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†Université Paris Cité, CNRS, MAP5, F-75006 Paris, France.
⋄Université Paris Nanterre, CNRS, Modal’X, 92001 Nanterre, France.

Abstract. We assume that we observe N independent copies of a diffusion process on a time interval
[0, 2T ]. For a given time t, we estimate the transition density pt(x, y), namely the conditional density of
Xt+s given Xs = x, under conditions on the diffusion coefficients ensuring that this quantity exists. We
use a least squares projection method on a product of finite dimensional spaces, prove risk bounds for
the estimator and propose an anisotropic model selection method, relying on several reference norms. A
simulation study illustrates the theoretical part for Ornstein-Uhlenbeck or square-root (Cox-Ingersoll-
Ross) processes.

1. Introduction

Consider the stochastic differential equation

(1) Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs ; t ∈ [0, 2T ],

where x0 ∈ R, W = (Wt)t∈[0,2T ] is a Brownian motion, b, σ ∈ C1(R), and b′ and σ′ are bounded. Under
these conditions on b and σ, Equation (1) has a unique (strong) solution X = (Xt)t∈[0,2T ]. Under addi-
tional conditions, the transition density pt(x, .) is well defined and can be understood as the conditional
density of Xs+t given Xs = x. The question of estimating such a function, for discrete samples of one
path of X, say Xk∆, k = 1, . . . , n considered as a Markov chain, has been studied by several authors.
The reader may refer to Lacour [20] and [21], Sart [31], or recently in higher dimension in Löffler and
Picard [24]. Nonparametric strategies, based on contrast minimization, ratio of estimators, or singular
value decomposition are considered.

Since few years, statistical inference from copies of diffusion processes, especially estimators of the drift
function b, has been deeply investigated. This approach of statistical inference in stochastic differential
equations (SDE) is part of functional data analysis, which is devoted to samples of infinite dimensional
data (see Ramsay and Silverman [30] and Wang et al. [32]). From independent copies of X, projec-
tion least squares estimators have been studied in Comte and Genon-Catalot [11] for continuous time
observations, in Denis et al. [16] for discrete time (with small step) observations with a classification
purpose in the parametric setting, and in Denis et al. [15] in the nonparametric context, for instance.
Marie and Rosier [27] propose a kernel based Nadaraya-Watson estimator of the drift function b, with
bandwidth selection relying on the Penalized Comparison to Overfitting criterion recently introduced in
Lacour et al. [22]. Still for independent copies of X, Halconruy and Marie [18] investigates the properties
of the projection least squares estimator of b when W is replaced by a Lévy process, and Comte and
Genon-Catalot [12] and Marie [25] deal with estimators of the drift function in non-autonomous SDE.
More recently, copies-based estimation with dependency has been investigated, see e.g. Della Maestra
and Hoffmann [14] or Belomestny et al. [6], dealing with nonparametric estimators in interacting particle
systems and McKean-Vlasov models.

In the present work, we investigate the question of estimating the transition density pt(x, y) for any
fixed time t ∈ (0, T ], as a function of two variables, from the observation on [0, 2T ] of N independent
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2 FABIENNE COMTE† AND NICOLAS MARIE⋄

copies of the solution X of Equation (1). Precisely, consider Xi := I(x0,W i) for every i ∈ {1, . . . , N},
where I(·) is the Itô map for Equation (1) and W 1, . . . ,WN are N ∈ N∗ independent copies of W . What
we propose is a projection least squares estimator p̂m,t of the transition density function pt of X at time
t computed from X1, . . . , XN , where m = (m1,m2) ∈ {1, . . . , NT }2 and NT := [NT ] + 1. Consider
Sm := Sφ,m1

⊗ Sψ,m2
, where Sφ,m1

(resp. Sψ,m2
) is a m1-dimensional (resp. m2-dimensional) function

space defined later. The estimator p̂m,t is defined as minimizing over functions τ ∈ Sm the objective
function

τ 7−→ γN (τ) :=
1

NT

N∑
i=1

(∫ T

0

∫ ∞

−∞
τ(Xi

s, y)
2dyds− 2

∫ T

0

τ(Xi
s, X

i
s+t)ds

)
.

First, a nonadaptive risk bound is established on p̂m,t, and its rate of convergence is provided when pt
belongs to an anisotropic 2-dimensional Sobolev-Hermite space. Of course, other regularity spaces may
be considered, but since the Hermite basis is R-supported, this example is very instructive and allows
to apply in the diffusion processes framework some results already established in Comte and Lacour [13]
for the conditional density estimation in a different but analogous framework. Then, risk bounds are
established on the adaptive estimator p̂m̂,t, where the couple of dimensions m̂ = (m̂1, m̂2) is selected in a
random subset of {1, . . . , NT }2 thanks to a Birgé-Massart type criterion, which may be simplified in two
detailed special cases.

To start with, we propose in a short preliminary Section 2 two application settings where our esti-
mator of the transition may be used. The nonparametric estimator of the transition density function
is precisely defined in Section 3 and nonadaptive risk bounds are established in Section 4. Adaptive
estimation methods are studied in Section 5 and the whole procedure is illustrated through simulations
in Section 6. Finally, Section 7 provides concluding remarks and proofs are gathered in Appendix A.

2. Two motivating examples

In this section, we briefly present two possible applications of our estimation method of pt.
• Assume that σ(·)2 > 0, and consider the parabolic partial differential equation defined by

(2)
∂u

∂t
(t, x) +

1

2
σ(x)2

∂2u

∂x2
(t, x) + b(x)

∂u

∂x
(t, x) = 0, u(T, x) = φ(x),

where φ : R → R is a known twice continuously differentiable function. Moreover, let Xt,x be
the solution of Equation (1) starting from x ∈ R at time t ∈ [0, T ). By Lamberton and Lapeyre
[23], Theorem 5.1.7, the solution of Equation (2) is given by

F (t, x) := E(φ(Xt,x
T )) =

∫ ∞

−∞
φ(y)pT−t(x, y)dy.

Thus, the solution of Equation (2) can be estimated by

(3) F̂m(t, x) :=

∫ ∞

−∞
φ(y)p̂m,T−t(x, y)dy.

In the same spirit as Milstein et al. [29], (3) provides a Monte-Carlo method which may replace
the usual finite difference algorithm to solve Equation (2) numerically.

• The options pricing in finance is another possible application of our estimation method of pt. Let
X = (Xt)t∈R be the prices process of a risky asset, which risk-neutral dynamics are modeled by

(4)
dXt

Xt
= (r − δ)dt+ σ(Xt)dWt,

where r > 0 is the risk-free rate, δ > 0 the dividend rate, W = (Wt)t∈R is a two-sided Brownian
motion, and X0 is a σ((Wt)t∈R−)-measurable square integrable random variable. Consider also
the option with payoff φ(X0,x

T ), which price P (x, T ) satisfies

P (x, T ) = e−rTE(φ(X0,x
T )) = e−rT

∫ ∞

0

φ(y)pT (x, y)dy.
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Thus, when r < δ, an estimator of P (x, T ) is given by

P̂m(x, T ) := e−rT
∫ ∞

0

φ(y)p̂m,T (x, y)dy,

where the copies X1, . . . , XN of (X0,x
t )t∈[0,2T ] are here constructed from (Xt)t∈R− , the past of

the (recurrent Markov) prices process, by following the same line as in Marie [26], Remark 2.3.

3. A projection least squares estimator of the transition density function

3.1. Assumptions: reminder and additional comments. First, recall that throughout the paper,
we consider copies X1, . . . , XN of the solution X of Equation (1) under the condition:

(5) x0 ∈ R, W = (Wt)t∈[0,2T ] is a Brownian motion, b, σ ∈ C1(R) and b′, σ′ are bounded.

As already mentioned, under condition (5), Equation (1) has a unique solution. We also assume that σ
satisfies the following non-degeneracy condition:

(6) ∃α,A > 0 : ∀x ∈ R, α ⩽ |σ(x)| ⩽ α+A.

Under the condition (6), the transition density function pt is well-defined and, for every x, y ∈ R,

(7) pt(x, y) ⩽ cT t
− 1

2 exp

(
−mT

(y − x)2

t

)
,

where cT and mT are positive constants depending on T but not on t, x and y (see Menozzi et al. [28],
Theorem 1.2). In particular, t 7→ pt(x0, x) belongs to L1([0, T ]), which legitimates to consider the density
function f defined by

f(x) :=
1

T

∫ T

0

ps(x0, x)ds ; ∀x ∈ R.

Still by Inequality (7):

• f is bounded. Indeed, for every x ∈ R,

f(x) ⩽
1

T

∫ T

0

cT s
− 1

2 ds = 2cTT
− 1

2 .

• Since b′ is bounded (and then b has linear growth),

|b|κ ∈ L2(R, f(x)dx) ; ∀κ ∈ R+.

Indeed, for every υ ∈ R+ and t ∈ (0, T ],

E(|Xt|υ) =

∫ ∞

−∞
|x|υpt(x0, x)dx

⩽ t−
1
2 cT

∫ ∞

−∞
|x|υ exp

(
−mT

(x− x0)
2

T

)
dx︸ ︷︷ ︸

=:cT,υ<∞

and then, for every κ ∈ R+,∫ ∞

−∞
|b(x)|2κf(x)dx =

1

T

∫ T

0

E(|b(Xs)|2κ)ds

⩽ c1

(
1 +

1

T

∫ T

0

E(|Xs|2κ)ds

)
⩽ c1(1 + 2cT,2κT

− 1
2 ) <∞,

where c1 is a positive constant depending only on b and κ.
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3.2. The projection least squares estimator and some related definitions. Now, let us define
rigorously the objective function γN (·). To that aim, consider Sm = Sφ,m1

⊗ Sψ,m2
, where Sφ,m1

:=
span{φ1, . . . , φm1} (resp. Sψ,m2 := span{ψ1, . . . , ψm2}), φ1, . . . , φNT (resp. ψ1, . . . , ψNT ) are continuous
functions from I (resp. J) into R such that (φ1, . . . , φNT ) (resp. (ψ1, . . . , ψNT )) is an orthonormal family
in L2(I, dx) (resp. L2(J, dx)), and I, J ⊂ R are non-empty intervals. Then, for any τ ∈ Sm, consider

γN (τ) :=
1

NT

N∑
i=1

(∫ T

0

∫ ∞

−∞
τ(Xi

s, y)
2dyds− 2

∫ T

0

τ(Xi
s, X

i
s+t)ds

)
.

