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Are Chaotic Attractors just a Mathematical Curiosity or
Do They Contribute to the Advancement of Science?
René Lozi ID ∗,1

∗LJAD, CNRS, Université Côte d’Azur, F-06000 Nice, France.

ABSTRACT Since the seminal work of Henri Poincaré on the three-body problem, and more recent research
dating back to the second half of the 20th century on chaotic dynamical systems, many applications have
emerged in different domains (economics, electronic, cryptography, physics, etc). We try to describe the
evolution of the last 50 years on the subject and to find out whether applications have compromised the purity
and beauty of theoretical research.

KEYWORDS

Chaotic attrac-
tors
Optimization
Cryptography
Memristor
Economy

INTRODUCTION

Since the very beginning of their appearance in the history of
humanity, research in mathematics has been guided by two
different currents: theory and applications or in other words
by beauty and utility. Around 5,000 years ago people in the
Mesopotamia and Egypt began using arithmetic, algebra and
geometry for commerce, trade, taxation and social activities.
Later, in the 6th century BC, Greeks introduced mathematics as
a "demonstrative discipline" (Heath 1931) (see (Høyrup J. 2011)
for comparison between both approaches). This double current of
research still functions today in competition-cooperation mode.

I had the immense privilege of being student of Jean Alexandre
Dieudonné, one of the founding members of the Bourbaki group.
For him, the only need to research mathematics for humanity was
"for the honor of the human spirit" (as the great mathematician
Karl Gustav Jacobi 1804-1851 said before him).

As a young student, I was imbued with this idea, but I was also
attracted by research in physics and ultimately my university ca-
reer was that of professor of numerical analysis. The subject of my
doctoral thesis concerned the numerical analysis of bifurcations,
which quickly led me to study chaotic dynamic systems from
both aspects: theory and application. I was fortunate to see the
birth of a new field of research in mathematics in the mid-1970s,
that of chaotic attractors. I had the privilege of inventing one
that, surprisingly, is still the subject of intensive research 50 years
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later. This is the reason why I often ask myself the question of the
place of these attractors not only in mathematics, but also for the
advancement of science.

It is widely accepted that the beginning of modern research on
nonlinear dynamical systems is due to the initial work of Henri
Poincaré on the three-body problem. Even if a real astronomical
problem (will the Earth continue to orbit around the sun forever?)
is at the origin of his reflection, no practical application of his
"Méthodes nouvelles de la mécanique céleste" has guided his mind.

The "butterfly effect" reveled by Edward Lorenz in 1963
(Lorenz, E. N. 1963) and the "sexier" word "chaos" coined by James
A. Yorke in 1975 (Li, T. Y. and Yorke, J. A. 1975) have brought
global awareness of these concepts often not actually understood
by the public. However, it is only at the beginning of 90’ that
the applications of chaotic properties of dynamical systems were
introduced with the pioneering idea of synchronization of two
chaotic attractors of Louis M. Pecora and Thomas L. Carroll
(Pecora, L. M. and Carroll, T. L. 1990). Such concept was soon
used (and improved) to transmit encrypted messages.

Since then, many applications have emerged in electronics
(Chua circuit and memristors), optimization for meta-heuristic
algorithms (particle swarm optimization (PSO), differential
evolution (DE), Self-Organizing Migrating Algorithm (SOMA),...),
cryptography based chaos, generation of pseudo-random number,
economy, etc.
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Have these applications compromised the purity and beauty of
theoretical research? We attempt to describe the evolution of the
last 50 years on the subject from the perspective of this question.

Figure 1 Example of Julia set.

THE DAWN OF CHAOTIC DYNAMICAL SYSTEMS

The study of the frighteningly complicated solutions discovered
by Poincaré continued quietly for almost 80 years in several
directions including conservative and dissipative dynamical
systems, differential equations and difference equations. We can
cite among many, the pioneer works of Pierre Fatou (1878-1929)
and Gaston Julia (1893-1978) related to one-dimensional maps
with a complex variable (see Figure 1), near a century ago; those of
Cristian Mira and Igor Gumowski, who began their mathematical
research in 1958 (the Gumowski-Mira map (1), see Figure 2), the
fractals introduced in 1967 by Benoît Mandelbrot (1924-2010)
(Mandelbrot 1967), and of course the continuous attractors of
Lorenz (1963) (2) (Figure 3) and Rössler (1976) (Rössler 1976)
(Rössler 2020), (3) (Figure 4); and the discrete attractors of Hénon
(1976), Belykh (1976) (Belykh, V. N. et al. 2023) and Lozi (1977),
among many others. xn+1 = f (xn) + byn with f (xn) = ax + 2(1 − a) x2

1+x2 ,

yn+1 = f (xn+1)− xn.
(1)

ẋ = σ(y − x),

ẏ = rx − y − xz,

ż = xy − bz.

