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Abstract

The Borsuk conjecture and the Vázsonyi problem are two attractive and famous questions in discrete
and combinatorial geometry, both based on the notion of diameter of a bounded sets. In this paper,
we present an equivalence between the critical sets with Borsuk number 4 in R3 and the minimal struc-
tures for the Vázsonyi problem by using the well-known Reuleaux polyhedra. The latter lead to a full
characterization of all finite sets in R3 with Borsuk number 4.

The proof of such equivalence needs various ingredients, in particular, we proved a conjecture dealing
with strongly critical configuration for the Vázsonyi problem and showed that the diameter graph arising
from involutive polyhedra is vertex (and edge) 4-critical.

1 Introduction

The Borsuk partition and The frequent large distance problems are two attractive and well-known questions
in discrete and combinatorial geometry, both based on the notion of diameter of bounded sets. The diameter
of a bounded set S ⊂ Rd is define as diam(S) := supx,y∈S ||x− y||. If S is a finite set of points, the diameter
would be the maximum euclidean distance between any two points of S. In this paper we put forward an
equivalent of these problems by considering their finite strongly critical configurations.

In 1933, Borsuk [5] proposed the following question (sometimes known as the Borsuk conjecture:)

Does every set S ⊂ Rd with finite diameter Diam(S) is the union of at most d+1 sets of diameter
less than Diam(S)?

It is known to be true for d = 2 (see [5]) and for d = 3 (see [25], [7] and [9] for a simpler proof).

During fifty years, Borsuk’s conjecture was believed to be true until 1993 when Kahn and Kalai [14] proved
to be false for d = 1325 and for each d > 2014. Nowadays, there are known counterexamples in dimensions
64 and higher [13] but the problem still open for 4 ≤ d ≤ 63. We refer the reader to [26] for a survey on the
Borsuk conjecture.

Recall that the Borsuk number of S ⊂ Rd, denoted by a(S), is the smallest number of subsets that S can
be partitioned, such that each of which has smaller diameter than S. Also, recall that the diameter graph
DiamV of finite V ⊂ R3 is the graph with set of vertices V and two vertices are joined by an edge if their
distance is a diameter. These are helpful definitions in order to deal with the Borsuk problem for a finite
set of points V , since in this case the equality χ(DiamV ) = a(V ) holds, where χ(G) denote the chromatic
number of the graph G.

Boltyanski proved that in a two dimensional Banach space, every bounded set is not the union of two sets
with smaller diameter if and only if it has a unique completion to a body of constant width ([3] for the
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original proof in Russian or [4, pp-245] for English).

By using above definitions, Boltyanski characterized all the sets in R2 having Borsuk number 3 (that is,
attaining the maximum). Unfortunately, the same argument does not work in R3 for the sets with Borsuk
number 4. For instance, four points in tetrahedral position has Borsuk number 4 but its completition to a
body of constant width is not unique (see [18], [23], [17, pp-358]).

In the same spirit, it turned out to be a challenging problem to characterize all the sets in R3 with Borsuk
number 4. In [12], Hujter and Lángi give all the configurations of these sets up to 7 points and mentioned,
we cite:

“A complete characterization of the Borsuk number of finite sets in R3, even of those with
a(S) = 4, looks hopeless.”

Our main result gives a complete characterization of finite subsets in R3 with Borsuk number 4. We do
so by using some recent tools/results about involutive polyhedra and by characterizing the critical Borsuk
configurations, that is, the finite sets not having subsets with the same Borsuk number.

Our approach is closely related to the frequent large distance problem:

Given 0 < d < n, what is the maximum number of diameters over all the sets of n points in Rd?

We denote by e(d, n) such maximum number of diameters. This is one of the oldest problems in discrete
and combinatorial geometry. It was first proposed in 1934 by Hopf and Pannwitz [11] in the plane and then
generalized to all dimensions.

Given a finite set V ⊂ Rd, we let e(V ) be the number of diameters in V (we keep the same notation
introduced in [15]). We say that V is an extremal configuration for the frequent large distance problem if
e(V ) = e(d, |V |).

It is well known that e(2, n) = n and how all the extremal configurations look like (see [24, pp 213-214],
[16]). For d = 3, the problem is better known as the Vázsonyi problem in honor to Vázsonyi, who conjectured
that e(3, n) = 2n− 2. Grünbaum [8], Heppes [10] and Straszewicz [29] proved independently to be true and
Kupitz, Martini and Perles [15] characterize all the extremal configurations.

We say that V is a critical configuration for the Vázsonyi problem if V is an extremal configuration and
any point of V is adjacent to at least 3 diameters. We also say that V is strongly critical if V does not have
an extremal configuration subset. By using the characterization of the extremal configurations, we have that
being strongly critical implies to be critical, however the opposite direction is not true.

The existence of a set of 8 points that is critical but not strongly critical was claimed in [15] and intended
to be given in a future work, however, as far as we are aware it was never published. By using bodies of
constant width, we were able to construct an explicitly critical configuration of 8 points in R3 that is not
strongly critical ( see end of Section 4.1).

Our approach led us to investigate the ball polyhedra. In [15], it was proved that the 1-skeleton of ball
polytopes arising from extremal set of points in R3 are 2-connected planar graphs. In the same paper, the
authors also proposed the following

Conjecture 1. [15] An extremal set V ⊂ R3 has a polytopal ball polytope B(V ) (i.e. the 1-skeleton of B(V )
can be realized as the 1-skeleton of a 3-polytope) if and only if V is strongly critical.

We are able to prove this characterization (Lemma 2). Furthermore, the latter yields to a nice equivalence
between strongly critical configurations for the Vázsonyi problem and the Reuleaux polyhedra (Theorem 6).
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This relationship, combined with a result about the 4-critically of the diagonal graph arising from involutive
polyhedra (Lemma 1), led us to a full characterization of all finite sets in R3 with Borsuk number 4.

Theorem 1. Let V ⊂ R3 be a finite set with finite diameter and | V |= n ≥ 4. The following statements
are equivalent

i. V has a subset that is an extremal configuration for the Vázsonyi problem.

ii. V has Borsuk number 4.

iii. There is a V1 ⊂ V such that B(V1) is a Reuleaux polyhedron.

The organization of the paper is the following. In the next section we present a number of results and notions
needed for the rest of the paper. In particular, we discuss some background on both the ball polyhedra and
the Reuleaux polyhedra as well as their properties. In Section 3, we prove a key lemma on the chromatic
number of the diagonal graph of involutive polyhedra. This is not only interesting for its own sake, but it
is a crucial brick for our contributions. Section 4.1 is mainly devoted to prove our main results. We finally
end with some concluding remarks.

2 Preliminaries

We review some results and notions on Ball polytopes and Reuleaux polyhedra needed throughout the
paper. We refer the reader to [17, pp 132-141] for further details. We also discuss some needed background
on involutive polyhedra.

