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Abstract

In this paper, we develop a new algorithm, An-
nealed Skewed SGD - ASkewSGD - for train-
ing deep neural networks (DNNs) with quan-
tized weights. First, we formulate the train-
ing of quantized neural networks (QNNs) as a
smoothed sequence of interval-constrained opti-
mization problems. Then, we propose a new first-
order stochastic method, ASkewSGD, to solve
each constrained optimization subproblem. Un-
like algorithms with active sets and feasible di-
rections, ASkewSGD avoids projections or op-
timization under the entire feasible set and al-
lows iterates that are infeasible. The numerical
complexity of ASkewSGD is comparable to ex-
isting approaches for training QNNs, such as the
straight-through gradient estimator used in Bina-
ryConnect, or other state of the art methods (Prox-
Quant, LUQ). We establish convergence guaran-
tees for ASkewSGD (under general assumptions
for the objective function). Experimental results
show that the ASkewSGD algorithm performs bet-
ter than or on par with state of the art methods in
classical benchmarks.

1 Introduction

The use of deep neural networks (DNNs) on computing
hardware such as mobile and IoT devices with limited com-
putational and memory resources is becoming increasingly
important. This has led to a growing area of research fo-
cused on reducing the model size and inference time of
DNNs; in this area, the overall goal is to keep the loss of
accuracy below an acceptable level compared to floating-
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point implementations. These methods include, for example,
model pruning, neural architecture search, novel efficient
architecture design, and low-rank decomposition. In this
work, we focus on network quantization, where weights and
activations are quantized to lower bit widths, allowing for
efficient fixed-point inference and reduced memory band-
width usage; see, for example, Courbariaux et al. (2015);
Jacob et al. (2018); Darabi et al. (2018); Choukroun et al.
(2019); Deng et al. (2020); Qin et al. (2020); Bhalgat et al.
(2020); Chmiel et al. (2021) and references therein. Quan-
tized neural networks (QNNs) have attracted many research
efforts. Nevertheless, the challenge of closing the accuracy
gap between full-precision and quantized networks remains
open, especially for extremely low-precision arithmetics
(e.g. binary). The task of learning a quantized neural net-
work (QNN) can be formulated as minimising the training
loss with quantization constraints on the weights, i.e.,

min
w∈Q

ℓ(w) , ℓ(w) = E(x,y)∼pdata
[ℓ(f(x,w), y)], (1)

where Q ⊂ Rd is the set of quantization levels, d is the
number of parameters (network weights and biases), ℓ is
the training loss (e.g. the cross-entropy or square loss),
f(x,w) is the DNN prediction function, pdata is the train-
ing distribution. The quantization constraints in the above
program make it an extremely difficult task: the underlying
optimization problem is non-convex, non-differentiable, and
combinatorial in nature. Optimization of smooth functions
of integer valued variables (and even quadratic ones like
the max-cut problem in graph theory) is known to be NP-
hard (Garey and Johnson, 1980). The challenge is to find
algorithms that can produce a sensible approximate solu-
tion with a manageable computational effort. Inspired by
mixed-integer nonlinear programming (MINLP) problems,
several approaches using geometric, analytic, and algebraic
techniques have been proposed to transform the discrete
problem into a continuous problem. Examples include the
use of global or concave optimization formulations, semidef-
inite programming, and spectral theory (see e.g. Mitchell
et al. (1998); Bussieck et al. (2003); Horst and Tuy (2013);
Beck and Teboulle (2000); Murray and Ng (2010)). How-
ever, these types of approaches are doomed to fail in the NN
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context because the number of parameters is several orders
of magnitude larger than for classical MINLP problems.

For large training data sets and number of variables d,
stochastic gradient-based (first-order) methods for finding
minimizers of (1) are often the only manageable option. Sev-
eral methods have been proposed which transform the loss
function (1) into a differentiable surrogate (with possibly
an additional penalty term) to "favor" quantized solutions.
The general approach is to introduce real-valued "latent"
weights w ∈ Rd from which the quantized weights are gen-
erated; in the binary case, it is classical to use the sign(·)
function or a differentiable surrogate thereof. The simplest
method, called BinaryConnect (BC) (Courbariaux et al.,
2015), is based on straight-through estimators (STE) that
ignore the sign conversion in computing the gradient with
respect to the latent weights w. BC reaches state-of the
art performance on elementary classification tasks and is
still a competitive baseline method for more sophisticated
problems. Extensions of STE has also been used for more
general QNN by Chmiel et al. (2021); Sun et al. (2020);
Choi et al. (2018); Wang et al. (2019).

However, despite its success in NN inference, the STE
method does not rely on solid theoretical groundings and
may be shown to fail on simple low-dimensional bench-
marks - even with convex objective functions; see Bai et al.
(2018) and Section 5.3. We discuss this method and its
recent improvements in the paragraph on related works (see
below).

Contributions

• We replace the discrete optimization (1) by an annealed
sequence of differentiable inequality constraints that con-
verges to (1) when the annealing parameter goes to 0.

• We use a novel first-order algorithm proposed in Muehle-
bach and Jordan (2021) to solve the relaxed subproblems
in the annealed sequence, leading to ASkewSGD. Unlike
classical constrained optimization algorithms, including
the projection method or sequential quadratic program-
ming (Gill and Wong, 2012), this approach relies exclu-
sively on local approximations of the feasible set. This
local approximation includes only the active constraints,
and is guaranteed to be a convex polyhedron even if the
underlying constraint set is non convex. This makes the
resulting algorithm easy to implement and also ensures
that the descent is not stopped as soon as a new constraint
is violated.

• We show how ASkewSGD can be applied to train QNN.
The complexity of the resulting algorithm is similar to
that of BC or LUQ (Courbariaux et al., 2015; Chmiel
et al., 2021) and ProxQuant (Bai et al., 2018). Our algo-
rithm uses high precision latent weights and uses classical
backpropagation to evaluate the gradients.

• We provide convergence guarantees for ASkewSGD. We

stress that, as opposed to Muehlebach and Jordan (2021),
no convexity assumption on the objective function or the
feasible set is made.

• We evaluate the performance of ASkewSGD on clas-
sical computer vision datasets using ConvNets and
ResNets. Our experiments show that QNNs trained with
ASkewSGD achieve accuracy very close to that of their
floating-point counterparts, and outperform or are on par
with comparable baselines.

2 Related works

We focus on BNN and QNN that replace floating-point
multiplication and addition operations with efficient fixed-
point arithmetic. We do not consider algorithms that use
low-bit computations at the learning stage; see Sakr and
Shanbhag (2018); Chen et al. (2020). Given the abundance
of works, it is impossible to give complete references. We
focus mostly on methods used in our benchmarks.

Binary NN: The first attempt to train BNN is BinaryCon-
nect (BC) (Courbariaux et al., 2015; Hubara et al., 2016)
which is the first algorithm to implement Quantization
Aware Training (QAT); see (Gholami et al., 2021; Zhao
et al., 2020; Guo, 2018; Nagel et al., 2021) and the refer-
ences therein. BC uses full precision latent weights. On
the forward path, the latent weights are binarized. On the
backward path, classical backpropagation is applied to up-
date the latent weights, using a differentiable proxy of the
binarization function in the gradient calculation. The most
common implementation uses the identity proxy, resulting
in the straight-through estimator (STE). Although the neural
network parameters are highly compressed (and quantiza-
tion errors can be large), the BC-STE estimator and its
numerous recent improvements perform satisfactorily in
many benchmarks and have become a de facto standard;
see Hu et al. (2018); Faraone et al. (2018); Le et al. (2021);
Anderson and Berg (2018).

ProxQuant (PQ) (Bai et al., 2018), Proximal Mean-Field
(PMF) (Ajanthan et al., 2019), Mirror Descent (MD) (Ajan-
than et al., 2021), and Rotated Binary Neural Networks
(RBNN) (Lin et al., 2020) formulate the task of training
BNNs as a constrained optimization problem and discuss dif-
ferent methods to generate binary weights from real-valued
latent weights. All of these methods have in common that
they use gradual annealing of the conversion mapping, in the
sense that, unlike BC and its variants, the latent weights are
not projected onto a finite set of quantization values in the
forward path. Instead, a force is applied to gradually push
the latent weights to the quantization constraints, in a man-
ner reminiscent of homotopy methods for solving nonlinear
systems or penalty barrier in nonlinear optimization.

