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Abstract: There exist many state-dependent locally bounded additive disturbances for which
a given set can be deemed as invariant with respect to a stable linear discrete-time dynamic
system. We introduce the notion of maximal disturbance set which is unique for each system and
candidate invariant set and shares many of the geometric properties of its associated invariant
set. We demonstrate how maximal disturbance sets may be constructed for arbitrary invariant
sets by constructing them from the union of maximal disturbance sets for convex minimal robust
positively invariant sets.

Keywords: Linear Systems, Robustness analysis, Time-invariant systems

1. INTRODUCTION

The set-theoretic properties of dynamic systems subject
to additive disturbances have been extensively studied
due to their applications in robust and constrained con-
trol Aubin et al. (2011); Blanchini et al. (2008); Mayne
et al. (2005). Traditionally, most research has focused
on the invariant sets of autonomous stable discrete-time
systems subject to a state-independent bounded distur-
bance. For example, it is known that the set of states
reachable from the origin Hirata and Ohta (2003) – the
minimal Robust Positively Invariant (mRPI) set – exists
is bounded and unique Kolmanovsky et al. (1998); Rakovič
et al. (2005); Kuntsevich and Pshenichnyi (1996); Ong and
Gilbert (2006). A number of works have considered the
case when the disturbance is state-dependent for example
Olaru and Ito (2018); De Santis (1998); Schaich and Can-
non (2015); Rakovič et al. (2006) which considered the
ultimate bounds, limitations of constrained systems and
reachability respectively. In the same vein and of particular
relevance to the current work are Townsend et al. (2024)
and Athanasopoulos et al. (2024) which characterised the
existence and properties of mRPI sets using set-valued
recursive maps and, alternatively, by parameterised poly-
hedra, respectively. Importantly, Townsend et al. (2024)
proved that the existence of bounded invariant sets is not
guaranteed in the case of state-dependent locally bounded
disturbances and that many different disturbances may
give rise to the same invariant sets.

Continuing these developments, here we construct the
largest set of disturbances for a given invariant set. We
achieve this by characterising the largest set of distur-
bances for each state of a system with a convex mRPI
set and demonstrating that the union of these disturbance
sets correspond to the union of the convex mRPI sets.

We prove that the maximal set of state-dependent distur-
bances is unique and shares many of the algebraic and
geometric properties of the underlying invariant set.

2. PRELIMINARIES

Dynamics and disturbance characterisation We adopt
the notational conventions and assumptions of Townsend
et al. (2024). We recall here the essential ones for clarity.
Consider a stable discrete-time linear system subject to an
additive disturbance

x(k + 1) = Ax(k) + w(k) (1)

where state transition matrix A ∈ Rn×n is Schur. The
disturbances w are constrained to be locally bounded
state-dependent set i.e. w ∈ W (x) where W is the map

W : Rn → Pcl (Rn) (2)

where Pcl (Rn) is the set of all closed subsets of Rn.

Assumption 1. For all x ∈ Rn that

ŵ(x) := max {∥w∥ : w ∈ W (x)} < ∞
and that the disturbance is locally bounded i.e. there is
M > 0 such that ŵ(x) ≤ M ∥x∥ for all x ∈ Rn.

To ensure (1) is well-defined in the case when W (x) = ∅
we consider the extension W : Rn → Pcl (Rn)

W (x) :=

{
W (x), x ∈ supp(W )

{0} , x ̸∈ supp(W )
(3)

where supp(·) is the support of the function W . This
extension ensures that (1) is forward complete for all x
without affecting the dynamics of the system.

Invariant Sets We are interested in the Robust Positive
Invariant (RPI) sets of (1).

Definition 2. A non-empty set Ω ⊂ Rn is RPI with respect
to (1) if Ax + w ∈ Ω for all x ∈ Ω and all w ∈ W (x).
Furthermore themRPI set is the closed invariant set which
is contained in all other closed invariant sets.

As demonstrated in Townsend et al. (2024) the existence of
RPI sets in the case of state-dependent disturbances is not
trivial. We do not directly consider this existence question



here, but we address the converse problem of finding the
maximal set of disturbances for a given invariant set.