To understand the relevance of the criterion, we compute its expectation:

E(γN (τ)) =

∫ ∞

−∞

∫ ∞

−∞
(τ(x, y)− pt(x, y))

2f(x)dxdy −
∫ ∞

−∞

∫ ∞

−∞
pt(x, y)

2f(x)dxdy.

This shows that, the closer τ is to pt, the smaller E(γN (τ)). This is the reason why our paper deals with
the estimator of pt minimizing γN (·).

Let us show that γN has a unique minimizer in Sm. For τ =
∑
j,ℓΘj,ℓ(φj ⊗ ψℓ) with Θ ∈ Mm1,m2

(R),

∇τγN (τ) = 2(Ψ̂m1
Θ− Ẑm,t),

where

Ψ̂m1 :=

(
1

NT

N∑
i=1

∫ T

0

φj(X
i
s)φj′(X

i
s)ds

)
j,j′∈{1,...,m1}

and

Ẑm,t :=

(
1

NT

N∑
i=1

∫ T

0

φj(X
i
s)ψℓ(X

i
s+t)ds

)
(j,ℓ)∈{1,...,m1}×{1,...,m2}

.

The symmetric matrix Ψ̂m1
is positive semidefinite because for any y ∈ Rm1 ,

y∗Ψ̂m1
y =

1

NT

N∑
i=1

∫ T

0

m1∑
j=1

yjφj(X
i
s)

2

ds ⩾ 0.

If in addition Ψ̂m1
is invertible, it is positive definite, and then

(8) p̂m,t =

m1∑
j=1

m2∑
ℓ=1

[Θ̂m,t]j,ℓ(φj ⊗ ψℓ) with Θ̂m,t = Ψ̂−1
m1
Ẑm,t

is the only minimizer of γN in Sm called the projection least squares estimator of pt.

Related definitions/notations:
(1) The empirical inner product ⟨., .⟩N is defined by

⟨φ,ψ⟩N :=
1

NT

N∑
i=1

∫ T

0

∫ ∞

−∞
φ(Xi

s, y)ψ(X
i
s, y)dyds.

The empirical norm associated to ⟨., .⟩N is denoted by ∥.∥N .
(2) The theoretical inner product ⟨., .⟩f associated to ⟨., .⟩N is defined by

⟨φ,ψ⟩f := E(⟨φ,ψ⟩N ) =

∫ ∞

−∞

∫ ∞

−∞
φ(x, y)ψ(x, y)f(x)dxdy.

(3) The theoretical counterpart of Ψ̂m1
is denoted by Ψm1

:= E(Ψ̂m1
).
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4. Risk bounds on the projection least squares estimator

4.1. Risk bound with respect to the empirical norm. This subsection deals with a nonadaptive
risk bound, with respect to the empirical norm ∥.∥N , on our estimator p̂m,t of pt. First, consider

Lφ(m) := 1 ∨

sup
x∈I

m∑
j=1

φj(x)
2

 and Lψ(m) := 1 ∨

sup
x∈I

m∑
j=1

ψj(x)
2


for every m ∈ {1, . . . , NT }, and assume that m = (m1,m2) satisfies the following conditions.

Assumption 4.1. There exist two constants c4.1 > 0 and q ∈ N∗, not depending on m and N , such that

Lψ(m2) ⩽ c4.1N
q.

Moreover,

(9) Lφ(m1)(∥Ψ−1
m1

∥op ∨ 1) ⩽
cΛ
2

· NT

log(NT )

with

cΛ =
1− log(2)

(1 + p)T
and p = 2(q + 4) + 1.

The first part of Assumption 4.1 is a weak limit on the maximal dimension m2 that can be considered.
The second part (9) of Assumption 4.1 is a generalization of the so-called stability condition introduced
in the nonparametric regression framework in Cohen et al. [8], and already extended to the independent
copies of continuous diffusion processes framework in Comte and Genon-Catalot [11].

Theorem 4.2. Consider pI×J,t := (pt)|I×J . Under Assumption 4.1, there exists a constant c4.2 > 0, not
depending on m and N , such that for every t ∈ [0, T ],

(10) E(∥p̂m,t − pI×J,t∥2N ) ⩽ min
τ∈Sm

∥τ − pI×J,t∥2f +
2m1Lψ(m2)

N
+

c4.2
N

.

We emphasize that the risk bound in Theorem 4.2 is sharp since the constant in front of the bias term

min
τ∈Sm

∥τ − pI×J,t∥2f in Inequality (10) is 1,

and the constant 2 in the variance term 2m1Lψ(m2)/N may be 1 + ε for ε > 0, up to additional techni-
calities.

Remark. Let us discuss the order of the variance term in Inequality (10) for some usual bases (ψ1, . . . , ψm2
).

First, for splines, wavelets or trigonometric bases, Lψ(m2) ≲ m2, and then the variance term in the risk
bound on p̂m,t is of order m1m2/N as for the usual projection estimator of a 2-dimensional density func-
tion. Now, for Legendre’s basis, Lψ(m2) ≲ m2

2, leading to a variance term of order m1m
2
2/N in Inequality

(10). Finally, let us focus on the Hermite basis (hj)j∈N, defined on I = R by

(11) hj(x) := cjHj(x)e
− x2

2 with cj = (2jj!
√
π)−

1
2 and Hj(x) = (−1)jex

2 dj

dxj
e−x

2

for every x ∈ R and j ∈ N. The sequence (hj)j∈N is an orthonormal basis of L2(R, dx). By Lemma 1 in
Comte and Lacour [13], we know that there exists a constant ch > 0 such that

Lh(m) ⩽ ch
√
m ; ∀m ∈ N.

Thus, for Hermite’s basis, it is worth noting that the variance term in Inequality (10) is of order
m1

√
m2/N . Therefore, for both Legendre’s and Hermite’s bases, the variance term in Inequality (10) is

not standard.
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4.2. Risk bound with respect to the f-weighted norm, on a truncated version of the projec-
tion least squares estimator. This subsection deals with a nonadaptive risk bound, with respect to
the f -weighted norm ∥.∥f , on the following truncated version of our estimator p̂m,t:

p̃m,t := p̂m,t1Λm1
,

where

Λm1 :=

{
Lφ(m1)(∥Ψ̂−1

m1
∥op ∨ 1) ⩽ cΛ

NT

log(NT )

}
.

On the event Λm1
, Ψ̂m1

is invertible because

inf{sp(Ψ̂m1)} ⩾
Lφ(m1)

cΛ
· log(NT )

NT
,

and then p̃m,t is well-defined.

Theorem 4.3. Under Assumption 4.1,

(1) There exists a constant c4.3,1 > 0, not depending on m and N , such that for every t ∈ (0, T ],

E(∥p̃m,t − pI×J,t∥2f ) ⩽ 9 min
τ∈Sm

∥τ − pI×J,t∥2f +
8m1Lψ(m2)

N
+

c4.3,1(1 +Rf (t))

N

with Rf (t) = R(t) + ∥pI×J,t∥2f and

R(t) =
1

T
E

(∫ T

0

∫ ∞

−∞
pt(Xs, y)

2dyds

)2
 1

2

.

(2) There exists a constant c4.3,2 > 0, not depending on m and N , such that

(12)
1

T

∫ T

0

E(∥p̃m,t − pI×J,t∥2f )dt ⩽ 9 min
τ∈Sm

{
1

T

∫ T

0

∥τ − pI×J,t∥2fdt

}
+

8m1Lψ(m2)

N
+

c4.3,2
N

.

Remark. Under the condition (6), for every x, y ∈ R,

(13) pt(x, y) ⩾ cT t
− 1

2 exp

(
−mT

(y − x)2

t

)
,

where cT and mT are positive constants depending on T but not on t, x and y (see Menozzi et al. [28],
Theorem 1.2). By Jensen’s inequality, Inequality (13) and the change of variable formula,

R(t) ⩾
1

T

∫ T

0

∫ ∞

−∞
E(pt(Xs, y)

2)dyds =

∫ ∞

−∞

∫ ∞

−∞
pt(x, y)

2f(x)dxdy

⩾
c2T
t

∫ ∞

−∞
f(x)

∫ ∞

−∞
exp

(
−2mT

(y − x)2

t

)
dydx

=
c2T
t

∫ ∞

−∞
f(x)dx

∫ ∞

−∞
exp

[
−2mT

( y

t1/2

)2]
dy

=
c2T
t1/2

∫ ∞

−∞
e−2mT y

2

dy −−−−→
t→0+

∞.

Therefore,
sup

t∈(0,T ]

R(t) = ∞,

and this is the reason why Inequality (12) is also provided. Otherwise, only times t ∈ [t0, T ], for some
fixed t0 ∈ (0, T ), must be considered.
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4.3. Rates in the anisotropic Sobolev-Hermite spaces. In order to control the bias term in The-
orems 4.2 and 4.3, we assume that pt belongs to a Sobolev-Hermite space. In dimension d = 1, these
function spaces have been introduced by Bongioanni and Torrea [4]. The connection with Hermite’s coef-
ficients was established later (see Belomestny et al. [5]) and are summarized in Comte and Genon-Catalot
[9]. The definition of these spaces can be extended on A := Rd for any d ∈ N∗ (see Comte and Lacour
[13], Section 2.3).

Notations:
• For every k = (k1, . . . , kd) ∈ Nd and s = (s1, . . . , sd) ∈ (0,∞)d, ks := ks11 × · · · × ksdd .
• For every g ∈ L2(A) and k = (k1, . . . , kd) ∈ Nd, ak(g) := ⟨g, hk1 ⊗ · · · ⊗ hkd⟩.