2.1 Ball-polyhedra

Given a finite subset V of R3, the ball set of V is define as B(V ) = {y ∈ R3 : ∀x ∈ V, ‖x − y‖ ≤ 1}. If
the radii of the circumball of V , denoted by cr(V ), is less than 1, then B(V ) is called the ball polyhedron
associated with V . A point v ∈ V is essential if B(V ) $ B(V \{v}), otherwise it is inessential. The subset of
essential points will be denoted as ess(V ). A finite set V ⊂ R3 satisfying cr(V ) < 1 and V = ess(V ) is tight.

The following four theorems are due to Martini, Kupitz and Perles [15].

Theorem 2. [15] Assume that V ⊂ R3 is finite and diamV = 1. Then

1. cr(V ) < 1

2. If a point v ∈ V is incident with (at least) two diameters of V , then v ∈ ess(V ).

3. If V is extremal for the Vázsonyi problem, then V is tight.

Definition 1. Facial structure of a ball polyhedron B(V ).

1. For a point p ∈ V the set Fp := {x ∈ B(V ) : ||x− p|| = 1} is a facet of B(V ).

2. A boundary point z of B(V ) is a vertex of B(V ) if either z belongs to three or more distinct facets of
B(V ), in which case z is a principal vertex, or z ∈ V ∩ B(V ) and z belongs to exactly two facets of
B(V ), in which case z is called a dangling vertex. Denote by vertB(V ) the set of vertices of B(V ).
In other words, z ∈ vertB(V ) if and only if z ∈ B(V ) and ‖z − p‖ = 1 holds for at least three points
p ∈ V , or if z ∈ V ∩ B(V ) and ‖z − p‖ = 1 holds for exactly two points p ∈ V .

3. An edge of B(V ) is the closure of a connected component of (Fp∩Fq)\(vertB(V )), where {p, q} ranges
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over all pairs of distinct points of V .

4. The set of faces of B(V ), including facets, edges, vertices and improper faces B(V ) and ∅, is the
spherical face complex of B(V ) denoted by SF(B(V )). In particular, the 1-skeleton of SF(B(V )) is
the set of vertices and edges of B(V ) viewed as a graph.

Theorem 3. [15] Given a tight finite set V ⊂ R3 and |V | ≥ 3, the 1-skeleton of SF(B(V )) is planar and
2-connected.

The following result was called the extended GHS Theorem in [15] after Grümbaum, Heppes and Straszewicz
who gave the proofs for the Vázsonyi problem independently.

Theorem 4. [15] (GHS) Let V ⊂ R3 be finite with | V |= n ≥ 4 and diamV = 1. The following three
statements are equivalent

1. V is extremal for the Vázsonyi problem, i.e., e(V ) = e(3, n).

2. e(V ) = 2n− 2.

3. V is tight and V = vertB(V ).

An involutory self-duality of SF(B(V )) is an order reversing map ϕ : SF(B(V ))→ SF(B(V )) of order two
(ϕ2 = Id) and that sends every vertex v ∈ SF(B(V )) to its corresponding dual face Fv ∈ SF(B(V )). This
involution can be naturally extended to the edges as follows: for every edge ab ∈ SF(B(V )), ϕ(ab) = ϕ(a)ϕ(b)
is the edge induced by the intersection of Fa and Fb.

Theorem 5. [15] Let V be an extremal Vázsonyi configuration in R3. Then, there is always an unique
edge-extension involution ϕ : SF(B(V ))→ SF(B(V )) without fixed point, that is v /∈ ϕ(v) for all v ∈ V .

We will refer to this involution as the canonical involution.

A ball polyhedra B(V ) is called standard if SF(B(V )) is a polytopal lattice (that is, SF(B(V )) can be
realized as the face lattice of a 3-polytope). Numerous papers have focus their attention in studying this
kind of ball polytopes. For instance, it is known that Q is a standard ball polytope if and only if either for
any supporting sphere S(p, r) of Q, the intersection Q ∩ S(p, r) is homeomorphic to a closed Euclidean ball
of some dimension [15, Remark 9.1] or the intersection of two faces is either empty, a vertex or an edge [19]
(see also [2, 23]).

In [15], it was mentioned that not all the extremal configurations for the Vázsonyi problem induce a standard
ball polytope. The example that we will present in Section 4.3 is a critical configuration for the Vázsonyi
problem, but it turns out not to be a standard ball polytope.

2.2 Reuleaux polyhedra

A standard ball polyhedron B(V ) satisfying V = vertB(V ) is called a Reuleaux polyhedron, and denoted by
R(V ). Reuleaux polyhedra enjoy several attractive properties. For instance, they are “frames” of bodies of
constant width in R3; see for example, the Meissner polyhedra constructed in [23] or the Pea bodies built
in [1].

It is known that the set of vertices of a Reuleaux polyhedron V form an extremal configuration for the
Vázsonyi problem. Furthermore, by using the density of the Reuleaux polyhedra in the set of bodies of
constant width (investigated in [27]), it was showed in [12], that the vertex set of a Reuleaux polytope has
Borsuk number 4. This fact can also be deduced from [19, Theorem 3] where the chromatic number for the
diameter graph of V was shown to be equal 4.
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A graph G is called polyhedron if it is a simple, 3-connected, planar graph. The name comes after Steinitz’
characterization [28] stating that G is a polyhedron if and only if it is the 1-skeleton of a convex 3-polytope.
Since the Reuleaux polyhedra are standard ball polytopes, then they have polytopal structure and hence
their 1-skeleton is a polyhedron.

2.3 Involutive graphs

Let G be a self-dual graph and let G∗ be its dual. A map τ : V (G) → V (G∗) is called an involution if it
satisfies the following:

1) v /∈ τ(v) for every v ∈ V and

2) u ∈ τ(v) ⇐⇒ v ∈ τ(u)

A self-dual polyhedron G admitting an involution is called an involutive polyhedron (see [19]). Note that
τ(v) can be thought as a face of G (called dual face of v, and denoted by Fv). It is easy to verify that for
any edge ab ∈ E, there is an other edge xy ∈ E such that τ(a) ∩ τ(b) = xy and τ(x) ∩ τ(y) = ab. We will
write τ(a, b) = xy and call them dual edges. Since the vertices of a Reuleaux polyhedron are in extremal
configuration for the Vázsonyi problem, an involutive map exists and it is actually the canonical involution
defined above in Theorem 5. Hence, the 1-skeleton of a Reuleaux polyhedron is an involutive polyhedron.

Let G = (V,E) be an involutive polyhedron and let a, x ∈ V . We say that [a, x] is a diagonal of G if
x ∈ τ(a). We define the the diagonal graph DiagG arising from G, the graph where the set of vertices is V
and set of edges consisting of the set of all the diagonals of G. We notice that our diagonal graph correspond
to the diameter graph used in [19]. We rather prefer to use the term diagonal to insist that it arises from the
involutive map of the abstract graph. In [19], the authors studied involutive graphs from a more geometric
point of view (in connection with metric mappings and metric embeddings) and thus the term diameter
seems more appropriate.

In [19], it was stated the following

Conjecture 2. [19] Every involutive polyhedron G = (V,E) is isomorphic to the 1-skeleton of a Reuleaux
polyhedron R(S) for some set of points S.