Extended State-Disturbance Space Before defining the
set-recursive maps it is necessary to define the extended
state-disturbance space

W :=

{(
x
w

)
∈ R2n : w ∈ W (x)

}
(4)

which collects all the state-disturbance pairs. The set W
restricted to an invariant set is the main object studied in
this paper. W = W ∩ (X × Rn).

W =

{(
x
w

)
∈ R2n : x ∈ X

}
(5)

This definition of W differs from the one used in Townsend
et al. (2024) as it retricts W to an invariant set X rather
than the supp(W ). An embedding of the dynamics of (1)
in W is given by(

x(k + 1)
w(k + 1)

)
=

(
A I
0 0

)(
x(k)
w(k)

)
+

(
0
1

)
w(k + 1) (6)

We note the non-causal w(k+1) term in (6) does not affect
the dynamics of the system.

Set Recursive Maps The set-recursive maps introduced
in Townsend et al. (2024) enable us to characterise, as fixed
points, and converge to invariant sets from non-invariant
subsets of the state-space.

F : Pcl (Rn)× Pcl

(
R2n

)
→ Pcl (Rn)

F (X,W) := cl
(
F ′(X,W)

)
(7)

for which

F ′(X,W) := [A I] (W ∩ (X × Rn)) (8)

and where cl (·) is the closure of a set, X ⊂ Rn is some
set and [A I] ∈ Rn×2n is a non-square extension of A. The
map, F ′, is the set of all forward images of a set of states
under (1) subject to the state-dependent disturbances
W (x). Lemmas 3 and 4 are results from Townsend et al.
(2024) given here for reference.

Lemma 3. (Converging from Outside). Let X0 be a non-
empty, closed and bounded RPI set and define the se-
quence of sets (Xk) by

Xk+1 := F (Xk,W) (9)

Then the limit
X∞ := lim

k→∞
Xk

exists and is a fixed point of the map F .

Lemma 4. (Converging from Inside). Suppose X0 is non-
empty and contained in a bounded RPI set. Then,

Xk+1 = F

⋃
i≤k

Xi,W

 ∪X0 (10)

converges to the fixed point, X∞ ⊇ X0.

Fixed Sets To introduce maximal disturbance sets in
Definition 6 the definition of fixed sets of (7) in terms
of the map F is instrumental.

Definition 5. (Fixed sets). We say a set X ⊂ Rn is fixed if
F
(
X,W

)
= X.

We note X may contain disjoint subsets and that if X is
a fixed set. Then it is a fixed point of both (9) and (10).

3. MAXIMAL DISTURBANCE SET

The maximal disturbance set, Definition 6, is the largest
collection of disturbances which ensure (1) admits a given
fixed set, X.

Definition 6. (Maximal Disturbance Set). Given X ⊂ Rn,
we sayW is themaximal disturbance set overX for (1) ifX
is the fixed set for (7) and W ′ ⊆ W for all disturbance sets
W ′ for which X is the fixed set. The maximal disturbance
set is described explicitly as

W :=

{(
x
w

)
: x ∈ X and Ax+ w ∈ X

}
.

3.1 Fixed points

A subset of the set offixed points of (1) is always contained
in and intersects the boundary of the maximal disturbance
set. This is proven in Theorem 8.

Definition 7. (Fixed point). A point z = (x,wx) ∈ W is a
fixed point if x = Ax+ wx.

Throughout we denote

Z :=

{(
x

(I −A)x

)
: x ∈ Rn

}
which is the collection of all fixed points of (1). As

x = Ax+ (I −A)x

Whilst non-essential due to the importance of convexity
to subsequent results we note that Z is convex.

Theorem 8. The set X ⊂ Rn is fixed if and only if

Z|X :=

{(
x

(I −A)x

)
: x ∈ X

}
⊂ W

where W is the maximal disturbance set.

Proof. This follows by observing that Z|X is the collec-
tion of fixed points for all x ∈ X. Thus if X is fixed it will
preserve this property for all wx such that x = Ax + wx

Furthermore if W is maximal but it does not contain a
pair (x,wx) such that x = Ax+ wx then such x ̸∈ X.

We will later prove that fixed points (x, (I − A)x) ∈ ∂W
whenever x ∈ ∂X.

3.2 Open Fixed Sets

We now give a first application of maximal disturbance
sets. As mentioned above, the closure, (7), of the map
(8) was necessary in Townsend et al. (2024) as the set
recursions (9) and (10) could converge to open sets whose
closure was not invariant. Control over the disturbance set
allows us to address this generation of open sets.