Throughout this subsection, both Sφ,m1
and Sψ,m2

are generated by the Hermite basis, and then I =
J = R. First, let us recall the definition of the Sobolev-Hermite ellipsoid on A := Rd, of order s =
(s1, . . . , sd) ∈ (0,∞)d and of radius L > 0.

Definition 4.4. (Sobolev-Hermite ellispoids) The Sobolev-Hermite ellipsoid W
(d)
s (A,L) of order s and

of radius L is defined by

W (d)
s (A,L) :=

g ∈ L2(A) :
∑
k∈Nd

ak(g)
2ks ⩽ L

 .

Now, by assuming that pt belongs to W (2)
s (A,L), the bias term in Theorems 4.2 and 4.3 decreases to 0

with polynomial rate. Indeed, noting pm,t the orthogonal projection of pt on Sm,

∥pt − pm,t∥2 =
∑

k∈N2:∃q∈{1,2},kq⩾mq

ak(pt)
2

⩽
2∑
q=1

∑
k∈N2:kq⩾mq

ak(pt)
2ksqq k

−sq
q ⩽ L(m−s1

1 +m−s2
2 )

and then, since f(·) ⩽ 2cTT
−1/2,

min
τ∈Sm

∥τ − pI×J,t∥2f ⩽ ∥f∥∞∥pt − pm,t∥2 ⩽
2cTL√
T

(m−s1
1 +m−s2

2 ).

Thanks to this control of the bias term, and since the variance term in Theorem 4.2 is of order m1
√
m2/T

when Sψ,m2
is generated by the Hermite basis (see Subsection 4.1), one can establish the following

proposition.

Proposition 4.5. Assume that pt belongs to W (2)
s (A,L), and consider m∗ = (m∗

1,m
∗
2) with

m∗
1 ∝ N

s2
s1s2+s1/2+s2 and m∗

2 ∝ N
s1

s1s2+s1/2+s2 .

Then,

E(∥p̂m∗,t − pt∥2N ) = O

(
N

− 1

1+ 1
s1

+ 1
2s2

)
,

provided that m∗
1 satisfies the stability condition (9) in Assumption 4.1.

The proof of Proposition 4.5 follows the same line as in Comte and Lacour [13] and is omitted here.
Finally, an optimality result for rates in conditional density estimation (see Theorem 1 in Comte and
Lacour [13], Section 3.4) suggests that the rate in our Proposition 4.5 is most likely to be optimal.

5. Model selection

5.1. General case. In order to introduce an appropriate model selection criterion, throughout this
section, the φj ’s and the ψℓ’s fulfill the following additional assumption.

Assumption 5.1. The φj’s and the ψℓ’s fulfill the three following conditions:
(1) For every m1,M1 ∈ {1, . . . , NT }, if M1 > m1, then Sφ,m1

⊂ Sφ,M1
.
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(2) For every m2,M2 ∈ {1, . . . , NT }, if M2 > m2, then Sψ,m2
⊂ Sψ,M2

.
(3) There exists a constant cφ ⩾ 1, not depending on N , such that

Lφ(m1) ⩽ c2φm1 ; ∀m1 ∈ {1, . . . , NT }.

Note that the first two conditions above mean that the two univariate collections of models are nested,
which of course does not imply that the product spaces are. For instance, the compactly supported
trigonometric basis, and both the non-compactly supported Laguerre’s and Hermite’s bases, fulfill As-
sumption 5.1. Let us consider

(14) m̂ = arg min
m∈M̂N

{−∥p̂m,t∥2N + 2κpen(m)},

where κ ⩾ κ0, κ0 > 0 is defined later,

(15) pen(m) := (1 + log(N))
m1Lψ(m2)

N
; ∀m = (m1,m2) ∈ {1, . . . , NT }2,

and M̂N := UN ∩ (V̂N ×N ) with N = {1, . . . , N ∧NT },

UN = {(m1,m2) ∈ N 2 : m1Lψ(m2) ⩽ N},

V̂N =

{
m1 ∈ N : c2φm1(∥Ψ̂−1

m1
∥2op ∨ 1) ⩽ d

NT

log(NT )

}
and

d = min

(
1

8c2φT (∥f∥∞ + (3cφ)−1
√
cΛ/8)(1 + p)

,
cΛ
8

)
.

Note that for every m = (m1,m2) ∈ UN , m2 fulfills the first part of Assumption 4.1 with q = 1, and
then p = 11 (recall that p = 2(q + 4) + 1) in this section. Consider also the theoretical counterpart
MN := UN ∩ (VN ×N ) of M̂N , where

VN :=

{
m1 ∈ N : c2φm1(∥Ψ−1

m1
∥2op ∨ 1) ⩽

d

4
· NT

log(NT )

}
.

The following theorem provides a risk bound on the adaptive estimator p̂m̂,t.

Theorem 5.2. Under Assumption 5.1, for κ0 = 44a and a ⩾ (2 · 84
√
dT )2/2,

(1) There exists a constant c5.2,1 > 0, not depending on N , such that for every t ∈ (0, T ],

E(∥p̂m̂,t − pI×J,t∥2N ) ⩽ 6 min
m∈MN

{E(∥p̂m,t − pI×J,t∥2N ) + κpen(m)}+ c5.2,1(1 +R(t))

N
.

(2) There exists a constant c5.2,2 > 0, not depending on N , such that

1

T

∫ T

0

E(∥p̂m̂,t − pI×J,t∥2N )dt ⩽ 6 min
m∈MN

{
1

T

∫ T

0

E(∥p̂m,t − pI×J,t∥2N )dt+ κpen(m)

}
+

c5.2,2
N

.

The first result in Theorem 5.2 means that the final estimator p̂m̂,t makes automatically (up to a mul-
tiplicative constant which may be taken equal to 6 + 2κ) the bias-variance tradeoff by keeping in mind
Inequality (10) which provides a risk bound on E(∥p̂m,t − pI×J,t∥2N ) for every m ∈ MN .

5.2. Two special cases: t > t0 > 0 and compactly supported bases. This subsection deals with
two interesting special cases. First, let us consider t ∈ [t0, T ] with a fixed t0 > 0. This condition on t
leads to

sup
(x,y)∈I×J

pt(x, y) ⩽ p0 := cT t
− 1

2
0 by Inequality (7),

and then the log term in the penalty defined by (15) is not required anymore. Precisely, the following
model selection criterion, simpler than (14), may be considered:

(16) m̃ = arg min
m∈M̂N

{−∥p̂m,t∥2N + 2κbpenb(m)},
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where κb ⩾ κb,0, κb,0 > 0 is defined later, and

penb(m) :=
m1Lψ(m2)

N
; ∀m = (m1,m2) ∈ {1, . . . , NT }2.

In the sequel, the map (m1,m2) 7→ m1Lψ(m2) fulfills the following additional but usual condition.

Assumption 5.3. For every ξ > 0, there exists S(ξ) > 0, not depending on N , such that∑
1⩽m1,m2⩽N

exp(−ξm1Lψ(m2)) ⩽ S(ξ) <∞.

Note that if Lψ(m2) = 1∨ (cψm2), or even if Lψ(m2) = 1∨ (cψ
√
m2), then (m1,m2) 7→ m1Lψ(m2) fulfills

Assumption 5.3 because
N∑

m1=1

exp(−ξLψ(m2))
m1 ⩽

e−ξLψ(m2)

1− e−ξ
; ∀m2 ∈ N∗.

So, for instance, (m1,m2) 7→ m1Lψ(m2) fulfills Assumption 5.3 when Sψ,m2
is generated by the trigono-

metric basis or by Hermite’s one.

Theorem 5.4. Under Assumptions 5.1 and 5.3, for κb,0 = 16.5, there exists a constant c5.4 > 0, not
depending on N , such that for every t ∈ [t0, T ] with t0 > 0,

E(∥p̂m̃,t − pI×J,t∥2N ) ⩽ 6 min
m∈MN

{E(∥p̂m,t − pI×J,t∥2N ) + κbpenb(m)}+ c5.4(1 + t
−1/2
0 )

N
.

Now, let us briefly present the second interesting special case by assuming that I is a compact interval.
By Inequality (13), there exists m > 0 such that f(·) ⩾ m, and then

∥Ψ−1
m1

∥op =
1

λmin(Ψm1
)
=

 inf
θ:∥θ∥2,m1

=1

m1∑
j,j′=1

θjθj′ [Ψm1
]j,j′

−1

=

 inf
θ:∥θ∥2,m1

=1

∫
I

m1∑
j=1

θjφj(x)

2

f(x)dx


−1

⩽
1

m
for every m1 ∈ N .

So, for t ∈ (0, T ] (resp. t ∈ [t0, T ] with a fixed t0 > 0), the model selection criterion (14) (resp. (16)) may
be simplified another way:

m̂∗ = arg min
m∈M∗

N

{−∥p̂m,t∥2N + 2κpen(m)}

(resp. m̃∗ = arg min
m∈M∗

N

{−∥p̂m,t∥2N + 2κbpenb(m)}),

where M∗
N := UN ∩ (V∗

N ×N ) and

V∗
N :=

{
m1 ∈ N : m1 ⩽

cΛ
2c2φ(m

−1 ∨ 1)
· NT

log(NT )

}
.

A result similar to Theorem 5.2 (resp. Theorem 5.4) may be established on the adaptive estimator p̂m̂∗,t

(resp. p̂m̃∗,t) by taking M̂N = MN = MN := M∗
N in the proof (of Theorem 5.2 (resp. Theorem 5.4)).

