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Abstract 14 

Adjusting the micro-environment around the cell surface is critical to respond to external cues 15 

or endogenous signals and to maintain cell activities. In plant cells, the plasma membrane is 16 

covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose 17 

the cell surface. It has long been known that these structures mutually interact, but the 18 

mechanisms that integrate the whole system are still obscure. Here, we spotlight the 19 

brassinosteroid (BR) plant hormone receptor BRI1 since it represents an outstanding model for 20 

understanding cell surface signaling and regulation. We summarize how BRI1 activity and 21 

dynamics are controlled by plasma membrane components and their associated factors to fine-22 

tune signaling. The downstream signals, in turn, manipulate cell surface structures by 23 

transcriptional and post-translational mechanisms. Moreover, the changes in these 24 

architectures impact BR signaling, resulting in a feedback loop formation. This review will 25 

discuss how BRI1 and BR signaling function as central hubs to integrate cell surface regulation. 26 
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  31 



Introduction 32 

The plasma membrane (PM) provides a unique barrier and interface for exchanging chemicals 33 

or information between extra- and intra-cellular environments to maintain cellular homeostasis. 34 

These contradictory functions of the PM are supported by a water-impermeable lipid bilayer 35 

and numerous membrane-integral or -surface proteins that facilitate the exchange of molecules 36 

or signals. Cell surface receptors, such as G-protein coupled receptors (GPCRs), receptor 37 

tyrosine kinases (RTKs), or receptor-like kinases (RLKs), are representative classes of 38 

transmembrane proteins that play a crucial role in signal transduction at the cell surface. 39 

Animals expanded GPCR and RTK families (over 800 GPCRs1 and 58 RTKs2 in humans), 40 

while plants developed a wide variety of RLKs (over 600 RLK-family genes in Arabidopsis3 41 

and over 1100 RLK-family genes in rice4). Among them, the brassinosteroid (BR) hormone 42 

receptor BRASSINOSTEROID INSENSITIVE1 (BRI1)5 has been widely used as a model 43 

receptor to better understand the molecular mechanisms of signal transduction in plants and its 44 

interplay with the cell surface. 45 

 46 

BRs are a group of polyhydroxylated sterols that show phytohormonal activities in many 47 

aspects of the plant life cycle. For instance, Arabidopsis bri1 or other BR-defective mutants 48 

show extreme dwarfism5,6, cell proliferation defects7, abnormal vascular tissue differentiation8, 49 

or impaired male fertility9,10. Not limited to developmental or reproductive defects, BR-related 50 

mutants also display impaired resistance to biotic and abiotic stresses11,12. Similar to what is 51 

observed in dicots, BRs also play significant roles in monocots. Several rice BR biosynthetic 52 

mutants indeed show dwarf and fertility-related phenotypes13,14. Null mutation of the rice 53 

ortholog OsBRI1 leads to a severe defect in organ growth in shoots but a mild effect in root 54 

growth, most likely due to the strong expression of its homologs15. A genetic screen in wheat 55 

also identified a high-yield semi-dwarf strain, which is impaired in BR signaling, corroborating 56 

the high importance of BR signaling in agriculture16. 57 

 58 

BRI1 belongs to the LRR-RLK (leucine-rich repeat receptor kinase) subfamily X and plays a 59 

central role in triggering BR signaling upon BR perception. BRI1 has both Ser/Thr and Tyr 60 

kinase activities, and both enzymatic activities are critical for its functions17,18. As already 61 

reviewed in many articles19–21, the BR signaling pathway is one of the best-characterized 62 

pathways in plant receptor signaling, particularly in the control of genomic responses. In the 63 

absence of BRs, BIN2 (BRASSINOSTEROID INSENSITIVE 2) kinase22 suppresses BR-64 



triggered transcriptional responses by phosphorylating the transcription factors BES1 and 65 

BZR1 (BRASSINOSTEROID-INSENSITIVE EMS SUPPRESSOR1 and BRASSINAZOLE 66 

RESISTANT 1)23,24. This phosphorylation has been shown to control BES1 and BZR1 at 67 

different levels, all preventing downstream genomic responses. These include the inability to 68 

bind target promoters25, nuclear export/cytoplasmic retention26–29, or proteasome-dependent 69 

degradation30. The presence of BRs induces the formation of the BRI1-BAK1 (BRI1 70 

ASSOCIATED KINASE, from LRR-RLK subfamily II) receptor complex31–33. Full activation 71 

of the BRI1-BAK1 complex allows signal transduction to BSKs (BR-SIGNALING KINASEs) 72 

and CDGs (CONSTITUTIVE DIFFERENTIAL GROWTH proteins) RLCKs (receptor-like 73 

cytoplasmic kinases) 34–36. These RLCKs, in turn, phosphorylate and activate the BSU1 (BRI1 74 

SUPPRESSOR 1) phosphatase that dephosphorylates BIN2, leading to BIN2 deactivation and 75 

destabilization 37,38. Consequently, BES1 and BZR1 transcription factors are dephosphorylated 76 

by PP2A phosphatases39, resulting in their accumulation in the nucleus where they control the 77 

transcription of thousands of BR-responsive genes25,27,28,38,40–42. The intricate mechanism of 78 

BR signal transduction from the cell surface to the nucleus is very well understood, but how 79 

BR signaling regulates cell surface components or structures remains quite elusive compared 80 

to other RLK signaling43–47. Recent advances shed light on how BR signaling impacts the 81 

membrane surface environment and how cell surface cues regulate BRI1 and BR signaling. 82 

This review will focus on the dynamics of BRI1 at the PM and the mutual relationships between 83 

BR signaling and cell surface structures, such as cortical microtubules (MTs) and the cell wall. 84 

