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Mixture models

Consider R a family of probability measures, ℓ ∈ N⋆ and J = {1, . . . , ℓ}.

Objective: Approximate the distribution of (xi )
n
i=1 by the mixture RJ

with

RJ =
∑

j∈J pjRj ,

Rj ∈ R, j ∈ J ,

J a discrete random variable with weights pj = P(J = j), j ∈ J .
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EM methods

Classical approaches for mixture models use the notion of likelihood
(Dellaert 2003, Sridharan 2014, Delyon et al. 1999, McLachlan et al.
2019, Nguyen et al. 2020) but they are not adapted to all distributions:

Problem of definition for Dirac distributions

Problem of support for uniform distributions

=⇒ Introduce an approach based on the quantization problem
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Quantization error with Wasserstein

Sample (xi )
n
i=1 ∈ X n

Principle: Find Γℓ = (γ1, . . . , γℓ) ∈ X ℓ minimizing

Ep(Γℓ) :=

(
1

n

n∑
i=1

∥xi − argmin
γ∈Γℓ

∥xi − γ∥∥p
) 1

p

It can be written

Ep(Γℓ) =

 ℓ∑
j=1

card
(
Cj

)
n

Wp(Cj , δγj )
p

 1
p

with Cj = {x ∈ (xi )
n
i=1 : j = argmin

j′∈J
∥x − γj′∥}
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Augmented quantization

Objective: Find R = (R1, . . . ,Rℓ) ∈ Rℓ and C = (C1, . . . ,Cℓ)
minimising the quantization error

Quantization error: Ep(C ,R) :=

(∑ℓ
j=1

card(Cj)
n Wp(Cj ,Rj)

p

) 1
p

Global error: ϵp(C ,R) :=Wp

(⋃ℓ
j=1 Cj ,RJ

)
=Wp ((xi )

n
i=1,RJ)

with J ∈ J a random variable such that P(J = j) =
card(Cj )

n .

Proposition

The global error between a clustering C and a set of
representatives R is lower that the quantization error between
them:

ϵp(C ,R) ≤ Ep(C ,R).
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Lloyd’s algorithm

Algorithm Lloyd’s algorithm

Input: (γ1, . . . , γℓ) ∈ X ℓ , sample (xi)
n
i=1

while stopping criterion not met do
Update clusters: Cj ← {x ∈ (xi )

n
i=1 : j = argmin

j′∈J
∥x − γj′∥}

Update representatives: γj =
1

card(Cj)

∑
x∈Cj

x

end while

J r.v. with pj = P(J = j) =
card(Cj)

n
, j ∈ J

Output:
∑ℓ

j=1 pjδγj
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General Lloyd’s algorithm

Algorithm Rewritten Lloyd’s algorithm

Input: R = (R1, . . . ,Rℓ) ∈ Rℓ , Sample (xi)
n
i=1

while stopping criterion not met do
Update clusters: C ← FindC (R)
Update representatives: R ← FindR(C )

end while

J r.v. with pj = P(J = j) =
card(Cj)

n
, j ∈ J

Output: RJ
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Exploration problem

What we need:

FindC providing clusters from representatives

FindR providing representatives from clusters

Problem: Only FindC and FindR are not sufficient to be exploratory
enough in the case of continuous distribution
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Augmented quantization algorithm

Algorithm Augmented Quantization algorithm
Input: R = (R1, . . . ,Rℓ) ∈ R

ℓ, samples (xi )
n
i=1

J ∈ J r.v. with P(J = j) = 1
ℓ

(R⋆,C⋆, E⋆)← (∅, ∅,+∞)

while stopping criterion not met do

Update clusters: C ← FindC(R, J)
Perturb clusters: C ← Perturb(C)

Update mixture: R ← FindR(C), J r.v. with P(J = j) =
card

(
Cj

)
n

, j ∈ J
Update the best configuration:

if Ep(C ,R) < E⋆ then E⋆ ← E , C⋆ ← C , R⋆ ← R , J⋆ ← J
end while

Output:

- the membership discrete random variable J⋆ with P(J⋆ = j) =
card

(
C⋆
j

)
n

, j ∈ J
- the mixture R⋆

J⋆

Charlie SIRE Siam UQ 2024 February 27, 2024 11 / 33



Mixture Models From K-means to Augmented Quantization Algorithm steps Toy problems Conclusion References

Illustrative sample (xi)
n
i=1

{
Rtrue
1 = RU(0, 1), P(J = 1) = 1

3
Rtrue
2 = RU(0.3, 0.6), P(J = 2) = 2

3

with RU(a, b) the measure associated to U(a, b)

We start with R1 = RU(0, 0.5) and R2 = RU(0.5, 1)
We investigate R = {RU(a, b), a ≤ b}
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FindC

Algorithm FindC
Input: Sample (xi )

n
i=1, R = (R1, . . . ,Rℓ), N, J r.v. ∈ J

Cj = ∅, j ∈ J
(ji )

N
i=1 N independent realizations of J

(yi )
N
i=1 N independent realizations, yi sampled with

associated measure Rji

for x ∈ (xi )
n
i=1 do

I (x)← argmin
i=1,...,N

|| x − yi ||

CjI (x)
← CjI (x)

∪ x
end for

Output: Partition C⋆(R, J, n,N) = (C1, . . . ,Cℓ)
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FindC Convergence

Proposition

Under general assumptions on R, if (Xi )
n
i=1 i.i.d. sample with probability

measure RJ then

lim
n,N→+∞

E (Ep(C⋆(R, J, n,N),R)) = 0.

where C⋆(R, J, n,N) comes from FindC
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FindC illustration

Start with R(1) ∼ U[0,0.5] and R(2) ∼ U[0.5,1]
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Perturb step

Objective: Split the clusters by identifying their worst elements, and
identify the best merge regarding the quantization error

1 C = (C1, . . . ,Cℓ)

2 Ĉ = split(C ) = (C1, . . . ,Cℓ,C
bin
j1

, . . . ,Cbin
jℓbin

)

3 Cmerge = merge(Ĉ ) = (Cmerge
1 , . . . ,Cmerge

ℓ )

Important point: The best merge can return to the clustering before
the perturbation step
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Split illustration
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Merge illustration
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FindR

Objective: For a given clustering C = (C1, . . . ,Cℓ), find its optimal
representatives R⋆(C ) = (R⋆

1 (C1), . . . ,R
⋆
ℓ (Cℓ)) with

R⋆
j (Cj) := argmin

r∈R
Wp(Cj , r).

General idea: When R is parametric, i.e. R = {r(η), η ∈ Rq}, find the
best parameters η⋆k for each marginal.

Why ? In 1D, Wp(µ1, µ2) =
(∫ 1

0
| F−1

1 (q)− F−1
2 (q) |p dq

) 1
p

Panaretos

et al. 2019
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FindR illustration

R1 = RU(0.30, 0.61) and R2 = RU(−0.02, 0.94)
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Dirac

FindC creates Voronöı cells: x ∈ Cj ⇐⇒ j ∈ argmin
j′∈{1,...,ℓ}

∥x − γj′∥

FindR identifies the centroids of the clusters C

Without the clusters perturbation, AQ is equivalent to K-means

Lloyd’s algorithm (ϵ2(Γ2) = 0.28) Augmented quantization (ϵ2(Γ2) = 0.25)
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Hybrid mixture

True representatives: U(0.2, 0.5) and N (0.60, 0.202).

(a) Disitribution of an hybrid sample (b) Estimated clusters

Estimated representatives: RU(0.21, 0.49) and RN(0.60, 0.20
2).
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Possible extensions

Article submitted to Statistics and Computing
https://arxiv.org/abs/2309.08389

Method to optimize the covariance structure of the representatives

Adapt AQ with alternative metric (e.g. MMD, Smola et al. 2006)
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