6. Numerical experiments

We propose a brief simulation study to illustrate our estimation method. The implementation is done
using the Hermite basis defined by (11) (I = J = R). The Hermite polynomials are computed thanks to
the recursion formula Hn+1(x) = 2xHn(x)−2nHn−1(x) with H0(x) = 1 and H1(x) = x (see Abramowitz
and Stegun [1], (22.7)).
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We fix t = 1, so we can take the penalty involved in Theorem 5.4: penb(m) = m1
√
m2/N . More-

over, we choose κb = 2; a value obtained from preliminary calibration experiments. A cutoff test excludes
the dimensions m1 such that the largest eigenvalue of Ψ̂−1

m1
is too large (see Comte and Genon-Catalot

[11]).

We simulate discrete samples in three models, obtained from an exact discretization of d-dimensional
Ornstein-Uhlenbeck processes U1, . . . , UN :

(17) dUi(t) = −r
2
Ui(t)dt+

γ

2
dWi,d(t), Ui(0) ∼ Nd

(
0,
γ2

4r
Id

)
,

where Wi,d is a d-dimensional standard Brownian motion. An exact simulation is generated with step
∆ > 0 by computing

Ui((k + 1)∆) = e−
r∆
2 Ui(k∆) + εi((k + 1)∆), εi(k∆) ∼iid Nd

(
0,
γ2(1− e−r∆)

4r
Id

)
.

In all cases, we take k ∈ {0, . . . , n} with n = 1000, ∆ = 0.01, and as already mentioned, we fix t = 1 in
the function (x, y) 7→ pt(x, y) to estimate.

Example 1. Xi(t) = Ui(t), where Ui(t) is defined by (17) with d = 1. The Xi’s are independent
copies of the solution of Equation (1) with

b(x) = −rx
2
, σ(x) =

γ

2
, r = 2 and γ = 2.

Here, the transition density function is given by

p
(1)
t (x, y) =

√
2r

πγ2(1− e−rt)
exp

(
− 2r

γ2(1− e−rt)
(y − xe−

rt
2 )2
)
.
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Figure 1. Example 1. Transition density (left) and the estimation (right). Selected
dimensions (4,5), 100*MISE = 0.22. N = 200, T = 10, ∆ = 0.01, t = 1.

Example 2. Xi(t) = tanh(Ui(t)), where Ui(t) is defined by (17) with d = 1. The Xi’s are independent
copies of the solution of Equation (1) with

b(x) = (1− x2)

(
−r
2
atanh(x)− γ2

4
x

)
, σ(x) =

γ

2
(1− x2), r = 4 and γ = 1.

Here, the transition density function is given by

p
(2)
t (x, y) =

p
(1)
t (atanh(x), atanh(y))

1− y2
.
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Figure 2. Example 1. Full red line, the true and the estimation in dotted blue. Left:
x 7→ pt(x, y) for a fixed value of y (y = −0.27 top and y = −1 bottom). Right:
y 7→ pt(x, y) for a fixed value of x (x = 0.03 top and x = −0.55 bottom). N = 200,
T = 10, ∆ = 0.01, t = 1.
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Figure 3. Example 2. Transition density (left) and the estimation (right). Selected
dimensions (2,41), 100*MISE = 0.16. N = 200, T = 10, ∆ = 0.01, t = 1.

Example 3. (Cox-Ingersoll-Ross or square-root process) Xi(t) = ∥Ui(t)∥22,d, where Ui(t) is defined by
(17) with d = 6. The Xi’s are independent copies of the solution of Equation (1) with

b(x) =
dγ2

4
− rx, σ(x) = γ

√
x, r = 1 and γ = 1.

Here, the transition density function is given by

p
(3)
t (x, y) = ct exp(−ct(xe−rt + y))

×
( y

xe−rt

) d
4−

1
2 I
(
d

2
− 1, 2ct

√
xye−rt

)
, where ct :=

2r

γ2(1− e−rt)

and I(p, x) is the modified Bessel function of the first kind of order p at point x (see the formula (20) in
Aït-Sahalia [2]).
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Figure 4. Example 3. Transition density (left) and the estimation (right). Selected
dimensions (6,9), 100*MISE = 0.29. N = 200, T = 10, ∆ = 0.01, t = 1.
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Figure 5. Example 3. Full red line, the true and the estimation in dotted blue. Left:
x 7→ pt(x, y) for a fixed value of y (y = 0.71). Right: y 7→ pt(x, y) for a fixed value of x
(x = 0.76). N = 200, T = 10, ∆ = 0.01, t = 1.

Figures 1, 3 and 4 show the true surface and the estimated one for Examples 1, 2 and 3 respectively. We
see that the shape of the estimated transition density is very similar to the true one, and the selected
dimensions can be of any orders, especially in the y-direction (see Figure 3, where the selected couple
of dimensions is (2,41)). Figures 2 and 5 represent sections of the curve for fixed values of y or x for
the same simulated paths as in Figure 1 and 4 respectively. One may notice that the estimation in the
y-direction is better than in the x-direction.

In Table 1, we compute normalized squared errors for Models 1 and 3, which are defined by

(18) MISE =
1
K

∑K
k=1

DXY (k)

NINJ

∑NI
i=1

∑NJ
j=1(pt(x

(k)
i , y

(k)
j )− p̂

(k)
t (x

(k)
i , y

(k)
j ))2

DXY (K)

NINJ

∑NI
i=1

∑NJ
j=1 p

2
t (x

(K)
i , y

(K)
j )

,

where
DXY (k) := (bX(k) − aX(k))(bY (k) − aY (k)),

bX(k) and aX(k) are the 98% and 2% quantiles of the X(k)
t ’s, and bY (k) and aY (k) are the 99% and

1% quantiles of the X(k)
t+1’s. The super-index k denotes the repetition number, the points (x

(k)
i , y

(k)
j ) are

equispaced in the range of the observations of the path k, and we take NI = NJ = 100 and K = 200. We
also give the associated standard deviation, together with the mean of the selected dimensions in each
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Model N = 100 N = 400 N = 1000

1 MISE 1.62 (2.64) 0.48 (0.99) 0.18 (0.40)
Medians 0.76 0.21 0.10
Dim (10,12) (3.05,4.91) (4.23,5.92) (5.00,7.00)

3 MISE 6.80 (10.5) 2.14 (5.62) 1.27 (5.62)
Medians 1.65 0.34 0.19
dim (12,15) (5.01, 6.68) (7.07, 9.07) (8.94, 12.2)

Table 1. Line MISE: 100*MISE (with 100*standard deviation) computed over 200 repetitions, by
(18). Line Medians: Median values of 100*MISE. Line Dim with maximal proposals for (m1,m2): means
of the selected couples (m̂1, m̂2).

direction. To spare time of computation, we’ve adjusted maximal proposals for m1 and m2 to the choices
corresponding to each example in such a way that the largest proposal is never selected (i.e. is always
too large).
The results in Table 1 show that, as could be expected, the error is getting smaller when N increases,
and in the same time, the selected dimensions are increasing. This is expected from Proposition 4.5. We
also notice that medians are much smaller in all cases than means: this indicates that the performance
of the estimation is most of the time much better than what the mean indicates. Probably few bad
results deteriorate the mean. The variability can be checked in the results to be unrelated to the selected
dimensions, which are quite stable.

We’ve also implemented the (half)-trigonometric basis, or a product basis with φ = t and ψ = h.
They work well, with some questions on the nature of the theoretical bias term and underlying regularity
spaces in the mixed (t and h) case.

7. Concluding remarks

In this paper, for a fixed t ∈ (0, T ], we have proposed a least squares contrast estimator p̂m,t(x, y)
of the transition density pt(x, y) of the solution X to Equation (1). The estimator is defined through
the estimators of the coefficients of its development on a basis of a finite dimensional space Sm =
Sφ,m1 ⊗ Sψ,m2 , m = (m1,m2). In our observation setting, N independent copies X1, . . . , XN of X are
available. We provide an upper bound on a risk defined as the expectation of the empirical or integrated
distance between p̂m,t and pt, exhibiting a squared-bias/variance decomposition up to negligible terms.
An adaptive procedure is then tailored to automatically select the couple m = (m1,m2), and it is proved
to give good results, both in theory and in practice.
Of course, the simulation part immediately faces the question of handling high frequency but discrete
samples and the topic may be developed. However, similarly to what happens in functional data analysis
(FDA), small step samples often require a specific study from the beginning and can not be directly
deduced from continuous-time constructions. In general, the continuous time results are extended to
the high frequency one, up to some constraints linking the sample step and the number of observations.
This would be worth being investigated. Note that FDA often considers both the influence of noise and
discretization, which would mean here observations, for i = 1, . . . , N , of Xi(tj) + ηi,j with tj = j∆/n,
j = 1, . . . , n and ηi,j independent and identically distributed noises with common variance (see Chagny
et al. [7]). It is not clear if both questions may be simultaneously solved in our setting.
Another question may be to study functions related to the conditional density, the main example being
the conditional cumulative distribution function. Lastly, a recent study by Amorino et al. [3], defines
a concept of local differential privacy in the context of i.i.d. diffusion processes, and it may be worth
studying the estimation of f or pt under such confidentiality condition.
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Appendix A. Proofs

A.1. Proof of Theorem 4.2. The proof of Theorem 4.2 relies on two technical lemmas stated first.

Lemma A.1. Consider the event

Ωm1
:=

{
sup

τ∈Sφ,m1

∣∣∣∣∣∥τ∥2N,1∥τ∥2f,1
− 1

∣∣∣∣∣ ⩽ 1

2

}
where, for every h ∈ L2(R, f(x)dx),

∥h∥2N,1 :=
1

NT

N∑
i=1

∫ T

0

h(Xi
s)

2ds and ∥h∥2f,1 :=

∫ ∞

−∞
h(x)2f(x)dx.

Under Assumption 4.1, there exists a constant cA.1 > 0, not depending on m1 and N , such that

P(Ωcm1
) ⩽

cA.1
Np

and P(Λcm1
) ⩽

cA.1
Np

with p = 2(q + 4) + 1.

