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Abstract

We propose an unfolded accelerated projected-gradient descent procedure to esti-
mate model and algorithmic parameters for image super-resolution and molecule
localization problems in image microscopy. The variational lower-level constraint
enforces sparsity of the solution and encodes different noise statistics (Gaus-
sian, Poisson), while the upper-level cost assesses optimality w.r.t. the task
considered. In more detail, a standard ℓ2 cost is considered for image reconstruc-
tion (e.g., deconvolution/super-resolution, semi-blind deconvolution) problems,
while a smoothed ℓ1 is employed to assess localization precision in some exem-
plary fluorescence microscopy problems exploiting single-molecule activation.
Several numerical experiments are reported to validate the proposed approach
on synthetic and realistic ISBI data.

Keywords: Algorithmic unfolding, imaging inverse problems, localization,
reconstruction, fluorescence microscopy imaging.
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1 Introduction

Imaging ill-posed inverse problems are ubiquitous in many applied fields where
the quantities observed vary from cells to galaxies [1]. In the field of fluorescence
microscopy, for instance, common sources of degradation are light diffraction and
noise interference due to photon-counting processes and the electronics of the acqui-
sition device. Due to these degradation effects, observed data typically reveal little
amount of information, being limited in spatial resolution and presenting several arte-
facts caused by possible optical aberrations and/or background (or auto-)fluorescence
effects. Mathematically, the image formation model mapping the unknown infor-
mative image utrue ∈ Rn onto its corresponding noisy and low-resolution version
f ∈ Rm,m < n can be naturally formulated as:

f = N(Autrue + b), (1)

where A = SH ∈ Rm×n is the product of a convolution matrix H ∈ Rn×n describing
the convolutional action of the Point Spread Function (PSF) of the instrument on u
and S ∈ Rm×n is a down-sampling operator modelling the loss of resolution, b ∈ Rm

is the (possibly space-variant) background image containing out-of-focus fluorescent
molecules, while N : Rm → Rm models an interference process introducing noise.
In the case of additive white Gaussian noise, for instance, N(z) = z + n with n ∼
N (0, σ2Id) while in the case of signal-dependent Poisson noise N(z) = Poiss(z), that
is the realisation of a multi-variate Poisson process with mean and variance z ∈ Rm.
Those noise distributions are the ones classically considered in a microscopy setting
[2, 3], although more relevant mixed [4–7] and/or multiplicative processes can also be
considered.

Variational regularization: modelling and optimization.

To counteract the instabilities arising when attempting to solve (1) by direct inversion,
the field of Bayesian approaches and variational regularisation has proved effective
in a plethora of applications, see, e.g., [8, 9] for surveys. In a Bayesian setting, the
reconstruction procedure is formulated as an optimisation process in the form

argmin
u

(D(u; f,A, θ1) +R(u; θ2) =: Ef (u; θ)) , (2)

where D(u; f,A, θ1) is a data fidelity term whose expression depends on the statistics
of the noise, while R(u; θ2) is a regularization term which models a-priori knowledge on
the solutions (such as sparsity or smoothness). The hyperparameters θ ∈ RΘ represents
all the (hyper)parameters the energy depends on. The first and most natural of them is
the regularization parameter, which we indicate with ρ ∈ R, and balances the tradeoff
between the two terms of the energy.

From an optimization perspective, solving the composite problem (2) may be quite
challenging. Convex data and regularization terms (such as, e.g., D(u; f,A, θ1) =
1
2∥Au − f∥2 and R(u; θ2) = θ2∥u∥1) have been extensively employed over the last
years, motivated by the success of compressed sensing in this field [10, 11]. Standard
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first-order algorithms solving such composite problem (possibly incorporating further
convex constraints) rely on the use of proximal-based algorithms. Among them, itera-
tive proximal-gradient [12], primal-dual [13] and splitting-based approaches [14] have
been successfully employed (see also [15] for a review), possibly coupled with acceler-
ation techniques improving the convergence speed [16, 17]. Whenever proximal points
can be expressed in closed-form (as it happens in the case of ℓ1 regularization, possibly
combined with orthogonal transformations), proximal-gradient or forward-backward
algorithms are often regarded as the simplest approaches for solving structured, con-
vex composite problems in the form (2). For standard ℓ2-ℓ1 problems the use of such
algorithm dates back to [18] under the name of Iterative Soft-Thresholding Algorithm
(ISTA) which was used as an effective regularization procedures for linear ill-posed
inverse problems with sparsity constraints. Given an initialization point u0 ∈ Rn and a
step-size parameter α ≤ 1/∥A∥2 guaranteeing convergence, the ISTA iteration defined
for k ≥ 0 reads:

u(k+1) = Tαθ2
(
u(k) − αAT (Au(k) − f)

)
= Tαθ2

((
Id− αATA

)
u(k) + αAT f

)
, (3)

where Tαθ2 : Rn → Rn is the soft-thresholding operator defined component-wise by
Tαθ2(z) = max (|z| − αθ2, 0) sign(z).

Parameter estimation.

A crucial challenge in the design of variational models in the form (2) is the choice of
the fidelity/regularization parameters θ = (θ1, θ2) which, potentially, may lie in a very
large dimensional space RΘ, |Θ| ≫ 1. They make the regularization functional R(·; θ2)
expressive enough to encode the desired solution properties and balance its action
against the data fit which, depending on θ1 ∈ RΘ1 may encode possible local noise
dependence. Classical approaches addressing hyper-parameter estimation problems are
based on prior knowledge of the noise level [19, 20], (heuristic) study of regularization
paths/Pareto fronts and cross-validation, see, e.g. [21]. Over the last decade, however,
the increasing availability and access to data, favoured the development of machine-
and deep-learning based approaches for parameter estimation. The general idea of
such methods consist in optimizing model parameters (even when the regularizer is
parametrized as a neural-network) by minimizing some task-dependent quality metric
assessing proximity (in some sense) to reference image data, see [22–24] for a review.
Having in mind a close connection with the optimization framework of optimization-
based iterative schemes such as (3), among the plethora of data-driven approaches
for imaging, we focus here on the two particular classes of bilevel optimization and
algorithmic unrolling techniques, see [25] and [24] for review papers, respectively.