BNN as Variational Inference (VI): Training binary neu-
ral networks can also be approached with VI; see among
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others Raiko et al. (2015); Peters and Welling (2018); Roth
et al. (2019). Instead of optimizing binary weights, the pa-
rameters of Bernoulli distributions are learned using the VI
Bayesian learning rule; see e.g. Khan and Rue (2021). Even
if unbiased estimators of the ELBO are available, classical
methods like MuProp (Gu et al., 2016) or REINFORCE
with variance-reduction baselines (Mnih and Gregor, 2014)
have a prohibitively high variance. The use of Gumbel-
Softmax (GS) trick (Jang et al., 2016; Maddison et al., 2017)
has been advocated in Meng et al. (2020), but as noted in
(Shekhovtsov, 2021, Section 4) there is an issue in the im-
plementation which paradoxically enables the training. The
connections between STE algorithms and their many vari-
ants - including MD - and VI methods are further discussed
in Shekhovtsov and Yanush (2021).

Quantized NN: The STE estimator is easily adapted to
QNN by adding a projection step onto the set of quantiza-
tion levels in the forward pass (Zhou et al., 2016); see (Choi
et al., 2018; Sun et al., 2020; Chmiel et al., 2021) and the
references therein. To mitigate performance loss reported in
early work from Zhou et al. (2016), a number of attempts
has been proposed. One possible way is to increase the NN
size (Zagoruyko and Komodakis, 2016), or the number of
channel for convolution layers (Mishra et al., 2017; McDon-
nell, 2018). Knowledge distillation has also been considered
with some success (Mishra and Marr, 2017). A teacher net-
work (typically very large (Liu et al., 2020) and trained in
full-precision) is employed to help the QNN training (the
student network).

In QNN, the choice of the quantizer and the normalization
of the weights (at each layer) play a key role. Many works
have been devoted to the design of non-uniform or statistical
(distribution dependent) quantizers; see (Banner et al., 2018;
Hou and Kwok, 2018; Bhalgat et al., 2020; Liang et al.,
2021; Fournarakis and Nagel, 2021; Zhou et al., 2017, 2018)
and the references therein. Statistical quantizers are often
more efficient, but they are more complex to implement and
often require fine tuning (Zhang et al., 2021).

A number of works have considered formulating the quanti-
zation problem as an optimization problem (Li et al., 2017,
2016; Zhu et al., 2016; Carreira-Perpinán and Idelbayev,
2017; Leng et al., 2018; Polino et al., 2018), but the pro-
posed methods rely on assumptions which may not hold for
deep neural networks (Guo, 2018). In Moons et al. (2017);
Yang et al. (2017); Esser et al. (2015), the QNN training is
tackled as an energy efficiency problem, whereas Gong et al.
(2019) propose a Differentiable Soft Quantization (DSQ) to
efficiently train QNN.

Activation function Quantization: We have so far de-
scribed the quantization of the network weights. But an
efficient implementation also requires the quantization of
the activation functions. For BNN, (Kim and Smaragdis,
2016; Hubara et al., 2016; Rastegari et al., 2016) proposed

to use sign(·) function, but this approach significantly af-
fects the performance. More complex quantization schemes
have been considered in Choi et al. (2018) alleviating per-
formance degradation. Hybrid formats FP8 (Wang et al.,
2018) or INT8 (Wiedemann et al., 2020; Banner et al., 2018)
were successfully employed to achieve a low precision train-
ing. Recent works have proposed to jointly optimize the
quantization parameters (of weights and activations) and the
weights parameters. This task can be done by modifying the
learning loss or by minimizing the quantization error (Zhu
et al., 2016; Zhang et al., 2018; Li et al., 2019).

3 Algorithm derivation

In this section we first introduce the Muehlebach and Jordan
(2021) (MJ) algorithm for smooth constrained optimization,
initially proposed in a convex setting. We describe the
algorithm in full generality and then show how to adapt the
MJ algorithm to the QNN setting.

The MJ algorithm Consider the following optimization
problem:

min
w∈C

ℓ(w), C = {w ∈ Rd : g(w) ≥ 0} , (2)

where ℓ : Rd → R denotes the objective function, g : Rd →
Rng define the inequality constraints. We assume that the
feasible set C is non-empty and compact and that the func-
tions ℓ and g are continuously differentiable. We stress that
neither ℓ nor C are assumed to be convex. Standard solu-
tions to find a local minimizer of (2) use either a projected
gradient descent algorithm or “non-linear” projection like
mirror descent. However, C might have a complicated form,
in which case computing the projection on C might require
to solve a non-trivial optimization algorithm in itself (and
may fail to be properly defined). The basic idea behind
Muehlebach and Jordan (2021)’s proposal is to “skew” the
search direction in order to force the algorithm to find a min-
imizer of (2) without constraining the sequence (wk)k∈N to
the feasible set. For any w ∈ Rd, define by I(w) the set of
active constraints

I(w) = {i ∈ {1, . . . ,ng}, gi(w) ≤ 0} .

Under mild assumptions (basically, Muehlebach and Jordan
(2021) assume that Mangasarian Fromowitz constraint qual-
ification conditions hold everywhere and not on the feasible
set only) the tangent and normal cones of C at w ∈ C are
given by:

TC(w) = {v ∈ Rd,∇gi(w)⊤v ≥ 0, for all i ∈ I(w)} ,

NC(w) = {−
∑

i∈I(w)
λi∇gi(w),λi ∈ R+} .

Moreover, the Karush-Kuhn-Tucker (KKT) conditions hold
(Borwein and Lewis, 2006, Theorem 7.2.9): if w∗ is a local
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Figure 1: The vector field of velocities for ϵ = 0.3, and α =
0.1 (left panel) or α = 1.0 (right panel). Here, ℓ(w1,w2) =
((w1 − 0.5)2 + (w2 − 0.5)2)/3 and g(w1,w2)⊤ = (ϵ −
((w1)2 − 1)2, ϵ − ((w2)2 − 1)2). The border of the set
of constraints is shown in blue, and the minimizer of the
constrained and unconstrained optimization problems are
shown with blue and green dots, respectively.

minimizer of (2), then w∗ ∈ Z , where

Z := {w ∈ C : 0 ∈ −∇ℓ(w)−NC(w)} .

The MJ algorithm (Muehlebach and Jordan, 2021) generates
iterates in Rd as follows:{

wk+1 = wk + γkvk

vk = argminv∈Vα(wk)
(1/2) ∥v +∇ℓ(wk)∥2 ,

(3)

where (γk) is a non-increasing sequence of positive step
sizes, α > 0 is an hyper-parameter, and the sets Vα(w) are
defined as:

Vα(w) = {v ∈ Rd : ∇gi(w)⊤v ≥ −αgi(w) for all i ∈ I(w)} .

If w ∈ C and i ∈ I(w), then gi(w) = 0 and thus Vα(w)
reduces to TC(w). The set Vα(w) can be considered as
an extension of the tangent cone "outside" of the feasible
set. Note also that Vα(w), for all w ∈ Rd, is a convex
polyhedron whose construction includes only the active
constraints.

By construction, whenever gi(wk) ≤ 0, ∇gi(wk)
⊤vk ≥

−αgi(wk). Thus, in Eq. (3), the velocity vk is chosen to
match the unconstrained gradient flow −∇ℓ(wk) as closely
as possible, subject to the velocity constraint vk ∈ Vα(wk)
(this is illustrated on a simple example in Figure 1, for dif-
ferent values of α > 0). A striking difference from the
classical projected gradient algorithm is that the MJ ap-
proach is based on a local approximation of the feasible
set. This local approximation includes only the active con-
straints and is guaranteed to be a convex polyhedron even if
the underlying feasible set is not convex. In “classical” con-
strained optimization algorithms, constraints are typically
handled by direct reference to positions, meaning that the
iterates wk, for all k ≥ 0, must lie in the constraint set C.

ASkewSGD description In Muehlebach and Jordan
(2021) the convergence of the MJ algorithm was proven

under the condition that the function ℓ and the set C are
convex. We now adapt this algorithm to the QNN problem,
removing the requirement that ℓ,C are convex and, further-
more, replacing ∇ℓ by a mini-batch stochastic gradient.

We consider ℓ, the training loss, written as ℓ(w) =

1/N
∑N

j=1 ℓj(w), where N is the size of the training set,
and ℓj is the loss associated with the j-th observation.

We relax the quantization constraints wi ∈ Q, i ∈
{1, . . . , d}, to a sequence of "smoothed" interval constraints.
The set of quantization values Q is defined coordinate wise:
{ci1, . . . , ciKi}. We assume for full generality a different
scalar quantizer for each coefficient; we typically use differ-
ent scalar quantizers for each layer of the NN (but the same
quantizer for the coefficients in the same layer). For ω ∈ R
such that ω ∈ [ci1, c

i
Ki ], we define

ϕi(ω) = (ω − ciQi(ω))
2(ω − ciQi(ω)+1)

2

where Qi(ω) is the unique index satisfying ciQi(ω) ≤ ω <

ciQi(ω)+1. If ω < ci1 we define ϕi(ω) = (ω − ci1)
2, and if

ω > ciKi we define ϕi(ω) = (ω − ciKi)2. For any ϵ ∈ [0, 1]
and ω ∈ R, define ψi

ϵ(ω) := ϵ − ϕi(ω) and consider the
feasible set

Cϵ = {w ∈ Rd : ∀ i ∈ {1, . . . , d}, gϵ,i(w) := ψi
ϵ(w

i) ≥ 0} .