If this conjecture were true then we would have that DiagG is isomorphic to DiamS . Indeed, in such a case,
there is a bijection f : V → S such that [x, y] is a diagonal in G if and only if the distance between f(x) and
f(y) (vertices in the realization of R(S)) is equal to DiamS . Conjecture 2 will be discussed further in the
last section.

By Withney’s work [31], it is known that any polyhedron G can be drawn in the plane or in the 2-sphere
(in this case, G is said to be a map, that is, a graph cellularly embedded in S2) essentially in a unique
way. Montejano, Ramı́rez and Rasskin [22] proved that any involutive polyhedra is antipodally self-dual,
that is, there are maps Ĝ and Ĝ∗ of G and its dual respectively (simultaneously embedded in S2) such that
Ĝ = −Ĝ∗.

Let I(G) be the incidence graph of the planar graph G. We recall that the vertices of I(G) is given by
V (G) ∪ V (G∗) and {v, w} is an edge of I(G) if v ∈ V (G), w ∈ V (G∗) and v ∈ Fw where Fw is the face in G
corresponding to w. By a symmetric cycle C of a planar graph G, we mean that there is an automorphism
σ(G) such that σ(C) = C and σ(int(C)) = ext(C), that is, the induced graph in the interior of C is
isomorphic to the induced graph in the exterior of C.

In [22, Lemma 1], it was proved that if G is an antipodally self-dual map then I(G) is antipodally symmetric,
that is, there is a map Ĝ of G such that −Ĝ = Ĝ. Furthermore, in [22, Theorem 1] it was proved that if G
is an antipodally self-dual map then there is a symmetric cycle CI with 2r vertices in I(G), with r odd. We
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shall denote by Embed(I(G)) such embedding with CI placed along the equator of S2.

The notion of symmetric cycle in maps has already been used in other contexts, for instance, to study knot
theory problems [[21], [20]].

3 The Key Lemma

This section is devoted to prove the following lemma that plays a central role throughout this paper.

Lemma 1. Let G be an involutive polyhedron. Then, DiagG is 4-critical, that is, it is vertex 4-chromatic
and the removal of any vertex decreases its chromatic number.

In order to prove the above lemma, we first establish a number of important properties needed as basic
bricks for its proof.

Let G be an involutive graph. We shall consider the above mentioned antipodal embedding Embed(I(G))
in S2 where the symmetric cycle CI is minimal, that is, with a minimal number of edges. We suppose
that int(G) and ext(G) are drawn in the Northern and the Southern hemispheres (denoted by S2N and S2S)
respectively.

[P1] We suppose that |CI | = 2r where r is an odd integer. We label the black (resp. white) vertices of
CI with v0, . . . , vr−1 (resp with v∗0 , . . . , v

∗
r−1) clockwise around the equator. Since vertex vi is antipodally

embedded to v∗i then CI is cyclically labeled as follows {v0, v∗r+1
2

, v1, . . . , v r−1
2
, v∗0 , v r+1

2
, v∗1 . . . , v

∗
r−1
2

}, see

Figure 1(a)

[P2] We claim that any vi is adjacent to exactly two vertices of CI in DiagG. We may show this for v0 (the
argument is the same for any vi). We clearly have that v r−1

2
and v r+1

2
are adjacent to v0 since they both

are vertices of the dual face Fv0 represented by v∗0 . Now, suppose that there is another vj , j 6= r−1
2 , r+1

2
adjacent to v0. The latter means that vj is also in the face Fv0

and therefore there must also exists an edge
joining vj and v∗0 in GI , see Figure 1(b).

Since I(G) is antipodally symmetric then, there is also an edge joining v∗j and v0. We way construct
the cycle C ′I = v0, v

∗
j , [v

∗
j ; v∗0 ], v∗0 , vj , [vj ; v0] where [a; b] denotes the path along the equator joining a and b

without intersecting any other previous vertex in C ′I . By the antipodality of I(G), we have that C ′I induce a
symmetric cycle of I(G) with |C ′I | < |CI |, which is a contradiction to the minimality of CI , see Figure 1(b).

[P3] By [P2], the degree of each vertex vi of CI in DiagG is equals two. In other words, vi form two diagonals
with the two vertices adjacent to v∗i in CI . Since r is odd then the set of all these couple of diagonals form
a cycle CD in DiagG. CD is a star with r vertices in CI . For commodity, we preserve the same vertex labels
of CI , given by the order of appearance around the equator for CD, see Figure 1(c)

[P4] We claim that there is not face of G containing two non-consecutive vertices of CD (recall that
consecutive is with respect to the order of appearance around the equator and not in the order of appearance
while traveling through CD). We proceed by contradiction, suppose that there is a face Fw containing two
non-consecutive vertices, say v0 and vj . We thus have that the vertex w∗, representing the dual face Fw

in I(G), must be adjacent to both v0 and vj . By antipodality, we also have that w is adjacent to both v∗0
and v∗j . We may thus construct a symmetric cycle C ′ = [v0; v∗j ], v∗j , w, v

∗
0 , [v

∗
0 ; vj ], vj , w

∗, v0 with |C ′| < |CI |,
which is a contradiction to the minimality of CI , see Figure 2(a).

[P5] Notice that a face F of G can never contain four or more vertices of CD, otherwise F would have at
least two non-consecutive vertices of CD which, by [P4], is impossible.

There might exist a face F containing exactly three consecutive vertices of CD, in this case, G is actually
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(a) Cycle CI with r = 7.

(b) Red edges inducing the new
shorter symmetric cycle CI . Blue
arcs are edges in G. (c) Cycle CD.

Figure 1: Edges of I(G) in black and edges of G in blue

(a) Red edges inducing the new
shorter symetric cycle C′I . (b) The Tetrahedron. (c) HN, HS, PN

i and PS
i

Figure 2: Edges of I(G) in black and edges of G in blue
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the tetrahedron. Indeed, since the vertices are consecutive then CD consist of three vertices and thus the
drawing of I(G) consist of six vertices in the equator (three black and three white appearing alternating)
with one black vertex say in int(G) joined to the three white vertices in the equator and one white vertex
in ext(G) (representing the face F ) joined to the three black vertices in the equator. We thus have that G
consist of 4 black vertices forming a tetrahedron, see Figure 2(b)

[P6] Let us consider the embedding of G in S2, say Embed(G), induced by the embedding of I(G). By
the symmetry of CI then the only faces in Embed(G) lying in S2N and S2S at the same time are the faces
corresponding to each blue vertex in CI . Any other face completely lies in either of the hemispheres, see
Figure 2(c).

[P7] Recall that Fvi is the dual face of vi represented by vertice v∗i . We define PN
i (resp. P S

i ) as the path
going from vi+ r−1

2
to vi+ r+1

2
for each i = 0, . . . , r+1

2 (sum mod r) through the vertices of Fvi
appearing in

S2N (resp. in S2S).

We also let HN (resp. HS) be the union of all PN
i (resp. all P S

i ), see Figure 2(c).