Lemma 9. Suppose X is not closed and is a fixed point of
F ′ with maximal disturbance set W. Then W is not closed
and cl(X) is a fixed point of F ′ with maximal disturbance
cl(W).

Proof. Let (xi) ⊂ X be a sequence converging to x. As
X is a fixed point of F ′ for each xi there must be wi such
that

xi+1 = Axi + wi



As W is maximal we have that (xi, wi) ∈ W. As (xi)
converges to x the sequence is Cauchy. So for any ε > 0
there is I such that

∥xi − xi+1∥ <
ε

1 + ∥A∥
for all i ≥ I. Whilst not essential we note ∥A∥ < 1 and is
constant. We consider the sequence (wi).

∥wi − wi+1∥ = ∥Axi + wi −Axi+1 − wi+1 +Axi+1 −Axi∥
≤ ∥Axi + wi −Axi+1 − wi+1∥+ · · ·
· · ·+ ∥A∥ ∥xi+1 − xi∥

≤ ∥xi+1 − xi+2∥+ ∥A∥ ∥xi+1 − xi∥
< ε

i.e. the sequence (wi) is Cauchy and as the space is
complete it converges to a limit w. We have that

x = Ax+ w

If X is not closed W is not closed. Taking the closure of
X, we have that all limit points of sequences in X are now
added to X. These limit points are fixed points contained
in W. It remains to prove that cl(W) is maximal. Suppose
not. SupposeX is not closed and the limit point x ̸∈ X. We
have that x ∈ cl(X) and the sequence ((xi, wi)) ∈ W with
the limit point (x,w) ∈ cl (W). Let W ′ ⊃ cl (W) be the
maximal disturbance set for cl (X). Take (x, ŵ) ∈ W ′ \W.
As cl (X) is fixed under W ′ we have

Ax+ ŵ = y ∈ cl (X)

We observe there must be a sequence (yi) ⊂ X which
converges to y ∈ cl (X). By maximality of W for each i
there is (xi, ŵi) ∈ W such that

Axi + ŵi = yi

The sequence (ŵi) limits to ŵ i.e. (x, ŵ) ∈ cl (W). Contra-
dicting the assumption that W ′ ⊃ cl (W).

Lemma 10 revisits the classical case of state-independent
bounded disturbance w ∈ V . For such disturbances, the
mRPI exists and is given by

X := cl

( ∞⊕
i=0

AiV

)
(11)

We note without taking the closure that (11) may result
in a non-closed set and in the state-independent case X is
invariant if and only if

⊕∞
i=0 A

iV is invariant.

Lemma 10 discuss the maximal disturbance set starting
from the classical construction

V := X × V

where X is as in (11).

Lemma 10. Suppose (1) is subject to the state-independent
bounded disturbance V. Then V is not maximal.

Proof. In this case the mRPI set exists and is

X := cl

( ∞⊕
i=0

AiV

)
⊃ V

The maximal allowable disturbance at 0 is

W (0) = X

As the maximal disturbance set

W ⊇ W (0) ∪ V
We thus conclude that V is not maximal.

4. CONSTRUCTION

We first consider disturbances which generate unique con-
vex fixed sets i.e. disturbances such that (1) admits a
convex mRPI. In which case we can explicitly construct
the maximal disturbance set. We then demonstrate how
to combine such disturbance sets so we may obtain the
maximal disturbance set for any fixed set.

We restrict our analysis to closed invariant sets. However
we may consider open or semi-open invariant sets by
removing extremal points from the invariant set X and
the associated maximal disturbance set W.

For notational convenience we introduce the map f(z) =
f(x,w) := Ax+ w.

4.1 Convex mRPI

Theorem 11. The mRPI set X is convex if and only if the
maximal disturbance set W is convex.