(2)


ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b + x3(x1 − c).

(3)

Figure 2 Gumowski-Mira attractor for a = 0.93333, b = 0.92768.

Figure 3 Lorenz attractor for σ = 10, b = 8/3 and r = 27.

Figure 4 Rössler attractor for a = 0.2, b = 0.2 and c = 5.7.
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The images produced by these fractal sets 40 years ago,
astonished not only mathematicians accustomed to geometric
figures drawn only with rulers and compas, but also the general
public. Heinz-Otto Peitgen published a book containing dozens of
figures generated by complex dynamic systems, coining the name
"computer art" (Peitgen, H.-O. and Richter, P. H. 2011). Today,
no one is surprised by the use of chaotic systems in cinema or
advertising.

FIRST APPLICATIONS OF CHAOTIC DYNAMICAL SYS-
TEMS

Electric circuits
In Japan the Hayashi’s School (with disciples like Ikeda, Ueda
and Kawakami) in the same period, were motivated by simulation
of chaotic dynamics by electric and electronic circuits. Chaotic
mappings were used as models of behavior of electric circuits (the
Ikeda map (4), see Figure 5).

xn+1 = 1 + u(xncos(tn)− ynsin(tn) with tn = 0.4 − 6
1+x2

n+y2
n

,

yn+1 = u(xnsin(tn) + yncos(tn).
(4)

In 1983, Leon Chua invented a very simple electric circuit
producing chaos (5). The advantage of this circuit (see Figure 6 a))
was that the variables of the mathematical equations corresponded
to voltage and current and could be viewed on the screen of an
oscilloscope (see Figure 6 (b)).


ẋ = α(y − Φ(x)),

ẏ2 = x − y + z,

ẋ3 = −βy.

(5)

with Φ(x) = m1x + 1
2 (m0 − m1) [|x + 1| − |x − 1|].

Figure 5 Ikeda attractor for u = 0.9.

Before 1990 computers were not as efficient as they are today.
It is why many experimenters still used analog electrical systems
to explore the behavior of chaotic maps. Rodriguez-Vasquez et

Figure 6 (a) Chua circuit. (b) Chua attractor on oscilloscope.

al. (Rodriguez-Vazquez, A. et al. 1987) in 1987 presented a special-
purpose analog computer made of switched-capacitor circuit for
analyzing chaos and bifurcation phenomena in nonlinear discrete
dynamical systems modeled by discrete maps. They published
results for four maps: the logistic map, a piece-wise linear map, the
Hénon map and the Lozi map (6). For this last map, they built a
rather complicated circuit realization (see Figure 25 of (Rodriguez-
Vazquez, A. et al. 1987)) and compared the attractor measured
from this circuit with the corresponding numerical simulation and
found good agreement between them. Even if this example is
not strictly speaking an application of the Lozi map for electric
purposes, it constitutes one of the first examples of solid realization.
However, these works cannot be considered as real applications.

La,b

 x

y

 =

 1 − a |x|+ y,

bx.

 (6)

Secure communications

It was the discovery of the synchronization of chaotic electrical
circuits by Pecora and Carroll (Pecora, L. M. and Carroll, T. L.
1990) in 1990 that sparked research into secure communications.

A first reported experimental secure communication system
via chaotic synchronization using two Chua’s circuits (one as
master and one as slave) was built two years after. However, the
signal recovered from this system which used the Chua circuit,
contained some inevitable noise that degraded the fidelity of the
original message. The system was soon improved in 1993, by
cascading the output of the receiver in the original system, into an
identical copy of this receiver (Lozi, R. and Chua, L. O. 1993) (see
Figure 7). This cascading process was extended to multiple copies
and analyzed using filtering theory (Lozi, R. 1995) in the case of a
multi-tone signal.