[P8] Since G is a polyhedra (and thus simple) then any pair of faces share at most one edge. Therefore, we
may have repeated consecutive edges in HN (or HS) if Fvi and Fvi+1

share an edge, see Figure 2(c).

[P9] Notice that HN (resp. HS) induce to a path of G separating all the faces completely contained in S2N
(resp. in S2S) from the rest of faces, see Figure 2(c).

We may now prove Lemma 1.

Proof of Lemma 1.

By [19, Theorem 3], χ(DiagG) = 4. We shall show that χ(DiagG \{v}) = 3 for any v ∈ V (DiagG). To this
end, for each v ∈ V (G) we will show that there always exists a map c : V (G)→ {0, 1, 2, 3} from the vertices
of G to colors 0,1,2 and 3 inducing a proper coloring with c(v) = 3 and c(v) 6= c(u) for all u 6= v.

We have that either v is a vertex in V (CD) or it lies in an hemisphere. Let us see each of these two cases.

Case 1) Let v ∈ V (CD). W.l.o.g., we may take v = v0 (in the labeling of CD). We have that the dual face
Fv0 contains at least three vertices, say v r−1

2
, v r+1

2
(see [P7]) and u. W.l.o.g., we may assume that u lies in

S2N.

Let us notice that, by definition of the paths PN
i (see [P7]), u ∈ PN

r−1
2

. We will use this fact later on in the

Subcase 1.2 below.

Let A[v0, v r+1
2

] (resp. A[v0, v r−1
2

]) be the vertices in the arc of the equator between v0 and v r+1
2

not

containing v r−1
2

(resp. the arc between v0 and v r−1
2

not containing v r+1
2

), see Figure 3.

We color the vertices of G as follows.

• c(v = v0) = 3,

• c(x) = 2 if x ∈ A[v0, v r+1
2

]\{v0},

• c(x) = 1 if x ∈ A[v0, v r−1
2

]\{v0},

• c(x) = 0 if x lies in S2N,

see Figure 3
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Figure 3: The blue vertices are color 1, the green ones are color 2 and the red ones are color 0.

We first notice that the vertices of an edge in CD have different colors (and thus colored properly). Moreover,
since there is not edge of DiagG between two vertices in S2N (all the neighbors of the vertices in S2N in DiagG

lie in S2S our coloring works so far.

We finally need to color each vertex lying in S2S. Let w be a vertex of G in S2S and let Fw its dual face lying
in S2N. We claim that at most two out of the three colors 0,1 and 2 could be used for the vertices in Fw. If
this is the case, we may then color vertex w with a color different from 0,1 and 2. We prove the claim by
contradiction. Let us suppose that the three colors 0,1 and 2 are used in the vertices of Fw. If colors 1 and
2 are used then Fw must have two vertices of CD. By [P4], these vertices cannot be non-consecutive, and
therefore the only choice for these vertices to be in Fw are vi+ r−1

2
and vi+ r+1

2
.

We have two subcases.

Subcase 1.1) We suppose that u ∈ Fw. We claim that Fw = Fv0 . Indeed, Fw and Fv0 have three common
vertices and since any two faces share at most one edge (since G is 3-connected) then the only way for this
to happen is if Fw = Fv0 . However, the latter implies that w = v0, contradicting the fact that w is in S2S.

Subcase 1.2) We suppose that u 6∈ Fw. Since both faces Fv0 and Fw passe through v r−1
2

and v r+1
2

then Fw

must contains Fv0 , in particular, Fw contains PN
r−1
2

, see Figure 3. As noticed above, u ∈ PN
r−1
2

. We clearly

have that any path connecting u with any other vertex in the exterior of Fw must going through either v r−1
2

or v r+1
2

, implying that these are cut vertices, contradicting the 3-connectivity of G.

Case 2) Let v be a vertex lying in S2N (the case when v lies in S2S is analogous). We will first construct
three vertex-disjoint paths joining v with three different vertices of CD.

Let w be a vertex in S2S (this vertex exists, otherwise G would be the tetrahedron which is clearly 4-critical).
Since G is 3-connected then, by Menger’s theorem, there exist three vertex-disjoint paths Q0, Q1 and Q2

joining u to w. We clearly have that each of these paths must intersect HN. Let hi be the first vertex of
HN hit by Qi for each i = 0, 1, 2. Suppose that hi is in one of the PN

vi , we denoted it by P (hi) for short. We
observe that there are two ways to reach CD from hi : either by following the vertices of P (hi) appearing to
the right of hi (denoted by Ri) or by following the vertices of P (hi) appearing to the left of hi (denoted by
Li). Notice that Ri or Li maybe consist of only the vertex hi, which is already a vertex in CD.

Here are the desired paths:

9



(a) Q1 would intersect either Q0 or Q2. (b) Coloration by Q̄0, Q̄1 and Q̄2.

Figure 4: Division of the north hemisphere by the paths Q̄0, Q̄1 and Q̄2.

• Q̄0 := Q0[v, h0] ∪ T0, where T0 is either R0 or L0.

• Q̄1 := Q1[v, h1] ∪ T1, where T1 is either R1 or L1. Notice that if P (h0) = P (h1) then we can always
take T1 as the side not used in T0.

• Q̄2 := Q2[v, h2] ∪ T2, where T2 is either R2 or L2. Notice that if P (h0) = P (h1) then P (h2) 6=
P (h0), P (h1) otherwise there will be two Qi’s with a common vertex (which is not possible since they
are vertex-disjoint), see Figure 4(a)

Suppose that the vertices vi’s are placed in a r-regular polygon all on the equator. Let zi be the common
vertex of Q̄i and CD. Draw a line ` going through of the z0 perpendicular to the opposite side in the regular
polygon. We may suppose that we have the situation in which z1 and z2 are in opposite sides of `. Otherwise,
if both z1 and z2 are on the same side of ` then either z1 is between z0 and z2 or z2 is between z0 and z1. If
z1 is between z0 and z2 then we clearly have that the line `′ going through z1 perpendicular to the opposite
side in the regular polygon will leave z0 and z2 in different sides (similarly if z2 were the middle vertex).

W.l.o.g., we may assume that z0 = v0. Let A[v0, v r+1
2

] (resp. A[v0, v r−1
2

]) be the vertices in the arc of the

equator between v0 and v r+1
2

containing z1 = zx (resp. between v0 to v r−1
2

containing z2 = zy), see Figure

4(b).

We begin coloring some vertices lying in CD and S2N as follows:

• c(v) = 3,

• c(v0) = 0,

• c(x) = 1 for all vertex x ∈ A[v0, v r+1
2

] \ {v0},

• c(x) = 2 for all vertex x ∈ A[v0, v r−1
2

] \ {v0},

• c(x) = 0 for all vertex x ∈ Q̄0 \ {v},

• c(x) = 1 for all vertex x ∈ Q̄1 \ {v} and

10



• c(x) = 2 for all vertex x ∈ Q̄2 \ {v}, see Figure 4(b)

Let us verify that this partial coloring is fine so far. We first remark that any vertex in A[v0, v r+1
2

] \ {v0}
(with color 1) is well colored since its neighbors are two opposite vertices lying in A[v0, v r−1

2
] having color 2

(similarly, for the vertices in A[v0, v r−1
2

]\{v0}).