See Comte and Genon-Catalot [11], Lemma 6.1 for a proof. Now, let us introduce two additional empirical
maps:

• The empirical process νN , defined by

νN (τ) :=
1

NT

N∑
i=1

∫ T

0

(
τ(Xi

s, X
i
s+t)−

∫ ∞

−∞
τ(Xi

s, y)pt(X
i
s, y)dy

)
ds

for every τ ∈ Sm. Note that

(19) [Ẑm,t]j,ℓ = ⟨pt, φj ⊗ ψℓ⟩N + νN (φj ⊗ ψℓ)

for every j ∈ {1, . . . ,m1} and ℓ ∈ {1, . . . ,m2}.
• The empirical orthogonal projection Π̂m, defined by

(20) Π̂m(·) ∈ arg min
τ∈Sm

∥τ − ·∥2N .

For any function h from R2 into R,

Π̂m(h) =

m1∑
j=1

m2∑
ℓ=1

[Ψ̂−1
m1
P̂m(h)]j,ℓ(φj ⊗ ψℓ)

with P̂m(h) = (⟨h, φj ⊗ ψℓ⟩N )(j,ℓ)∈{1,...,m1}×{1,...,m2}.

Lemma A.2. For every t ∈ [0, T ],

∥p̂m,t − Π̂m(pt)∥2N = sup
τ∈Sm:∥τ∥N=1

νN (τ)2.

The proof of Lemma A.2 is postponed to Subsubsection A.1.2.

A.1.1. Steps of the proof. First of all, by the definition of Π̂m (see (20)),

∥p̂m,t − pI×J,t∥2N = min
τ∈Sm

∥τ − pI×J,t∥2N + ∥p̂m,t − Π̂m(pt)∥2N ,

and by Lemma A.2,

E(∥p̂m,t − Π̂m(pt)∥2N ) = E

(
1Ωm1

sup
τ∈Sm:∥τ∥N=1

νN (τ)2

)
+ E

(
1Ωcm1

sup
τ∈Sm:∥τ∥N=1

νN (τ)2

)
=: A+B.

Let us find suitable bounds on A and B.

Step 1 (bound on A). First, since

∥.∥2f,11Ωm1
⩽ 2∥.∥2N,11Ωm1

on Sφ,m1
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by the definition of Ωm1
, for every τ ∈ Sm,

∥τ∥2f1Ωm1
=

∫ ∞

−∞
∥τ(·, y)∥2f,11Ωm1

dy

⩽ 2

∫ ∞

−∞
∥τ(·, y)∥2N,11Ωm1

dy = 2∥τ∥2N1Ωm1
.

Then,

{τ ∈ Sm : ∥τ∥N = 1} ⊂ {τ ∈ Sm : ∥τ∥2f ⩽ 2} on Ωm1 ,

leading to

A ⩽ E

(
sup

τ∈Sm:∥τ∥2
f⩽2

νN (τ)2

)
.

Since (φ1, . . . , φm1
) is an orthonormal family of L2(R, dx), φ1, . . . , φm1

are linearly independent, and one
may consider the basis (φf1 , . . . , φ

f
m1

) of Sφ,m1 , orthonormal in L2(R, f(x)dx), obtained from (φ1, . . . , φm1)

via the Gram-Schmidt process. Thus, (φfj ⊗ ψℓ)j,ℓ is an orthonormal basis of Sm equipped with ⟨., .⟩f ,
and noting ∥.∥2,m the Fröbenius norm on Mm1,m2

(R),

A ⩽ E

 sup
Θ:∥Θ∥2

2,m⩽2

m1∑
j=1

m2∑
ℓ=1

Θj,ℓνN (φfj ⊗ ψℓ)

2
 ⩽ 2E

m1∑
j=1

m2∑
ℓ=1

νN (φfj ⊗ ψℓ)
2

 .

Now, note that for every j ∈ {1, . . . ,m1} and ℓ ∈ {1, . . . ,m2},

E(νN (φfj ⊗ ψℓ)) =
1

NT
E

(
N∑
i=1

∫ T

0

φfj (X
i
s)(ψℓ(X

i
s+t)− E(ψℓ(Xi

s+t)|Xi
s))ds

)

=
1

T

∫ T

0

E(φfj (Xs)ψℓ(Xs+t)− E(φfj (Xs)ψℓ(Xs+t)|Xs))ds = 0.

Therefore, since ∥φfj ∥f = 1 for every j ∈ {1, . . . ,m1},

A ⩽ 2

m1∑
j=1

m2∑
ℓ=1

var(νN (φfj ⊗ ψℓ))

⩽
2

N

m1∑
j=1

m2∑
ℓ=1

E

( 1

T

∫ T

0

φfj (Xs)(ψℓ(Xs+t)− E(ψℓ(Xs+t)|Xs))ds

)2


⩽
2

NT

m1∑
j=1

m2∑
ℓ=1

∫ T

0

(E(φfj (Xs)
2ψℓ(Xs+t)

2) + E(φfj (Xs)
2E(ψℓ(Xs+t)|Xs)

2)

−2E(φfj (Xs)ψℓ(Xs+t)E(φfj (Xs)ψℓ(Xs+t)|Xs)))ds

⩽
2

NT

m1∑
j=1

m2∑
ℓ=1

∫ T

0

E(φfj (Xs)
2ψℓ(Xs+t)

2)ds ⩽
2m1Lψ(m2)

N
.

Step 2 (bound on B). Since φ1, . . . , φm1
are linearly independent as mentioned in Step 1, one may

consider the basis (φN1 , . . . , φNm1
) of Sφ,m1

, orthonormal for the empirical inner product ⟨., .⟩N,1, obtained
from (φ1, . . . , φm1

) via the Gram-Schmidt process. Then, (φNj ⊗ ψℓ)j,ℓ is an orthonormal basis of Sm
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equipped with ⟨., .⟩N , and by Cauchy-Schwarz’s and Jensen’s inequalities,

sup
τ∈Sm:∥τ∥N=1

νN (τ)2 = sup
Θ:∥Θ∥2

2,m=1

m1∑
j=1

m2∑
ℓ=1

Θj,ℓνN (φNj ⊗ ψℓ)

2

⩽
m1∑
j=1

m2∑
ℓ=1

(
1

NT

N∑
i=1

∫ T

0

φNj (Xi
s)(ψℓ(X

i
s+t)− E(ψℓ(Xi

s+t)|Xi
s))ds

)2

⩽ 4Lψ(m2)

m1∑
j=1

(
1

NT

N∑
i=1

∫ T

0

φNj (Xi
s)

2ds

)
︸ ︷︷ ︸

=1

= 4m1Lψ(m2).

Therefore, by Assumption 4.1 and Lemma A.1, there exists a constant c1 > 0, not depending on m, N
and t, such that

B ⩽ 4m1Lψ(m2)P(Ωcm1
) ⩽ c1N

−1.

Step 3 (conclusion). By the two previous steps,

E(∥p̂m,t − Π̂m(pt)∥2N ) ⩽
2m1Lψ(m2)

N
+

c1
N
.

Thus,

E(∥p̂m,t − pI×J,t∥2N ) ⩽ min
τ∈Sm

E(∥τ − pI×J,t∥2N ) + E(∥p̂m,t − Π̂m(pt)∥2N )

⩽ min
τ∈Sm

∥τ − pI×J,t∥2f +
2m1Lψ(m2)

N
+

c1
N
.

□

A.1.2. Proof of Lemma A.2. First, by Cauchy-Schwarz’s inequality,

sup
τ∈Sm:∥τ∥N=1

⟨p̂m,t − Π̂m(pt), τ⟩2N ⩽ ∥p̂m,t − Π̂m(pt)∥2N ,

and since

τ∗ :=
p̂m,t − Π̂m(pt)

∥p̂m,t − Π̂m(pt)∥N
∈ Sm

satisfies both ∥τ∗∥N = 1 and

⟨p̂m,t − Π̂m(pt), τ
∗⟩2N = ∥p̂m,t − Π̂m(pt)∥2N ,

then

(21) ∥p̂m,t − Π̂m(pt)∥2N = sup
τ∈Sm:∥τ∥N=1

⟨p̂m,t − Π̂m(pt), τ⟩2N .

Now, let us show that

(22) ⟨p̂m,t − Π̂m(pt), τ⟩N = νN (τ) ; ∀τ ∈ Sm.

By the decompositions of p̂m,t and Π̂m(pt) in the basis (φj ⊗ ψℓ)j,ℓ of Sm, and by (19),

p̂m,t − Π̂m(pt) =

m1∑
j=1

m2∑
ℓ=1

[Ψ̂−1
m1

(Ẑm,t − P̂m(pt))]j,ℓ(φj ⊗ ψℓ)

=

m1∑
j=1

m2∑
ℓ=1

[Ψ̂−1
m1

∆̂m]j,ℓ(φj ⊗ ψℓ),
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where

∆̂m :=

(
1

NT

N∑
i=1

∫ T

0

φj(X
i
s)ψℓ(X

i
s+t)ds

− 1

NT

N∑
i=1

∫ T

0

∫ ∞

−∞
φj(X

i
s)ψℓ(y)pt(X

i
s, y)dyds

)
j,ℓ

= (νN (φj ⊗ ψℓ))j,ℓ.

Then, for any τ =
∑
j,ℓΘj,ℓ(φj ⊗ ψℓ) with Θ ∈ Mm1,m2(R),

⟨p̂m,t − Π̂m(pt), τ⟩N =

m1∑
j,j′=1

m2∑
ℓ,ℓ′=1

[Ψ̂−1
m1

∆̂m]j,ℓΘj′,ℓ′⟨φj ⊗ ψℓ, φj′ ⊗ ψℓ′⟩N

=

m1∑
j,j′=1

m2∑
ℓ,ℓ′=1

[Ψ̂−1
m1

∆̂m]j,ℓΘj′,ℓ′

× 1

NT

N∑
i=1

∫ T

0

φj(X
i
s)φj′(X

i
s)ds

∫ ∞

−∞
ψℓ(y)ψℓ′(y)dy︸ ︷︷ ︸

=[Ψ̂m1 ]j,j′δℓ,ℓ′

=

m1∑
j′=1

m2∑
ℓ=1

Θj′,ℓ

m1∑
j=1

[Ψ̂m1 ]j,j′ [Ψ̂
−1
m1

∆̂m]j,ℓ︸ ︷︷ ︸
=[∆̂m]j′,ℓ

=

m1∑
j′=1

m2∑
ℓ=1

Θj′,ℓνN (φj′ ⊗ ψℓ) = νN (τ).

