Augmented Quantization: a General Approach to Mixture Models

Charlie Sire, Rodolphe Le Riche, Didier Rullière, Jérémy Rohmer, Lucie
Pheulpin, Yann Richet

- To cite this version:

Charlie Sire, Rodolphe Le Riche, Didier Rullière, Jérémy Rohmer, Lucie Pheulpin, et al.. Augmented Quantization: a General Approach to Mixture Models. UQ 2024 - SIAM Conference on Uncertainty Quantification, Society for Industrial and Applied Mathematics, Feb 2024, Trieste, Italy. hal-04527349

HAL Id: hal-04527349

https://hal.science/hal-04527349

Submitted on 30 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Augmented Quantization: a General Approach to Mixture Models

Charlie SIRE ${ }^{1}$

Supervisors: R. LE RICHE ${ }^{3}$, D. RULLIERE ${ }^{3}$, J. ROHMER ${ }^{2}$, L. PHEULPIN ${ }^{4}$, Y. RICHET ${ }^{4}$
${ }^{1}$ Inria Saclay - Ecole Polytechnique

$$
{ }^{2} \text { BRGM }
$$

${ }^{3}$ Mines Saint-Etienne and CNRS,LIMOS

$$
{ }^{4} \text { IRSN }
$$

Content

(1) Mixture Models
(2) From K-means to Augmented Quantization
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative
(4) Toy problems
(5) Conclusion

Mixture models

Consider \mathcal{R} a family of probability measures, $\ell \in \mathbb{N}^{\star}$ and $\mathcal{J}=\{1, \ldots, \ell\}$.
Objective: Approximate the distribution of $\left(x_{i}\right)_{i=1}^{n}$ by the mixture R_{J} with

- $R_{J}=\sum_{j \in \mathcal{J}} p_{j} R_{j}$,
- $R_{j} \in \mathcal{R}, \quad j \in \mathcal{J}$,
- J a discrete random variable with weights $p_{j}=P(J=j), j \in \mathcal{J}$.

EM methods

Classical approaches for mixture models use the notion of likelihood (Dellaert 2003, Sridharan 2014, Delyon et al. 1999, McLachlan et al. 2019, Nguyen et al. 2020) but they are not adapted to all distributions:

- Problem of definition for Dirac distributions
- Problem of support for uniform distributions
\Longrightarrow Introduce an approach based on the quantization problem

Quantization error with Wasserstein

Sample $\left(x_{i}\right)_{i=1}^{n} \in \mathcal{X}^{n}$
Principle: Find $\Gamma_{\ell}=\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \in \mathcal{X}^{\ell}$ minimizing

$$
\mathcal{E}_{p}\left(\Gamma_{\ell}\right):=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\underset{\gamma \in \Gamma_{\ell}}{\arg \min }\right\| x_{i}-\gamma\| \|^{p}\right)^{\frac{1}{p}}
$$

It can be written

$$
\mathcal{E}_{p}\left(\Gamma_{\ell}\right)=\left(\sum_{j=1}^{\ell} \frac{\operatorname{card}\left(C_{j}\right)}{n} \mathcal{W}_{p}\left(C_{j}, \delta_{\gamma_{j}}\right)^{p}\right)^{\frac{1}{p}}
$$

with $C_{j}=\left\{x \in\left(x_{i}\right)_{i=1}^{n}: j=\underset{j^{\prime} \in \mathcal{J}}{\arg \min }\left\|x-\gamma_{j^{\prime}}\right\|\right\}$

Content

(1) Mixture Models
(2) From K-means to Augmented Quantization
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative
(4) Toy problems
(5) Conclusion

