005-2008. ANR Project Recast - Reengineering - 130 Keuros (20% acceptance)

2002-2006. Swiss National Science Foundation 2002 Professorship - 500 Keuros (18% acceptance)

Publications

54 Internat. 3 Trans. of Softw. Eng. (TSE), 1 Trans. of Progr. Lang. and Syst. (TOPLAS), 7 J. of
Journals Computer Lang., Syst. and Struc., 3 J. of Soft. Maint. and Evol. (JSME), 4 Infor. and Soft.
Tech. (IST), SOSYM, IEEE Software, etc
104 Internat. 9 OOPSLA (18%), 3 ECOOP (16 %), 1 PLDI (16%), 1 FSE (16%), 1 ASE (9%), 8 ICSM
Conferences (21%-35%), 9 WCRE (25%-35%), 2 UML(25%), 6 TOOLS (25%)
4 Invited Papers, 3 Book Chapters, 3 National Journals, 11 Books

mailto:stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr
https://rmod.inria.fr/web/
http://scg.unibe.ch

Professional Activities

8 Habilitation evaluation, 26 Ph.D. thesis evaluation

28 Ph.D. thesis supervisions - defended

6 International Conference General Chair: ESUG International Conference on Smalltalk (05, 06, 09, 10 - 150
participants), WCRE 2009 (90 ppts), LMO 2005 (60 ppts).

International Journal Steering Board: open-archive Journal of Object Technology (http://www.jot.fm)

40 International Conference Program Comittee Participation

ECOOP Core A*, Models Core B, ICSM Core A, WCRE Core B, TOOLS Core B, CSMR Core B.

80 International Conference reviewer for OOPSLA, ECOOP, FSE/ESEC, ICSM, MODELS...

International Journal reviewer: Transaction on Software Engineering (Core A*), Journal of Software Main-
tenance and Evolution: Research and Practice, Journal of Software and Systems Modeling, Information and
Software Technology, Journal on Computer Programming (Core A),...

Research Network Building: Furopean Science Foundation Network: "RELEASE: Research Links to Explore
and Advance Software Evolution" (02-05).

Keynotes and Invited Courses

Conference Modularity 2017, Software Language Engineering 2015, Software Composition 2009,
Keynotes Smalltalks 2009
Invited Papers with O. Nierstrasz, Software Composition 2005, ESEC/FSE’05, Generative Programming

and Component Engineering, 2005
Invited Lectures University of Skikda, Algeria (3 days), ENSI Tunisia (3 days), Univ. Novi Sad, Serbia (3
days), 2018
University of Cagliari (3 days), 2017
University of Lviv (7 days), 2016
University of Prague (5 days), 2016
Universitat Politécnica de Catalunya (5 days), 2010
Universidad de Buenos Aires (3 days), 2009
Universita di Torino (5 days), 2007, 2008
Universita di Torino Timisoara (5 days), 2002
Invited Seminars University of Skikda, Univ. of Novi Sad, Serbia 2018
University of Turino, 2017

Platforms

Pharo. http://www.pharo.org - Co-founder / industrial consortium leader
Moose. http://moosetechnology.org| - Co-founder / maintainer

Scientific Reviewer

T act as reviewer for IST (Information Society Technology), SSF (Stiftelsen for Strategisk Forskning Sweden),
EPSRC (UK), for the Fonds de Recherche sur la Nature et les Technologies of Quebec — Canada, NWO (Dutch
National Research Council), NSERC (Natural Sciences and Engineering Research Council of Canada), and ANR
(Agence Nationale de la Recherche), IWT-Flanders (Belgium), and SSF (Swedish Science Foundation).

References

Prof. O. Nierstrasz, University of Bern, |oscar@iam.unibe.ch

Prof. A. Black Portland State University black©cs.pdx.edu

Directeur de recherche CNRS J.-P. Briot, Laboratoire d’informatique de Paris 6, jean-pierre.briot@lip6.fr
Prof. T. D’Hondt, Head of the PROG Laboratory of the University of Brussels tjdhondt@vub.ac.be
Prof. J.-M. Jezequel, IRISA - Université de Rennes, jezequel@irisa.fr

http://www.jot.fm
http://www.pharo.org
http://moosetechnology.org
oscar@iam.unibe.ch
black@cs.pdx.edu
jean-pierre.briot@lip6.fr
tjdhondt@vub.ac.be
jezequel@irisa.fr