Therefore, by Equalities (21) and (22) together,

∥p̂m,t − Π̂m(pt)∥2N = sup
τ∈Sm:∥τ∥N=1

νN (τ)2.

□

A.2. Proof of Theorem 4.3. First of all,

E(∥p̃m,t − pI×J,t∥2f ) = E(∥p̃m,t − pI×J,t∥2f1Ωm1
) + E(∥p̃m,t − pI×J,t∥2f1Ωcm1

)

=: A+B.

Let us find suitable bounds on A and B.

Step 1 (bound on A). As already mentioned, since

∥.∥2f,11Ωm1
⩽ 2∥.∥2N,11Ωm1

on Sφ,m1

by the definition of Ωm1
, for every τ ∈ Sm,

∥τ∥2f1Ωm1
=

∫ ∞

−∞
∥τ(·, y)∥2f,11Ωm1

dy

⩽ 2

∫ ∞

−∞
∥τ(·, y)∥2N,11Ωm1

dy = 2∥τ∥2N1Ωm1
.

Then, noting pfI×J,t as the orthogonal projection of pI×J,t onto Sm for the inner product ⟨., .⟩f ,

∥p̃m,t − pI×J,t∥2f1Ωm1
= (∥p̃m,t − pfI×J,t∥

2
f + ∥pfI×J,t − pI×J,t∥2f )1Ωm1

⩽ ∥pfI×J,t − pI×J,t∥2f + 2∥p̃m,t − pfI×J,t∥
2
N1Ωm1

⩽ min
τ∈Sm

∥τ − pI×J,t∥2f + 4∥p̃m,t − pI×J,t∥2N + 4∥pI×J,t − pfI×J,t∥
2
N .
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Moreover,
∥p̃m,t − pI×J,t∥2N ⩽ ∥p̂m,t − pI×J,t∥2N + ∥pI×J,t∥2N1Λcm1

and, by Lemma A.1,

E(∥pI×J,t∥2N1Λcm1
) ⩽ E

( 1

NT

N∑
i=1

∫ T

0

∫ ∞

−∞
pt(X

i
s, y)

2dyds

)2
 1

2

P(Λcm1
)

1
2

⩽ c
1
2

A.1

R(t)

Np/2
with R(t) =

1

T
E

(∫ T

0

∫ ∞

−∞
pt(Xs, y)

2dyds

)2
 1

2

.

Therefore, by Theorem 4.2, there exists a constant c1 > 0, not depending on m, N and t, such that

A ⩽ 5 min
τ∈Sm

∥τ − pI×J,t∥2f + 4E(∥p̃m,t − pI×J,t∥2N )

⩽ 9 min
τ∈Sm

∥τ − pI×J,t∥2f +
8m1Lψ(m2)

N
+

c1(1 +R(t))

N
.

Step 2 (bound on B). Since Θ̂m,tΘ̂
∗
m,t is a positive semidefinite (symmetric) matrix,

∥p̂m,t∥2f =

∫ ∞

−∞
f(x)

∫ ∞

−∞

m1∑
j=1

m2∑
ℓ=1

[Θ̂m,t]j,ℓφj(x)ψℓ(y)

2

dydx

=

∫ ∞

−∞
f(x)

m1∑
j,j′=1

m2∑
ℓ,ℓ′=1

[Θ̂m,t]j,ℓ[Θ̂m,t]j′,ℓ′

×φj(x)φj′(x)
∫ ∞

−∞
ψℓ(y)ψℓ′(y)dy︸ ︷︷ ︸

=δℓ,ℓ′

dx

=

m1∑
j,j′=1

m2∑
ℓ=1

[Θ̂m,t]j,ℓ[Θ̂m,t]j′,ℓ

∫ ∞

−∞
φj(x)φj′(x)f(x)dx︸ ︷︷ ︸

=[Ψm1
]j,j′

=

m1∑
j=1

m2∑
ℓ=1

[Θ̂∗
m,t]ℓ,j

m1∑
j′=1

[Ψm1 ]j,j′ [Θ̂m,t]j′,ℓ︸ ︷︷ ︸
=[Ψm1

Θ̂m,t]j,ℓ

=

m1∑
j=1

[Ψm1
Θ̂m,tΘ̂

∗
m,t]j,j = trace(Ψm1

Θ̂m,tΘ̂
∗
m,t) ⩽ ∥Ψm1

∥optrace(Θ̂m,tΘ̂
∗
m,t).

Let us find suitable controls on ∥Ψm1∥2op and E(trace(Θ̂m,tΘ̂
∗
m,t)

2). On the one hand, by Cauchy-
Schwarz’s and Jensen’s inequalities,

∥Ψm1∥2op = sup
y:∥y∥2,m1=1

m1∑
j=1

 m1∑
j′=1

yj′

∫ ∞

−∞
φj(x)φj′(x)f(x)dx

2

⩽
m1∑

j,j′=1

(∫ ∞

−∞
φj(x)φj′(x)f(x)dx

)2

⩽ Lφ(m1)
2

∫ ∞

−∞
f(x)dx︸ ︷︷ ︸
=1

.

On the other hand, since Ẑm,tẐ
∗
m,t is a positive semidefinite (symmetric) matrix,

trace(Θ̂m,tΘ̂
∗
m,t) = trace((Ψ̂−1

m1
)2Ẑm,tẐ

∗
m,t) ⩽ ∥Ψ̂−1

m1
∥2optrace(Ẑm,tẐ

∗
m,t).
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Moreover,

E(trace(Ẑm,tẐ
∗
m,t)

2) = E


m1∑
j=1

m2∑
ℓ=1

[Ẑm,t]
2
j,ℓ

2


⩽
m1m2

N4T 4

m1∑
j=1

m2∑
ℓ=1

E

( N∑
i=1

∫ T

0

φj(X
i
s)ψℓ(X

i
s+t)ds

)4
 ⩽ m1m2Lφ(m1)

2Lψ(m2)
2

and, on the event Λm1 ,

∥Ψ̂−1
m1

∥4op ⩽ c4Λ
N4T 4

log(NT )4Lφ(m1)4
.

Then, there exists a constant c2 > 0, not depending on m, N and t, such that

E(∥p̃m,t∥4f ) ⩽ c2N
4m1m2Lψ(m2)

2.

So, by Lemma A.1, there exists a constant c3 > 0, not depending on m, N and t, such that

B ⩽ E(∥p̃m,t − pI×J,t∥4f )
1
2P(Ωcm1

)
1
2

⩽ c3(1 + ∥pI×J,t∥2f )N3+q− p
2 ⩽

c3(1 + ∥pI×J,t∥2f )
N

.

Step 3 (conclusion). By the two previous steps, there exists a constant c4 > 0, not depending on m,
N and t, such that

E(∥p̃m,t − pI×J,t∥2f ) ⩽ 9 min
τ∈Sm

∥τ − pI×J,t∥2f +
8m1Lψ(m2)

N
+

c4(1 +Rf (t))

N

with Rf (t) = R(t) + ∥pI×J,t∥2f . Moreover, by Inequality (7),

R(t) =
1

T
E

(∫ T

0

∫ ∞

−∞
pt(Xs, y)

2dyds

)2
 1

2

⩽
cT

Tt1/2
E

(∫ T

0

∫ ∞

−∞
pt(Xs, y)dyds

)2
 1

2

= cT t
− 1

2

and

∥pI×J,t∥2f =

∫ ∞

−∞

∫ ∞

−∞
pt(x, y)

2f(x)dxdy

⩽ cT t
− 1

2

∫ ∞

−∞
f(x)

∫ ∞

−∞
pt(x, y)dydx = cT t

− 1
2 ,

leading to

1

T

∫ T

0

Rf (t)dt ⩽ 4cTT
− 1

2 .

In conclusion,

1

T

∫ T

0

E(∥p̃m,t − pI×J,t∥2f )dt ⩽ 9 min
τ∈Sm

{
1

T

∫ T

0

∥τ − pI×J,t∥2fdt

}
+

8m1Lψ(m2)

N
+

c4(1 + 4cTT
−1/2)

N
.

□
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A.3. Proof of Theorem 5.2. The proof of Theorem 5.2 relies on the two following technical lemmas.

Lemma A.3. Under Assumption 5.1, for any m = (m1,m2) and M = (M1,M2) belonging to N 2, if
Sm ⊂ SM, then

Π̂m(p̂M,t) = p̂m,t.

Lemma A.4. Consider the event

ΞN := {MN ⊂ M̂N ⊂ MN},

where MN := UN ∩ (VN ×N ) and

VN :=

{
m1 ∈ N : c2φm1(∥Ψ−1

m1
∥2op ∨ 1) ⩽ 4d

NT

log(NT )

}
.

Under Assumption 5.1, there exists a constant cA.4 > 0, not depending on N , such that

P(ΞcN ) ⩽
cA.4
Np−1

.

The proof of Lemma A.3 is postponed to Subsubsection A.3.2, and Lemma A.4 is a straightforward
consequence of Comte and Genon-Catalot [11], Inequality (6.17), because

{VN ⊂ V̂N ⊂ VN} ⊂ ΞN .

A.3.1. Steps of the proof. The proof of Theorem 5.2 is dissected in four steps.

Step 1. Let us prove that for any m = (m1,m2) ∈ M̂N ,

(23) ∥p̂m̂,t − pI×J,t∥2N ⩽ 6∥p̂m,t − pI×J,t∥2N + 4κpen(m) + 11

(
∥p̂m̂,t − Π̂m̂(pt)∥2N − 2

11
κpen(m̂)

)
+

.