In 2000, Dmitriev et al. (Dmitriev, A .S. et al. 2000) discussed a
principle of multiple access, in satellite communication systems
or cellular telephony based on fine structure of chaotic attractors,
using control of special chaotic trajectories. They demonstrated
the experimental verification of the proposed approach for
asynchronous packet data transmission. In their approach they
considered that a chaotic attractor can be treated as a number
of countable sets of special trajectories: unstable periodic orbits
(UPO) and transitions between these orbits. Instability of the
periodic orbits and transient trajectories between them gives rise
to irregular chaotic behavior. They used the set of the unstable
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Figure 7 Cascade of Chua circuits.

"skeleton" periodic trajectories, constituting the structure of the
strange attractor (or a part of this set), as a "reservoir" of potential
codes for multi-user communication systems. They observed
that the multitude of the codes from a certain "reservoir" for
communications is practically infinite, i.e., the number of users
provided with individual code sets is unlimited.

As an example of the realization of their method, they consid-
ered twenty period-16 (UPO) of the Lozi map (6) for a = 1.7 and
b = 0.5. They displayed the switching between them in the Figure
2 of (Dmitriev, A .S. et al. 2000) and showed from this diagram that
the forming of all successive cycles (10-times repeating) is practi-
cally instantaneous. Improving their initial method, they remarked
that unstable periodic orbits can be utilized for not only encoding
the entire transmitted information, but also for attributing it to this
or that group of users, i.e., they play the role of "chaotic markers".
The idea to use the system of unstable periodic orbits as markers
was applied to the problem of asynchronous packet transmission
of data from several users through a single common communica-
tion channel. They concluded that the generating and controlling
of UPO may be realized in rather high frequency band, provided
in by modern digital methods.

Memristors

In 1971, L.O. Chua predicted the existence of a missing fourth
passive circuit element, in addition to the three classical ones:
resistor, inductor and capacitor (Chua 1971). He called this new
element "memristor" meaning it is a resistor with memory. It is
characterized by a nonlinear constitutive relationship between
the charge q and the flux φ. Such a physical device would not be
reported until 2008, when a physical model of a two-terminal hp
device behaving like a memristor was announced (Strukov, D. B.
et al. 2008) sparkling intense research with thousands of papers
published to date. A general Ohm’s law for theorizing this device
was published ten years ago (Abdelouahab, M.- S. et al. 2008).

Nowadays, discrete memristor model is known as a research
hotspot. Many researchers have devoted themselves to the
analysis of chaotic phenomena in discrete memristors. Recently,
hidden attractors have also been discovered in some discrete
memristors based maps (Zhang, L. P. et al. 2022). Wang et al.
(Wang, J. et al. 2022) included a discrete-time memristor to create a
memristive Lozi map. This new 3-D memristor-based Lozi map
was established by coupling a discrete memristor to the original
2-D Lozi map (6).


xn+1 = 1 − a |xn|+ yn,

yn+1 = bxn + kynsin(zn),

zn+1 = yn + zn,

(7)

where k is a real valued control parameter coupling gain between
the discrete-time memristor and the Lozi map. Since there are no
fixed points but hyperchaos can emerge, the memristor-based Lozi
map is a hidden hyperchaotic map.

For some specific control parameters, the 3-D memristor-based
Lozi map can show heterogeneous and homogeneous hidden
multistability. It should be noted that heterogeneous hidden
multistability implies the coexisting behavior of multiple hidden
attractors of different stability types, while homogeneous hidden
multistability indicates the coexisting behavior of multiple hidden
attractors of the same stability type but only in different dynamic
intervals. In addition to the coexistence of these heterogeneous
hidden attractors, the memristor-based Lozi map is very likely
to produce the coexistence of homogeneous hidden hyperchaotic
attractors, i.e., homogeneous hidden multistability. Therefore,
the homogeneous hidden hyperchaotic attractors from the 3-D
memristor based Lozi map can be robustly controlled by the
memristor’s initial conditions.

Additionally, Wang et al. implemented this memristor in a
digital circuit based on a high-performance micro-controller. They
physically obtained an image of the hyperchaotic hidden attractors
using a digital oscilloscope. Eventually, a digital platform was
exploited, and its experimental phase portraits were obtained to
confirm the numerical portraits.