Bilevel optimization and algorithmic unrolling.

As it will be described in more detail in Section 2, bilevel learning approaches compute
optimal hyper-parameters θ in (2) by comparing the solution u∗(θ) of the problem
with ground truth data w.r.t. some assessment metric. They thus naturally read as
a nested optimization problem where the variational model serves to constrain the
space of possible solutions. Bilevel approaches have been widely used in the context
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of variational image reconstruction [25–30] and machine learning [31–34] and offer an
interesting and sound perspective for learning hyperparameters in regularized inverse
problem formulations. Algorithmic unrolling is a somehow similar approach where an
explicit writing of the first K ∈ N iterations of an iterative algorithm as a function
of the initial point u0 and the model parameters is interpreted as the output u(k)(θ)
of a K-layer neural network (with suitable activation functions) to be matched with
ground-truth data. Taking the ISTA iteration (3) as a toy example, in [35] an unrolled
version of ISTA (therein called Learned ISTA, LISTA) was considered. Using the
notation above, the main idea there consists in learning parameters {α, θ2,We,Wt}
such that for k = 0, . . . ,K

u(k+1) = Tαθ2
(
Weu

(k) +Wtf
)
, (4)

thus resembling (3) but being potentially more expressive being a-priori not connected
to the minimization of any underlying variational problem.

Algorithmic unrolling is nowadays a popular strategy to solve inverse problems, see,
e.g., [24, 36–38] for some relevant references and [39, 40] for connections with bilevel
optimization and Deep Equilibrium Models. Depending on the particular problem and
algorithm at hand, choosing to learn all problem parameters at once in an end-to-end
fashion may be not ideal especially in applications involving known physical models
(typically, encoded in the choice of the operator A or in the modelling of the data-fit
D) which one would like to keep fixed.

A case study: reconstruction and localization in fluorescence microscopy.

In fluorescence microscopy imaging, the physical limitations imposed by light diffrac-
tion makes the accurate reconstruction and analysis of small biological samples very
challenging. For standard microscopes structures closer to ∼ 250 nm in the x-y plane
cannot be distinguished. Super-resolution fluorescence microscopy techniques [41–43]
aim to overcome such barrier, allowing resolution (i.e., minimal distance between two
distinct objects) up to 20 nm [44, 45]. In this context, photons emitted by photo-
activable fluorescent molecules are captured by detectors after passing through special
lenses and optical devices, which limit spatial resolution due to light diffraction. Such
process can be modelled by (1) as a convolution of the emitters with the microscope
PSF, thus producing blurred and low-resolution measurements featuring also noise
distortions due to electronic interference and a (possibly space-variant) background
term accounting for out-of-focus molecules.

Among the many super-resolution techniques proposed in the microscopy com-
munity to address this challenge, some have attracted the attention of the applied
mathematics community working on signal and image processing. The former has
been popularized under the name of Single Molecule Localization Microscopy (SMLM)
approaches, see, e.g., [46] for a review. Here, the idea consists in acquiring a tem-

poral sequence of images {ft}Tt=1 where at each frame t only a small percentage of
special photo-activable fluorescent molecules is active, thus making the detection of
nonzero elements in the corresponding image ut (that is, the localization process) eas-

ier. A super-resolved image uSR is thus obtained by averaging uSR = 1
T

∑T
t=1 ut. A
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mathematical modelling of this problem relies, essentially, on the use of sparsity-based
regularization techniques for accurate localization, either in a convex [47] or nonconvex
[48, 49] regime. Parameter selection plays here a crucial role and their brute-force opti-
mization could be a tedious task. Other approaches to SMLM make use of end-to-end
deep learning procedures for accurate localization upon suitable training [50].

Some other techniques require less specific fluorescent molecules being based on
the estimation of a super-resolved image by exploiting only a temporal sequence of
images whose intensity fluctuations are analyzed typically in terms of their second-
order statistics [51–55]. Those techniques are better suited to standard biological set
ups where the repeated ON-OFF processes typical of SMLM may be harmful for the
sample under observation. In these settings, a modelling similar to (1) but reformulated
in a covariance domain is considered (see Section 3.2 for more details).

Contribution.

In this work, we unroll an accelerated projected gradient descent (APGD) scheme to
estimate optimal parameters for a (smoothed) ℓ2-ℓ1 regularization problem endowed
with a non-negativity constraint. In the framework of fluorescence microscopy imag-
ing, this simple regularization model can be effectively used for both reconstruction
and molecule localization purposes. Given the intrinsic difference between these two
tasks, we consider in the following task-adapted evaluation metrics estimating opti-
mal algorithmic parameters depending on the specific objective considered. We report
several numerical experiments confirming the validity of the approach on exem-
plary deconvolution/super-resolution problems classically encountered in fluorescence
microscopy, also in a semi-blind scenario in the context of fluctuation-based microscopy
for estimating the shape of the blurring function encoded by the operator A.

2 Models and algorithms

We review the mathematical formulation of the bilevel optimization schemes con-
sidered and consider their unrolled versions, making precise the models considered
to deal with the reconstruction/localization problems encountered in the microscopy
applications considered.