Proof. Suppose X is non-convex. As W is maximal we
have that W (0) = X. Thus, by the non-convexity of X,
there exist (x1, 0), (x2, 0) ∈ W and λ ∈ (0, 1) such that

λ(x1, 0) + (1− λ) (x2, 0) ̸∈ W

Suppose X is convex but W is non-convex and maximal.
There exist (x,wx), (y, wy) ∈ W and λ ∈ (0, 1) such that

λ(x,wx) + (1− λ)(y, wy) ̸∈ W
However

λf(x,wx) + (1− λ)f(y, wy) ∈ X

by the convexity of X, where

f : Rn×n → Rn : (x,w) 7→ Ax+ w

Furthermore as f is linear

λf(x,wx) + (1− λ) f(y, wy)

equals
f (λx+ (1− λ) y, λwx + (1− λ)wy)

i.e. the pair

z := (λx+ (1− λ) y, λwx + (1− λ)wy)

maps to a point in the mRPI X and therefore there exists
z ∈ W ′. Hence z ̸∈ W contradicts the maximality of W.

For convex X we may characterise the maximal distur-
bance set W as the convex hull of some set of extremal
points. In Lemma 12 we relate the extrema of W to those
of X.

Lemma 12. Suppose X is the convex mRPI set with
respect to the maximal disturbance set W. Then ex(X)
and ex(W) are the extremal points of X and W if and
only if

ex (W) = {(xj , xi −Axj) : xi, xj ∈ ex(X)}

Proof. Take

z ∈ {(xj , xi −Axj) : xi, xj ∈ ex(X)}
We have

f(z) = f(xj , xi −Axj) = Axj + xi −Axj = xi ∈ ex(X)

If z is not extremal either z ∈ int (W) or there exist
z1, z2 ∈ ex(W) and λ ∈ (0, 1) such that

z = λz1 + (1− λ) z2



In the first case there is ε > 0 such that Bε(z) ∈ W. Hence
the point

(1 + ε)z ∈ W
We have

f ((1 + ε)z) = (1 + ε)f (xj , xi −Axj) = (1 + ε)xi

Contradicting the assumption that xi ∈ ex(X). In the
second case, using the linearity of f

f(z) = λf(z1) + (1− λ) f(z2) = λxk + (1− λ)xl

which implies
xi = λxk + (1− λ)xl

contradicting xi ∈ ex(X). Hence

{(xj , xi −Axj) : xi, xj ∈ ex(X)} ⊆ ex (W)

Furthermore as W is convex

co ({(xj , xi −Axj) : xi, xj ∈ ex(X)}) ⊆ W

Take

z ∈ ex (W) \ {(xj , xi −Axj) : xi, xj ∈ ex(X)}
As W is restricted to X we know for z = (x,w) ∈ W that
x ∈ X. By convexity of X we have

x = λxi + (1− λ)xj

For some xi, xj ∈ ex(X) and λ ∈ [0, 1].We have f(z) =
γxk+(1− γ)xl ∈ X for some xk, xl ∈ ex(X) and γ ∈ [0, 1].
Thus

f(z) = Ax+w = A (λxi + (1− λ)xj)+w = γxl+(1−γ)xk

Re-arranging for the disturbance

w = γxl + (1− γ)xk − λAxi − (1− λ)Axj

We have the points

z1 := (xi, xl −Axi) , z2 := (xi, xk −Axi) ,

z3 := (xj , xl −Axj) , z4 := (xj , xk −Axj)

are in ex (W) and the convex combination

λ (γz1 (1− γ) z2) + (1− λ) (γz3 (1− γ) z4) = (x,w)

i.e. (x,w) ∈ co ({(xj , xi −Axj) : xi, xj ∈ ex(X)}) Contra-
dicting (x,w) being an extremal point.

In the case when X is convex the extrema of X correspond
with the extrema of W. This is proven in Corollary 13
which also establishes that no extrema of X map to the
same extrema of W.

Corollary 13. Let X and W be as in Lemma 12. Then

|ex (W)| = |ex (X)|2

Proof. We note that each extremal point of W is unique.
As if

(x1, x2 −Ax1) = (x3, x4 −Ax3)

Then we have x1 = x3 which implies that x2 = x4. For
each xi there are therefore |ex(X)| distinct points of the
form

(xi, xj −Axi)

4.2 Union of Convex mRPI

We now construct maximal disturbance sets for non-
convex fixed sets from the maximal disturbance sets for
convex fixed sets.