Let us check that the vertices in Q̄i = Qi[v, hi]∪Ti are all well colored. We notice that there is not problem
with the colors of vertices in Qi[v, hi] since all their neighbors (in DiagG) are vertices in S2S (which are not
colored yet). Let us now check the vertices of Ti. We will do so for T0 (analogue arguments can be used to
check that the vertices in both T1 and T2 are also properly colored).

We have that the vertices of T0 = [h0, . . . , v0] (colored with color 0 since they are contained in Q̄0) is a
subset of Pv r−1

2

which, in turn, as pointed out in [P7], is a subset of the dual face Fv r−1
2

. Therefore, the

neighbor of each vertex of T0 is v r−1
2

that is colored with color 2. It may happen (see [P8]) that Fv r−1
2

share

an edge with face Fv r+1
2

, in such a case, the last two vertices in T0 belong to these both faces and therefore

they have both v r−1
2

and v r−1
2

as neighbors, but this is not a problem since v r−1
2

is colored with color 1 (and

vertices in T0 are colored with 0.

In order to complete the coloring (the rest of vertices in S2N and the vertices in S2S, we need to partition S2N
into 3 regions as follows:

• R0,1 := boarded by Q̄0, Q̄1 and the arc of the equator between v0 and zy,

• R1,2 := boarded by Q̄1, Q̄2 and the arc of the equator between zy and zx and

• R0,2 := boarded by Q̄0, Q̄2 and the arc of the equator between zx and v0, see Figure 4(b)

The goal of such a partition is to divide the set of faces lying in S2N into three parts (each partitioned into
faces). With this, we may color the vertices of each region using only two colors and so any face lying in
that region would have either two colors (or three if the face contains the vertex v). But this face is the dual
face of a vertex u lying in the equator or S2S. We would then have a color left (other than color 3) to be used
to color u.

We shall color the vertices lying in the interior of region R0,1 (similarly for the other two regions). Let u
be a vertex in the interior of R0,1. Then,

c(u) =

{
c(vi) if u ∈ Pi for some i,
0 or 1 otherwise.

If u ∈ Pi then u and vi are both in the same dual face Fvj and thus both neighbors of vj . Therefore, if the
color given to u is the same as the one given to vi then it would clearly be well colored with respect to vj
(that is already colored).

If u 6∈ Pi then u would belong to a face F lying within region R0,1 with vertices colored with colors 0 or 1
(or 3 if the F touches vertex v). Since F is the dual face Fw for some vertex w lying in S2S then it would be
enough to color c(w) = 2.

On this way, we can always find a proper 4-coloring (with colors 0,1,2 and 3) in which v is the only vertex
having color 3, as desired. �
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4 Main Results

In this section, we prove our main contributions. We first show the validity of Conjecture 1 (see Theorem
6), which lead us to the proof our main result. Then towards the end of this section, we present a special
configuration of points that is critical but not strongly critical for the Vázsonyi problem.

4.1 Reuleaux polyhedra in the Vázsonyi problem

In order to show Conjecture 1, we need the following

Lemma 2. Let V ⊂ R3 be an extremal configuration for the Vázsonyi problem. Then, the 1-skeleton of
B(V ) is simple and 3-connected if and only if V is strongly critical.

Proof. Let us denote by G the 1-skeleton of SF(B(V )).

(Necessity) Suppose that V is strongly critical, that is, V does not have an extremal proper subset. Since
in particular V is an extremal configuration, by Theorem 5, G admits a canonical involution, say ϕ. Fur-
thermore, by the (GHS) Theorem 4 V is tight and by Theorem 3, G is a 2-connected planar graph.

By the canonical involution, DiamV can not have vertices with degree less than three (by the strongly
critical), then all the faces of G most have at least three vertices. Therefore G is simple.

We shall prove that G is 3-connected by contradiction. Suppose then that G admits a 2-cutting set, say
{x, y}. Let A1, . . . , Ak, k ≥ 2, be the connected components of G \ {x, y}.

Remark 1. Let Fx = ϕ(x) and Fy = ϕ(y) be the dual faces of x and y respectively and let Bi = ϕ(V (Ai))
for each 1 ≤ i ≤ k.

(a) Bi is the union of faces where, by Theorem 5, two faces Fu and Fv share an edge if and only if u and v
are joined by an edge in Ai. We have thus that Bi is a planar graph with more than tree vertices (otherwise,
Ai would consist of a dangling vertex which is not possible since V is strongly critical).

(b) Bi is connected for each 1 ≤ i ≤ k. Indeed, Let p, q ∈ V (Bi) we show that there is a path γp,q joining p
and q. Suppose that p ∈ Fr and q ∈ Fs were Fr and Fs are some faces in Bi, r, s ∈ Ai. Since Ai is connected
then there exists a path γ[r, s] between the vertices r and s. Assume first that γ[r, s] consists of one edge.
Since Fr and Fs share one edge then can construct a path from p to q by a proper sequence of vertices in Fr

and Fs. We can clearly proceed by induction if the length of γ[r, s] is greater or equal to 2.

Let H be a planar graph. We call the border, denoted by ∂H, the cycle of the exterior face of H.

(c) Since the canonical involution preserve adjacencies then, we have that every edge in ∂Bi, 1 ≤ i ≤ k is
an edge of either Fx or Fy. Therefore,

k⋃
i=1

∂Bi ⊂ (Fx ∪ Fy).

Since Fx and Fy are cycles then ∂Bi can be thought as the union of two paths γxi ⊂ Fx and γyi ⊂ Fy and
both paths having the same ends. In fact, ∂Bi can be viewed as a “digon” (a graph with two vertices, say
w and z, connected by two edges) with some possible extra vertices in each edge and where w and z are
the common ends of the paths. Furthermore, Fx (resp. Fy) is the union of the k paths γxi (resp. γyi ), and
possibly an extra edge shared by Fx and Fy, in particular, V (Fx) ∩ V (Fy) 6= ∅ (see Figure 5(a)).
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(b) A1, B−1 , G1 and G2.

Figure 5

We focus our attention to A1 and B1. Let A+
1 = A1 ∪ {x, y} and B−1 = B1 \ {w, z}. Let w and z be the

shared ends of paths γx1 and γy1 . Then, we clearly have that any vertex in B−1 cannot be connected by a
path to any other vertex in Bi, i 6= 1, in other words, {w, z} is also a 2-cutting set of G.

We observe that B−1 has the same “shape” as A1, that is, B−1 is connected and the vertices w and z play
the same role as the vertices x and y for A1. Since ϕ is involutive and ϕ(A1) = B1 then ϕ(B−1 ) = A+

1 . We
thus have that A+

1 has the same shape as B1, that is, it is a digon with x and y the common ends of the
corresponding paths (see Figure 5(b)).