2.1 From bilevel optimization to algorithmic unrolling

Bilevel optimization approaches [25–34] rely on a supervised data-driven approach
to estimate model and algorithmic hyperparameters. Given a training dataset D =
{(ft, gt) : t = 1, . . . , T}, where ft is a corrupted (noisy, blurred, low-resolution) version
of the ground truth image gt, the problem problem of estimating optimal parameters
θ̂ can be formulatedθ̂ ∈ argmin

θ∈Rp

∑T
t=1 L(u∗t (θ), gt)

s.t. u∗t (θ) ∈ argmin
u

Eft(u; θ) t = 1, . . . , T.
(5)
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Essentially, it consists in two nested optimization problems, where the inner (or lower)
one feeds its result to the outer (or upper) one which is used to assess optimality of the
estimation w.r.t. task-dependent evaluation loss. The ultimate goal of the scheme is to
find an optimal set of parameters θ̂ which optimizes the performance of the underlying
variational model.

Solving (5) requires the development of (gradient-based) optimization methods
searching for the optimal parameters configuration minimizing the outer loss function.
For that, the computation of the minimizers u∗t (θ) for t = 1, . . . , T of lower-level
functional is required, which is often unfeasible. Most of the time, it is thus necessary
to use iterative schemes solving the variational lower-level constraint under a fixed
computational budget (that is fixed amount of iterations), thus leading to approximate
minimizers and, ultimately, inexact computations of the gradient of the outer loss.
This idea stands at the very basis of algorithmic unfolding [24, 36]. Mathematically
this can be modelled by replacing (5) with the unrolling over K ≥ 1 iterations of an
optimization algorithm A, such that:

u∗t (θ) ≈ AK(ft; θ) (6)

so that optimization is performed for a fixed number of iterations K. By expanding
the expression of the computed quantity from k = K till k = 0 it is thus possible
to have a compact expression of uKt (θ) which can be used for differentiating over
the desired hyperparameters θ, see, e.g., [28]. Note that, depending on the particular
choice ofA, in addition to model parameters (such as regularization parameters and/or
quantities related to the forward model), algorithmic parameters (such as algorithmic
step-sizes) can also be learned. Once the training phase has been completed and an

optimal configuration of parameters θ̂ has been found, one can simply apply the trained
algorithm AK(·; θ̂) on new unseen data.

2.2 A model for sparse reconstruction/localization

We describe in this section the variational model employed to solve localization and
reconstruction problems often encountered in the framework of microscopy as in the
case, for instance, of Single Molecule Localization methods [47–49]. In order to consider
an unrolled bilevel strategy (5)–(6), some details on the the algorithm A considered
and on the training procedure employed (with a particular focus on the choice of the
loss function L are also given.

Localization and reconstruction by sparse optimization.

We consider the following ℓ1 sparse reconstruction approach with a non-negativity
constraint:

Ef (u; θ) = D(Au; f, bg) + ρ∥u∥1 + ιRn
+
(u), ιRn

+
(u) :=

{
0 u ∈ Rn

+

+∞ otherwise
, (7)

where Rn
+ = {u ∈ Rn : ui ≥ 0, i = 1, . . . , n} and bg ∈ R represents a constant positive

background term which can be used both for modelling, see, e.g., [56]. Note that the
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non-negativity constraint makes the ℓ1-norm differentiable. In this work we make use
of the ℓ1-norm as a convex approximation of the ℓ0 pseudo-norm in a compressed
sensing fashion [10, 11].

The fidelity term D enforces proximity between the physical modelling and the
observed data depending on the particular modelling of the noise statistics. In
particular we consider the two choices:
(i) (Additive white Gaussian noise) D(Au; f) = 1

2∥Au− f∥22
(ii) (Poisson noise) D(Au; f, bg) = KL(Au + bg; f) =

∑m
i=1(Au)i + bg − fi −

fi log
(

(Au)i+bg
fi

)
.

Fidelity (i) is the quadratic penalty classically employed to model the presence of
additive white Gaussian noise [2], while fidelity (ii) is the Kullback-Leibler (KL) used
to model signal-dependent Poisson noise [56, 57]. Note that both functionals are convex
and Lipschitz differentiable on the non-negative orthant. However, the KL divergence
might present some numerical instability issues due to the presence of the logarithm
for very small values of original (fi) and/or reconstructed (Au)i + bg components of
the data. We consider in the following an algorithmic unfolding procedure estimating
optimal hyperparameters for (7) coupled for the two data terms above to assess and
compare the performance of both models on localization and reconstruction problems.

Solving the lower-level problem via accelerated projected gradient descent.

By solving (5) via algorithmic unrolling (6), the computation of the loss gradient
can simply be done via backpropagation, provided that the single iteration of A is
differentiable. Given the composite structure of problem (7), we consider as AK(f ; θ)
K iterations of an accelerated projected gradient descent endowed with a smoothed
differentiable projection initialized by taking f as starting point:

Algorithm 1: Accelerated Projected Gradient Descent

Input: f ∈ Rm.
u(0) = u(−1) = f
For k = 0, ...,K − 1
v̄(k) = u(k) + βk(u

(k) − u(k−1))

v(k) = Π(v̄(k))

w(k) = v(k) − αk∇uEf (v
(k); θ)

u(k+1) = Π(w(k))
u∗ = u(K)

Output: u∗.

The map Π : Rn → Rn
+ has been used in [30]: it is the smoothed version of the

standard (non-differentiable) Euclidean projection. In particular, for an arbitrarily
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small ε > 0, Π acts component-wise on u ∈ Rn as:

(Π(u))i =

{(
2− ui

ε

) u2
i

ε , ui ∈ (0, ε)

max (ui, 0) otherwise
.

By definition Π acts as the Euclidean projection outside the interval (0, ε), while it
coincides with a third degree polynomial interpolating the points (0, 0) and (ε, ε).

Algorithm 1 is an instance of Accelerated Projected Gradient descent [16, 17] with
a smoothed projection. The sequence {βk}K−1

k=0 of inertial parameters can be chosen as

βk =

{
0 if k = 0
k−1
k+2 if k ≥ 1

,

which was shown in [58] to guarantee weak convergence of the iterates. The sequence of
step-size parameters {αk}K−1

k=0 can be set either to a constant equal to the inverse of the
Lipschitz constant of ∇uEf , or adaptively chosen using, e.g., monotone Armijo-type
rules [17]. In the following we let this sequence to be learned.