APPLICATIONS IN OTHER DOMAINS

Optimization

Most engineering problems can be defined as optimization
problems, e.g. the finding of an optimal trajectory for a robot arm,
the optimal thickness of steel in pressure vessels, the optimal set of
parameters for controllers, optimal relations or fuzzy sets in fuzzy
models, etc. Solutions to such problems are usually difficult to
find their parameters which usually include variables of different
types, such as floating point or integer variables.

Applications of chaotic maps in the now flourishing field
of optimization took longer to appear than applications in
electrical devices. The main reason comes from a paradigm
shift in optimization algorithms: instead of using deterministic
algorithms like gradient method or the steepest descent which are
not efficient in high-dimensional problems optimization involving
hundred or thousand of variables, heuristic algorithms based
on an imitation of Darwin’s theory of the evolution of species,
were introduced a few decades ago. Such algorithms require easy
access to random or chaotic numbers. This is why interest has
only recently focused on chaotic attractors. It took three decades
for this paradigm shift in the study of the chaotic maps (logistic,
symmetric tent, Belykh, Hénon, Lozi, etc.). Instead of focusing on
the theoretical study of their mathematical properties or on finding
generalizations, Araujo and Coelho (Araujo and Coelho 2008) used
them as a core for particle swarm optimization (PSO) (see Figure 8).
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Figure 8 Geometric core of Particle Swarm Optimization (PSO) algorithm.

Optimization algorithms based on the chaos theory are
methodologies for searching optimal solutions that differ from any
of the existing traditional stochastic optimization techniques. Due
to the wandering of chaos, it can carry out overall searches in the
solution space at higher velocities when compared to stochastic
ergodic searches, which has its computing based on probabilities.
This remark has been done in the pioneering work of Caponetto et
al. (Caponetto, R. et al. 2003), who, four years before Araujo and
Coelho found that chaotic sequences improved the performance of
evolutionary algorithms.

PSO method was used for many purpose like the control
of the thermal-vacuum system used at the Brazilian National
Institute for Space Research (INPE). The original controller was
designed to control the temperature on the shroud (set of pipes)
of a chamber where satellites are tested (Marinke, R. et al. 2005).
This method was used by Pluhacek et al. (Pluhacek, M. et al. 2012)
who considered a Partial-Integral-Derivative (PID) controller for
a Direct-Current (DC) motor system in order to obtain optimal
settings. A DC motor is any of a class of rotary electrical motors
that converts direct current electrical energy into mechanical
energy. Proportional-Integral-Derivative (PID) control is the
most common control algorithm used in industry and has been
universally accepted in industrial control.

The optimization process involving PSO algorithm was applied
to minimize errors of the output transfer function that can indicate
the quality of regulation of such controller.

Another evolutionary optimization algorithm called Differen-
tial Evolution (DE) was used by Davendra et al. (Davendra, D.
et al. 2010) in the same goal, and by Senkerik et al. (Senkerik, R.
et al. 2013) in the task of optimization of batch chemical reactor
geometry.

In 2004, Zelinka in (Zelinka, I. 2004), introduced SOMA
(Self-Organizing Migrating Algorithm), a new class of stochastic
optimization algorithms. Evolutionary algorithms work on
populations of candidate solutions that are evolved in generations
(two parents create one new individual – the offspring) in
which only the best-suited – or fittest – individuals are likely to
survive. Instead SOMA which can also works on a population of
individuals, is based on the self-organizing behavior of groups
of individuals in a "social environment", e.g. a herd of animals
looking for food.

A group of animals such as wolves or other predators may
be a good example. If they are looking for food, they usually
cooperate and compete so that if one member of the group is
successful (it has found some food or shelter) then the other
animals of the group change their trajectories towards the
most successful member. If a member of this group is more
successful than the previous best one (is has found more food,
etc.) then again all members change their trajectories towards the
new successful member. It is repeated until all members meet
around one food source. This principle from the real world is of
course strongly simplified. Yet even so, it can be said it is that
competitive-cooperative behavior of intelligent agents that allows
SOMA to carry out very successful searches.

Recently Zelinka et al. used SOMA (Zelinka, I. et al. 2023) for
the design of quantum computing circuits for the future quantum
computers.