We notice that x, y, w, z are four different vertices. Moreover, we claim that x, y /∈ V (B1) and w, z /∈ V (A1).
Indeed, suppose, for an instance, that w ∈ V (A) (the other cases are similar). Then, Fw ⊂ B1 which implies
that Fz ⊂ B1 as well. Now, since V (Fw) ∩ V (Fz) 6= ∅ then B1 ⊂ A1. Now, since w, z ∈ V (Fx) ∩ V (Fy) then
{x, y} = {w, z} (both are 2-cutting sets) which is a contradiction since x, y, w, z are all different vertices.

We now claim that V (A+
1 ) ∩ V (B1) = ∅. We proceed by contradiction, suppose that there is v ∈ V (A+

1 ) ∩
V (B1), then there is path γ[v, x] (completely contained in A1) joining v to x. Since w, z /∈ V (A1) ⊂ V (A+

1 )
then γ[v, x] contains neither w nor z. Since B−1 is connected then any path starting in a vertex in B−1 not
using either z or w (like the path γ[v, x]) must contain only vertices in B1. The latter implies that x ∈ B1,
which is a contradiction.

We shall now count the number of diameters induced by V (G). Let G1 be the subgraph generated by
V (A+

1 ∪B1) and let G2 be the subgraph generated by V (G) \ V (A1 ∪B−1 ) (see Figure 5(b)). Since V (A+
1 )∩

V (B1) = ∅ then {x, y, w, z} = V (G1 ∩G2), so

|V (G)| = |V (G1)|+ |V (G2)| − 4.

We have that |E(DiamG)| = |E(DiamG1
)| + |E(DiamG2

)| − r where r denotes the number of diameters
having ends in {x, y, w, z}. Notice that r ≥ 4 because xz, xw, yz, yw are diameters.

Since V is an extremal configuration, then

|E(DiamG1)|+ |E(DiamG2)| − r = |E(DiamG)| = 2|V (G)| − 2 = 2(|V (G1)|+ 2|V (G2)| − 4)− 2,

and thus,
|E(DiamG1

)|+ |E(DiamG2
)| = 2(|V (G1)|+ 2|V (G2)| − 10 + r. (1)
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Since V is strongly critical then

|E(DiamG1
)| ≤ 2|V (G1)| − 3 and |E(DiamG2

)| ≤ 2|V (G2)| − 3, (2)

and thus, by adding these inequalities, we obtain

|E(DiamG1
)|+ |E(DiamG2

)| ≤ 2|V (G1)|+ 2|V (G2)| − 6. (3)

By combining (1) with (3), we have that r = 4, that is,

|E(DiamG1
)|+ |E(DiamG2

)| = 2(|V (G1)|+ 2|V (G2)| − 6 (4)

and so xy, xw, yz, yw are the only diameters of DiamG on the set {x, y, z, w}. Furthermore, by combining
(2) with (4), we obtain that |E(DiamG1

)| = 2|V (G1)| − 3 and |E(DiamG2
)| = 2|V (G2)| − 3 are both odd

integers.

We shall show that |E(DiamG1)| is also an even integer, leading to the desired contradiction. To this end,
we first count the edges in E(G1) not having both ends in {x, y, w, z}, we denote by Ẽ(G1) such a set of
edges. We know that, by construction, the dual edge of an edge adjacent to a vertex a ∈ V (A1) is an edge in
B1 and, symmetrically, the dual edge of an edge adjacent to a vertex b ∈ V (B−1 ) is an edge in A+

1 In other
words, any edge in Ẽ(G1) will have its duals in Ẽ(G1). Then, the number of edges in Ẽ(G1) is even.

Now, we clearly have that

∑
v∈A

δ(v) +
∑
v∈B

δ(v) +
∑

v∈{x,y}

δ(v)
∣∣
A

+
∑

v∈{w,z}

δ(v)
∣∣
B

= 2|Ẽ(G1)| (5)

where δ(v) denotes the degree in the graph G of a vertex v and δ(v)|S the degree of vertex v with endpoints
only on set S.

We observe that, by duality, the degree of each vertex v ∈ A1 is the same as the number of vertices of
its dual face and thus the number of diameters adjacent to v. Then, the diameters with one end in A1 is∑

v∈A1
δ(v). By the same argument,

∑
v∈B−1

δ(v) gives the diameters with one end in B−1 .

Finally,
∑

v∈{x,y} δA1
(v) is the number of diameters with one end in {x, y} and the other end in B1, which

is, in fact, a vertex in ∂B1. Similarly,
∑

v∈{x,y} δB1
(v) is the number of diameters with one end in {z, w}

and the other in A+
1 , which is in fact ∂A+

1 .

We have that the left-hand side of equality (5) is equals to 2|E(DiamG1
)|. Therefore, 2|E(DiamG1

)| =
2|Ẽ(G1)| implying that |E(DiamG1

)| = |Ẽ(G1)| and, since |Ẽ(G1)| is even (as remarked above) then
|E(DiamG1

)| is also even, as claimed above. Therefore, G cannot have 2-cutting set and so G is 3-connected.

(Sufficiency) Suppose that the graphG is 3-connected and simple. Since V is an extremal configuration then,
by the (GHS) Theorem 4, V is tight and thus, by Theorem 3, is a planar graph. Hence, G is a polyhedron.
Moreover, by Theorem 5, G admits a canonical involution, and thus G is an involutive polyhedron. Therefore,
by Lemma 1, DiagG is 4-critical.

We proceed by contradiction. Let us suppose that V is not strongly critical for the Vázsonyi problem.
Then, there is a strongly critical subset V1 ⊂ V implying, by the necessity condition, that the 1-skeleton of
B(V1), say G1, is planar, simple and 3-connected. By the same arguments as above, the latter implies that
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G1 is an involutive polyhedron, and again by Lemma 1, DiagG1
is 4-critical, contradicting that DiagG is

4-critical.

The following result, in terms of Reuleaux polyhedra, implies Conjecture 1.

Theorem 6. Let V ⊂ R3 be an extremal set. Then, B(V ) is a Reuleaux polyhedron if and only if V is
strongly critical.

Proof. Suppose that V is strongly critical. Then, by Lemma 2, the 1-skeleton of B(V ) is simple and 3-
connected and by Theorem 3, is a planar graph. Therefore, by Steinitz’s characterization, B(V ) is an
standard ball polytope. Moreover, since V is an extremal configuration then, by Theorem 4, vert(B(V )) = V
implying thus that B(V ) is a Reuleaux polyhedron.

Suppose now that B(V ) is a Reuleaux polyhedron. Then, B(V ) is a standard ball polytope. Since the
1-skeleton of B(V ) has a polytopal structure then, again by Steinitz’s characterization, it is simple and
3-connected, therefore by Lemma 2, V is strongly critical.

4.2 Proof ot Theorem 1

We prove our main contribution by analyzing the minimal structures for the Borsuk and Vázsonyi problem
in R3, which astonishingly are the Reuleaux polyhedra in both cases.