For each ϵ ∈ (0, 1), we consider the constrained optimiza-
tion problem Pϵ : minw∈Cϵ

ℓ(w). It is easily seen that⋂
ϵ>0 Cϵ = Q, recovering the constraints of the QNN prob-

lem. We therefore define a decreasing sequence (ϵn)n≥0

of numbers in [0, 1] such that limn→∞ ϵn = 0 and solve
(approximately) the sequence of problems (Pϵn)n∈N.

Here we must notice that the set Vα(w) is empty if and only
if there is 1 ≤ i ≤ d such that wi = (cQi(ω) + cQi(ω)+1)/2.
For such a point, there is no "best" direction, so we chose
it arbitrarily by specifying that the i-th coordinate must
go to the right (see the following clipping convention). A
symmetric choice prescribing a left direction is also possible.
Moreover, since the set of such w is of Lebesgue-measure
zero, we can hope that we will never stumble upon such a
point (this is further guaranteed by the fact that the iterates
converge to Cϵ, implying that such points asymptotically
never occur).

We denote by Zϵ := {w ∈ Cϵ : 0 ∈ −∇ℓ(w)−NCϵ
(w)},

the set of KKT points of Pϵ. Notice that any element of
NCϵ(w) can be written as (−λ1ψ′

ϵ(w
1), . . . ,−λdψ′

ϵ(w
d)),

with λi ≥ 0 and λi ̸= 0 only if ψϵ(w
i) = 0. Therefore,

w ∈ Zϵ if and only if for every i ∈ {1, . . . , d},

∇iℓ(w) = 0 if ψϵ(w
i) > 0

and sign(∇iℓ(w)) = sign(ψ′
ϵ(w

i)) if ψϵ(w
i) = 0 ,

where for i ∈ {1, . . . , d}, ∇iℓ(w) is the partial derivative
of ℓ(w) w.r.t. wi. In this setting, the set of active constraints
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and Vα can be written down as:

Iϵ(w) = {i ∈ {1, . . . , d} : ψϵ(w
i) ≤ 0} ,

Vϵ,α(w) = {v ∈ Rd : viψ′
ϵ(w

i) ≥ −αψϵ(w
i) for i ∈ Iϵ(w)} .

Let w be such that wi ̸= (cQi(ω) + cQi(ω)+1)/2 for all
i ∈ {1, . . . , d}. For u ∈ Rd, denote by sϵ,α(u,w) =

argminv∈Vϵ,α(w) 1/2 ∥v + u∥2. This problem admits an
explicit solution: [sϵ,α(u,w)]

i = −ui if ψϵ(w
i) > 0

or −ψ′
ϵ(w

i)ui ≥ −αψϵ(w
i) ≥ 0 and [sϵ,α(u,w)]

i =
−αψϵ(w

i)/ψ′
ϵ(w

i), otherwise. Note that when wi →
(cQi(ω) + cQi(ω)+1)/2, the quantity ψ′

ϵ(w
i) converges to

zero, and thus [sϵ,α(u,w)]
i might diverge to infinity. To

alleviate this problem, we furthermore clip the update. For
(a, b) ∈ R× R+, define clip(a, b) equal to a if |a| ≤ b and
to b sign(a) otherwise. Choose Mϵ,c > 0 and let scϵ,α be
defined for i ∈ {1, . . . , d}, wi ̸= (cQi(ω) + cQi(ω)+1)/2,
by: [scϵ,α(u,w)]

i ={
−ui if ψϵ(w

i) > 0 or − ψ′
ϵ(w

i)ui ≥ −αψϵ(w
i) ≥ 0 ;

clip(−αψϵ(w
i)/ψ′

ϵ(w
i),Mϵ,c) otherwise .

We set by convention [scϵ,α(u,w)]
i = Mϵ,c if wi =

(cQi(ω) + cQi(ω)+1)/2. For given α, ϵ, ASkewSGD is sum-
marized in Algorithm 1. Under mild assumptions, we estab-

Algorithm 1 ASkewSGD algorithm
Data: sequence of step sizes (γk); size of the mini-batch

Nb ≤ N ; w0 ∈ Rd

1 for k=1, . . . , T do
2 Sample a minibatch of Nb observations {j1, . . . jNb

} in
{1, . . . ,N};
Compute the Stochastic Gradient ∇̂ℓ(wk) =

1/Nb

∑Nb

i=1 ∇ℓji(wk);
Compute the update direction vk =
scϵ,α(∇̂ℓ(wk),wk);
Update the parameter wk+1 = wk + γkvk.

3 end

lish the convergence of ASkewSGD. Consider the following
assumptions.

A1. For j ∈ {1, . . . ,N}, the function ℓj is d-times con-
tinuously differentiable and has Mℓj -Lipschitz continuous
gradients.

A2. The stepsizes (γk)k≥0 are positive,
∑∞

j=0 γk = ∞ and∑∞
j=0 γ

2
k <∞.

Notice that A2 holds for (γk) of the form (1/kδ), with
δ ∈ (1/2, 1]. A1 will ensure the stability of ASkewSGD (i.e.
the iterates are bounded with probability one). Moreover, A
1 implies that ℓ(Zϵ) is of empty interior, as a consequence
of the Sard’s theorem (see Lemma 5).

Theorem 1. Assume A 1-A 2 and 0 < ϵ ≤
inf1≤i≤d inf1≤j≤Ki |cij − cij+1|4/16, where {cij} are

the quantization levels. Then, ℓ(wk) converges and
limk→∞ d(wk,Zϵ) = 0 almost surely.

Note that the condition on ϵ ensures that the projection ofCϵ

onto the i-th coordinate is a disconnected set ofKi intervals.
The proof is based on a general convergence result of Davis
et al. (2020), on asymptotic behavior of stochastic approxi-
mation of differential inclusion (DI). In our particular case,
the corresponding DI is ẏ(t) ∈ −∇ℓ(y(t))−NCϵ(y(t)) (we
might notice here that this DI is also the continuous-time
limit of the projected gradient method). Definitions and
important results on DIs and their stochastic approximations
can be found in Appendix A.1.

The proof of Theorem 1 is done in several steps (see Ap-
pendix A for complete derivations). First we prove that
almost surely, the sequence of iterates (wk) converges to
Cϵ (see Lemma 6). Then we show that an update step of
ASkewSGD can be written as wk+1 = wk − γk∇ℓ(wk) +

γkηk+1 − γkuk, where ηk+1 = ∇ℓ(wk)− ∇̂ℓ(wk) and uk
approximates an element of NC(wk). We show the conver-
gence of

∑k
j=1 γjηj+1 in Lemma 7, and complete the proof

by applying Theorem 3, which is adapted from Davis et al.
(2020, Theorem 3.2).

Forward pass quantization For completeness, we finally
describe the quantization of the activation function when
ASkewSGD is used to train a deep NN. During the forward
pass, we employ a round-to-nearest approach INT4 quanti-
zation methods for the activations, taken from Chmiel et al.
(2021). We make use of Statistics Aware Weight Binning
(SAWB) of (Choi et al., 2018), which finds the optimal scal-
ing factor that minimizes the quantization error based on
the statistical characteristics of activation distribution. As
emphasized by (Chmiel et al., 2021; Choi et al., 2018), non-
linearities of loss and activation functions make unnecessary
the use of an unbiased scalar quantizer. After scaling, we
use a uniform quantization (e.g., INT4): the set of quanti-
zation values Q is defined coordinate wise: {ci1, . . . , ciKi}.
In our experiments (see Section 4) both the weights and
the activations are rescaled layerwise to fit the quantization
interval (e.g., [−23, 23] for INT4). The quantization values
{ci1, . . . , ciKi} are the integer from the quantization interval
(e.g., {−8,−7, . . . , 8} for INT4). After quantization, both
the weights and the activation are rescaled using the scaling
factor calculated layerwise.