Since the general k-th iteration of A is differentiable, it is possible to compute
the gradient of a differentiable loss function by simple backpropagation procedure.
Namely, for one training sample (f, g) and one parameter θj we have:

∂L(u(K)(θ), g)

∂θj
=

(
∂u(K)(θ)

∂θj

)T
∂L(u(K)(θ), g)

∂u
. (8)

The chain rule can then be applied through ∂u(K)(θ)
∂θj

= ∂
∂θj

A(u(K−1); θ). With a small

abuse of notation and denoting by Π′(v) the diagonal Jacobian matrix of Π evaluated
at v, we have

∂u(K)(θ)

∂θj
= Π′(w(K−1))

∂

∂θj

(
v(K−1) − αK−1∇uEf (v

(K−1); θ)
)

(9)

= Π′(w(K−1))
(
In − αK−1∇2

uuEf (v
(K−1); θ)

) ∂v(K−1)

∂θj
(10)

− αK−1Π
′(w(K−1))

∂

∂θj
∇uEf (v

(K−1); θ), (11)

where In is the identity matrix of size n× n and

∂v(K−1)

∂θj
= Π′(v̄(K−1))

(
(1 + βK−1)

∂u(K−1)(θ)

∂θj
− βK−1

∂u(K−2)(θ)

∂θj

)
, (12)

so that the computations can be repeated for ∂u(K−1)(θ)
∂θj

and ∂u(K−2)(θ)
∂θj

until u(0) = f .

In the computations above, the quantities ∇2
uuEf (v

(k); θ) and ∇2
θuEf (v

(k); θ) are
present, which requires the conditions:

8



- E is twice continuously differentiable, with ∇2
uuE invertible;

- ∇uE is differentiable with respect to θ.

Both properties are satisfied by the energy function (7). Note that such conditions are
quite restrictive for more effective sparsity-promoting regularization terms approxi-
mating the ℓ0 pseudo-norm, such the continuous exact relaxations CEL0 studied in
[59, 60]. Indeed, just like the ℓ1-norm, such penalty is differentiable with respect to u
when the non-negativity constraint is taken into account, but its gradient is not dif-
ferentiable with respect to the regularization parameter that governs it (see Appendix
A).

The training loss functions.

In order to adapt the hyperparameter optimization to the particular task at hand
(reconstruction/localization), we consider in the following experiments two different
assessment metrics:

• (Reconstruction loss) a standard ℓ2-norm (corresponding to SNR optimization, as
done, e.g., in [26, 27]):

L2(u
∗(θ); gt) =

1

2
∥u∗(θ)− gt∥22, (13)

• (Localization loss) a smoothed ℓ1-norm with image binarization assessing localiza-
tion precision:

L1(u
∗(θ); gt) =

n∑
i=1

ψγ

(
(Bδ,c,ϵ(u

∗(θ))− g̃t)
2
i

)
. (14)

Note that in (13) gt is a ground-truth image from the training dataset while in (14)
g̃t is a binarized version of gt where each nonzero element is set as 1 or 255, depending
on the scaling. As observed in [61], in the field of microscopy (and in particular of
single-molecule localization approaches) is important to define tailored assessment
metrics adapted to the task at hand which may aim at either estimating the precise
intensity of the light they emit (and for such case (13) is a natural choice) or detect
whether model (7) has computed a reconstruction in the correct position, for which
a loss in the form (14) seems more natural. To allow the computation of derivatives,
we employ in definition (14) a function ψγ which is the Huber function defined, for
γ > 0, by:

ψγ(s) :=

{
s
γ s ≤ γ2

2
√
s− γ s2 > γ2.

(15)

The function Bδ,c,ϵ : Rn → Rn acts pixel-wise by binarizing the tentative recon-
struction u∗t (θ) for the current estimation of θ in order to compare it with g̃t. For a
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given image s ∈ Rn, by setting p̄ = maxi si, it is defined as

Bδ,c,ε(s) :=



0 s ≤ δ,(
2− s−δ

ε

) (s−δ)2

ε
p̄

2(c−δ) δ < s < δ + ε,
p̄

2(c−δ) (s− δ) δ + ε ≤ s ≤ 2c− δ − ε,

p̄−
(
2− 2(c−δ)−s+δ

ε

)
(2(c−δ)−s+δ)2

ε
p̄

2(c−δ) 2c− δ − ε < s < 2c− δ,

p̄ s ≥ 2c− δ.

(16)
We observe that such definition depends on three parameters: δ > 0 is the thresholding
parameter used to binarize into zeros and the value p̄, so that the point s = c is the one
getting transformed into p̄

2 . The parameter ε controls the smoothing intervals, which
are symmetric w.r.t. c, in the same way as in the projection Π previously described.
Figure 1 shows various shapes of Bδ,c,ϵ for three different values of δ. Ideally, we would
like to consider situations where c ≈ δ to have a sharp transition between the two
different regimes. Note that while this choice may look at a first sigh a complicated way
of assessing localization precision (as it introduces further parameters to estimate), in
practice ϵ does not need any fine-tuning provided it is sufficiently small. To obtain a
steep slope one could further choose c = δ + c0, with c0 > ϵ, still small. Under this
choice, the binarization actually becomes differentiable with respect to δ, which allows
for a strategy to learn δ as well. There holds indeed:

∂L1

∂δ
=

n∑
i=1

ψ′
γ ((Bδ,c,ϵ(u

∗(θ))− g̃t)i)
∂Bδ,c,ϵ(u

∗(θ))i
∂δ

. (17)

where

∂Bδ,c,ϵ(s)

∂δ
=



0 δ ≥ s
p̄

2c0

(
3 (s−δ)2

ϵ2 − 4 (s−δ)
ϵ

)
s > δ > s− ϵ

− p̄
2c0

s− ϵ ≥ δ ≥ s+ ϵ− 2c0

− p̄
2c0

(
4 2c0−s+δ

ϵ − 3 (2c0−s+δ)2

ϵ2

)
s+ ϵ− 2c0 > δ > s− c0

0 δ ≤ s− 2c0

, (18)

which can be used for defining gradient-type updates.