 85 

BRI1 regulation at the cell surface 86 

Quantitative control of BRI1 at the PM 87 

BRI1 spans over diverse subcellular compartments, including PM, early endosomes (EE), 88 

multivesicular bodies (MVB), and the vacuolar lumen48. It has already been shown in animals 89 

that the spatial distribution of membrane-bound receptors within cells is a critical determinant 90 

of signaling activity49. Several studies demonstrated that stabilization of BRI1 at the cell 91 

surface by genetic perturbation yields hypersensitivity to BRs both in terms of physiological 92 

signatures and BES1 phosphorylation status50–53, supporting the idea that BRI1 initiates 93 

signaling from the PM. Only one pharmacological approach where BRI1 is trapped into 94 

endosome-containing cellular structures suggested that BRI1 could fire from endosomes, but 95 

this hypothesis lacks physiological evidence54. 96 



Intracellular trafficking appears to be one of the major ways to adjust the PM pool of BRI1. 97 

BRI1 is believed to be constitutively internalized from the PM to EE in a ligand-independent 98 

manner together with BAK1 since a  BRI1 variant unable to bind BRs still shows comparable 99 

internalization to the wild-type form54–56 (Fig. 1a), while some other receptors, such as FLS2 100 

(FLAGELLIN INSENSITIVE 2) and SGN3 (SCHENGEN 3, also called GSO1 (GASSHO1)), 101 

show ligand-induced endocytosis57,58. This concept, however, remains obscure for BRI1 102 

considering that several mechanisms driving BRI1 endocytosis, such as ubiquitination or the 103 

recruitment of the E3 ligases PUB12/13 (Plant U-box type E3 ligase 12 and 13), appear to be 104 

themselves BR-regulated51,59. 105 

Recent studies highlighted the numerous components involved in BRI1 endocytic machinery. 106 

A pair of SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptors) 107 

family proteins, SYP22 (Q-SNARE) and VAMP727 (R-SNARE), regulates the PM pool of 108 

BRI160. BRI1 endocytosis is executed by the AP-2- or T-PLATE-dependent clathrin-mediated 109 

endocytosis (CME)50,61, and the clathrin-independent pathway through FLOT1 (flotillin1)62 110 

(Fig. 1a). A recent report showed that a Tyr motif (YXXΦ, where Y stands for Tyr, X is any 111 

amino acid, and Φ is a bulky hydrophobic residue) of BRI1 was critical for the CME-dependent 112 

internalization through the interaction with an adaptor AP-2 subunit AP2M, similar to what has 113 

also been characterized for plant nutrient transporters52,63. 114 

One important mechanism leading to BRI1 receptor internalization is polyubiquitination (Fig. 115 

1b). More precisely, endocytosis of BRI1 largely relies on Lys63 (K63) polyubiquitination51, 116 

as seen for other PM proteins64–66. The PUB12/13 E3 ubiquitin ligases and UBC35/36 117 

(UBIQUITIN CONJUGATING ENZYMES 35 and 36) E2s have been demonstrated as main 118 

actors of BRI1 Lys63 polyubiquitination in vivo and in vitro 53,59,65. In vitro experiments 119 

showed that PUB13 phosphorylation by BRI1 is necessary for activating its ubiquitin ligase 120 

activity59. This result is consistent with the fact that the BRI1 kinase activity and its co-receptor 121 

BAK1 are required for BRI1 constitutive ubiquitination and that BR depletion decreases BRI1 122 

ubiquitination51,59. So far, the precise ubiquitination sites on BRI1 are yet to be identified, but 123 

introducing 25 Lys mutations in a BRI1 cytosolic domain severely abolished its internalization 124 

and degradation, and yielded hyper-stimulated BR signaling51. Furthermore, BRI1 Lys63 125 

polyubiquitination is reversibly removed by deubiquitination enzymes UBP12/13 (Ubiquitin 126 

specific protease 12 and 13), enabling fine-tuning the degree of receptor polyubiquitination and 127 

endocytosis67 (Fig. 1b). These factors coordinately dictate the levels of active BRI1 at the cell 128 

surface. Interestingly, PUB12/13 components also significantly impact the polyubiquitination 129 



of the immune signaling FLS2 receptor68, but the precise mechanisms determining the level of 130 

ubiquitination for distinct receptors through PUB12/13 remain to be clarified. 131 

A remarkable example of quantitative control of BRI1 at the PM takes place under higher 132 

ambient growth temperatures. Elevated ambient temperature downregulates BR signal by 133 

ubiquitin-mediated selective BRI1 degradation, which tunes root cell elongation under high 134 

temperature condition69,70. Recent work, however, revealed the interplay between 135 

ubiquitination and another post-translational modification targeting BRI1, SUMOylation 136 

(SMALL UBIQUITIN MODIFIER), in the control of BRI1 at warmer temperatures70 (Fig. 1b). 137 

Interestingly, SUMO was also reported in the case of FLS271. In vitro experiments showed that 138 

the SCE1 E2 SUMO conjugation enzyme SUMOylated FLS2, and the DESUMOYLATING 139 

ISOPEPTIDASE 3a (Desi3a) SUMO protease removes SUMO from FLS2. In planta, the 140 

SUMOylation level of FLS2 is increased in an flg22-dependent manner by degrading Desi3a, 141 

which unleashes BIK1 (BOTRYTIS-INDUCED KINASE1) from the FLS2-BAK1 complex 142 

and activates downstream pathways71. BRI1 is also SUMOylated in planta, but the identity of 143 

the SUMO E2 or E3 catalyzing the SUMO conjugation to BRI1 is still uncharacterized. 144 

Elevated temperature induces Desi3a protein accumulation, recruitment to BRI1, and BRI1 145 

deSUMOylation70. DeSUMOylated BRI1 shows higher affinity to BIK1, a negative regulator 146 

of BR signaling72, and promotes BRI1 internalization. Both mechanisms limit the activation of 147 

BRI1 upon elevated temperature and prevent an over-elongation of hypocotyls under such 148 

conditions. An attractive possibility is that SUMOylation counteracts ubiquitination, as 149 

SUMOylation sites on BRI1 likely overlap with ubiquitination targets, allowing plants to 150 

modulate BR sensitivity in response to warmth. This regulatory mechanism represents an 151 

excellent model for understanding how multi-posttranslational modifications compete, 152 

converge, and determine BRI1 abundance at the PM. 153 

 154 

Cell surface nanodomains and BR signaling 155 

Receptor-like kinases are embedded in the PM where uncountable components meet73. Recent 156 

advances in microscopic techniques unveiled that specific proteins or lipids form nanodomains 157 

at the PM within a sub-micrometer order. A prominent example is ROP6 nanodomain 158 

formation upon auxin or hyperosmotic stress stimulation, leading to downstream activation74,75. 159 