4 Experiments

We evaluate the performance of ASkewSGD with weights
quantized with 1, 2, and 4 bits. While BNN performs well
on some simple benchmarks, it lags significantly behind
full precision NN on more demanding tasks. QNN with
higher precision and quantization of the activations offers a
trade-off between performance and computation efficiency.
For simplicity, we refer to [Wx/Ay] as a neural architecture
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with x-bit precision weights and y-bit precision activations.
Details of the implementations and complementary experi-
ments are reported in Appendix B. In all experiments, ϵ is
annealed throughout the training process during successive
episodes. Our experiments show that the initial value for ϵ
is not critical. We use a logarithmic schedule. Given a fixed
ϵ, we run the algorithm until the test error does not improve,
and then reduce it by using the last iterates as the starting
point for the next round. For example, in the experiments
of Table 2 and Table 1, the initial value for ϵ is 1, and we
reduce it as Kt with K = 0.88. We can set K to different
values ( 12 , 0.8 were tested) as long as K < 1.

4.1 1-bit quantization

We evaluate the performance of ASkewSGD [W1/A32] on
four tasks: a convex problem, a 2D toy example and two
classical image classification benchmarks.

Convex toy example We compare ASkewSGD , Bina-
ryConnect (Courbariaux et al., 2015) and AdaSTE (Le
et al., 2021) in a logistic regression problem. We gen-
erate n = 6000 feature vectors {xk}nk=1 of dimension
d = 10, drawn independently from the uniform distribution
in [−1, 1]. We randomly choose an optimal vector w∗ on the
vertices of the hypercube and generate the labels as follows:
yk ∼ Bernoulli({1 + e−x⊤

k w∗}−1). For completeness, we
study how a SGD converges with full precision to the op-
timal point w∗ of this convex problem. All methods are
trained for 25 epochs using the SGD optimizer. The learn-
ing rate is set to 1 and the gradients are computed on random
batches of 1000 samples. For AdaSTE, we have used the
code 1 with the hyperparameters specified in the package
for annealing. ASkewSGD performance is on par with full
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Figure 2: Training losses for the logistic regression prob-
lem with batches of size 1000. BinaryConnect (green),
ASkewSGD (blue), full Precision (red), AdaSTE (purple)
methods. The x-axis represents the iteration index. Red
points are made artificially bigger to help visualization.

precision method, while the STE variants all suffer from
strong oscillations (see Shekhovtsov (2021); Shekhovtsov
and Yanush (2021); Bai et al. (2018)). Figure 2 illustrates

1https://github.com/intellhave/AdaSTE

the effects of such oscillations on the convergence . In all
settings, AdaSTE converges faster than BC, but still all STE
variants exhibit a larger loss compared to other methods.
Additional results are reported in Appendix B.

Non-convex toy example We consider the binary classi-
fication problem on "2 moons dataset" presented in Meng
et al. (2020). The training dataset consists of 2000 samples
(split into 2 moon-like clusters in 2 dimensions) and 200 test
samples; see Appendix B. We train a BNN with 9 neurons.
In this low-dimensional environment, we can enumerate
all 29 = 512 possible binary configurations and select the
best one(s). Our method is compared with 4 different ap-
proaches: a full precision NN, BinaryConnect (Courbariaux
et al., 2015), AdaSTE (Le et al., 2021), and exhaustive
search. All methods are trained for 50 epochs with logistic
loss. The full precision NN is trained using the Adam opti-
mizer (Kingma and Ba, 2014) with default hyperparameters,
a learning rate of 0.1, and a batch of size 100. The Bina-
ryConnect approach is trained using the Adam optimizer
with default hyperparameters, a learning rate of 1, and a
batch of size 100. The AdaSTE method is implemented
using a learning rate of 1. Our method uses the same param-
eters as the STE method, and we set α to 4. For a single run,
we plotted the training loss in Figure 3. For a fair compari-

0 200 400 600 800 1000

Iterations

0.4

0.6

0.8

1.0

1.2

T
ra

in
in

g
 L

o
ss

Figure 3: Training losses for the toy non-convex prob-
lem with batches of size 100. BinaryConnect (green),
ASkewSGD (blue), full Precision (red), AdaSTE (purple)
methods. The x-axis represents the iteration index. Red
points are made artificially bigger to help visualization

son, in Table 4 in Appendix B we report the performance
averaged on 50 random experiments of the various methods
on the test set (full precision reaches a 2.045± 0.005 loss,
when exhaustive search presents a 2.1 loss, ASkewSGD
reaches 2.11± 0.01, AdaSTE and STE reach 2.24± 0.10
and 2.32± 0.11 respectively).

The exhaustive search shows that different configurations
lead to near-optimal performance (see Figure 8 in Ap-
pendix B). Here we chose the configuration that achieves
the lowest loss on the test set. ASkewSGD outperforms
AdaSTE and BC.
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Computer vision tasks In this section, we benchmark
ASkewSGD with BC (Courbariaux et al., 2015; Hubara
et al., 2016), Mirror Descent (Ajanthan et al., 2021), and
ProxQuant (Bai et al., 2018) on classical computer vision
datasets. To avoid overloading the figures, the AdaSTE re-
sults are reported separately in Appendix B. We also report
performance with a standard full precision NN and a full
precision NN projected onto the hypersphere. We compare
the different methods using the same NN architecture. We
do not add bias on any neuron. We introduce batch normal-
isation (without learning scale and bias parameters) after
each layer. We emphasise that our method is generic and
not specific to the classical ConvNet architecture. We have
also obtained SOTA results for large ResNet architectures
(see Table 3).

We use the standard data augmentations and normalizations
for all the methods. ASkewSGD is implemented in Pytorch,
and the experiments are run on a NVIDIA Tesla-P100 GPU.
Standard multiclass cross-entropy loss is used for all experi-
ments unless otherwise stated. We perform cross-validation
of the hyperparameters, such as the learning rate, the trade-
off between constraints α, the rate of increase of the an-
nealing hyperparameter, and their respective schedules. The
search space for tuning the hyperparameters and the final
hyperparameters can be found in Appendix B. All models
are fine-tuned for 100 epochs using the Adam (Kingma and
Ba, 2014) optimizer with dynamics of 0.9 and 0.999, and
batch of size 100.

The NN with full precision is trained with an initial learn-
ing rate of 0.08. The projected full precision NN uses a
projected gradient algorithm. The same hyperparameters
as the "plain" algorithm are used, except that a determinis-
tic projection onto the hypersphere is performed for each
iteration wk+1 = Π(wk − γk∇̂ℓ(wk)). For BinaryConnect,
we use the method described in Courbariaux et al. (2015).
For Mirror Descent (MD), we use the code2 from Ajanthan
et al. (2021) and implement the version tanh(·) (without
annealing and with α = 0.01 and µ = 100 when training).
ProxQuant was run with the parameters specified in Bai
et al. (2018). Note ProxQuant does not initially quantize
the fully-connected layer, and add full precision biases. For
fair comparison we have tested ProxQuant with all layers
binarized. The ASkewSGD method is described in Algo-
rithm 1. Multiple values for α in [0.1, 5] are considered. The
precision threshold ϵ is decreased from epoch to epoch: it
is set to 1 at the beginning and then exponentially annealed
to .88t in the last 50 epochs, where t is the epoch. After
the last step, all weights are within an interval of length
ϵfinal = 0.01 of {−1,+1}.

For ASkewSGD we apply the function sign(·) to our NN
before evaluating it on the test set. For a fair comparison,
each method was randomly initialized and independently

2https://github.com/kartikgupta-at-anu/md-bnn

executed 5 times. An intensive learning rate search was also
performed independently for each method. The learning
rate at epochs [20, 40] is divided by 2 for all methods.

Most neural networks use the inference accuracy of image
classification as an evaluation metric. We first compared
the training/testing accuracy with the CIFAR-10 dataset
(Krizhevsky et al., 2009), which consists of 50000 training
images and 10000 test images (in 10 classes). Figure 4
illustrates the distribution of the weights of the first convo-
lutional layer (the behavior is similar for other layers) at
epochs 20, 39, 55, and 99. We have also tested ASkewSGD
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Figure 4: Histogram of weights during the training phase of
our ASkewSGD [W1/A32] on CIFAR-10.

Table 1: Test accuracy (average over 5 random experiments)
for ASkewSGD [W1/A32] at several epochs.

Epochs ϵ CIFAR-10 TinyImageNet

50 0.88 75.77 8.74
65 0.15 88.37 31.97
90 0.006 88.84 46.96
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Figure 5: Training Loss of ASkewSGD [W1/A32] on
CIFAR-10 (left) and TinyImageNet (right). The x-axis repre-
sents the batch iterations and green vertical lines correspond
to epochs [50, 65, 90].