Theorem 7. Let V ⊂ R3 be a finite set of points with | V |= n ≥ 4 . The following three statements are
equivalent:

(i) V is strongly critical for the Vázsonyi problem.

(ii) DiamV is 4-critical.

(iii) B(V ) is a Reuleaux polyhedron.

Proof. The equivalence (i) ⇐⇒ (iii). follows by Theorem 6, and (iii) =⇒ (ii) is a consequence of Lemma
1. We shall prove that (ii) =⇒ (i)
Since DiamV is 4-critical then each v ∈ V has degree at least 3 in DiamV , thus by Theorem 2 V is tight and
then we have V ⊂ vertB(V ). We consider two cases.

Case 1) If V = vertB(V ), by Theorem 4, V is extremal for the Vázsonyi problem. Suppose that V is not
strongly critical for the Vázsonyi problem, then there is a proper subset V1 of V , which is strongly critical
for the Vázsonyi problem. The latter implies that DiamV1

is 4-critical (since (i). =⇒ (ii)), contradicting
that DiamV is 4-critical.

Case 2) If V ( vertB(V ), by Theorem 4, e(V ) < 2n− 2. Let m0 = (2n− 2)− e(V ). We may assume that
V does not have an extremal subset for the Vázsonyi problem, otherwise it would lead a contradiction as in
Case 1.
Let v ∈ vertB(V )\V , then v has to be adjacent to at least 3 diameters (Definition 1), so we can define a new
subset V1 = V

⋃
{v} in R3, having at least 3 more diameters than V , and the difference to be Vázsonyi would

be m1 := (2(n+ 1)− 2)− e(V1) < m0. We may repeat this procedure at most m0 times in order to obtain
a set Vr, with r ≤ m0, which is extremal for the Vázsonyi problem. Since Vr has no extremal subset for
the Vázsonyi problem, then Vr would be strongly critical for the Vázsonyi problem and so by (i) =⇒ (ii),
DiamVr

would be 4-critical, which is a contradiction.

Therefore, (i), (ii) and (iii) are equivalent.
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Figure 6: Reuleaux Tetrahedron

We clearly have that Theorem 1 is a straightforward consequence of Theorem 7.

4.3 Special configuration of points

Let us consider the following configuration of 8 points in R3. Four points, say of w, x, y and z, are the
vertices of a regular tetrahedron with edges of length 1.

We shall add other appropriate four points, say a, b, c and d (this is the tricky part of the construction). Let
S(c) be the sphere of center c and radius 1. The four desired points will be lie at the Reuleaux tetrahedron
formed by S(x) ∩ S(y) ∩ S(w) ∩ S(z) as follows. Let p (resp. q) be the mid-point of the circular-arc edge
between x and y (resp. circular-arc edge between z and w). Let p1 (resp. q1) be the mid-point of the
circular-arc in S(w) joining p to z (resp. in S(y) joining q to x).

Notice that p1 (resp. q1) is the centroid of the spherical triangle with vertices z, y and x (resp. spherical

triangle with vertices x,w and z). It is known [17] that ‖p, q‖ =
(√

3−
√
2
2

)
≈ 1.0249, see Figure 6. Observe

next, that points p1 and q1 are boundary points of both the Reuleaux tetrahedron and the Meissner’s bodies
of constant width. Moreover, in such bodies, the segment [p1, q1] is not a diameter (see [17, pp 171-173]),
then the distance between the two centroids is strictly less than one, i.e. ‖p1, q1‖ < 1.

Let A(p, p1) (resp. A(q, q1)) be the circular-arc in S(w) joining p to p1 (resp. the circular-arc in S(y) joining
q to q1). Let

α1 : [0, 1] −→ A(p, p1)
t 7→ α1(t)

and
β1 : [0, 1] −→ A(q, q1)

t 7→ β1(t)

where α1(0) = p, α1(1) = p1, β1(0) = q and β1(1) = q1.

Finally, let
γ1 : [0, 1] −→ R

t 7→ γ1(t) = ‖α1(t), β1(t)‖

We have that γ1(t) is a continuous function in [0, 1]. Moreover, since γ1(0) = ‖α1(0), β1(0)‖ = ‖p, q‖ > 1
and γ1(1) = ‖α1(1), β1(1)‖ = ‖p1, q1‖ < 1 then, by the Mean Value Theorem, there is t1 ∈ [0, 1] such that
γ1(t1) = 1.
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We set a = α1(t1) and c = β1(t1). Let us now use the symmetry of the Reuleaux tetrahedron in order to
obtain points b and d. For, we have the following

Remark 2. Let q2 (resp. p2) be the centroid of the spherical triangle with vertices z, y and w (resp. with
vertices x, y and w). Let A(p, p2) (resp. A(q, q2)) be the circular-arc in S(z) joining p to p2 (resp. in S(x)
joining q to q2). Let α2 (resp. β2) be defined similarly as α1 (resp. as β1) having as codomain A(p, p2)
(resp. A(q, q2)) instead of A(p, p1) (resp. A(q, q1)).

(1) Let γ2 be defined similarly as γ1 but taking β2 instead of β1. By the same argument as above, there is
t2 ∈ [0, 1] such that γ2(t2) = 1. By the symmetry with respect to the circular-arc edge between z and w, we
have that t1 = t2. We set b = α2(t2).

(2) Let γ3 be defined similarly as γ1 but taking α2 instead of α1. By the same argument as above, there is
t3 ∈ [0, 1] such that γ3(t3) = 1. By the symmetry with respect to the circular-arc edge between x and y, we
have that t1 = t3. We set d = β3(t3).

Moreover,

(3) Let γ4 be defined similarly as γ1 but taking α2 instead of α1 and β2 instead of β1. By the same argument
as above, there is t4 ∈ [0, 1] such that γ4(t4) = 1. By the symmetry with respect to the circular-arc edge
between x and y, we have that t1 = t4.

Since the original tetrahedron is regular (and each edge is of length one) then the six couples of points
formed by {w, x, y, z} are at distance one. Moreover, by construction, ‖a, c‖ = ‖a, d‖ = ‖b, c‖ = ‖b, d‖ = 1.
Furthermore, ‖c, w‖ = ‖d, z‖ = ‖a, y‖ = ‖b, x‖ = 1 since c ∈ S(w), d ∈ S(z), a ∈ S(y) and b ∈ S(x). It
can be checked that the distance of any other couple of points in {a, b, c, d, w, x, y, z} is less than one. The
diameter graph is illustrate in Figure 7 (b).

(a) The embedding

x

y

z

w

a

b c

d

(b) The diameter graph.
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c d

z w

y

x

Fd Fc

Fx
Fw Fz

Fa

Fb Fy

(c) 1-skeleton.

Figure 7: Critical configuration of 8 points that is not strongly critical for the Vázsonyi problem.

The above configuration of 8 points is an extremal Vázsonyi configuration since it contains (2× 8)− 2 = 14
diameters. Moreover, it is critical since all points are adjacent to at least 3 diameters and there is not
dangling edge (see Figure 7 center). However, it is not strongly critical since it contains the tetrahedron as
an extremal subset. Moreover, this configuration is an extremal Vázsonyi configuration but its ball set is
not polytopal since it is not 3-connected, for instance {z, w} is a 2-cutting set of its 1-skeleton (see Figure 7
(c)). The 1-skeleton is indeed planar but just 2-connected.