Augmented quantization

Objective: Find $\boldsymbol{R}=\left(R_{1}, \ldots, R_{\ell}\right) \in \mathcal{R}^{\ell}$ and $\boldsymbol{C}=\left(C_{1}, \ldots, C_{\ell}\right)$ minimising the quantization error
Quantization error: $\mathcal{E}_{p}(\boldsymbol{C}, \boldsymbol{R}):=\left(\sum_{j=1}^{\ell} \frac{\operatorname{card}\left(C_{j}\right)}{n} \mathcal{W}_{p}\left(C_{j}, R_{j}\right)^{p}\right)^{\frac{1}{p}}$
Global error: $\epsilon_{p}(\boldsymbol{C}, \boldsymbol{R}):=\mathcal{W}_{p}\left(\bigcup_{j=1}^{\ell} C_{j}, R_{J}\right)=\mathcal{W}_{p}\left(\left(x_{i}\right)_{i=1}^{n}, R_{J}\right)$ with $J \in \mathcal{J}$ a random variable such that $P(J=j)=\frac{\operatorname{card}\left(\mathcal{C}_{j}\right)}{n}$.

Proposition

The global error between a clustering C and a set of representatives \boldsymbol{R} is lower that the quantization error between them:

$$
\epsilon_{p}(\boldsymbol{C}, \boldsymbol{R}) \leq \mathcal{E}_{p}(\boldsymbol{C}, \boldsymbol{R})
$$

Lloyd's algorithm

Algorithm Lloyd's algorithm
Input: $\left(\gamma_{1}, \ldots, \gamma_{\ell}\right) \in \mathcal{X}^{\ell}$, sample $\left(x_{i}\right)_{i=1}^{n}$
while stopping criterion not met do
Update clusters: $C_{j} \leftarrow\left\{x \in\left(x_{i}\right)_{i=1}^{n}: j=\underset{i^{\prime} \in \mathcal{J}}{\arg \min }\left\|x-\gamma_{j^{\prime}}\right\|\right\}$
Update representatives: $\gamma_{j}=\frac{1}{\operatorname{card}\left(C_{j}\right)} \sum_{x \in C_{j}} x$
end while
J r.v. with $p_{j}=\mathbb{P}(J=j)=\frac{\operatorname{card}\left(c_{j}\right)}{n}, \quad j \in \mathcal{J}$
Output: $\sum_{j=1}^{\ell} p_{j} \delta_{\gamma_{j}}$

General Lloyd's algorithm

Algorithm Rewritten Lloyd's algorithm
Input: $\boldsymbol{R}=\left(R_{1}, \ldots, R_{\ell}\right) \in \mathcal{R}^{\ell}$, Sample $\left(x_{i}\right)_{i=1}^{n}$
while stopping criterion not met do
Update clusters: $C \leftarrow$ Find $C(R)$
Update representatives: $R \leftarrow \operatorname{FindR}(C)$
end while
J r.v. with $p_{j}=\mathbb{P}(J=j)=\frac{\operatorname{card}\left(c_{j}\right)}{n}, \quad j \in \mathcal{J}$
Output: R_{J}

Exploration problem

What we need:

- FindC providing clusters from representatives
- FindR providing representatives from clusters

Problem: Only FindC and FindR are not sufficient to be exploratory enough in the case of continuous distribution

Augmented quantization algorithm

Algorithm Augmented Quantization algorithm

Input: $\boldsymbol{R}=\left(R_{1}, \ldots, R_{\ell}\right) \in \mathcal{R}^{\ell}$, samples $\left(x_{i}\right)_{i=1}^{n}$
$J \in \mathcal{J}$ r.v. \quad with $\mathbb{P}(J=j)=\frac{1}{\ell}$
$\left(R^{\star}, C^{\star}, \mathcal{E}^{\star}\right) \leftarrow(\emptyset, \emptyset,+\infty)$
while stopping criterion not met do
Update clusters: $\quad \boldsymbol{C} \leftarrow \operatorname{FindC}(\boldsymbol{R}, J)$
Perturb clusters: $\quad C \leftarrow \operatorname{Perturb}(\boldsymbol{C})$
Update mixture: $\quad \boldsymbol{R} \leftarrow \operatorname{Find} R(\boldsymbol{C})$, J r.v. with $\mathbb{P}(J=j)=\frac{\operatorname{card}\left(c_{j}\right)}{n}, j \in \mathcal{J}$
Update the best configuration:
if $\mathcal{E}_{p}(\boldsymbol{C}, \boldsymbol{R})<\mathcal{E}^{\star}$ then $\mathcal{E}^{\star} \leftarrow \mathcal{E}, \quad \boldsymbol{C}^{\star} \leftarrow \boldsymbol{C}, \boldsymbol{R}^{\star} \leftarrow \boldsymbol{R}, J^{\star} \leftarrow J$
end while