[W1/A32] on the TinyImageNet dataset (Le and Yang, 2015)
with a ResNet-18. TinyImageNet has 200 classes and each
class has 500 (RGB) training images, 50 validation images,
and 50 test images. To train ResNet-18 we follow the com-
mon practices used for training NNs: we resize the input
images to 64× 64 and then randomly flip them horizontally
during training. During testing we center-crop them to the



ASkewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks

corresponding sizes. In Figure 5, the loss increases slightly
in the final steps as the constraints become more stringent.
However, this increase in training loss remains moderate
and the final performance in both the training set and the
test set is the best among all methods. Some test accuracies
are presented in Table 1 at several epochs (identified with
green lines in Figure 5) with the corresponding precision ϵ.
The best test classification accuracies of the binary networks
obtained with each method are listed in Table2. For repro-
ducibility none of the concurrent results are reported from
existing papers, but each approach has been independently
rerun from the available codes. Compared to other bina-
rization algorithms, our method consistently yields better
or equivalent results, while narrowing the performance gap
between binary networks and floating-point counterparts on
multiple datasets to an acceptable level. The performance of
the projected gradient method highlights the strength of our
method: we do not simply project the iterates on the nearest
constraint set, but progressively push the iterates towards a
smoothed version of the constraints (see Section 3), which
leads to better results.

Table 2: Best Test accuracy (average and variance over 5
random experiments) after 100 training epochs.

Method CIFAR-10 TinyImageNet

Full-precision [W32/A32] 89.46 ± 0.07 56.46 ± 0.46

BinaryConnect [W1/A32] 88.33 ± 0.29 42.35 ± 0.33
MD [W1/A32] 88.13 ± 0.25 34.89 ± 0.36

ProxQuant [W1/A32] 88.22 ± 0.28 48.79 ± 0.32

Projected gradient [W1/A32] 71.34 ± 0.46 11.78 ± 0.67
ASkewSGD [W1/A32] 88.98 ± 0.35 50.23 ± 0.37

4.2 Low-bit quantization

We consider now low-bit weight quantization and activation
quantization. To fully benefit from low precision arithmetic,
one should also tackle the problem of gradient quantization
(Chmiel et al., 2021; Sun et al., 2020) and accumulation.
We keep the last fully connected layer in full-precision,
following Liu et al. (2020); Chmiel et al. (2021). We evalu-
ate the performance of ASkewSGD [W1/A32], ASkewSGD
[W2/A4], and ASkewSGD [W4/A4] on TinyImageNet and
ImageNet (Russakovsky et al., 2015) datasets with a ResNet-
18 network. For ASkewSGD we project NN weights onto
the set of quantization values before evaluating it on the test
set. For ImageNet, we keep the first convolution layer in
full-precision. We use the same pre-processing (centering
and data normalization) for all the methods: we resize the
input images to 256× 256 and then randomly crop them to
224× 224 while centering them to the appropriate sizes dur-
ing training. Standard multiclass cross entropy loss is used.
All models are fine-tuned for 200 epochs using the Adam
(Kingma and Ba, 2014) optimizer with dynamics of 0.9 and
0.999 and a batch of size 512. All methods are trained with
an initial learning rate of 0.06 for TinyImagenet and 0.1

for ImageNet. The same hyperparameters are used as in
the previous section for TinyImageNet. For ImageNet, the
learning rate at epochs [30, 60, 90] is divided by 10 for all
methods. We have run the code3 from LUQ and adapted it
to TinyImageNet dataset. For a fair comparison we compute
neural gradients in full precision. The results for the method
Ultra-low (Sun et al., 2020) are taken from Chmiel et al.
(2021).

We decided not to include the regularisation-based bina-
rization approach (Ding et al., 2019), which addresses the
activation binarization problem, in our benchmark. We
have also not included in our benchmark improvements
of BC methods which have been proposed in (Zhou et al.,
2016; Liu et al., 2018; Bethge et al., 2020; Rastegari et al.,
2016; Martinez et al., 2019); these methods are all based
on the STE (Courbariaux et al., 2015) optimizer to update
quantized weights. These methods have been shown to be
outperformed by AdaBin (Tu et al., 2022) and ReacNet Liu
et al. (2020). The latter are currently SOTA methods for
energy-friendly inference on the ImageNet dataset. Note
that these binary approaches still have a gap in terms of
full precision performance, which needs to be addressed by
modifying the NN structure (Liu et al., 2020). For ReacNet
and AdaBin, we have reported the best results of Tu et al.
(2022) for ResNet-18 on ImageNet.

Table 3: Best Test accuracy (single run for ImageNet due to
longer training time) after 200 training epochs. * indicates
the results are directly reported from existing literature.

Method TinyImageNet ImageNet

Full-precision [W32/A32] 56.46 ± 0.46 69.32

ReacNet [W1/A1] (2 steps) - 65.5*
AdaBin [W1/A1] (2 steps) - 66.4*

Ultra-low [W4/A4] - 68.27*
LUQ [W2/A4] 54.14 ± 0.42 -
LUQ [W4/A4] 55.69 ± 0.32 68.41

ASkewSGD [W2/A4] 53.54 ± 0.28 66.45
ASkewSGD [W4/A4] 55.85 ± 0.30 68.51

ASkewSGD performs better than or on par with state of the
art QNN methods and offers a shorter gap to full precision
performances compared with best BNNs.

5 Conclusion

In this paper, we present ASkewSGD a novel framework for
QNN training based on an annealed sequence of interval-
constrained nonconvex optimization problems solved by
an algorithm inspired by Muehlebach and Jordan (2021).
For each of these subproblems we give theoretical guaran-

3https://openreview.net/forum?id=clwYez4n8e8
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tees. ASkewSGD outperforms or is on par with other QNN
training methods on all considered tasks.

In the current context, we estimated the carbon footprint of
our experiments to be about 180 kg CO2e (calculated using
green-algorithms.org v2.1 Lannelongue et al. (2021)). This
shed light on the crucial need to develop energy friendly
NNs.
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A Proofs of Section 3

A.1 Preliminaries

Absolutely continuous curves. We say that a curve y : R+ → Rd is absolutely continuous (a.c.) if there is a curve
z : R+ → Rd, locally Lebesgue integrable, such that for every t ≥ 0,

y(t)− y(0) =

∫ t

0

z(u)du .

In this case, it holds that for almost every t ≥ 0, y is differentiable and ẏ(t) = z(t).

Tangent and normal cones. Let C ⊂ Rd be a closed set. For w ∈ C, the tangent cone of C to w, denoted by TC(w), is the
set of vectors v ∈ Rd for which there exist tk ↓ 0 and wk → w, wk ∈ C, such that (wk − w)/tk → v. The normal cone of
C at w, denoted NC(w), is the set of vectors u ∈ Rd such that for any v ∈ TC(w), u⊤v ≤ 0. If w /∈ C, then by convention
TC(w),NC(w) = ∅.

The Mangasarian-Fromovitz constraint qualification (MFCQ) condition. Consider the case where C = {w ∈ Rd :
g(w) ≥ 0}, for a smooth function g : Rd → Rng . Denote I(w) = {i ∈ {1, . . . ,ng}, gi(w) ≤ 0} as the set of active
constraints. We say that the MFCQ condition holds atw ∈ Rd if there exists v ∈ Rd such that ∇gi(w)⊤v ≥ 0 for all i ∈ I(w).
If the MFCQ condition holds at w ∈ C, then we can write down TC(w) = {v ∈ Rd,∇gi(w)⊤v ≥ 0, for all i ∈ I(w)} and
NC(w) = {−

∑ng

i=1 λi∇gi(w),λi ∈ R+ and λi = 0 if i ̸∈ I(w)} (see, e.g., (Borwein and Lewis, 2006, Section 7.2)). We
might notice here, that in the context of Theorem 1 the MFCQ condition holds at every w ∈ Cϵ.

Differential inclusion. Consider a closed set C ⊂ Rd and ℓ : Rd → R a smooth function. An essential ingredient of our
proof will be the following differential inclusion (DI):

ẏ(t) ∈ −∇ℓ(y(t))−NC(y(t)) . (4)

We say that an a.c. curve y : R+ → C is a solution to this DI if the inclusion holds for almost every t ≥ 0. We say that ℓ is a
Lyapunov function for the set Z := {w ∈ Rd : 0 ∈ −∇ℓ(w)−NC(w)} if for any such curve:

for all t > 0 , ℓ(y(t)) ≤ ℓ(y(0)) ,

with strict inequality as soon as y(0) /∈ Z . We have the following lemma.

Lemma 2. Assume that MFCQ holds at every w ∈ C. Then ℓ is a Lyapunov function for the DI (4) and the set Z .