BRI1 also forms nanodomains at the PM, serving as hot spots for flotillin-dependent 160 

endocytosis62. Pharmacological disruption of sterol or sphingolipid distribution attenuates 161 



BRI1 endocytosis and BES1 dephosphorylation, implying these membrane components are 162 

crucial for BRI1 function by stabilizing nanodomain formation62. The BRI1 co-receptor, BAK1, 163 

also forms nanodomains at the PM, but its relevance for BR signaling remains to be 164 

characterized76.  165 

Some components in the BR pathways, like BIK1, are indeed shared by immune signaling 166 

receptors, such as FLS2 or EFR72,77–79, enabling plants to cross-regulate each pathway and to 167 

provide trade-off mechanisms between defense and growth72,80,81. A major question arises in 168 

such a context: how do plants disentangle the different signaling pathways by sharing the same 169 

components? Part of the answer relies on nanodomains that spatially separate signaling 170 

complexes to avoid unfavorable signal interference (Fig. 1c). Single particle analysis by 171 

variable angle epifluorescence microscopy (VAEM) revealed that BRI1 and FLS2 reside, in 172 

fact, in distinct nanoclusters within the PM82. These particles show different dynamics at the 173 

PM, and of note, the BRI1-BIK1 complex in nanodomains tends to localize along cortical MTs, 174 

while the FLS2-BIK1 complex appears to be in distinct nanodomains with no correlation with 175 

MTs (Fig. 1c). This observation might give us a clue to grasp how plants regulate distinct 176 

signaling pathways using the same components. Similarly, BSK1 forms nanodomains with 177 

BRI1 or FLS2, and the complexes behave differently after stimulation by corresponding 178 

ligands83. Overall, nanodomain formation now emerges as a critical step to emit different 179 

outputs while sharing the same signaling components. 180 

 181 

Scaffolding function in BR signaling 182 

Quantitative proteomics estimated that 25.8 billion protein molecules are found in one plant 183 

mesophyll cell, and 3.2 billion protein molecules exist in its cytosol73. Under such crowded 184 

conditions, gathering signaling components by scaffolding proteins or in nanodomains allows 185 

them to initiate quick, efficient, and precise signal transduction from the PM to the nucleus, as 186 

seen in yeast or humans84. In plants, only a few examples are found for signal scaffolding 187 

proteins, but the TTL (TETRATRICOPEPTIDE THIOREDOXIN-LIKE) family proteins85 188 

and BSK3 (BR-SIGNALLING KINASE 3)86 serve such a function in BR signaling. ttl3 and 189 

bsk3 show hyposensitivity to BRs, supporting the positive roles of TTLs and BSK3 in BR 190 

signaling85,86. Mechanistically, both interact with central molecules in BR signaling, such as 191 

BRI1, BSK1, BSU1, BIN2, and BZR1 for TTL385,86, enabling smooth signal relay. TTL 192 

proteins interact with these components through TPR (TETRATRICOPEPTIDE REPEAT) 193 

domains85, while TPR domains in BSK3 are not required for its scaffolding activity, except 194 



hetero/homo-oligomerization with BSK1/386. This is consistent with the fact that TPRs are not 195 

absolutely required for its functions since a TRP-deleted BSK3 construct could complement 196 

bsk386. BR signaling enhances this scaffolding mechanism by upregulating TTL transcription 197 

and promoting relocation from the cytosol to the PM85. 198 

TTL1, 3, and 4 proteins were also recently reported as CESA1 (Cellulose synthase A1) 199 

interactors and confer abiotic stress tolerance to plants by maintaining CESAs at the PM during 200 

stress87,88. Therefore, TTL family scaffolding proteins also offer a chance for a deeper 201 

understanding of a crossing point of stress response and BR signaling. 202 

 203 

Activity regulation by homo and heterodimerization of BRI1 and interaction with other 204 

regulators 205 

Besides the quantitative regulation of BRI1 at the PM, BRI1 is also tightly controlled at the 206 

activity level. BRI1 was early demonstrated to undergo BR-dependent homodimerization using 207 

in planta biochemical approaches89. BRI1 homodimerization is further supported by in vitro 208 

data where purified BRI1 cytoplasmic kinase domain can homodimerize18, but not the 209 

extracellular domain in vitro, regardless of the presence of ligands90. Additionally, a BR-210 

independent homodimerization of BRI1 was brought to light using imaging analysis62,91. BRI1 211 

also possesses an autoinhibitory domain in its C-terminal domain. This autoinhibitory lock is 212 

released by BR-induced inter-molecular phosphorylation of the BRI1 C-ter domain, suggesting 213 

BRI1 homodimerization might be important for this regulation89,92. Another 214 

autophosphorylation site, Ser891, in the ATP-binding domain strongly suppresses the auto-215 

phosphorylation on Tyr residues, resulting in BR signal inhibition93.  216 

The BRI1-BAK1 complex formation represents another important regulatory mechanism. 217 

BAK1 is sequestered away from BRI1 by BIR3 (BAK1-INTERACTING RECEPTOR-LIKE 218 

KINASE 3) in the absence of ligand, as also observed for other BAK1 partners94–96 (Fig. 1a). 219 

Ligand binding to BRI1 shifts the affinity of BAK1 toward BRI1 and allows BAK1 to form 220 

the BR receptor complex with BRI197. Interestingly, BIR3 also binds to BRI1, arguing for the 221 

existence of additional BIR3-dependent regulatory mechanisms targeting BRI198.  222 

BRI1 interactors such as BKI1 (BRI1 KINASE INHIBITOR 1), a MEMBRANE-223 

ASSOCIATED KINASE REGULATOR (MAKR) family protein, also participate in the 224 

confinement of BRI1 activity99 (Fig. 1a). BKI1 prevents the complex formation of BRI1 and 225 