Output:

- the membership discrete random variable J^{\star} with $\mathbb{P}\left(J^{\star}=j\right)=\frac{\operatorname{card}\left(C_{j}^{\star}\right)}{n}, j \in \mathcal{J}$
- the mixture $R_{j \star}^{\star}$

Illustrative sample $\left(x_{i}\right)_{i=1}^{n}$

$$
\left\{\begin{array}{l}
R_{1}^{\text {true }}=R_{U}(0,1), \quad P(J=1)=\frac{1}{3} \\
R_{2}^{\text {true }} \\
=R_{U}(0.3,0.6), \quad P(J=2)=\frac{2}{3}
\end{array}\right.
$$

with $R_{U}(a, b)$ the measure associated to $\mathcal{U}(a, b)$

We start with $R_{1}=R_{U}(0,0.5)$ and $R_{2}=R_{U}(0.5,1)$
We investigate $\mathcal{R}=\left\{R_{U}(a, b), a \leq b\right\}$

Content

(1) Mixture Models
(2) From K-means to Augmented Quantization
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4 Toy problems
(5) Conclusion

FindC

Algorithm FindC

Input: Sample $\left(x_{i}\right)_{i=1}^{n}, \boldsymbol{R}=\left(R_{1}, \ldots, R_{\ell}\right), N, J$ r.v. $\in \mathcal{J}$
$C_{j}=\emptyset, j \in \mathcal{J}$
$\left(j_{i}\right)_{i=1}^{N} \mathrm{~N}$ independent realizations of J
$\left(y_{i}\right)_{i=1}^{N} \mathrm{~N}$ independent realizations, y_{i} sampled with associated measure $R_{j i}$
for $x \in\left(x_{i}\right)_{i=1}^{n}$ do
$I(x) \leftarrow \arg \min \left\|x-y_{i}\right\|$
$i=1, \ldots, N$
$C_{j_{(x)}} \leftarrow C_{j_{(x)}} \cup x$
end for

Output: Partition $\boldsymbol{C}^{\star}(\boldsymbol{R}, J, n, N)=\left(C_{1}, \ldots, C_{\ell}\right)$

FindC

Algorithm FindC

Input: Sample $\left(x_{i}\right)_{i=1}^{n}, \boldsymbol{R}=\left(R_{1}, \ldots, R_{\ell}\right), N, J$ r.v. $\in \mathcal{J}$
$C_{j}=\emptyset, j \in \mathcal{J}$
$\left(j_{i}\right)_{i=1}^{N} N$ independent realizations of J
$\left(y_{i}\right)_{i=1}^{N} \mathrm{~N}$ independent realizations, y_{i} sampled with associated measure $R_{j i}$
for $x \in\left(x_{i}\right)_{i=1}^{n}$ do
$I(x) \leftarrow \arg \min \left\|x-y_{i}\right\|$
$i=1, \ldots, N$
$C_{j_{(x)}} \leftarrow C_{j_{(x)}} \cup x$
end for

Output: Partition $\boldsymbol{C}^{\star}(\boldsymbol{R}, J, n, N)=\left(C_{1}, \ldots, C_{\ell}\right)$