Proof. The assumption that MFCQ holds at every w ∈ C implies that C is Clarke regular (i.e. if (wk,uk) → (w,u) ∈
C × Rd with (wk,uk) ∈ C ×NC(wk), then u ∈ NC(w)). As shown in (Sections 5 and 6 Davis et al. (2020)), this implies
that for almost every t ≥ 0 and every v ∈ NC(y(t)), ẏ(t)⊤v = 0. Therefore, for almost every t ≥ 0,

d

dt
ℓ(y(t)) = ∇ℓ(y(t))⊤ẏ(t)

∈ −∥ẏ(t)∥2 − ẏ(t)⊤v(t) = −∥ẏ(t)∥2 ,

where v(t) = ∇ℓ(y(t))− ẏ(t) ∈ −NC(y(t)). This shows that y(t)− y(0) = −
∫ t

0
∥ẏ(u)∥2 du, which, by closedness of Z ,

implies our statement.

In Section 3 the set of interest will be Cϵ. It can be easily seen that under the assumptions of Theorem 1 the MFCQ
condition is satisfied at every w ∈ Cϵ. Thus, Lemma 2 implies that, in this context, ℓ is a Lyapunov function for the DI:
ẏ(t) ∈ −ℓ(y(t))−NCϵ

(y(t)).

Discrete approximations of differential inclusions. The idea of our proof is to apply the results of Davis et al. (2020) on
the stochastic approximation of differential inclusions to our setting. To this end, we consider an Rd-valued sequence (yk)
constructed as follows:

yk+1 = yk − γk∇ℓ(yk) + γkηk+1 − γkuk ,

where (γk) is a sequence of positive step-sizes and (ηk), (uk) are some Rd-valued sequences. Here, uk represent some
approximation of an element of NC(yk), and ηk+1 some (stochastic or deterministic) perturbation. Therefore, (yk) might
be seen as an Euler-like discretization of the DI (4).
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The following proposition follows from a general result of (Davis et al., 2020, Theorem 3.2). We state it, applied to our
particular case.

Theorem 3. Assume that:

1. The sequence (γk) satisfies
∑+∞

j=0 γj = +∞ and
∑+∞

j=0 γ
2
j < +∞.

2. The sequence
(∑n

j=0 γjηj+1

)
converges.

3. The sequence (yk,uk) is bounded.
4. If ykj is a subsequence such that ykj → y∞, then y∞ ∈ C and the distance between −NC(y∞) − ∇ℓ(y∞) and

−1/n
∑n

j=1{∇ℓ(ykj ) + ukj} goes to zero.
5. ℓ is a Lyapunov function for the DI (4).
6. The set ℓ(Z) is of empty interior.

Then, ℓ(yk) converges and lim supk→+∞ d(yk,Z) = 0.

Proof. Apply (Davis et al., 2020, Theorem 3.2), with G = −∇ℓ−NC and ϕ = ℓ.

Lemma 4. We can replace the 4-th assumption in Theorem 3 by the following assumption: if (y∞,u∞) is a cluster point of
(yk,uk), then u∞ ∈ NC(y∞).

Proof. If (ykj ) is a subsequence such that ykj → y∞, then 1/n
∑n

j=1 −∇ℓ(ykj ) →n→∞ −∇ℓ(y∞). Furthermore, for any
m ≥ 0, we can write:

1

n

n∑
j=1

ukj
=

1

n

m∑
j=1

ukj
+
n−m

n

 1

n−m

n∑
j=m+1

ukj

 .

By the Caratheodory theorem, we can write 1/(n − m)
∑n

j=m ukj =
∑d+1

i=1 λm,n,ium,n,i, where λm,n,i ≥ 0,∑d+1
i=1 λm,n,i = 1 and um,n,i ∈ {ukm+1

, . . . ,ukn
}. Denote C ⊂ NC(y∞) the set of cluster points of the sequence ukj

.
Since the sequence (uk) is bounded, for each i ∈ {1, . . . , d+1}, we can extract a convergent sequence from (λm,n,i,um,n,i)

that converges to (λm(i),um(i)), with um(i) ∈ C ∪
⋃+∞

j=m+1{ukj}. Thus, 1/n
∑n

j=1 ukj →
∑d+1

i=1 λm(i)um(i). As a
consequence, we can write:

lim
n→+∞

1/n

n∑
j=1

ukj = lim
m→∞

d+1∑
i=1

λm(i)um(i) .

For each i ∈ {1, . . . , d + 1}, the sequences (λm(i))m≥0, (um(i))m≥0 are bounded. Therefore, up to an extraction of
a subsequence, we can assume that they converge to some λ(i),u(i). Notice that u(i) ∈ C ⊂ NC(y∞). Therefore,
1/n

∑n
j=1 ukj

converges to a convex combination of elements of NC(y∞). By convexity of NC(y∞) this implies that
1/n

∑n
j=1 ukj

converges to an element of NC(y∞).

The following lemma provides a condition under which ℓ(Z) has an empty interior.

Lemma 5. Assume that ℓ : Rd → R is d-times continuously differentiable and that C = [a1, b1]× · · · × [ad, bd], where for
1 ≤ i ≤ d, ai, bi are some real numbers. Consider Z = {y ∈ Rd : 0 ∈ −∇ℓ(y)−NC(y)}. It holds that ℓ(Z) is of empty
interior.

Proof. Denote C̊ as the interior of C. The fact that ℓ(Z ∩ C̊) has an empty interior is a consequence of Sard’s theorem and
the fact that ℓ is d-times differentiable (see Sard (1942)). We now show that the image of ℓ of any m-dimensional boundary
of C intersected by Z also has an empty interior. Consider m > 0, and fix m− d coordinates of C as cm+1, . . . , cd, where
ci is equal to ai or bi, and denote Cm = (a1, b1)× (a2, b2) · · ·× (am, bm)×{cm+1}×· · ·×{cd}. Note that if y ∈ Z ∩Cm,
then the m first coordinates of ∇ℓ(y) are zero. Thus, if we call ℓm the restriction of ℓ to Cm, then ℓm : Cm → R is d times
differentiable and Z ∩Cm is included in its set of critical points. Applying Sard’s theorem to ℓm, we obtain that ℓ(Z ∩Cm)
has an empty interior. Since C can be written as a union of these Cm, this completes the proof.



ASkewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks

A.2 A proof of Theorem 1

First we need to prove that the cluster point of the iterates w∞ belongs to the constraints set Cϵ.

Lemma 6. Under assumptions of Theorem 1 it holds that lim supk→∞ d(wk,Cϵ) = 0 almost surely.

Sketch of proof. The detailed proof is given in the following section Appendix A.3. The main idea is that for any i ∈
{1, . . . , d}, if ψi

ϵ(w
i
k) < 0 (i.e. wi

k is outside of the constraints), then wi
k is constantly pushed to the closest interval. Thus,

the non-convergence might happen if and only if wi
k visits one of the interval infinitely often. However, due to the fact,

that γk decreases to zero and that ∇ℓj is bounded, this implies, for k large enough, that wi
k will never leave the “region of

attraction" of this interval (it will be kept at a distance of order γk to this interval) and thus converge to it.

Proof of Theorem 1. Our goal is to apply Theorem 3 and, hence, verify its assumptions. By a standard Martingale argument
it holds that the sequence

∑k
j=0 γjηj+1, almost surely, converges to a finite random variable (a short proof of this result

is given in Appendix A.3). Consider a realization for which
∑∞

j=0 γjηj+1 < ∞. Let (w∞,u∞) be a cluster point of
the sequence (wk,uk) and let (kj)j≥0 be a subsequence such that limj→+∞(wkj ,ukj ) = (w∞,u∞). Lemma 6 shows
that w∞ ∈ Cϵ. Since supk≥k0,ϵ

|λik| < +∞, we can extract a subsequence from kj , and assume that λkj → λ. Thus,
ui∞ = −λiψ′

ϵ(w
i
∞). Since all of the λikj

are positive, it holds that λi ≥ 0. Moreover, notice that if ψϵ(w
i
∞) > 0, then, for

j large enough, ψϵ(w
i
kj
) > 0 and, therefore, λikj

= 0. Hence, for i /∈ I(w∞), λi = 0. This shows u∞ ∈ NCϵ(w∞). As
shown in Lemma 2, ℓ is a Lyapunov function for the DI: ẏ(t) ∈ −∇ℓ(y(t))−NCϵ

(y(t)). In Lemma 5 we show that ℓ(Z) is
of empty interior. Thus, with the help of Lemmas 6 and 7, the assumptions of Theorem 3 are satisfied, which concludes the
proof.

A.3 A martingale result and proof of Lemma 6

We first establish a result on the convergence of the weighted sequence of perturbations.

Lemma 7. Assume A1-A2. Then, almost surely,
∑k

j=0 γjηj+1 converges.