Of course, we cannot present, within the limited extend of this
editorial, all the dozens of algorithms using chaotic attractors (see
(Lozi, R. 2023) for a survey).
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Cryptography

Cryptography is the primary means of protecting communications
in the cyber world in which mankind lives today. Modern
technologies involve fast communication links between potentially
billions of devices via complex networks (satellite, mobile phone,
Internet, etc.). The primary concern posed by these complex
and tangled networks is their protection against passive and
active attacks that could compromise public safety and privacy.
Cryptography has been around for over two thousand years with
the famous Caesar code used by Emperor Julius Caesar. Today, the
properties of chaotic attractors are recognized as being the basis of
part of the methods of cryptography.

Among many algorithms based on chaotic dynamical systems,
we can mention the image encryption algorithms, like the optical
color image encryption scheme based on fingerprint key and three-
step phase-shifting digital holography which was proposed by Su
et al. (Su, Y. et al. 2021). In this scheme the fingerprint is served as
secret key directly. The random phase masks generated from the
fingerprint using secure hash algorithm (SHA-256) and the chaotic
Lozi map are just used as interim variables. The fingerprint is
served as secret key directly. With the help of the fingerprint-based
random phase masks located in the linear canonical transform
domain and the three-step phase-shifting digital holography, the
primary color image that is hidden into a grey-scale carrier image
can be encrypted into three noise-like holograms. In addition, the
parameters of the chaotic Lozi map and linear canonical transform
can also provide additional security to the proposed encryption
scheme. Other examples of cryptography-based chaos can be
found in (El Assad, S. et al. 2022).

Economy

Since twenty years, one can find application of chaotic dynamical
systems in economy. For example Tang et al. (Tang, T. W. et al.
2004) carried out an analysis of Parrondo’s games with different
chaotic switching strategies. The performance of Parrondo’s
games was compared with random and periodic switching
strategies. The main idea of Parrondo’s paradox, exposed in 1996,
is that two individually losing games can be combined to win via
deterministic or non-deterministic mixing of games (Harmer, G.
P. et al. 2001). In (Tang, T. W. et al. 2004) a fair way to compare
random and chaotic Parrondo’s games was generalized. The
logistic, tent, sinusoidal and Gaussian 1-D maps were considered
together with Hénon and Lozi maps.

To play chaotic Parrondo’s games, one of these chaotic genera-
tor being chosen, we consider a sequence that it generates from an
initial value. Then every n-th iterate of such sequence determines
whether Game A or B is played. Of course the outcomes of
Parrondo’s game are affected by the different switching strategies
applied and the initial value chosen. The proportion of Game A
and B played is equal for all switching strategies for a fair compari-
son. In conclusion, the authors found that chaotic Parondo’s games
can give a higher rate of winning compared to random switching
strategies. This result recalls the remark made by Caponetto et al.
(Caponetto, R. et al. 2003) that chaotic sequences can improve the
performance of evolutionary algorithms versus random sequences.

Another examples can be found in (Commendatore, P. et al.
2015) in which Commendatore et al. proposed a new economic
geography model which describes spatial distribution of industrial
activity in the long run across three identical regions depending

on the balancing of agglomeration and dispersion forces. It is
defined by a two-dimensional piecewise smooth map depending
on four parameters. They discussed the emergence of the Wada
basins of coexisting attractors leading to the so-called final state
sensitivity (see Figure 9). And also, in (Sushko, I. et al. 2023, in
progress) in which Sushko et al. studied the dynamics of a financial
market model with trend-followers and contrarians proposed a
2D-piecewise linear discontinuous map F given by (8) (see Figure
10).

 xn+1 = (1 − k1 − b) xn + k1xn−1 i f |xn − xn−1| < k,

xn+1 = (1 − k2 − b) xn + k2xn−1 + m i f |xn − xn−1| > k.
(8)

Figure 9 2D piecewise smooth map G governing dynamics of a
three region New Economic Geography model. Basins of attraction
of the fixed points (0, 0), (1, 0), (0, 1) (attracting in Milnor sense)
and of the three 2-piece chaotic attractors.

Figure 10 Periodicity regions (where different colors are related to
attracting cycles of different periods) in the (b; k2)-parameter plane
for k1 = −1, m = 1.9, k = 0.1.
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THEORETICAL RESULTS

We have shown that chaotic attractors have been used for more
than thirty years for applications in different fields. This does not
mean that they did not advance pure mathematics.