BAK1, and its inhibitory activity largely depends on its association with PM100. Four doublets 226 

of KR (Lys-Arg) motifs of BKI1 ensure electrostatic interaction with specific lipids of the PM 227 

in a “membrane hook” domain100,101. Upon BR perception by BRI1, BKI1 is phosphorylated 228 



by BRI1 on a tyrosine next to one KR motif and quickly disassociates from the PM, unlocking 229 

the BR signaling pathway activation99,100. Furthermore, a recent report demonstrated that an 230 

evolutionary-conserved RING-type E3 Ub ligase in plants, namely ZnF, induces degradation 231 

of the wheat TaBKI1, resulting in activating the downstream pathway16. Other RLK proteins 232 

are known to be regulated either positively or negatively by MAKR family proteins102,103, 233 

including the BKI1-interacting partner ER (ERECTA). BKI1 inhibits ER kinase activity and 234 

disassociates from ER upon BR signaling activation, but not after EPF1/2 (EPIDERMAL 235 

PATTERNING FACTOR 1/2) perception by ER. This mechanism adds one more complexity 236 

to plant architecture development104. 237 

After the activation of the BR pathway, a PP2A phosphatase complex attenuates BR signaling 238 

by dephosphorylating BRI1, as attested by PP2A mutant and overexpression phenotypes105,106. 239 

Of note, PP2A localization is regulated by reversible methylation on an A subunit of PP2A 240 

through SBI1 (SUPPRESSOR OF BRI1) leucine carboxylmethyltransferase activity. Subunits 241 

A, such as RCN1 (ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1), are generally 242 

distributed in the cytosol, but methylation on RCN1 leads to PP2A complex formation to 243 

membrane fractions at PM and/or endosomes, where BRI1 resides105. BR signaling also 244 

transcriptionally upregulates SBI1 expression, which in turn dampens signaling105. SBI1 and 245 

PP2A are also required for BRI1 degradation105, implying that dephosphorylation of BRI1 is 246 

critical for diverting BRI1 to MVBs or lytic vacuolar compartments for degradation, although 247 

SBI1 and PP2A might lead to BRI1 degradation by other mechanisms. These multi-lock 248 

systems at distinct layers tightly regulate BRI1 activity or complex formation to suppress the 249 

basal or excess BRI1 activity. 250 

The activities of BR signaling components are not solely under the control of BR perception. 251 

For example, other phytohormones crosstalk with BR signaling factors through post-252 

translational mechanisms. Salicylic acid, one of the stress-induced phytohormones, promotes 253 

the detachment of BSKs from the PM by upregulating de-S-acylation enzymes, resulting in BR 254 

pathway downregulation107. The core regulators of abscisic acid (ABA) signaling ABI1 and 2 255 

(ABA INSENSITIVE 1 and 2) phosphatases dephosphorylate BIN2, and BIN2 phosphorylates 256 

SnRK2s (SNF1-Related Kinase 2)108, thereby oscillating both signaling mechanisms. Further 257 

study in such growth/stress response signaling cross points is critical to understand plant 258 

resilience under complex environments. 259 

 260 

Interplay between BR signaling and cytoskeletal networks 261 



Two interplaying cytoskeletal networks in the cytosol and close contact with the PM, MTs and 262 

the actin microfilaments (MF), participate in essential cell activities such as cell elongation, 263 

cell division, and vesicle/organelle trafficking109.  264 

The cytoskeleton is a highly dynamic biopolymer, and its organization is tightly controlled by 265 

external and internal cues110–113. This plastic nature of the cytoskeleton provides the essential 266 

basis for morphogenesis, directional growth, and stress adaptation, as seen in stomatal closure 267 

under high salinity stress114,115, for example. Phytohormones, including BRs, are representative 268 

endogenous regulators of the cytoskeleton116. BRs modulate the organization and dynamics of 269 

MFs in response to gravity in Arabidopsis117, and other plants such as Zea mays and Medicago 270 

truncatula118. However, the detailed molecular mechanisms underlying such regulation are still 271 

obscure119. Here, we highlight recent advances in how BRs impact cytoskeletal network 272 

regulation, particularly focusing on MTs. 273 

 274 

Transcriptional regulation 275 

Transcriptome analyses have already connected BRs and MTs/MFs, since the expression of 276 

some tubulin (TUB1 and TUB8) and actin (ACT11) genes are upregulated in the presence of 277 

BRs19. A couple of studies have also highlighted the BR-induced transcriptional upregulation 278 

of MAPs (Microtubule-Associated Proteins) that impacts MT dynamics and organ 279 

developmental processes. The BZR1 transcription factor protein directly binds to promoter 280 

regions of MDP40 (MICROTUBULE DESTABILIZING PROTEIN40), KATANIN1 (KT1, 281 

encoding p60 subunit), and KATANIN80(1/2/3/4) (KT80s) and upregulates their transcription. 282 

MDP40 promotes hypocotyl elongation, and KATANINs (KTN) support stamen filament cell 283 

elongation for efficient fertilization through BR-triggered MT reorganization120,121. 284 

Not limited to uni-directional transcriptional regulation, BR signaling and MTs form a 285 

feedback loop by controlling CLASP (CLIP170-associated protein) transcription (Fig. 2d). 286 

CLASP encodes a MAP acting in transfacial MT bundle formation, particularly important to 287 

maintain proper cell population in root division zone122. Ruan et al. demonstrated that the 288 

transcription of CLASP was negatively regulated by BRs, which prolongs the transition from 289 

the division zone to the elongation zone in the root meristems through the reorganization of 290 

MTs. Conversely, CLASP modulates BR signaling through the delivery of BRI1 to the PM by 291 

bridging BRI1-containing SORTING NEXIN1 (SNX1)-labeled endosomes and MTs122–125. 292 

Thus, CLASP plays a pivotal role in the negative feedback loop in BR sensing by adjusting the 293 

levels of BRI1 (Fig. 2d, Fig. 3a). Further analyses using super-resolution microscopy will 294 



reveal how transfacial MTs, where CLASP preferentially accumulates, contribute to BRI1 295 

secretion and distribution on the PM. 296 

 297 

Non-transcriptional regulation 298 

Several studies have shown that BRs also control MT organization through post-translational 299 

modifications. Such effects prominently appear in lobe-indent formation during leaf pavement 300 

cell development. Genetic or pharmacological perturbation of BR biosynthesis/signaling126,127 301 

leads to MT disorganization and altered jigsaw puzzle shapes of pavement cells128. However, 302 

the detailed molecular mechanisms underlying the impact of BRs on MT regulation are still 303 

missing. 304 

Two recent complementary papers have nicely connected BR signaling to cortical MTs via 305 

regulating ROP (Rho of plant) small GTPase signaling during pavement cell formation (Fig. 306 