We computed explicitly the coordinates of the points of such configuration. In order to simplify the calcu-
lations, we set the diameter equal to

√
3 and the coordinates for a, b, c, d are approximated with an error of
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order of 10−4.
x = (0, 0,

√
2)

y = (1, 0, 0)
w = (cos(2π/3), sin(2π/3), 0)
z = (cos(4π/3), sin(4π/3), 0)
a = (−0.72849, 0,−0.11106)
b = (−0.68087, 0,−0.1784)
c = (0.7095,−0.03157, 0.85524)
d = (0.7095, 0.03157, 0.85524)

5 Concluding remarks

In this section, we point out some interesting observations and posibilities for future work concerning real-
izations of Reuleaux polyhedra.

In [19], the authors proved (computationally) the validity of Conjecture 2 up to 14 vertices. They do so
by finding first all involutive graphs up to 14 vertices and then constructing explicitly the corresponding
desired embedding in each case. We observe that this list of involutive graphs combined with Theorem 7
may allow to construct sets up to 14 points in R3 having Borsuk number 4 (extending the examples given
in [12, Lemma 3] with at most 7 points).

In order to find the above list of involutive graphs, the authors generated all 3-connected planar graphs and
then they searched for the existence of an involutive map in each case. We propose an alternative (more
direct) way to find all involutive graphs by using the classification of the family of involutive polyhedra given
by Bracho et al. [6, Theorem 6]. They showed that if P is an involutive polyhedron then there is always
an edge e ∈ E(P ) such that P/{e} \ {τ(e)} is also an involutive polyhedron where τ is the involution and
G \ {f} (resp. denote G/{f}) denotes the deletion (resp. contraction) of edge f in G. The latter implies
that any involutive polyhedra can be reduced to a wheel (with an odd number of vertices in the main cycle)
by a finite sequence of delete-contraction operation (applied simultaneously each time).

As Tutte [30] remarked, the inverse of the delete-contraction operation correspond to diagonalize faces of
the graph and its dual simultaneously. The latter can be settled as an add-expansion operation in P as
follows.

Let v ∈ V (P ) with degree at least 4. Let Fv be the dual face of v. Notice that v is a vertex of the dual face
Fw for any vertex w ∈ Fv.

• Split the vertices Fv into two paths P1 and P2 with at least 3 vertices each (which is possible since
the Fv contains at least 4 vertices) with P1 and P2 having only x and y as common vertices. Add an
edge joining x and y. Let F1 and F2 be the faces formed by P1 ∪ xy and P2 ∪ xy respectively.

• Expand v into two vertices v1 and v2, that is, delete v and add vertices v1 and v2 joined by an edge.
Also, for i = 1, 2, add an edge joining vi to a neighbor w of v such that τ(vw) (the dual edge of vw) is
an edge in Pi.

We invite the reader to check that this procedure is the inverse operation of the delete-contraction operation.
Let us verify that the resulting graph G′ is also an involutive polyhedron. We clearly have that G′ is a simple,
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3-connected, planar graph. Moreover, the involution τ ′ of G′ is given by

τ ′(w) =



F1 if w = v1,

F2 if w = v2,

τ(x) with v replaced by the edge v1v2 if w = x,

τ(y) with v replaced by the edge v1v2 if w = y,

τ(w) otherwise.

We thus have that any involutive polyhedron can be obtained from an odd wheel by a finite sequence of add-
expansion operation. We observe that the latter would lead to a method to construct Reuleaux polyhedra if
Conjecture 2 were true. Moreover, by Theorem 7, the former would give infinite families of strongly critical
Borsuk configurations as well as strongly critical Vázsonyi configurations.

Also by the above, we can deduce that Lemma 1 gives infinitely many 4-critical graphs that can be actually
constructed systematically. It turns out that, this infinite family also satisfy the following property that
graph theorists might find of some interest.

Proposition 1. Let G be an involutive polyhedron. Then, DiagG is edge 4-critical, that is, it is vertex
4-chromatic and the removal of any edge decreases its chromatic number.

Proof. We know, by Lemma 1, that DiagG is vertex 4-critical. Then, χ(DiagG) = 4 and χ(DiagG \{v}) < 4
for every v ∈ V (DiagG). Let e := xy ∈ E(DiagG) with x, y ∈ V (DiagG). We shall show that χ(DiagG \{e}) <
4.

Since G is a polyhedron, then δDiagG
(x) ≥ 3 for all v ∈ V (DiagG). We have two cases

Case 1: δDiagG
(x) = 3. Set Fx := (y, w0, w1) and assume the color of x is c(x) = 0. By Lemma 1 we know

that there is a 3 coloring of DiagG \{x} with colors {1, 2, 3}. Suppose c(y) = 1. If c(w0), c(w1) 6= 1 then we
may re-color x with color c(x) = c(y) = 1 and obtain a proper 3-coloring of DiagG \{e}. If say c(w0) = 1
then we may re-color x with color c(x) = j ∈ {2, 3}\c(w1) which yields a proper coloring of DiagG \{e}.

Case 2: δDiagG
(x) ≥ 4. In this case, we can apply an add-expansion operation. We do so by expanding

x into v1 and v2 in G with P1 = (wn, y, w0) and P2 = (w0, . . . , wn) (see the above notation). By the above
discussion, the new graph G′ is an involutive polyhedron.

By construction, we have that DiagG \{e} ⊂ DiagG′ . Furthermore, we can obtain DiagG′ from DiagG \{e}
by adding a new vertex z and the edges zwn, zy and zw0 (in the above notation, we are taking v1 = z and
v2 = x).

We thus have that DiagG′ \{z} = DiagG \{e}. Since G′ is also an involutive polyhedron we know that
χ(DiagG′) = 4, and by Lemma 1, χ(DiagG′ \{z}) = 3, then χ(DiagG \{e}) = 3. Therefore, DiagG is edge
4-critical.
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[2] Károly Bezdek, Zsolt Lángi, Márton Naszódi, and Peter Papez. Ball-polyhedra. Discrete & Computa-
tional Geometry, 38:201–230, 2007.

[3] V.G. Boltyanski and P.S. Soltan. Borsuk’s problem. Mat. Zametki, 22:621–631, 1977.

[4] Vladimir Boltyanski, Horst Martini, and Petru S Soltan. Excursions into combinatorial geometry.
Springer Science & Business Media, 2012.

[5] Karol Borsuk. Drei sätze über die n-dimensionale euklidische sphäre. Fundamenta Mathematicae,
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Ges. Zürich, 63:544–551, 1918.

[19] Luis Montejano, Eric Pauli, Miguel Raggi, and Edgardo Roldán-Pensado. The graphs behind Reuleaux
polyhedra. Discrete & Computational Geometry, 64(3):1013–1022, 2020.
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