FindC

Algorithm FindC

Input: Sample $\left(x_{i}\right)_{i=1}^{n}, \boldsymbol{R}=\left(R_{1}, \ldots, R_{\ell}\right), N, J$ r.v. $\in \mathcal{J}$
$C_{j}=\emptyset, j \in \mathcal{J}$
$\left(j_{i}\right)_{i=1}^{N} \mathrm{~N}$ independent realizations of J
$\left(y_{i}\right)_{i=1}^{N^{1}} \mathrm{~N}$ independent realizations, y_{i} sampled with associated measure $R_{j i}$
for $x \in\left(x_{i}\right)_{i=1}^{n}$ do
$I(x) \leftarrow \arg \min \left\|x-y_{i}\right\|$
$i=1, \ldots, N$
$C_{j_{(x)}} \leftarrow C_{j_{(x)}} \cup x$
end for

Output: Partition $\boldsymbol{C}^{\star}(\boldsymbol{R}, J, n, N)=\left(C_{1}, \ldots, C_{\ell}\right)$

FindC

Algorithm FindC

Input: Sample $\left(x_{i}\right)_{i=1}^{n}, \boldsymbol{R}=\left(R_{1}, \ldots, R_{\ell}\right), N, J$ r.v. $\in \mathcal{J}$
$C_{j}=\emptyset, j \in \mathcal{J}$
$\left(j_{i}\right)_{i=1}^{N} \mathrm{~N}$ independent realizations of J
$\left(y_{i}\right)_{i=1}^{N^{1}} \mathrm{~N}$ independent realizations, y_{i} sampled with associated measure $R_{j i}$
for $x \in\left(x_{i}\right)_{i=1}^{n}$ do
$I(x) \leftarrow \arg \min \left\|x-y_{i}\right\|$
$i=1, \ldots, N$
$C_{j_{(x)}} \leftarrow C_{j_{(x)}} \cup x$
end for

Output: Partition $\boldsymbol{C}^{\star}(\boldsymbol{R}, J, n, N)=\left(C_{1}, \ldots, C_{\ell}\right)$

FindC Convergence

Proposition

Under general assumptions on \mathcal{R}, if $\left(X_{i}\right)_{i=1}^{n}$ i.i.d. sample with probability measure R_{J} then

$$
\lim _{n, N \rightarrow+\infty} \mathbb{E}\left(\mathcal{E}_{p}\left(\boldsymbol{C}^{\star}(\boldsymbol{R}, J, n, N), \boldsymbol{R}\right)\right)=0
$$

where $\boldsymbol{C}^{\star}(\boldsymbol{R}, J, n, N)$ comes from FindC

FindC illustration

Start with $R^{(1)} \sim \mathcal{U}_{[0,0.5]}$ and $R^{(2)} \sim \mathcal{U}_{[0.5,1]}$

Content

(1) Mixture Models
(2) From K-means to Augmented Quantization
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4 Toy problems
(5) Conclusion

Perturb step

Objective: Split the clusters by identifying their worst elements, and identify the best merge regarding the quantization error
(1) $\boldsymbol{C}=\left(C_{1}, \ldots, C_{\ell}\right)$
(2) $\hat{C}=\operatorname{split}(C)=\left(C_{1}, \ldots, C_{\ell}, C_{j_{1}}^{\text {bin }}, \ldots, C_{j_{\ell_{\text {bin }}}}^{\text {bin }}\right)$
(3) $C^{\text {merge }}=\operatorname{merge}(\hat{C})=\left(C_{1}^{\text {merge }}, \ldots, C_{\ell}^{\text {merge }}\right)$

Important point: The best merge can return to the clustering before the perturbation step

Split illustration

Merge illustration

Content

(1) Mixture Models
(2) From K-means to Augmented Quantization
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative
(4) Toy problems
(5) Conclusion

FindR

Objective: For a given clustering $\boldsymbol{C}=\left(C_{1}, \ldots, C_{\ell}\right)$, find its optimal representatives $\boldsymbol{R}^{\star}(\boldsymbol{C})=\left(R_{1}^{\star}\left(C_{1}\right), \ldots, R_{\ell}^{\star}\left(C_{\ell}\right)\right)$ with

$$
R_{j}^{\star}\left(C_{j}\right):=\underset{r \in \mathcal{R}}{\arg \min } \mathcal{W}_{p}\left(C_{j}, r\right) .
$$

General idea: When \mathcal{R} is parametric, i.e. $\mathcal{R}=\left\{r(\underline{\eta}), \underline{\eta} \in \mathbb{R}^{q}\right\}$, find the best parameters η_{k}^{\star} for each marginal.