2a)129,130. ROPs, which regulate pavement cell shapes, are small GTPases acting as molecular 307 

switches from active to inactive states depending on GTP or GDP binding, respectively131. The 308 

ROP activation cycle is carried out by GEFs (Guanine nucleotide Exchange Factors), and the 309 

inactivation of ROPs is finely tuned by GAPs (GTPase-Activating Proteins) and GDIs (GDP 310 

Dissociation Inhibitors). BRs were shown to impact MT organization through BIN2-mediated 311 

phosphorylation of PHGAP1 and 2 (Pleckstrin Homology GAP1 and 2), whose double mutant 312 

demonstrates vague lobe-indent patterns in pavement cells129,130. PHGAPs target ROP2, which 313 

prevents MT alignment in indent areas by inhibiting RIC1 (ROP Interactive CRIB motif-314 

containing protein1)132. PHGAPs are preferentially accumulated at the anticlinal face of the 315 

pavement cell indent regions in MT- and BIN2-dependent manners129,130. In the absence of 316 

BRs, BIN2 activates and stabilizes PHGAPs, leading to ROP2 suppression, allowing MTs to 317 

form well-ordered networks in indent regions through the ROP6-RIC1-KTN module133. On the 318 

other hand, when the BR signal is on, BIN2 is inactivated and degraded, allowing PHGAPs to 319 

stay dormant129. Then, active ROP2 prevents MT bundle formation by inhibiting ROP6, 320 

leading to lobe formation. Thus, BRs modulate pavement cell lobe-indent formation through 321 

MT regulation. This model also implies that local BR signal modulation occurs since BIN2 322 

stays active only on the indent sides, possibly through feedback signal from ROP-related 323 

factors, bundled MTs, or tensile stress to the BR pathways (Fig. 2a, Fig. 3b). 324 

Previous reports also show that BIN2 phosphorylates both α and β-tubulins in vitro128, and 325 

some cytoskeletal proteins, such as TUA6, TUB4, and ACT2, showed mobility shifts on 2D 326 

electrophoresis gels after BR treatments, implying that BRs induce some modifications on 327 



these proteins that are yet to be characterized134. Furthermore, a recent proximal labeling screen 328 

identified potential substrates of BIN2135. The candidate list includes various cytoskeleton-329 

associated proteins and PM proteins, suggesting the BR pathway impacts cell surface 330 

regulation in several ways. 331 

 332 

Interplay between BR signaling and cell wall homeostasis 333 

 334 

Cell growth is an intricate process that requires precise regulation from both the inner- and 335 

extracellular sides. As mentioned, BR signaling leads to complex cell shape formation in the 336 

leaf epidermis by spatially controlling tip growth through cortical MT network regulation. BRs 337 

also dictate cell growth by global transcriptional changes in cell wall biogenesis and 338 

modification enzymes. For instance, several cell wall-remodeling genes, such as CESA6 339 

(CELLULOSE SYNTHASE A 6), XTH9, 18, 33 (XYLOGLUCAN 340 

ENDOTRANSGLUCOSYLASE/HYDROLASEs), EXPA8 (EXPANSINA8), and PME2 PME3 341 

(PECTIN METHYLESTERASEs), are direct targets of BES1/BZR141,42. In addition to the 342 

transcriptional down-regulation of CESA142, BIN2 also phosphorylates CESA1 and negatively 343 

regulates its activity136. BR treatment also suppresses gravitropism response in etiolated 344 

hypocotyls by reorientating cellulose microfibrils and changes in cell wall components137. 345 

Besides, the BR pathway plays multiple roles in determining the onset timing of secondary cell 346 

wall deposition138–140. In this part, we will focus on how BRI1 engages the modulation and 347 

sensing of the extracellular environment. 348 

Negative feedback loop between plasmodesmata aperture and BR signaling/biosynthesis 349 

Changes in cell wall composition determine the activity of cell surface structures such as 350 

plasmodesmata (PD). PDs function as narrow channels for micro- and macro-molecules, such 351 

as nutrients, signaling molecules, bacterial effectors, or viruses, between the cytoplasm of 352 

neighboring cells. Their permeability responds to internal and external stimuli and is 353 

predominantly regulated by callose deposition on the PD necks.141,142. BR signaling 354 

manipulates the PD permeability by inducing callose accumulation, thereby restricting the 355 

diffusion of molecules through PD143. BR-induced callose deposition appears to be mediated 356 

by a transcriptional pathway, still, this does not exclude a possibility that the BRI1 complex 357 

directly regulates callose synthase activity or other non-transcriptional mechanisms at the 358 

PM143. 359 



Of note, PD permeability impacts BR biosynthesis143. The metabolic pathway of BRs from 360 

campesterol to brassinolide, the most bioactive BR, is well-documented, and a reductase and 361 

several cytochrome P450 family mono-oxygenases are assigned to each step144. Each enzyme 362 

is expressed in different tissue layers around root meristem, despite some overlaps, indicating 363 

that BR precursors should relocate across the layers to complete the full biosynthesis 364 

pathway145. Furthermore, full complementation of the cpd BR biosynthetic mutant by 365 

epidermis-specific expression of CPD also supports such relocation idea8. This model is further 366 

reinforced by elegant experiments combining a dominant callose synthase transgenic line that 367 

over-accumulates callose and a fluorescently tagged BR precursor to directly visualize the 368 

precursor movements143. Together with the negative transcriptional feedback of biosynthesis 369 

genes144, callose deposition at plasmodesmata regulates BR production, constituting another 370 

feedback in BR signaling regulation via the relocation of BRs and their precursors between 371 

cells.  372 

 373 

Control of cell wall extensibility by acidification 374 

Acidifying apoplastic spaces is a critical step in expanding plant cells by increasing the 375 