We may express a general fixed set as an arbitrary union of
convex sets. This union will be fixed under the union of the
individual maximal disturbance sets. However the union

of the maximal disturbance sets is not itself maximal. To
address this we define

U(i, j) :=
⋃

x∈Xi

{(x,w) : Ax+ w ∈ Xj , j ̸= i}

which is the set of state-disturbance pairs which map
between fixed sets Xi and Xj and denote by

U(i) :=
⋃
j ̸=i

U(i, j)

Lemma 14 gives the maximal disturbance set for the union
of arbitrarily many fixed sets in terms of U(i) and the
individual maximal disturbance sets.

Lemma 14. Suppose {X1, · · · , Xn, · · ·} are fixed sets with
maximal disturbance sets {W1, · · · ,Wn, · · ·}. Then

W :=
⋃
i

(Wi ∪ U(i)) (12)

is the maximal disturbance set such that
⋃

i Xi is fixed.

Proof. Suppose

X :=
⋃
i

Xi

is a fixed set. Take x1 ∈ X1 and w such that

y := Ax1 + w ∈ X

if y ∈ X1 then w ∈ W1 as W1 is maximal. Otherwise if
x1 ∈ Xj ̸= X1 we have

w ∈ {(x,w) : Ax+ w ∈ Xj and x1 ∈ X1}

⊆

(⋃
i

( ⋃
x∈Xi

{(x,w) : Ax+ w ∈ Xj , j ̸= i}

))
Let W be a disturbance set. Then for any x, y ∈ X there
exists w such that Ax+ w = y and (x,w) ∈ W i.e. X is a
fixed set with respect to W.

We observe that because W is a maximal disturbance set
it is convex if and only if

⋃
i Xi is convex.

Convexity and extrema of U We now consider the
geometry of the components of the maximal disturbance
set. In Lemma 15 we characterise the convexity of the
sets U(i, j) in terms of the convexity of the mRPI sets
Xi and Xj . The convexity of the sets U(i, j) much like Wi

depend solely on the convexity of each mRPI set and not
the union.

Lemma 15. The set U(i, j) is convex if and only if Xi and
Xj are convex.

Proof. Take (x,w), (y, v) ∈ U(i, j). Consider

f

(
λ

(
x
w

)
+ (1− λ)

(
y
v

))
= · · ·

· · · = A (λx+ (1− λ)y) + λw + (1− λ)v

As Xi is convex

p := λx+ (1− λ) y ∈ Xi

Defining h := f(x,w) and g := f(y, v), convexity of Xj

implies
λh+ (1− λ)g ∈ Xj

Thus, for the disturbance u defined as

u := λw + (1− λ)v

We have
Ap+ u ∈ Xj



Now, suppose Xi is not convex i.e. there are x, y ∈ Xi and
λ′ ∈ (0, 1) such that

p := λ′x+ (1− λ′)y ̸∈ Xi

As there exists a pair (x, ·), (y, ·) ∈ U(i, j) but no pair
(z, ·) ∈ U(i, j) we have that U(i, j) is non-convex. Suppose
instead that Xj is non-convex i.e. there exist h, g ∈ Xj and
λ′ ∈ (0, 1) such that

λ′g + (1− λ′)h ̸∈ Xj

Let (x,w), (y, v) ∈ U(i, j) such that

f(x,w) = g and f(y, v) = h

We see that

λ′(x,w) + (1− λ′)(y, v) ̸∈ U(i, j)

Lemma 16 characterises the extrema of U(i, j) in terms of
the extrema of Xi and Xj .

Lemma 16. (Extrema of U). Suppose Xi and Xj are con-
vex. Then a point (x,w) ∈ ex(U(i, j)) if and only if
x = xi ∈ ex(Xi) and w = xj −Axi where xj ∈ ex(Xj).

Proof. We know U(i, j) is convex by Lemma 15

Suppose (xi, w) ∈ ex(U(i, j)) but xi ̸∈ ex(Xi) i.e. there
exists λ and x1, x2 ∈ Xi such that

xi = λx1 + (1− λ)x2

In this case (
xi

w

)
= λ

(
x1

w

)
+ (1− λ)

(
x2

w

)
the points (x1, w), (x2, w) ∈ U(i, j) by convexity of U(i, j)
i.e. (xi, w) is not extremal. Similarly if xj ̸∈ ex(Xj).
Suppose for xi ∈ ex(X) there exists (x,w) ∈ ex(U(i, j))
such that w ̸= xk −Axi for xk ∈ ex(Xj). We have

f (xi, w) = Axi + w =
∑
j

αjxj ∈ Xj

where the final equality follows by the convexity of Xj .
Thus

w =

∑
j

αjxj

−Axi =
∑
j

αj (xj −Axi)

Contradicting (xi, w) ∈ ex(U(i, j)).