Consider M = (max(N ),max(N )) and m ∈ {m, m̂} ⊂ M̂N ⊂ N 2. First, let us show that

∥p̂m̂,t − pI×J,t∥2N ⩽ ∥p̂m,t − pI×J,t∥2N − 2(∥p̂m,t − Π̂m(pt)∥2N − κpen(m))(24)

+2(∥p̂m̂,t − Π̂m̂(pt)∥2N − κpen(m̂)) +RM

with
RM = 2⟨Π̂m̂(pt)− Π̂m(pt), p̂M,t − Π̂M(pt)⟩N .

Since Sm ⊂ SM by Assumption 5.1.(1,2),

Π̂m(p̂M,t) = p̂m,t by Lemma A.3.

Then,

∥p̂M,t − p̂m,t∥2N = ∥p̂M,t∥2N + ∥p̂m,t∥2N − 2⟨p̂M,t, p̂m,t⟩N
= ∥p̂M,t∥2N + ∥Π̂m(p̂M,t)∥2N

−2 ⟨p̂M,t − Π̂m(p̂M,t), Π̂m(p̂M,t)⟩N︸ ︷︷ ︸
=0

−2⟨Π̂m(p̂M,t), Π̂m(p̂M,t)⟩N

= ∥p̂M,t∥2N − ∥p̂m,t∥2N .

So, by the definition of m̂,

∥p̂M,t − p̂m̂,t∥2N + 2κpen(m̂) = ∥p̂M,t∥2N − ∥p̂m̂,t∥2N + 2κpen(m̂)

⩽ ∥p̂M,t∥2N − ∥p̂m,t∥2N + 2κpen(m) = ∥p̂M,t − p̂m,t∥2N + 2κpen(m),

and thus

∥p̂m̂,t − pI×J,t∥2N − ∥p̂m,t − pI×J,t∥2N
= ∥p̂m̂,t − p̂M,t∥2N − ∥p̂m,t − p̂M,t∥2N + 2⟨p̂m̂,t − p̂m,t, p̂M,t − pI×J,t⟩N
⩽ 2κpen(m)− 2κpen(m̂) + 2⟨p̂m̂,t − p̂m,t, p̂M,t − pI×J,t⟩N .
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Moreover, since Π̂m ◦ Π̂M = Π̂m and Π̂m(p̂M,t) = p̂m,t,

⟨p̂m,t − Π̂m(pt), p̂M,t − Π̂M(pt)⟩N
= ⟨Π̂m(p̂M,t − Π̂M(pt)), p̂M,t − Π̂M(pt)− Π̂m(p̂M,t − Π̂M(pt))⟩N︸ ︷︷ ︸

=0

+∥p̂m,t − Π̂m(pt)∥2N ,

leading to

⟨p̂m̂,t − p̂m,t, p̂M,t − pI×J,t⟩N = ⟨p̂m̂,t − p̂m,t, p̂M,t − Π̂M(pt)⟩N + ⟨p̂m̂,t − p̂m,t, Π̂M(pt)− pI×J,t⟩N︸ ︷︷ ︸
=0

= ⟨p̂m̂,t − Π̂m̂(pt), p̂M,t − Π̂M(pt)⟩N
+⟨Π̂m̂(pt)− Π̂m(pt), p̂M,t − Π̂M(pt)⟩N

+⟨Π̂m(pt)− p̂m,t, p̂M,t − Π̂M(pt)⟩N
= ∥p̂m̂,t − Π̂m̂(pt)∥2N − ∥p̂m,t − Π̂m(pt)∥2N

+⟨Π̂m̂(pt)− Π̂m(pt), p̂M,t − Π̂M(pt)⟩N .

Therefore,

∥p̂m̂,t − pI×J,t∥2N ⩽ ∥p̂m,t − pI×J,t∥2N + 2κpen(m)− 2κpen(m̂) + 2⟨p̂m̂,t − p̂m,t, p̂M,t − pI×J,t⟩N
⩽ ∥p̂m,t − pI×J,t∥2N − 2(∥p̂m,t − Π̂m(pt)∥2N − κpen(m))

+2(∥p̂m̂,t − Π̂m̂(pt)∥2N − κpen(m̂)) +RM.

Now, let us find a suitable bound on RM. Since φ1, . . . , φmax(N ) are linearly independent, one may
consider the basis (φN1 , . . . , φ

N
max(N )) of Sφ,max(N ), orthonormal for the empirical inner product ⟨., .⟩N,1,

obtained from (φ1, . . . , φmax(N )) via the Gram-Schmidt process. Then, (φNj ⊗ ψℓ)j,ℓ is an orthonormal
basis of SM equipped with ⟨., .⟩N , so that

Π̂M(pt) =

max(N )∑
j=1

max(N )∑
ℓ=1

⟨pt, φNj ⊗ ψℓ⟩N (φNj ⊗ ψℓ)

and p̂M,t = Π̂M(p̂M,t) =

max(N )∑
j=1

max(N )∑
ℓ=1

⟨p̂M,t, φ
N
j ⊗ ψℓ⟩N (φNj ⊗ ψℓ).

Thus,

|RM| = 2

∣∣∣∣∣∣
〈
Π̂m̂(pt)− Π̂m(pt),

m1∨m̂1∑
j=1

m2∨m̂2∑
ℓ=1

⟨p̂M,t − pt, φ
N
j ⊗ ψℓ⟩N (φNj ⊗ ψℓ)

〉
N

∣∣∣∣∣∣
⩽

1

4
∥Π̂m̂(pt)− Π̂m(pt)∥2N + 4

∥∥∥∥∥∥
m1∨m̂1∑
j=1

m2∨m̂2∑
ℓ=1

⟨p̂M,t − pt, φ
N
j ⊗ ψℓ⟩N (φNj ⊗ ψℓ)

∥∥∥∥∥∥
2

N

⩽
1

2
∥Π̂m̂(pt)− pI×J,t∥2N +

1

2
∥Π̂m(pt)− pI×J,t∥2N + 4

m̂1∑
j=1

m̂2∑
ℓ=1

⟨p̂M,t − pt, φ
N
j ⊗ ψℓ⟩2N

+4

m1∑
j=1

m2∑
ℓ=1

⟨p̂M,t − pt, φ
N
j ⊗ ψℓ⟩2N

=
1

2
∥Π̂m̂(pt)− pI×J,t∥2N +

1

2
∥Π̂m(pt)− pI×J,t∥2N

+4∥Π̂m̂(p̂M,t − pt)∥2N + 4∥Π̂m(p̂M,t − pt)∥2N

=
1

2
∥p̂m̂,t − pI×J,t∥2N +

1

2
∥p̂m,t − pI×J,t∥2N +

7

2
∥p̂m̂,t − Π̂m̂(pt)∥2N +

7

2
∥p̂m,t − Π̂m(pt)∥2N .(25)
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Therefore, by Inequalities (24) and (25),

∥p̂m̂,t − pI×J,t∥2N ⩽ 3∥p̂m,t − pI×J,t∥2N + 3∥p̂m,t − Π̂m(pt)∥2N

+4κpen(m) + 11

(
∥p̂m̂,t − Π̂m̂(pt)∥2N − 2

11
κpen(m̂)

)
⩽ 6∥p̂m,t − pI×J,t∥2N + 4κpen(m) + 11

(
∥p̂m̂,t − Π̂m̂(pt)∥2N − 2

11
κpen(m̂)

)
+

.

Step 2. First of all, consider
ΩN :=

⋂
m1∈VN

Ωm1 .

For every m1 ∈ VN ,

Lφ(m1)(∥Ψm1∥op ∨ 1) ⩽ c2φm1(∥Ψm1∥2op ∨ 1) ⩽ 4d
NT

log(NT )
⩽

cΛ
2

· NT

log(NT )
,

leading to

(26) P(ΩcN ) ⩽
∑

m1∈VN

P(Ωcm1
) ⩽

cA.1
Np−1

by Lemma A.1 (requiring Assumption 4.1).

Now, since ΞN = {MN ⊂ M̂N ⊂ MN}, on the event ΞN ∩ ΩN , Inequality (23) remains true for every
m ∈ MN . Then,

∥p̂m̂,t − pI×J,t∥2N = ∥p̂m̂,t − pI×J,t∥2N1ΞN∩ΩN + ∥p̂m̂,t − pI×J,t∥2N1ΞcN∪ΩcN

⩽ min
m∈MN

{6∥p̂m,t − pI×J,t∥2N + 4κpen(m)}

+11

(
∥p̂m̂,t − Π̂m̂(pt)∥2N − 2

11
κpen(m̂)

)
+

1ΞN∩ΩN

+

(
∥p̂m̂,t − Π̂m̂(pt)∥2N + min

τ∈Sm̂

∥τ − pI×J,t∥2N
)
(1ΞcN

+ 1ΩcN
)

⩽ min
m∈MN

{6∥p̂m,t − pI×J,t∥2N + 4κpen(m)}+A+B(27)

where, by Lemma A.2,

A :=

(
sup

τ∈Sm̂:∥τ∥N=1

νN (τ)2 + ∥pI×J,t∥2N

)
(1ΞcN

+ 1ΩcN
)

and B := 11

(
sup

τ∈Sm̂:∥τ∥N=1

νN (τ)2 − 2

11
κpen(m̂)

)
+

1ΞN∩ΩN .