It is difficult to list all the improvements in chaotic dynamical
systems theory and bifurcation theory, so many have been made
over the last half century. We can only name a few, such as the
concepts of Smale’Axiom A and horseshoe, homoclinic bifurcation
and Shilnikov attractors, border-collision bifurcation, ergodicity,
hyperbolicity, symbolic dynamics and kneading sequences,
Sinai-Bowen-Ruelle measures, fractal dimensions, general usage
of fractional derivatives, fractional maps, topological entropy, etc.

I think the best example of a theory-practice-theory approach
is that of chimeras. Following the discovery of the synchronized
chaotic attractors (theory), research focused on network of
attractors with several topologies for multiple purposes like the
creation of Pseudo Random Number Generation for cryptography
(Garasym, O. et al. 2017) (practice).

Describing the dynamical properties of synchronization of such
networks, special solutions called "chimeras" and "solitary states"
were highlighted (theory).

Rybalova et al. (Rybalova, E. et al. 2018) considered a complex
system consisting of three coupled rings of nonlocally coupled
chaotic maps. This multilayer network is described by the follow-
ing equations:

xi
n+1 = f (xi

n, yi
n) +

σ1
2P ∑

j=i+P
j=i−P

[
f (xj

n, yj
n)− f (xi

n, yi
n)
]
+ γ1Fi

n,

yi
n+1 = bxi

n,

ui
n+1 = f (ui

n, vi
n) +

σ2
2R ∑

j=i+R
j=i−R

[
f (uj

n, vj
n)− f (ui

n, vi
n)
]
+ γ2Gi

n,

vi
n+1 = bxi

n,

zi
n+1 = f (zi

n, si
n) +

σ3
2T ∑

j=i+T
j=i−T

[
f (zj

n, sj
n)− f (zi

n, si
n)
]
+ γ3Hi

n,

si
n+1 = bxi

n,
(9)

The first system of equations in (9) specifies a ring network of
nonlocally coupled Hénon maps with f defined by (10)

f (xn, yn) = 1 − ax2
n + yn, (10)

with a = 1.4, b = 0.3, σ1 = 0.72 and and P = 320. The second pair
of equations corresponds to the ring of nonlocally coupled Lozi
maps with f defined by (11)

f (xn, yn) = 1 − a |xn|+ yn, (11)

and is analyzed for a = 1.4, b = 0.3, σ2 = 0.206 and R = 180.
The third pair of equations also determines the ring of nonlocally
coupled Hénon maps with a = 1.4, b = 0.3, σ1 = 0.295 and
T = 320.

The first two rings are coupled inertially via the coupling func-
tions Fi

n = −Gi
n = ui

n − xi
n with the coupling coefficients γ1 and

γ2. The third ring nodes is connected unidirectionally with the
first ring units by the coupling term γ3Hi

n where

Hi
n = f (xi

n, yi
n)− f (zi

n, si
n), (12)

defines the diffusive coupling with the coupling coefficient γ3. N
is the number of elements in the ensemble of coupled equations in
each ring. The coupling parameters σ1,2,3 characterize the coupling
strength, and 2P, 2R, 2T are the number of neighbors on each ring
(P (resp. R, T) neighbors on the either side of the ith element). The
initial conditions are chosen to be randomly distributed in the
interval [−0.5, 0] for all the variables of the network (9).

Using numerical simulation they have demonstrated that the
network of two symmetrically coupled ensembles of Hénon and
Lozi maps can show a novel type of chimera state, a solitary state
chimera (SSC), when the coupling between them is weak. This
special structure emerges in the case if the Lozi ensemble exhibits
a developed regime of solitary states. The SSC is fairly stable and
is observed within a finite range of parameter variation. If the two
layer network of nonlocally coupled Hénon and Lozi maps in the
solitary state chimera is unidirectionally coupled to the third ring
of nonlocally coupled Hénon maps, then the effect of external
synchronization can be observed in a finite range of the coupling
coefficient γ3.

CONCLUSION

The first research on chaotic dynamic systems marked the mind
of the public by the beauty of the images that these attractors
made it possible to draw. Nowadays applications of chaotic
attractors in several domains (see (Lozi, R. 2023) for a survey)
is a flourishing domain of research since three decades and can
nevertheless produce wonderful images (Figures 9, 10). In the
mean time, theoretical research is still very much alive and offers
new mathematical tools such as chimeras, fractional differential
equations and fractional mappings which in turn will allow the
development of new applications.

Chaotic attractors are definitely not a mathematical curiosity.
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