3 Numerical experiments

In this Section we illustrate the results obtained by unrolling Algorithm 1 applied to
model (7) for exemplar reconstruction/localization problems using different modelling
for the noise statistics and loss functions (13)–(14) for training the model.

Unless specified otherwise, we evaluate the quality of the images by averaging, over
all the T frame frames, the Peak Signal to Noise Ratio (PSNR) and the Jaccard index
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Fig. 1: Binarization in [0,1] with c = 0.5, ϵ = 10−4 for three different values of δ: 0.1
(blue), 0.25 (red), 0.49 (yellow).

defined by:

Jδ̃ =
# TP

(# TP) + (#FN) + (#FP)
∈ [0, 1] (19)

where TP, FN and FP denote True Positives, False Negatives and False Positives,
respectively. The parameter δ̃ > 0 is a tolerance parameter acting as follows: a recon-
structed pixel is counted as TP if it lies within a ball of radius δ̃ from a true molecule.
Figure 2 contains a visual representation of how the size of the tolerance value δ̃ influ-
ences the value of the Jaccard index. Given the a ground truth pixel a ̸= 0, let Bδ̃(a)

the ball of radius δ̃ around a. A point reconstructed within Bδ̃(a) is then counted as
TP, outside it is counted as a FP. A TN pixel corresponds to a GT point does not cor-
responding to any reconstruction within Bδ̃(a). In Figure 2a (δ̃ = 0) only a is counted

as a TP, whereas for δ̃ = 2, 4 (Figures 2b–2c) all points lying within the orange region
are counted as TP. Note, however, that if two elements are computed within Bδ̃(a),
only the closest to the GT point will be counted as a TP, with the other being a FP,
see Figure 2d.

In all experiments, the optimization of the upper level problem w.r.t. θ is carried
out via the Scaled Gradient Projection method (SGP) [62], so that we can impose
reasonable bounds on the parameters. Some of such bounds are natural (such as
the non-negativity of step-size parameters), but for some others some comments are
needed. In particular, as far as the choice of the regularization parameters is con-
cerned, in the case of a least squares term, we followed [63] and chose an upper bound
on ρ given by

ρmax = min
t

∥AT ft∥∞. (20)

It is easy to check that for all ρ > ρmax the trivial zero solution is obtained. For the
Poisson data term, such upper bound was chosen empirically. The upper bound on
δ was set at half the maximum pixel value to avoid null reconstructions. The lower
bounds were all set to 10−10.

Due to the nonconvex nature of the bilevel optimization problem (5), the initial
set of parameters θ(0) may have a major impact on the final results. For all set of
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(a) (b)

(c) (d)

Fig. 2: (a) Radius of correct detection for δ̃ = 0. (b) Radius of correct detection for
δ̃ = 2. (c) Radius of correct detection for δ̃ = 4. (d) Example in the case of δ̃ = 0: the
white pixel is the true molecule, the yellow pixel is counted as a TP, the red pixel is
FP as it is outside of the range, while the orange pixel is still counted as a FP even if
it is in range because the yellow one is closer to the true molecule.

experiments the initial configurations are reported in the tables with the results. Note
that the steplengths {αk}K−1

K=0 are all initialized to one same value α.

3.1 Single molecule localization microscopy.

3.1.1 Simulated data

We now consider a Single Molecule Localization Microscopy framework where taking
as a reference model (7), the unrolling strategy is used to learn optimal parameters
θ = (ρ, α0, . . . , αK−1) when considering the loss in (13) and θ = (ρ, δ, α0, . . . , αK−1)
for the loss in (14).

We first test our strategy on simulated data in order to check whether the Localiza-
tion loss (14) promotes better localization properties than (13). We consider a data set
of 10 ground truth images gt containing each between 75 and 150 randomly activated
pixels with values in the range U = [100, 255]. The size of these (vectorized) images
is n × n = mL ×mL, where L = 4 is the super-resolution factor and m = 64 is the
size of the downsampled image. The underlying linear model is described by an oper-
ator A = SH being the composition of a convolution operator H ∈ Rn2×n2

describing
the convolution of a Gaussian PSF with standard deviation 2.5, and S ∈ Rm2×n2

, a
down-sampling operator summing up pixel intensities for each 4× 4 patch of the fine
grid. Denoting by 1L and 0L the L× 1 arrays with constant entries equal to 1 and 0,

12



respectively, and considering the matrix

SL =


1L 0L · · · 0L

0L 1L · · · 0L

...
0L 0L · · · 1L

 ∈ Rm×n,

then the action of the operator S on a vectorized image x can be written as

Sx = vec
(
SL x̄ S

T
L

)
,

where vec(x̄) = x The resulting blurred and downsampled images are then corrupted
with additive white Gaussian noise with standard deviation σ = 0.15. As for the
unrolling, K = 190 iterates were used and the value c = δ + 0.01 is used in (16).

Table 1 shows the values of the Jaccard index (19) obtained on the 25 test images
for different tolerance values δ̃ ∈ {0, 2, 4}. At a first glance we notice that training the
model with (14) corresponds indeed to an improvement of the Jaccard values w.r.t.
training with (13). We remark that, in order to obtain meaningful results with (13),
a tailored dataset had to be considered. Our first tests showed that using, during
the training, images with the same density of molecules as those in the test set, the
quadratic loss would struggle to find a value of ρ big enough so that the images would
not be sufficiently sparse. To avoid that, we created a special dataset of very sparse
images containing only 4 non-zero pixels with random values in U and used it to train
the model with the L2 loss. This was done to assess whether reducing the density of
the activated pixels would lead to an improvement in terms of Jaccard index. Some
exemplary results are reported in Figure 3.