The converse follows by linearity.

4.3 Convex Hull of Fixed Sets

We conclude this section with Theorem 17 which proves
that the maximal disturbance set for the convex hull of
the union of mRPI sets is the convex hull of W.

Theorem 17. Suppose {X1, · · · , Xn, · · ·} are mRPI sets
with maximal disturbance sets {W1, · · · ,Wn, · · ·}. Then

co (X) = co

(⋃
i

Xi

)
has maximal disturbance set co (W).

Proof. We show the extrema of the maximal disturbance
set for co (X) are identically the extrema of co (W).

The extrema

ex (co (X)) ⊆
⋃
i

ex (Xi) (13)

Let Ŵ be the maximal disturbance set for co (X). By
Lemma 12 we have

ex(Ŵ) = {(x1, x2 −Ax1) : x1, x2 ∈ ex (co(X))} (14)

We have x1 ∈ Xi and x2 ∈ Xj for some – potentially equal
– Xi and Xj .

Now consider the extrema of co (W).

ex (co (W)) ⊆
⋃
i

(ex (Wi) ∪ ex (U(i))) (15)

The extrema of U(i) cover the case when x1, x2 belong to
distinct Xi and Xj and the extrema of Wi cover the case
when x1, x2 belong to the same Xi – where x1, x2 are as
in (14).

It now remains to show that if there is an extremal point
in RHS of (13) which is not in LHS of (13). Then the
corresponding extremal point is not in the LHS of (15)
and the converse.

Suppose x1 is in the RHS of (13) but is not in the LHS of
(13) i.e. x1 ∈ ex(Xi) but x1 ∈ int (Xj) for some j ̸= i.

x1 = λxj + (1− λ)x̂j

where xj , x̂j ∈ ex(Xj). Consider the point(
x1

y −Ax1

)
∈ U(i, j)

We may rewrite this as

λ

(
xj

y −Axj

)
+ (1− λ)

(
x̂j

y −Ax̂j

)
∈ ex (Wj)

Thus for each extremal point missing in the LHS of (13)
there is an extremal point missing in (15).

5. EXAMPLE

Consider the system

x(k + 1) = 0.5x(k) + w(k) (16)

We give of the maximal disturbance set for the union of
two convex mRPI sets

X1 := [−1, 1] and X2 := [3, 5]

These sets are shown by the solid red lines in Figure 1.
There respective maximal disturbance sets are given by
the shaded blue and green regions. The set

U(1, 2) = co ({(−1, 5.5), (−1, 3.5), (1, 4.5), (1, 2.5)})
is shown by the orange region and the set

U(2, 1) = co ({(5,−3.5), (5,−1.5), (3,−2.5), (3,−0.5)})
is shown by the purple region.

We also give the convex hull co(X1∪X2) = [−1, 5] which is
the solid black line. The maximal disturbance set co (W)
is shown as the black shaded region.

6. CONCLUSIONS

We developed results which describe the invariant sets
of discrete linear dynamic systems affected by additive
disturbances. By imposing the requirement that a certain
set be invariant, we addressed what were the maximal
state-dependent bounds on the additive disturbances that
ensure the given set was positively robust invariant.



Fig. 1. The maximal disturbance set for the union of two
convex mRPI sets X1 ∪ X2 for the system (16). We
also show the maximal disturbance set for the convex
hull co(X1 ∪ X2). The fixed points of (1) are shown
by the dotted pink line.

A series of geometric and topological properties have been
established between the fixed set of the set mappings and
the maximal disturbance set.

Further studies will allow a characterisation of how the
maximal disturbance sets evolve by scaling or other oper-
ations on the invariant sets.

Of most interest is to extend the maximal disturbance sets
beyond the fixed set X. Considering both the convex and
non-convex extensions. Knowing the maximal disturbance
set for the entire state-space would enable us to determine
if a given general disturbance admits a desired invariant
set.
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