Proof. Denote by Fk the filtration generated by {w1, . . . ,wk}. It holds that E[∇̂ℓ(wk)|Fk] = ∇ℓ(wk). Furthermore,
almost surely, E[∥ηk+1∥2|Fk] ≤ 2E[∥∇̂ℓ(wk)∥2|Fk] + 2∥∇ℓ(wk)∥2 < 4Mℓ, where Mℓ = sup1≤j≤N Mℓj . Thus, for
i ∈ {1, . . . , d},

∑k
j=0 γjη

i
j+1 is a martingale with an almost surely bounded square variation (since

∑+∞
j=0 γ

2
j < +∞). The

proof is concluded by applying (Klenke, 2013, Theorem 11.14).

In all the sequel, it is implicitly assumed that ϵ was chosen small enough to satisfy the assumption of Theorem 1. Denote by
k0,ϵ the smallest integer after which we do not perform the clipping step in Algorithm 1.

k0,ϵ := inf{k ≥ 0 : for m ≥ k , scϵ,α(∇̂ℓ(wm),wm) =

sϵ,α(∇̂ℓ(wm),wm)} .

Since lim sup d(wk,Cϵ) = 0, it holds that lim inf ψϵ(w
i
k) ≥ 0 and, therefore, k0,ϵ is almost surely finite. Thus, for k ≥ k0,ϵ,

vik = [sϵ,α(∇̂ℓ(wk),wk)]
i, which implies:

vik = −∇̂iℓ(wk) + λikψ
′
ϵ(w

i
k) ,

with λik = 0 if ψϵ(w
i
k) > 0 and λik = (vik + ∇̂iℓ(wk))/ψ

′
ϵ(w

i
k) otherwise. Notice that since the sequences (vk), (wk) are

almost surely bounded, supk≥k0,ϵ
|λik| is almost surely finite.

Lemma 8. Assume A1-A2. For i ∈ {1, . . . , d}, and for k ≥ k0,ϵ, λik ≥ 0.

Proof. First, notice that if ψϵ(w
i
k) > 0, then λik = 0 by construction. Consider now the case where ψϵ(w

i
k) ≤ 0. If

−∇̂iℓ(wk)ψ
′
ϵ(w

i
k) ≥ −αψϵ(w

i
k), then vik = −∇̂iℓ(wk) and, since for k ≥ k0,ϵ, ψ′

ϵ(w
i
k) ̸= 0, this implies λik = 0.

Otherwise, vik = −αψϵ(w
i
k)/ψ

′
ϵ(w

i
k) and 0 < −αψϵ(w

i
k) + ∇̂iℓ(wk)ψ

′(wi
k). Dividing the last inequality by {ψ′

ϵ(w
i
k)}2,

we obtain 0 < (−αψϵ(w
i
k) + ∇̂iℓ(wk)ψ

′
ϵ(w

i
k))/{ψ′

ϵ(w
i
k)}2 = (vik + ∇̂iℓ(wk))/ψ

′
ϵ(w

i
k) = λik.
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The rest of this section is devoted to the proof of Lemma 6.

DenoteM = max(Mϵ,c, sup1≤j≤N Mℓj ) and notice that for any k ≥ 0 and i ∈ {1, . . . , d}, ∥∇̂ℓ(wk)∥ ≤M and |vik| ≤M .
Therefore, |wi

k+1 − wi
k| ≤ γkM . The lemma will be proved by the following claims.

Claim 1. For i ∈ {1, . . . , d}, and for 2 ≤ j ≤ Ki − 1 if the set [(cij + cij−1)/2, (c
i
j + cij+1)/2) is visited by wi

k infinitely
often, then there is k0 such that for all k > k0, wi

k ∈ [(cij + cij−1)/2, (c
i
j + cij+1)/2).

Indeed, fix such a j and denote [c−, c+] the set Ci
ϵ ∩ [(cij + cij−1)/2, (c

i
j + cij+1)/2), where Ci

ϵ is the projection of Cϵ onto
the i-th coordinate. Define k0 = sup{k : γkM ≥ max(c− − (cij + cij−1)/2, (c

i
j + cij+1)/2− c+)}. Consider k ≥ k0, if

(cij + cij−1)/2 ≤ wi
k ≤ c− (we are on the left side of the interval), then the iterate is pushed to the right and wi

k ≤ wi
k+1.

Furthermore, by definition of k0, it holds that wi
k+1 ≤ c−+γkM ≤ (cij+c

i
j+1)/2. This implies, that in this case wi

k+1 stays
in [(cij + cij−1)/2, (c

i
j + cij+1)/2). Otherwise, if c+ ≤ wi

k < (cij + cij+1)/2 (we are on the right side of the interval), then,
we are pushed to the left, and, by a similar reasoning, wi

k+1 ∈ [(cij + cij−1)/2, (c
i
j + cij+1)/2). Finally, if wi

k ∈ [c−, c+],
then by the way k0 was defined we obtain that wi

k+1 ∈ [(cij + cij−1)/2, (c
i
j + cij+1)/2). Thus, we have shown that for

k ≥ k0, if wi
k is in [(cij + cij−1)/2, (c

i
j + cij+1)/2), then for all k′ ≥ k, the same will be true for wi

k′ , which completes the
proof of the claim.

The proof of the following two claims is similar to the one of Claim 1.

Claim 2. For i ∈ {1, . . . , d}, if the set (−∞, (ci1 + ci2)/2) is visited by wi
k infinitely often, then there is k0 such that for all

k > k0, wi
k ∈ (−∞, (ci1 + ci2)/2).

Claim 3. For i ∈ {1, . . . , d}, if the set [(ciKi−1 + ciKi
)/2,+∞) is visited infinitely often, then there is k0 such that for all

k > k0, wki ∈ [(ciKi−1 + ciKi
)/2,+∞).

In the following, without loss of generality, we will assume that we are in the context of the first claim and that there is k0,
such that for all k ≥ k0, wi

k ∈ [(cij + cij−1)/2, (c
i
j + cij+1)/2) (the two other cases can be treated in the exact same manner).

Denote, as previously, [c−, c+] the set Ci
ϵ ∩ [(cij + cij−1)/2, (c

i
j + cij+1)/2), where Ci

ϵ is the projection of Cϵ onto the i-th
coordinate.

Claim 4. There is k0, such that if there are two index m+ ≥ m− > k0 such that wm− < c− < c+ < wm+
, then there is m,

satisfying m− ≤ m ≤ m+, such that wi
m ∈ [c−, c+].

Indeed, define k0 = sup{k : γkM ≥ c+−c−}. Letm−,m+ be as in the claim and considerm = inf{k ≥ m− : wi
k ≥ c−}.

It holds that wi
m−1 < c− ≤ wi

m ≤ wi
m−1 + γkM . Since m ≥ k0, this implies that wi

m ≤ c− + γkM ≤ c+, which proves
the claim.

Claim 5. There is k0, such that if there are two index m− ≥ m+ > k0, such that wm− < c− < c+ < wm+
, then there is m,

satisfying m+ ≤ m ≤ m−, such that wi
m ∈ [c−, c+]. The proof is the identical to the one of the previous claim.

From the fourth and fifth claims, there are only three possible behaviors of wi
k. Either, wi

k visits [c−, c+] infinitely often
(this will be treated by the sixth claim), or for k large enough, wi

k stays at the left of [c−, c+] (this will be treated by the
seventh claim), or it stays at the right of [c−, c+] (this will be treated by the eights claim).

Claim 6. If wi
k visits [c−, c+] infinitely often, then lim supwi

k ≤ c+ and lim inf wi
k ≥ c−.

Notice that if wi
k > c+, then wi

k+1 ≤ wi
k, and if wi

k ≤ c+ and wi
k+1 ≤ c+ + γkM . Thus, if k is such that wi

k ∈ [c−, c+],
then supk1≥k w

i
k1

≤ c+ + γkM . Letting k tend to infinity, proves first part of the claim. Similarly, if k is such that
wi

k ∈ [c−, c+], then infk1≥k w
i
k1

≥ c− − γkM . Letting k tend to infinity proves the second part of the claim.

Claim 7. If for all k large enough, wi
k > c+, then wi

k → c+.

Indeed, in this case, for k large enough, the sequence wi
k is decreasing and thus has a limit. Denote this limit w+

and assume that w+ ̸= c+, then for k large enough, it holds that wi
k+1 = wi

k + γkv
i
k ≤ wi

k − γkM+, where M+ =
inf{min(Mϵ,c,α|ψϵ(w)|/|ψ′

ϵ(w)|) : w ∈ [w+, (cj + cj+1)/2)} > 0. Thus, for any m, it holds that wi
k+m+1 ≤ wi

k −
M+

∑m
i=0 γk+i. Since

∑+∞
j=0 γj = +∞, this shows that this case is impossible. Hence, wi

k → c+.