Table 1: Results for Experiment 1. R = Number of examples used in the training;
RS = Number of special examples used in the training. The test set is made by 25
images. For each quality measure, the best score across the models is in bold. The
last column reports the initial parameter configuration

Loss function R / RS J0 J2 J4 Avg. J PSNR Initial ρ, α, δ

L2 0 / 8 0.3878 0.4179 0.4179 0.4079 35.76 0.1, 0.1, n.a.

L1 10 / 0 0.7452 0.8480 0.8583 0.8172 33.09 0.1, 0.1, 50

3.1.2 ISBI super-resolution datasets.

We now test the unrolled localization/reconstruction procedures on the ISBI 2013
SMLM challenge data1. The dataset features 361 ground truth images. Each one has
approximately 200 pixels activated, with values in {1, 2, 3}. For our experiments we

1https://srm.epfl.ch/srm/index.php
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(a) (b) (c) (d)

Fig. 3: (a) Ground Truth gt. (b) Acquired ft. (c) Optimal reconstruction u(θ̂) obtained

by optimizing L2 (13). (d) Optimal reconstruction Bδ̂,c,ε(u
(K)(θ̂)) obtained by opti-

mizing L1 (14).

rescaled them so that the maximum value was 255. The PSF was obtained using
information provided by the challenge organizers: the observed data have sizem×m =
64 × 64 pixels of side 100nm. The PSF considered is a Gaussian convolution kernel
with Full Width at Half Maximum (FWHM) of 258.21nm. We consider L = 4 as a
super-resolution factor.

We created a training dataset {gt, ft} simulating different levels and types of noise:

- Gaussian noise with standard deviation 0.15.
- Poisson noise with constant low background emission b = 0.1.
- Poisson noise with constant high background emission b = 12.75.

Given the signal-dependence of Poisson noise on the signal, the higher is the
background b and the higher is the noise. The two scenarios considered thus model
low- and high-photon counts and serve us to assess the performance of the approach
over different noise statistics. Reconstruction and localization performances were thus
tested in this experiment for both upper-level loss functions (13)–(14) and for the
Gaussian/Poisson data fidelity functions.

In the following experiments, we set c = δ + 0.01 and used only 20 images of the
stack for training. The number of inner iterations was set to K = 300. All the results
are reported in Tables 2, 3 and 4. Both the widefield-type images of the ground truth
as well as their the acquired data/reconstructed ones for each dataset are reported in
Figure 4a/4, respectively. As a comparison, we report in Figure 4 (third column) the
reconstructions computed by using DeepSTORM [50], an end-to-end deep-learning
based procedure properly trained using the available Google COLAB notebook2 under
a physical parameter setting compatible with the datasets observed. Note that for
the DeepSTORM reconstructions the PSNR was computed on the final super-resolved
image and not frame-wise as the software outputs only the coordinates of the local-
izations (used to compute the Jaccard index values) and one final intensity image. We
note in this experiment that no apparent optimal choice between the Gaussian/Poisson
data term can be drawn as similar PSNR and Jaccard scores are obtained on the cor-
responding reconstructions. We argue that this can be due to the biases introduced

2https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab
notebooks/Deep-STORM 2D ZeroCostDL4Mic.ipynb
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by the regularization (which make less important the precise modelling of the noise
statistics) and by the overall non-convexity of the learning problem. As far as the
DeepSTORM reconstructions are concerned, we observe a general tendency to overes-
timate the reconstruction support with severe artefacts appearing in the background
in the case of high background.

Table 2: Results in the case of additive white Gaussian noise dataset. For
each quality measure, the best score across the models is in bold. The last
column reports the initial parameter configuration.

Model J0 J2 J4 Avg. J PSNR Initial ρ, α, δ

L2 0.1147 0.2175 0.2194 0.1839 34.27 4, 0.1, -

L1 0.1309 0.4889 0.5921 0.4040 22.45 4, 0.1, 5

DeepSTORM 0.0453 0.4563 0.5688 0.3568 20.10 -

Table 3: Results in the case of low Poisson noise dataset. For each column, the best
score across the models is in bold. The last column reports the initial parameter
configuration.

Model Fidelity J0 J2 J4 Avg. J PSNR Initial ρ, α, δ

L2 KL 0.0921 0.2633 0.3159 0.2238 33.94 50, 5·10−4, -
L2 ∥ · ∥2 0.1057 0.1205 0.1211 0.1158 34.74 4, 0.075, -

L1 KL 0.0907 0.4250 0.5924 0.3694 22.66 50, 5·10−4, 0.05
L1 ∥ · ∥2 0.1287 0.4494 0.5358 0.3713 22.52 4, 0.1, 5

DeepSTORM - 0.0381 0.4568 0.5890 0.3613 19.52 -

Table 4: Results in the case of high Poisson noise dataset. For each column, the
best score across the models is in bold. The last column reports the initial parameter
configuration.

Loss function Fidelity J0 J2 J4 Avg. J PSNR Initial ρ, α, δ

L2 KL 0.0589 0.0909 0.0987 0.0828 34.35 1, 1, n.a.
L2 ∥ · ∥2 0.0544 0.0778 0.0829 0.0717 34.36 20, 0.05, -

L1 KL 0.0982 0.3684 0.4771 0.3146 25.31 0.5, 0.5, 1
L1 ∥ · ∥2 0.0950 0.3902 0.5012 0.3288 25.74 20, 0.01, 3

DeepSTORM - 0.0106 0.1949 0.3185 0.1747 17.56 -
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J4 = 0.7097 J4 = 0.2959

J4 = 0.6551 J4 = 0.3378

J4 = 0.6569 J4 = 0.1133

(a) g = 1
T

∑T
t=1 gt

Fig. 4: Columns from left to right: low-resolution (widefield) image, reconstruction
computed by our approach, DeepSTORM [50] reconstruction. Datasets, from top to
bottom: Gaussian, Poisson noise with low background and Poisson noise with high
background. (a) represents the ground truth stack.