Let us find suitable bounds on E(A) and E(B). On the one hand, since

sup
τ∈Sm:∥τ∥N=1

νN (τ)2 ⩽ 4m1Lψ(m2) ; ∀m = (m1,m2) ∈ N 2

as established in the proof of Theorem 4.2 (see Step 2), since E(∥pI×J,t∥4N )1/2 ⩽ R(t) as established in
the proof of Theorem 4.3 (see Step 1), and by Inequality (26) and Lemma A.4,

E(A) ⩽ c1

R(t) + max(N )∑
m1,m2=1

m1Lψ(m2)

 (P(ΩcN )
1
2 + P(ΞcN )

1
2 ) ⩽

c2(1 +R(t))

N
,

where c1 and c2 are positive constants not depending on N and t. On the other hand, since m̂ ∈ MN on
the event ΞN ∩ ΩN ,

E(B) ⩽ 11
∑

m∈MN

E

[(
sup

τ∈Sm:∥τ∥N=1

νN (τ)2 − 2

11
κpen(m)

)
+

1ΞN∩ΩN

]
.
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Moreover, for every m = (m1,m2) ∈ MN ,

{τ ∈ Sm : ∥τ∥N = 1} ⊂ {τ ∈ Sm : ∥τ∥2f ⩽ 2} on Ωm1
⊃ ΩN .

Then,

E(B) ⩽ 11
∑

m∈MN

E

[(
sup

τ∈Sm:∥τ∥f⩽2

νN (τ)2 − 2

11
κpen(m)

)
+

1ΞN∩ΩN

]
︸ ︷︷ ︸

=:bm

.

Step 3. Thanks to the Klein and Rio version of Talagrand’s inequality (see Klein and Rio [19]), this
step deals with a suitable control of bm, m = (m1,m2) ∈ MN . First, for every τ =

∑
j,ℓ Tj,ℓ(φj ⊗ ψℓ)

belonging to F := {τ ∈ Sm : ∥τ∥2f ⩽ 2},

∥τ∥2 = trace(TT ∗Ψm1
Ψ−1
m1

) ⩽ ∥Ψ−1
m1

∥op trace(T ∗Ψm1
T )︸ ︷︷ ︸

=∥τ∥2
f

⩽ 2∥Ψ−1
m1

∥op,

and then

∥τ∥∞ = sup
(x,y)∈I×J


m1∑
j=1

m2∑
ℓ=1

Tj,ℓφj(x)ψℓ(y)


⩽ Lψ(m2)

1
2 sup
x∈I


m1∑
j=1

|φj(x)|
m2∑
ℓ=1

|Tj,ℓ|

 ⩽
√
2Lφ(m1)

1
2Lψ(m2)

1
2 ∥Ψ−1

m1
∥

1
2
op.

Since m1 ∈ VN , and since Lψ(m2) ⩽ m1Lψ(m2) ⩽ N by the definition of UN ,

sup
τ∈F

∥τ∥∞ ⩽M with M =
c3N

log(N)1/2
and c3 = 2

√
2dT .

Now, since

E
(
sup
τ∈F

νN (τ)2
)

⩽
2m1Lψ(m2)

N

as established in the proof of Theorem 4.2 (see Step 1),

E
(
sup
τ∈F

|νN (τ)|
)

⩽ H with H2 =
2m1Lψ(m2)

N
,

and then
N sup

τ∈F
E(νN (τ)2) ⩽ υ with υ = NH2.

By the aforementioned Talagrand’s inequality, for α := a log(N),

E

[(
sup
τ∈F

νN (τ)2 − 2(1 + 2α)H2

)
+

]
⩽ A(N,α,H, υ) +B(N,α,M,H),

where

A(N,α,H, υ) :=
24υ

N
exp

(
−αNH

2

6υ

)
=

48m1Lψ(m2)

N
e−

a
6 log(N) ⩽ 48N− a

6 because m ∈ UN ,

and

B(N,α,M,H) :=
c4M

2

N2
exp

(
−
√
2

42
· NH

√
α

M

)
with c4 = 7056

=
c23c4

log(N)
exp

(
−
√
2

42
·
√
2a log(N)

c3

)
⩽ c23c4N

−
√

2a
84

√
dT .
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Therefore, since a ⩾ (2 · 84
√
dT )2/2, and since

κ ⩾ κ0 = 44a ⩾
22(1 + 2a log(N))

1 + log(N)
= 11(1 + 2a log(N))

H2

pen(m)
,

there exists a constant c5 > 0, not depending on N , m1, m2 and t, such that

bm ⩽ E

[(
sup

τ∈Sm:∥τ∥f⩽2

νN (τ)2 − 2

11
κpen(m)

)
+

]

⩽ E

[(
sup
τ∈F

νN (τ)2 − 2(1 + 2α)H2

)
+

]
⩽

c5
N2

.

Step 4 (conclusion). By Steps 2 and 3,

E(A) ⩽
c2(1 +R(t))

N
and E(B) ⩽ 11

∑
m∈MN

bm ⩽
11c5
N

.

In conclusion, by Inequality (27), there exists a constant c6 > 0, not depending on N and t, such that

E(∥p̂m̂,t − pI×J,t∥2N ) ⩽ 6 min
m∈MN

{E(∥p̂m,t − pI×J,t∥2N ) + κpen(m)}+ c6(1 +R(t))

N
.

A.3.2. Proof of Lemma A.3. By the definition of Π̂m (see (20)),

Π̂m(p̂M,t) =

m1∑
j=1

m2∑
ℓ=1

[Ψ̂−1
m1
P̂m(p̂M,t)]j,ℓ(φj ⊗ ψℓ)

with, for every j ∈ {1, . . . ,m1} and ℓ ∈ {1, . . . ,m2},

P̂m(p̂M,t) =
1

NT

N∑
i=1

∫ T

0

∫ ∞

−∞
p̂M,t(X

i
s, y)φj(X

i
s)ψℓ(y)dyds

=

M1∑
j′=1

M2∑
ℓ′=1

[Ψ̂−1
M1
ẐM,t]j′,ℓ′

× 1

NT

N∑
i=1

∫ T

0

φj(X
i
s)φj′(X

i
s)

∫ ∞

−∞
ψℓ(y)ψℓ′(y)dy︸ ︷︷ ︸

=δℓ,ℓ′

ds

=

M1∑
j′=1

[Ψ̂−1
M1
ẐM,t]j′,ℓ

1

NT

N∑
i=1

∫ T

0

φj(X
i
s)φj′(X

i
s)ds︸ ︷︷ ︸

=[Ψ̂M1
]j,j′

= [ẐM,t]j,ℓ = [Ẑm,t]j,ℓ because Sm ⊂ SM.

Therefore,

Π̂m(p̂M,t) =

m1∑
j=1

m2∑
ℓ=1

[Ψ̂−1
m1
Ẑm,t]j,ℓ(φj ⊗ ψℓ) = p̂m,t.

A.4. Proof of Theorem 5.4. The proof is mainly the same as that of Theorem 5.2, except for the
control M of supτ∈F ∥τ∥∞ and the control υ of N supτ∈F E(νN (τ)2) involved in Talagrand’s inequality
(see Step 3 in Subsubsection A.3.1).

Step 3 (bis). Thanks to the Klein and Rio version of Talagrand’s inequality (see Klein and Rio [19]),
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this step deals with a suitable control of bm, m = (m1,m2) ∈ MN . First, for every τ =
∑
j,ℓ Tj,ℓ(φj⊗ψℓ)

belonging to F = {τ ∈ Sm : ∥τ∥2f ⩽ 2}, we still get

∥τ∥∞ ⩽
√
2Lφ(m1)

1
2Lψ(m2)

1
2 ∥Ψ−1

m1
∥

1
2
op.

By Assumption 5.1.(3), and since m = (m1,m2) belongs to MN ,

Lφ(m1)
1
2 ∥Ψ−1

m1
∥

1
2
op ⩽ c

1
2
φm

1
4
1 (c

2
φm1∥Ψ−1

m1
∥2op)

1
4 ⩽ c

1
2
φm

1
4
1

(
4d

NT

log(NT )

) 1
4

.

Thus, for NT ⩾ e,

sup
τ∈F

∥τ∥∞ ⩽M with M = c3,bm
1
4
1 Lψ(m2)

1
2N

1
4 and c3,b = 2

√
cφ(dT )

1
4 .

Now, since

E
(
sup
τ∈F

νN (τ)2
)

⩽
2m1Lψ(m2)

N

as established in the proof of Theorem 4.2 (see Step 1),

E
(
sup
τ∈F

|νN (τ)|
)

⩽ H with H2 =
2m1Lψ(m2)

N
.

Lastly,

sup
τ∈F

{
var

(
1

T

∫ T

0

(τ(Xs, Xs+t)− E(τ(Xs, Xs+t)|Xs))ds

)}

⩽ sup
τ∈F

E

( 1

T

∫ T

0

τ(Xs, Xs+t)ds

)2
 ⩽ p0 sup

τ∈F
∥τ∥2f ⩽ υ with υ = 2p0.

By the aforementioned Talagrand’s inequality, for α = 1/4,

E

[(
sup
τ∈F

νN (τ)2 − 3H2

)
+

]
⩽ A(N,H, υ) +B(N,M,H),

where

A(N,H, υ) :=
24υ

N
exp

(
−NH

2

24υ

)
=

48p0
N

exp

(
−m1Lψ(m2)

24p0

)
,

and

B(N,M,H) :=
c4,bM

2

N2
exp

(
−
√
2

84
· NH
M

)
with c4,b = 7056

⩽
c4,bc

2
3,b√
N

exp

(
−m

1/4
1 N1/4

42c3,b

)
because m ∈ UN .

Since m1 ⩾ 1,

B(N,M,H) ⩽
c5,b√
N

exp(−c6,bN
1
4 ) with c5,b = c4,bc

2
3,b and c6,b =

1

42c3,b
.

So, for κb ⩾ κb,0 = 33/2 and t ∈ [t0, T ],

bm ⩽ E

[(
sup

τ∈Sm:∥τ∥f⩽2

νN (τ)2 − 2

11
κpen(m)

)
+

]
⩽ E

[(
sup
τ∈F

νN (τ)2 − 3H2

)
+

]

⩽
48p0
N

exp

(
−m1Lψ(m2)

24p0

)
+

c5,b√
N

exp(−c6,bN
1
4 ).
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Therefore, by Assumption 5.3, there exists a constant c7,b > 0, not depending on N , such that

E(B) ⩽ 11
∑

m∈MN

bm ⩽
c7,b
N
.
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