extensibility of the cell walls. Some cell wall loosening enzymes, such as expansins, possess 376 

higher activity under acidic conditions146. Auxins are well-known inducers of apoplast 377 

acidification acting through the ABP1 (AUXIN BINDING PROTEIN1)-TMKs 378 

(TRANSMEMBRANE KINASEs)-H+ATPase module. TMKs interact with the AHA1/2 H+-379 

ATPase and phosphorylate their penultimate residues (Thr948/947, respectively)46,47,147, 380 

whereas PP2C-D (PROTEIN PHOSPHATASE2C-D) deactivates AHA1/2 by 381 

dephosphorylation148. 382 

Similar to auxin, BR treatments trigger apoplastic acidification by inducing phosphorylation of 383 

the AHA1/2 H+-ATPases149–151. Mechanistically, two non-mutually exclusive models are 384 

proposed to explain the proton ATPase activation (Fig. 2b)149–151. In the first model, the 385 

activation of H+-ATPases relies on the canonical BR pathway through transcriptional 386 

upregulation of PP2C inhibitors, SAUR9/19 (SMALL AUXIN UP RNA 9/19)150. In the second 387 

model, BRI1 directly interacts with AHA1/2, and SAUR15 enhances the complex formation 388 

to activate the proton ATPases by enhancing BRI1 activity151. Genetic evidence supports both 389 

scenarios since SAUR15 overexpression increases hypersensitivity to BRs by enhancing 390 

extracellular acidification through upregulating H+-ATPase activity, and a saur15 mutant 391 



shows reduced sensitivity to BRs in root length151. Similarly, SAUR19 overexpression leads to 392 

extracellular acidification148. It is still unclear how much both pathways contribute to apoplast 393 

acidification and whether they crosstalk to coordinate proper cell elongation by adjusting cell 394 

wall extensibility.  395 

A modeling approach predicted that cation channels were involved in this pathway to 396 

compensate for positive charges when protons are transported toward extracellular spaces. 397 

CNGC10 (CYCLIC NUCLEOTIDE GATED CHANNEL 10) was proposed as a candidate 398 

since cngc10 mutants show defects in apoplastic acidification upon BR treatment. CNGC10 399 

forms a complex with BRI1-BAK1, suggesting direct regulation by the receptor complex152. 400 

Recent reports described that the altered pH changed receptor-peptide ligand binding153 or 401 

ligand activities154. Remains to be determined whether the acidification matters to the BRI1-402 

BR binding capacity or BRI1-BR-BAK1 complex formation, and these points might be 403 

essential to understand the homeostasis of apoplastic spaces. 404 

Sensing cell wall integrity 405 

Plant cell walls consist of carbohydrates, proteins, and other secondary metabolites. Cellulose, 406 

cross-bridged by hemicellulose, provides tensile strength, while pectin confers elasticity to cell 407 

walls. Transcriptional regulations and enzymatic activity changes allow plants to dynamically 408 

remodel plant cell walls depending on developmental cues or stress responses, but how plant 409 

cells monitor the cell wall status is still obscure. Yeast, which is also encapsulated in a cell 410 

wall, has cell wall sensors, Wsc1-3, Mid1, and Mtl1 that monitor its mechanical properties and 411 

trigger transcriptional changes to adapt to acute osmotic changes or heat shock155,156. Plants do 412 

not have obvious homologs of these molecules, but solid evidence indicates that plants do have 413 

cell wall surveillance systems157,158. Recent studies indeed revealed that different classes of 414 

proteins, such as mechano-sensitive Ca2+ channels159, cell wall proteins160, receptor-like 415 

proteins161, GPI-anchored proteins162, or receptor-like kinases163–166, function in cell wall 416 

sensing. Mutations in these proteins often lead to abnormal cell shapes, defects in cell growth, 417 

or pollen tube rupture158.  418 

An unexpected role of BRI1 in cell wall sensing emerged from a forward genetic approach 419 

(Fig. 2c). Recent reports demonstrated that a BRI1-mediated cell wall surveillance system 420 

monitors the homeostasis of pectin methyl esterification, affecting the biophysical properties 421 

of pectins. Demethylesterified pectin binds to Ca2+ through its free carboxy groups, promoting 422 

bridge formation between pectin chains. Of interest, super-resolution microscopic observation 423 



clearly highlighted the biased distribution of methyl- and demethyl-esterified pectins167. PMEs 424 

(pectin methylesterases) and PMEIs (PME inhibitors) are critical proteins that determine the 425 

pectin methyl esterification ratio. Disruption of the pectin methylesterification balance by 426 

overexpression of PMEI5 leads to wavy root growth168. Wolf et al. used this wavy growth as a 427 

phenotypic proxy to the methylesterification status of the cell walls and conducted a forward 428 

suppressor screen of the PMEIox phenotype168. One of the suppressor mutants, called 429 

comfortable numb 1 (cnu1), has a mutation in the kinase domain of BRI1. Other bri1 mutant 430 

alleles, or the det2 BR biosynthesis mutant, also suppress the PMEIox phenotype168,169, 431 

suggesting the phenotype of PMEI5 overexpression is a result of the enhanced BR signaling 432 

pathway168. 433 

Another component in this pathway was identified as CNU2, encoding RLP44 (Receptor Like 434 

Protein 44), in the same suppressor screen. RLP44 stabilizes a ternary complex with BRI1-435 

BAK1 and enhances BR transcriptional responses as an auxiliary component of the pathway161 436 

(Fig. 2c). RLP44 is phosphorylated in BR/cell wall homeostasis-dependent manners, which is 437 

required for its functionality in cell wall maintenance161,170. Since phosphorylated RLP44 tends 438 

to stay at the PM, while a non-phosphorylated form mainly resides in endosomes, phospho-439 

status of RLP44 may affect BR signal initiation in this context171. In parallel, RLP44 also 440 

strengthens the PSKR (phytosulfokine receptor)-BAK1 complex formation, which mediates 441 

procambium/xylem patterning together with BRI1172. This fact raises the question of how 442 

RLP44 balances BRI1 and PSKR activities. Indeed, plants harboring the bri1cnu4 mutation 443 

display abnormal xylem pattern formation due to the imbalance of competition between 444 