Why ? In 1D, $\mathcal{W}_{p}\left(\mu_{1}, \mu_{2}\right)=\left(\int_{0}^{1}\left|F_{1}^{-1}(q)-F_{2}^{-1}(q)\right|^{p} d q\right)^{\frac{1}{p}}$ Panaretos et al. 2019

FindR illustration

$R_{1}=R_{U}(0.30,0.61)$ and $R_{2}=R_{U}(-0.02,0.94)$

Content

(1) Mixture Models
(2) From K-means to Augmented Quantization
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative

4 Toy problems
(5) Conclusion

Dirac

- FindC creates Voronoï cells: $x \in C_{j} \Longleftrightarrow j \in \arg \min \left\|x-\gamma_{j^{\prime}}\right\|$ $j^{\prime} \in\{1, \ldots, \ell\}$
- FindR identifies the centroids of the clusters \boldsymbol{C}

Without the clusters perturbation, AQ is equivalent to K -means

Lloyd's algorithm $\left(\epsilon_{2}\left(\Gamma_{2}\right)=0.28\right) \quad$ Augmented quantization $\left(\epsilon_{2}\left(\Gamma_{2}\right)=0.25\right)$

Hybrid mixture

True representatives: $\mathcal{U}(0.2,0.5)$ and $\mathcal{N}\left(0.60,0.20^{2}\right)$.

Estimated representatives: $R_{U}(0.21,0.49)$ and $R_{N}\left(0.60,0.20^{2}\right)$.

Content

(1) Mixture Models
(2) From K-means to Augmented Quantization
(3) Algorithm steps

- Find clusters
- Perturb clusters
- Find representative
(4) Toy problems
(5) Conclusion

Possible extensions

Article submitted to Statistics and Computing https://arxiv.org/abs/2309.08389

- Method to optimize the covariance structure of the representatives
- Adapt AQ with alternative metric (e.g. MMD, Smola et al. 2006)

Bibliography I

Dellaert, Frank (July 2003). "The Expectation Maximization Algorithm". In.

- Delyon, Bernard, Marc Lavielle, and Eric Moulines (1999).
"Convergence of a stochastic approximation version of the EM algorithm". In: Annals of statistics, pp. 94-128.
雷 McLachlan, Geoffrey J., Sharon X. Lee, and Suren I. Rathnayake (2019). "Finite Mixture Models". In: Annual Review of Statistics and Its Application 6.1, pp. 355-378. DOI:
10.1146/annurev-statistics-031017-100325. eprint:
https://doi.org/10.1146/annurev-statistics-031017100325. URL: https://doi.org/10.1146/annurev-statistics-031017-100325.

Bibliography II

- Nguyen, Hien D, Florence Forbes, and Geoffrey J McLachlan (2020). "Mini-batch learning of exponential family finite mixture models". In: Statistics and Computing 30, pp. 731-748.
围 Panaretos, Victor M. and Yoav Zemel (2019). "Statistical Aspects of Wasserstein Distances". In: Annual Review of Statistics and Its Application 6.1, pp. 405-431. DOI: 10.1146/annurev-statistics-030718-104938.

Smola, Alexander J, A Gretton, and K Borgwardt (2006).
"Maximum mean discrepancy". In: 13th international conference, ICONIP, pp. 3-6.
嗇 Sridharan, Ramesh (2014). "Gaussian mixture models and the EM algorithm". In.