Claim 8. If for all k large enough, wi
k < c−, then wi

k → c−.

Similarly, to the previous claim, for k large enough the sequencewi
k is increasing and thus has a limit. Ifw− ̸= c−, then for k

large enough and m ≥ 0, it holds that wi
k+m+1 ≥ wi

k+M−
∑m

i=0 γk+i, where M− = inf{min(Mϵ,c,α|ψϵ(w)|/|ψ′
ϵ(w)|) :
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Table 4: Logistic Loss on test samples (average over 50 random experiments) for the binary classification problem in
dimension d = 512 after 100 steps.

Method Loss (×10−3)

Full-precision NN [W32/A32] 2.045 ± 0.005

BinaryConnect [W1/A32] 2.32 ± 0.11
AdaSTE [W1/A32] 2.24 ± 0.10

ASkewSGD [W1/A32] 2.11±0.01
Exhaustive search [W1/A32] 2.1

w ∈ ((cj−1 + cj)/2,w−]} > 0. Since
∑+∞

j=0 γj = +∞, this implies that w− ̸= c− is impossible. Hence, wi
k → c−.

These claims show that for every i ∈ {1, . . . , d}, lim inf ψϵ(w
i
k) ≥ 0. Therefore, lim sup d(wk,Cϵ) = 0.

B Numerical results

In this section, we give more details about our experiments, and present results on new tasks.

B.1 Toy convex example

We give more results about the toy example detailed in Section 4. We only compare ASkewSGD and BinaryConnect
Courbariaux et al. (2015) in a logistic regression problem, but we test several settings to highlight the strengths of
ASkewSGD : all methods are trained for a longer time (50 epochs) using the SGD optimizer, the learning rate is set to 1, and
gradients are calculated on random batches of 100 or 1000 samples. Note the rest of the experimental setting is identical:
we generate n = 6000 feature vectors {xk}nk=1 in dimension d = 10 drawn independently from the uniform distribution
in [−1, 1]. We randomly choose an optimal vector w∗ on the vertices of the hypercube and generate the labels as follows:
yk ∼ Bernoulli({1 + e−x⊤

k w∗}−1). For completeness, we study how a full precision SGD converges to the optimal point
w∗ of this convex problem. The same conclusions can be drawn: ASkewSGD is very close to the full precision method
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Figure 6: Training losses for the logistic regression problem with batches of size 1000 (up panel) and 100 (down panel).
BinaryConnect - green - ASkewSGD - blue - full Precision methods - red -. The x-axis represents the iteration index.

while STE method suffers from oscillations. Note however that decreasing the batch size seems to have a beneficial effect
for STE, the larger variance helps to reduce the gap between STE and the other methods (see down panel in Figure 6).

B.2 "2 moons" example

We consider the binary classification problem "2 moons dataset" presented in Section 4 and inspired by Meng et al. (2020).
The training dataset consists of n = 2000 samples and 200 test samples and is displayed in Figure 7a. A BNN with 9
weights is trained with one-hot coding and logistic loss. This BNN uses ReLu activations and its architecture is shown in
Figure 7b. Four gradient-based approaches - a full precision NN, BinaryConnect, AdaSTE, and ASkewSGD - are compared
to exhaustive search. In the latter, all 29 binary configurations on the training and test sets are compared. Figure 8 shows
that different configurations lead to near-optimal performance. It is worth noting that permutation invariance implies that
many solutions are equivalent in this simple example.
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Figure 7: 2D Dataset and the associated BNN.
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Figure 8: Histogram of test accuracies for the exhaustive search in dimension d = 512

B.3 Deep learning experiments

The performances reported in Section 4 were obtained with the best combination of hyperparameters that we tested. Other
combinations are listed in Table 5 for the CIFAR-10 dataset. The performances reported in Table 2 are still dependent on

Table 5: Best Test accuracy after 100 training epochs on CIFAR-10.

α / lr 0.5/0.06 0.2/0.01 0.2/0.03 0.2/0.05 0.4/0.01

ASkewSGD 88.51 85.60 88.42 88.32 84.50

hyperparameter grid search and could be further improved if more resources are available.

B.4 ImageNet with binary weights

In this section, we compare the performance of ASkewSGD [W1/A32] on a large dataset and compare it to BinaryConnect
Courbariaux et al. (2015); Hubara et al. (2016), Mirror Descent Ajanthan et al. (2021), AdaSTE Le et al. (2021), a standard
full-precision NN, and a hypersphere-projected full-precision NN. To ensure a fair comparison, we compare the different
methods using the same NN architecture. Moreover, we do not add bias in any layer, but introduce batch normalisation
(without learning parameters) after each layer. The last connected layer is kept in full precision - a standard practice in
BNN -. Contrary to (Liu et al., 2020; Chmiel et al., 2021), we have kept the first convolutional layer binary. We do not use
layerwise scalar contrary to Rastegari et al. (2016).

We use a training setting similar to Section 4. We have adapted the code of Ajanthan et al. (2021); Le et al. (2021) to
Resnet-18 for ImageNet. The hyperparameters for AdaSTE and MD are those prescribed for TinyImageNet. We use the
same default data normalizations as the methods we compare to: we resize the input images to 256× 256 and then randomly
crop them to 224× 224 while centering them to the appropriate sizes during training. Standard multiclass cross entropy loss
is used. All models are fine-tuned for 100 epochs using the Adam (Kingma and Ba, 2014) optimizer with dynamics of 0.9
and 0.999 and a batch of size 512. The full precision NN is trained with an initial learning rate of 0.08. The projected full
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precision NN uses a projected gradient algorithm. The same hyperparameters are used as in the "simple" algorithm, except
that a deterministic projection onto the hypersphere is performed at each iteration. The ASkewSGD method is described
in Algorithm 1, and we have set α to 0.5. The precision threshold ϵ is decreased from epoch to epoch: it is set to 1 at the
beginning and then exponentially annealed to .88t in the last 50 epochs, where t is the epoch.

Just as with Section 4, we apply the function sign(·) to our NN before evaluating it on the test set. Each method was
randomly initialized and independently executed once (due to ImageNet’s longer training time). The learning rate at
epochs [20, 40] is divided by 2 for all methods. This task is more difficult than TinyImageNet’s, but we get the same result:

Table 6: Best Test accuracy after 100 training epochs.

Method ImageNet (ResNet-18)
Top-1 Top-5

Full-precision 66.39 95.32
BinaryConnect 45.85 71.05

MD 46.38 71.18
AdaSTE 35.37 62.22

Projected gradient 2.58 7.93
ASkewSGD 46.95 72.11

ASkewSGD outperforms all current baselines. Moreover, ASkewSGD yields good results even when trained from scratch,
compared to methods Bai et al. (2018); Liu et al. (2020) that require fine-tuning using a pre-trained network.

B.5 BNN with binary activations

BNN with binary weights and binary activations offer significant time savings in inference. We applied our training
procedure ASkewSGD [W1/A1] to a VGG-small with sign(·) activations instead of ReLu activations to enable inference
with only XNOR and bit-counting operations. The quantization of activations is here too extreme to apply the same
procedure as in Section 4. The biased quantizer SAWB from Choi et al. (2018) does not work anymore (empirically). We
assume the loss of neural gradient information is too important when activations are quantized on 2 levels.

During the training phase, a batch normalisation layer is inserted before each sign activation to scale the variance. In the
backward pass, the derivative of sign(·) is approximated by the derivative of the function tanh(·). During inference, we
can get rid of the batch normalization (only the empirical mean is conserved and added to the bias term) and compute only
binary operations.

We compare test accuracy with the CIFAR-10 dataset, which consists of 50000 training images and 10000 test images (in
10 classes). BNNs are fine-tuned for 100 epochs using the Adam optimizer with a dynamic range of 0.9 and 0.999 and
a batch size of 100 with a learning rate of 0.03. The best test classification accuracies of binary networks obtained with
ASkewSGD are listed in Table 7 for different values of α ∈ [0.2, 0.5, 0.7]. The preliminary results reported in Table 7 show

Table 7: Best Test accuracy after 100 training epochs.

α 0.2 0.5 0.7

ASkewSGD [W1/A1] 81.12 84.34 82.92

that ASkewSGD is state-of-the art for training BNNs with binary weights and activations. Activation with the function
sign(·) leads to a loss in expressive power and consequently a loss in performance. Several works introduce additional tricks
such as real scaling factors Rastegari et al. (2016) to bridge the gap between binary signals and their real counterparts. These
tricks can be easily implemented in our approach ASkewSGD.
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