We now consider a different ISBI dataset 3, where ground truth images are obtained
by discretizing 2D positions of 8731 fluorescent molecules among which approximately
20 molecules are randomly activated at each frame for 436 ground truth training
images. To simulate a long emission (ON) time τem, we considered in this experiment

3https://srm.epfl.ch/DatasetPage?name=MT1.N1.LD
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a value τem > τacq, corresponding to the temporal resolution of the acquisitions. When
active, a fluorescent molecule is assigned a value in u = {0, 1, 2, 3, 4} with probability
density p = [0.1, 0.25, 0.3, 0.25, 0.1] so that for i ∈ u, p(i) = pi. The same Gaussian PSF
as in the previous experiment was considered with a medium Poisson noise modelling
with a background intensity b = 10. The binarization was fully learned again with
c = δ + 0.01. The number of unrolled iterations of A was set to K = 300.

Table 5 shows the Jaccard index and PSNR values for this test, while in Figure 6 we
report the reconstructed images. In this test the use of the KL modelling outperforms
a Gaussian fidelity. In Figure 5 we report the decay of the loss function (14) and the
value of δ through the outer iterations. In the other graph, we report the decay of
the lower-level energy functional during testing. We observe that the choice K = 300
iterations is good enough to guarantee the increasing of the Jaccard index.

Table 5: Results for medium Poisson noise dataset. For each column, the best
score across the models is in bold. The last column reports the initial parameter
configuration.

Loss function Fidelity J0 J2 J4 Avg. J PSNR Initial ρ, α, δ

L2 KL 0.0619 0.1285 0.1363 0.1089 39.88 1, 0.5, n.a.
L2 ∥ · ∥2 0.0545 0.0812 0.0837 0.0731 39.97 10, 0.01, n.a.

L1 KL 0.0776 0.3687 0.4995 0.3153 27.39 0.1, 0.5, 0.1
L1 ∥ · ∥2 0.0661 0.2291 0.3259 0.2070 28.00 1, 0.05, 0.1
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Fig. 5: Left: decrease of the loss functions L1 through the outer iterations (blue) and
value of the binarization parameter δ (orange). Right: decrease of the inner energy
functional (blue) and increase of Jaccard index (orange), through the inner iterations,
computed as the mean across the 416 test samples, without applying the binarization.
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(a) (b) (c) (d)

Fig. 6: (a) Ground truth image. (b) Blurred, noisy and low-resolution measurements
(average over time). (c) Reconstruction computed using the L2 loss for training. (d)
Reconstruction computed using the L1 loss for training.

3.2 Semi-blind image deconvolution in fluctuation-based
microscopy.

We now consider a slightly different image formation model and test the proposed
unrolling strategy on an image deconvolution problem based on the study of second-
order image fluctuation statistics [52, 54, 55, 64] with semi-blind estimation of the
underlying PSF. Starting from [51], this approach has proved indeed effective when
dealing with biological samples featuring a high density of standard fluorescent
molecules which, differently from the ones employed in SMLM applications, are less
harmful for the samples observed and thus more suited for in vivo analyses. By
exploiting the mutual independence of the intensity fluctuations at each pixel and
computing second- (or higher-)order statistical information, such approaches reformu-
late the underlying inverse problem in a covariance domain, which, by the modelling
assumptions, enforces a shrinkage of the optical PSF and where sparse regularization
can be enforced.

The training dataset D = {(V s
G, V

s
F )}Ss=1 is generated as follows:

- Step 1: for each simulated spatial pattern s = 1, . . . , S a collection of T = 1000

fluctuating images is obtained for the molecular structure of interest, {g(t)s }Tt=1.
For simulating fluorescence fluctuations over time the SOFI simulator tool [51] was
employed.

- Step 2: for each s = 1, . . . , S and each frame t = 1, . . . , T , g
(t)
s is blurred with

a Gaussian PSF of standard deviation ς = 3 and additive white Gaussian noise
n ∼ N (0, σ2Id) with σ = 3 thus obtaining a measured image:

f (t)s = H(ς)g(t)s + n. (21)

- Step 3: for each s = 1, . . . , S the empirical auto-covariances (that is, the variances)
V s
G and V s

F of the stack are computed for both the clean and noisy data, respectively,
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by the formulas:

Ms
G =

1

T

T∑
t=1

g(t)s , V s
G =

1

T − 1

T∑
t=1

(
g(t)s −Ms

G

)2
;

Ms
F =

1

T

T∑
t=1

f (t)s , V s
F =

1

T − 1

T∑
t=1

(
f (t)s −Ms

F

)2
.

For each spatial pattern s = 1, . . . , S the pair (V s
G, V

s
F ) thus has as a ground-truth

image V s
G the variance of the fluctuating sample and its corrupted version V s

F where
by (21)

V s
F = H(ς)⊙H(ς) V s

G + VN , (22)
where ⊙ denotes the point-wise Hadamard product and, by definition, the vector
VN = σ2e with e = (1, . . . , 1) denotes the variance of the Gaussian noise considered.
In Figure 7 we report a diagram of such modelling.

Fig. 7: Visualization of the acquisition process for one data sample in the Experiment
4 scenario.