BRI1cnu4, which has tighter interaction with RLP44, and PSKR169. Distinct from BR signaling, 445 

the phospho-status of RLP44 does not affect PSK signaling, suggesting RLP44 446 

phosphorylation status may not explain the competition170. Moreover, a recent study also 447 

suggested that BRI1 plays a role in the xylem patterning process partially independent of BRs55. 448 

Further study may reveal the nature of microenvironmental cues or components that govern 449 

the competition over RLP44 during xylem patterning. 450 

A recent report provides mechanistic insights into how BRI1 functions in cell-surface 451 

continuum signaling with another RLK in rice. OsWAK11 (WALL ASSOCIATED KINASE 452 

11) was identified as a negative growth regulator and as an interactor of OsBRI1. OsWAK11 453 

monitors pectin methylation status by preferentially binding to methylesterified pectins. 454 

Demethylesterified pectin suppresses BR signaling through BRI1 phosphorylation by 455 

OsWAK11. On the other hand, the methylesterified rich situation leads to OsWAK11 reduction, 456 



allowing BRI1 to initiate signals173. OsWAK11 phosphorylates a monocot-specific motif in 457 

OsBRI1, suggesting this pectin sensing module is unique to monocots. How the pectin status 458 

enhances BR signaling is still an open question in Arabidopsis, but the recent identification of 459 

RFO1 (RESISTANCE TO FUSARIUM OXYSPORUM1), a WAK-like receptor-like kinase, 460 

may fill the gap (Fig. 2c). rfo1 mutant suppresses the PMEIox phenotype like BR-defective 461 

mutants by modulating the transcription of BR-related genes. In addition, RFO1 directly binds 462 

to demethylesterified pectins, supporting the idea that RFO1 may connect pectins to BR-463 

signaling174. Further studies on direct interaction between RFO1 and BRI1-BAK1-RLP44, and 464 

divergent mechanisms in cell wall sensing among plant species are awaited. 465 

 466 

Coordination of organ growth 467 

Coordinated cell growth in each tissue is one of the critical processes for multicellular 468 

organisms to determine organ shape, to keep their integrity, and to achieve biased organ growth. 469 

For example, the root endodermis-specific expression of a dominant negative form of DELLA 470 

protein, a gibberellin and other growth signal integrating factor, severely attenuates whole root 471 

growth175. On the other hand, ERECTA-EPFL4/6 (EPIDERMAL PATTERNING FACTOR-472 

LIKE 4/6) receptor-peptide pairs determine inflorescence stem height by modulating cortex 473 

cell proliferation and growth176. 474 

Several lines of evidence prove that BR signaling coordinates organ growth by adjusting 475 

physical constraint forces. For example, the proper balance of responses to BRs in root hair 476 

and non-hair cells is crucial since an imbalanced BR-induced cell growth triggers ethylene 477 

responses and accumulation of crystalline cellulose177, resulting in inadequate whole root 478 

growth. Quantitative 3D cell growth analysis also revealed that cells in each tissue layer display 479 

distinct responses to BRs, which are essential for proper radial root meristem growth. 480 

Additionally, BR treatment decreases the stele area in WT roots, while BR signaling 481 

perturbation increases the stele size178. Of note, epidermal specific BRI1 expression in bri1 482 

mutant rescues the root growth and limits the stele area8. These observations suggest that the 483 

epidermal layer provides BR-dependent mechanical constraint. A recent study uncovered that 484 

BRs are also involved in organ integrity through coordinated tissue growth in the carnivorous 485 

aquatic plant Utricularia gibba (commonly called floating bladderwort) and terrestrial plant 486 

shoots179. In this study, a genetic screen identified dwarf and extra-dwarf mutants, both 487 

presenting short internodes, small leaves, small traps, and distorted vascular tissue. 488 



Computational modeling predicted that the wavy vascular tissue phenotype in the dwarf mutant 489 

resulted from the physical constraint of retarded epidermal layer growth. Consistent with the 490 

dwarf phenotypes, the responsible gene was a cytochrome P450 90B1 enzyme, a homolog of 491 

DWF4 (DWARF4) in Arabidopsis179–181. In line with this observation, treatment with a BR 492 

biosynthesis inhibitor recapitulates dwarf mutant phenotypes of U. gibba, while BR treatment 493 

rescued the mutant phenotypes. Furthermore, a mutation in Arabidopsis DWF4 enhances the 494 

crack phenotype in qua1-2 (quasimodo 1-2) in hypocotyl epidermal cells, suggesting BRs 495 

reduce epidermal constraint179. Modeling analysis revealed that cell wall extensibility through 496 

BR-induced apoplast acidification could be one of the determinants of such coordination, but 497 

this does not exclude the possibility that other BR-related mechanisms also drive the process. 498 

Decoding BR response under tension in each tissue may support the unwiring of these 499 

interactions. Thus, BRs impact not only the adjustment of the microenvironment around the 500 

cell surface but also regulate the whole apoplast continuum to coordinate organ growth. 501 

 502 

Conclusion and perspectives 503 

Since the identification of BRs as “growth-promoting chemicals” from B.napa182, forward 504 

genetic approaches in Arabidopsis or rice, biochemical characterization, and many other 505 

physiological analyses unraveled the critical roles of BRs in plant life cycles and the detailed 506 

underlying molecular mechanisms21. Besides these developmental and physiological aspects, 507 

BRI1 serves as a model of choice to many cell biologists because of its unique dynamic 508 

regulation through post-translational modifications, particularly in the vicinity of the cell 509 

surface (Fig. 1). Together with the dynamic quantitative regulation of BRI1, a multi-layered 510 

interaction network fine tunes the activity of BRI1 or BRI1-BAK1 complex formation at the 511 