Note that V s
F is the second-order SOFI image [51] associated to

{
f
(t)
s

}T

t=1
. By

(22) we notice that the ‘squaring’ of the PSF shrinks its spread by a factor
√
2, thus

resulting in a better resolution. Defining for simplicity H2(ς) := H(ς) ⊙ H(ς) the
convolution matrix corresponding the kernel h2(ς) we assume in the following that the
Gaussian kernel is defined in terms of an unknown parameter σ which we incorporate
within the learning procedure, thus considering as lower-level reconstruction functional
the model:

(V s
u )

∗(ς, ρ) ∈ argmin
Vu∈Rn2

EVF
(Vu; θ) := ∥H2(ς)Vu +σ2e−V s

F ∥22 + ρ∥Vu∥1 + ι{Vu≥0}, (23)
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where θ here includes both the parameters (ς, ρ) and the algorithmic step-sizes
{α0, . . . , αK−1} over the K unrolled iterations. Note that to backpropagate over ς we
have to compute:

∂

∂ς
∇VuEVF

(Vu; θ) =
∂

∂ς

(
(H2(ς))T(H2(ς)Vu + σ2e− V s

F )
)

=
∂

∂ς
(H2(ς))T(H2(ς)Vu + σ2e− V s

F ) + (H2(ς))T
(
∂

∂ς
H2(ς)Vu

)
,

Further computations show that

∂

∂ς
H2(ς)Vu =

(
∂

∂ς
H2(ς)

)
Vu =

∂

∂ς
h2(ς) ∗ Vu,

with

∂

∂σ
h2(ς)[x, y] =

e
− (x−n+1

2 )
2
+(y−n+1

2 )
2

ς2

2π2ς5

(
1

ς2

((
x− n+ 1

2

)2

+

(
y − n+ 1

2

)2
)

− 2

)
.

For constructing the dataset D we considered S = 30 different spatial patterns.
Each pattern is obtained by super-position/rotation and translation of filament struc-
tures similar to the ones in Figure 6a. The dataset was split into a training set with 20
elements and a test set with 10 images. The same experimental setup was used for the
lower-level solver, with a number of K = 300 unrolled iterations. The L1 penalty (14)
was used for training. The binarization function was fully learned with c = δ + 0.01.
The initial values for the parameters of this experiment were: ρ = 10−5, δ = 25,
α = 1000 and ς = 5.

The average Jaccard index computed over the whole test set is reported in Table
6. Values of the Jaccard index computed before the binarization is applied are also
reported to show the beneficial effect of introducing such function within the training
phase. The learned value for ς was ς∗ = 2.87. In Figure 8 we illustrate one recon-
struction computed from the test dataset corresponding to the optimal parameters
learned. Note that the deconvolution performance appears quite accurate. Moreover,
despite the slight underestimation of the PSF, no ringing effect is observed, probably
due to the sparsity induced by the use of the ℓ1 regularization with the non-negativity
constraint.

4 Conclusions

We proposed an unfolded accelerated projected gradient descent scheme to solve
both reconstruction and localization inverse problems often arising in the field of
fluorescence microscopy.
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Table 6: Localization assessment for the semi-
blind deconvolution problem, with/without
binarization.

Binarization J0 J2 J4 Avg. J

No 0.7096 0.7164 0.7208 0.7156

Yes 0.7922 0.8362 0.8582 0.8289

(a) (b) (c) (d)

Fig. 8: (a) Ground truth image V s
G. (b) Noisy variance image V s

F . (c) Computed
reconstruction. (d) Computed reconstruction post-binarization.
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Fig. 9: Left: decrease of the L1 loss function through the outer iterations (blue)
and evolution of the learned ς (orange). Right image: decrease of the inner energy
functional (23) (blue) and increase of Jaccard index (orange) along inner iterations,
computed as the mean across the 10 test samples.

By considering ℓ1-regularized criteria featuring suitable (Gaussian, Poisson) data
terms, the proposed strategy learn optimal regularization and algorithmic parame-
ters by means of two different loss functions assessing reconstruction and localization
performance by suitable comparisons with given ground truth data.

The framework proposed adapts to both SMLM and fluctuation-based approaches
as showed by several simulated and realisitic numerical results, even in the presence of
partially known physical models which can be learned within the training procedure.
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Further work should address and compare the performance of unrolled schemes
when used either in a physics-driven or in an end-to-end fashion as well as poten-
tially combined with more effective, even neural network-based, sparsity promoted
regularizations, such in the case of Plug and Play regularization procedures.
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Appendix A Non-differentiability of CEL0
w.r.t. the regularization parameter

We mentioned in Section 2.2 that the differentiability w.r.t. the regularization param-
eter denoted by ρ in (7) is required to apply the proposed unrolling strategy. Here
we show such property does not hold for the CEL0 regularizer continuous and non-
convex regularization functional RCEL0 studied in [59, 60] which, given its performance
in localization microscopy problems (see, e.g., [48, 49]) would be a natural choice for
localization purposes.

Such functional takes the form

RCEL0(u) =

n∑
p=1

ϕ(up; ρ, ∥ap∥2), (A1)

where ∥ap∥2 denotes the norm of the p–th column of the linear modeling operator
A and ρ is the regularization parameter whose dependence here is highly non-linear.
Enforcing non-negativity one has

ϕ(s; ρ, a) =

ρ− a2

2

(
s−

√
2ρ
a

)2
, 0 ≤ s <

√
2ρ
a

ρ, s ≥
√
2ρ
a

(A2)

showing that the function ϕ(s; ρ, a) is differentiable w.r.t. s with derivative

ϕ′(s; ρ, a) =

−a2
(
s−

√
2ρ
a

)
, 0 ≤ s <

√
2ρ
a

(
equiv. ρ > a2s2

2

)
0, s ≥

√
2ρ
a

(
equiv. ρ ≤ a2s2

2

) . (A3)

Since

lim
ϵ↓0+

ϕ′(s; a2s2

2 + ϵ, a)− ϕ′(s; a2s2

2 , a)

ϵ
= lim

ϵ↓0+
−a

2

ϵ

(
s−

√
a2s2 + 2ϵ

a

)
=

1

s
̸= 0, (A4)

the function ϕ′(s; ρ, a) is not differentiable w.r.t. ρ.
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