PM (Fig. 1), oscillating the level of BR signaling to regulate cell surface structures through 512 

transcriptional and non-transcriptional mechanisms (Fig. 2).  513 

Many questions are yet to be answered, from the factors binding to and decoding the post-514 

translational modification codes of BRI1 controlling its activity and dynamics, to the 515 

mechanisms driving the diffusion, nanodomain formation/maintenance, or intracellular sorting 516 

of BRI1. Recent technical advances in high- and super-resolution microscopy uncovered 517 

nanodomain formation of BRI1 and will be instrumental in understanding better this new facet 518 

of BRI1 biology.  519 



Signals from BRI1 are emitted from nanodomains, but how these signals can modulate the 520 

spatially restricted cell wall status changes is still obscure. For example, methyl- and demethyl-521 

esterified pectins distribute ununiformly, suggesting pectin modification status sensing is 522 

locally activated. As mentioned above, transcriptional feedback is thought to maintain cell wall 523 

status, but it is still unclear how transcriptional feedback can achieve local cell wall 524 

modifications. Combining recent advanced methods, such as proximal labeling-based spatial 525 

proteomes, super-resolution microscopy techniques, and all conventional approaches will help 526 

us approach the molecular machinery for local cell wall modification with unprecedented 527 

resolutions. Thus, BRI1 and its signaling are still inspiring us to discover novel concepts in cell 528 

biology. 529 
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Figure 1 Schematic representation of BRI1 levels and activity controls at the plasma membrane  

a. BRI1 activity is negatively regulated by numerous protein partners such as BSKs, BKI1, and BIK1, 
all interacting with BRI1 at the plasma membrane (PM) when the BR pathway is off. BAK1 is also 
sequestered away from BRI1 by BIR3. BRs induce the formation of the BRI1-BAK1 complex and 
initiate downstream signaling, resulting in the release of inhibitors. The BRI1 pool at the PM is 
adjusted by the balance of exocytosis, endocytosis and degradation. Two endocytotic pathways, 
the clathrin-mediated and -independent endocytosis, remove BRI1 from the PM. Endocytosed 
BRI1 reaches the trans-Golgi network/early endosomes (TGN/EE) and is transported to the lytic 
vacuole for degradation. 

b. Post-translational modifications on lysine residues (K) of BRI1 cytoplasmic domain are signals 
regulating its dynamics. The UBC35/36 (E2) and PUB12/13 (E3) machinery leads to Lys63 (K63) 
polyubiquitination of BRI1, which is enhanced by BRs, driving BRI1 endocytosis. The UBP12/13 
deubiquitinating enzymes stabilize BRI1 at the PM by removing ubiquitin moieties from BRI1. 
SUMOylation also stabilizes BRI1 at the PM, and deSUMOylation by DeSi3a enhances BRI1 
endocytosis. Since both PTMs target the same residues, competition between PTMs likely happens 
to fine tune BRI1 cell surface levels. 

c. BRI1 and FLS2 form distinct nanodomains within the PM, acting as platforms to amplify signal 
and drive responses towards development or defense. BIK1 has different impacts on the two 
pathways. BRI1-BIK1 interaction colocalizes with CMTs and negatively affects the BR pathway. 
After sensing BRs, the BRI1-BAK1 complex and BIK1 trans-phosphorylate each other, leading to 
the release of  the BIK1 in the cytosol. Consequently, the negative regulator BIN2 is degraded by 
the proteasome, allowing BES1/BZR1 transcription factors to initiate transcriptional changes. 
Conversely, the BIK1 phosphorylation induced by FLS2 activates the MAPK cascade and defense 
responses. 

Figure 2 Schematic representation of cell surface regulation by the BR pathway in Arabidopsis 
thaliana seedling development  

a. BRs modulate the formation of lobes and indentations in the leave pavement cells. In indent areas, 
the BR pathway is locally off, allowing BIN2 to be active and to phosphorylate PHGAPs, 
inhibitors of ROP2, specifically localized at the anticlinal face of indent regions in a microtubule- 
and BIN2-dependent manner. ROP6 activation acts on the CMTs through its effector RIC1/KTN, 
making the convex form. BIN2 also phosphorylates tubulins in vitro, but its effects are still 
unknown. In the lobe regions, BIN2 is inhibited by the canonical BR pathway, leading to the 
accumulation of an active form of ROP2, which acts on the actin cytoskeleton through RIC4 and 
promotes expansion. Reciprocal inhibitions between ROP2 and ROP6 also maintain spatially 
restricted ROP activation. 

b. BR-induced apoplastic acidification through AHA1 promotes cell wall swelling in hypocotyl cells. 
In the absence of BRs, PP2C inhibits AHA1, leading to less acidic pH conditions. When BR 
signaling turns on, SAUR9/19, targets of BES1/BZR1, are transcriptionally upregulated and inhibit 
PP2C, supporting apoplastic acidification. Furthermore, BRI1 forms a complex with SAUR15 and 
AHA1, increasing AHA1 phosphorylation and enhancing proton ATPase activity, resulting in 
altered CW enzyme activities and membrane polarization. 

c. Cell wall integrity sensing in root epidermal cells partially depends on BRI1. PMEs and their 
inhibitor PMEIs control the degree of homogalacturonan methylation. PME inhibition results in a 
higher ratio of methylated pectin. The altered pectin methylation ratio activates the RLP44-BAK1-
BRI1 complex, probably through RFO1. PMEs are transcriptionally upregulated by BES1/BZR1 
directly, balancing the ratio between the two forms of homogalacturonan. 

d. BRI1 and CLASP form a negative feedback loop. When the BR pathway is off, CLASP allows the 
transport of BRI1 to the PM via the SNX1 retromer that depends on the MT network. In the 
presence of BRs, CLASP transcription is directly downregulated by BES1/BZR1, leading to the 



reorientation of the MTs and less BRI1 transport to the PM. This feedback loop finetunes the 
division zone size in the root tips. 

 

Figure 3 BR controls the feedback loop coupled by several mechanisms 

a. BRI1 and CLASP constitute a negative feedback loop by a transcription-vesicle transport coupled 
mechanism. Please also refer to Fig. 2d for the detailed mechanisms. 

b. BIN2 kinase enhances the ROP-MT feedback loop through PHGAP focalization at indent sites 
and activation (left). In the lobe areas, active ROP2 promotes actin cytoskeleton network formation 
(right). Active ROP2 and ROP6 are highlighted by color. Please also refer to Fig. 2a for the detailed 
mechanisms. 
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