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A POLYTOPAL GENERALIZATION OF APOLLONIAN PACKINGS AND
DESCARTES’ THEOREM

JORGE L. RAMIREZ ALFONSINT AND IVAN RASSKIN#

ABSTRACT. We present a generalization of Descartes’ theorem for the family of polytopal sphere pack-
ings arising from uniform polytopes. The corresponding quadratic equation is expressed in terms of
geometric invariants of uniform polytopes which are closely connected to canonical realizations of edge-
scribable polytopes. We use our generalization to construct integral Apollonian packings based on the
Platonic solids. Additionally, we also introduce and discuss a new spectral invariant for edge-scribable

polytopes.
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1. INTRODUCTION

A classical Apollonian packing of circles arises from an initial configuration of four pairwise tangent
disks on the plane. By adding the inscribed disk to the interstice between each triple of disks, and then
repeating this process ad finitum, we obtain an Apollonian packing, as shown in Figure

FI1GURE 1. An Apollonian packing.
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Apollonian packings and their generalizations have proven to be effective tools for studying various
structures in natural science (see [She20| for a nice survey). They also appear in many different branches
in mathematics such us geometric group theory [Zha23|, fractal geometry [MEGO4], discrete geometry
[Chel6a], knot theory [RR23| or number theory |Gra+03]. The underlying integral structure of Apollo-
nian packings was first noticed by Soddy in [Sod36|. He observed that if the four curvatureﬂ (reciprocal
of radii) of the initial disks are integers, then the corresponding Apollonian packing is integral, i.e. the
set of curvatures is a subset of Z (see Figure[2]). Understanding the behaviour of the integers arising from
these configurations is currently an active area of research that is connected to several central problems
in number theory [Konl3].

FIGURE 2. Two integral Apollonian packings. The labels are the curvatures.

Soddy’s observation follows from an old algebraic relation on the curvatures of four pairwise tangent
circles on the plane. This relation, known as Descartes’ theorem, was written in the correspondence
between Descartes and the Princess Elizabeth of Bohemia around 1643 [Bos10).

Theorem 1.1 (Descartes). The curvatures of four pairwise tangent disks on the plane satisfy
(1) (k1 + Ko + K3 + ka)? = 2(k2 + K3 4+ K2 + K2).

Both Apollonian packings and Descartes’ theorem have been widely generalized. For instance, the
higher-dimensional analogues of Descartes’ theorem for configurations of d 4+ 2 pairwise tangent spheres
on the d-dimensional Euclidean space were given by Soddy for d = 3 [Sod36] and by Gosset for every
d > 2 |Gos37|]. Another type of generalizations in the plane arise by modifying the initial set of disks
according to a polyhedron whose edges are tangent to the unit sphere. The classic Apollonian packing
arises from the tetrahedron, but this approach can also be used to obtain the octahedral octahedral
[Boy74; |GMOS], cubic |Stalb|, or icosahedral [BBH18| analogues of Apollonian packings. Each of these
works admits a generalization of Descartes’ theorem, and all of them can be derived from the most
general version mentioned by Boyd in [Boy74]. However, none of these Descartes’ equations takes into
account the interaction with the geometry of the corresponding polyhedron.

The Apollonian-like packings that we have mentioned belong to the family of polyhedral packings
described in [KN19]. In this paper, we explore the higher dimensional analogues, which we call polytopal
sphere packings. The connection between polytopes and sphere packings has been previously explored in
the works of Boyd [Boy74], Maxwell [Max82|, Eppstein, Kuperberg and Ziegler [EKZ03], Chen [Chel6aj
Chel6b] and Chen and Labbé [CL15]. Our main contribution is the following generalization of Descartes’
theorem for the class of polytopal sphere packings arising from uniform polytopes in every dimension.

TAlso called bends.



Theorem 1.2 (Polytopal Descartes’ theorem). Let Bp a polytopal sphere packing where P is a uni-
form (d + 1)-polytope with d > 2. The polytopal curvatures of Bp with respect to the faces in any flag

(f07 R fda fd-‘rl = P) SCLtZSfy

d
1
(2) (Kgo — k) + @2 (kg —#p,) + Z m(’% — ki)’ = UKD
i=2 " fi+1 fi

One of the special features of this generalization is that the quadratic equation , which links the
notions of canonical lengths €y, with polytopal curvatures ky,, is given in terms of the geometry of the
underlying polytope. The latter provides a better understanding of the equations involving previous gen-
eralizations, which turns out to be useful in computing the integrality conditions necessary to construct

integral Apollonian packings for other polytopes, like the packings in Figure

FIGURE 3. Two integral Apollonian packings based on the cube (left) and the truncated
tetrahedron (right).

1.1. Organization of the paper. In Section [2| we give the theoretical background on the Lorentzian
and projective models of the space of spheres and polytopes, necessary for understanding the notion of
polytopal sphere packings. Then, we discuss several aspects concerning the duality, Apollonian groups
and packings, and uniqueness under Mébius transformations. We also introduce a novel spectral invariant
of edge-scribable polytopes that we call Mébius spectrum.

In Section [3] after defining the notions of canonical length of uniform polytopes and polytopal cur-
vatures of polytopal sphere packings, and presenting some lemmas, we prove the polytopal Descartes’
theorem (Theorem 3.1)).

In Section we apply the main theorem to give formulas of a Descartes’ theorem (Proposition
), integral matrix representations of the Apollonian groups (Proposition , integrality conditions
(Corollary , and parametrizations of the integral Apollonian packings (Corollary , in terms of
the Schléfli symbol of each Platonic solid. We also show the existence of the sequence of perfect squares
among the curvatures of certain Platonic packings (Corollary . At the end of the section, we present
a catalogue of the Platonic packings describing all the properties discussed in this paper.

We conclude with some final remarks in Section [Bl



2. POLYTOPAL SPHERE PACKINGS: BACKGROUND

For any d,m,n € N with d = m + n, let R"™"™ be the real vector space of dimension d endowed with
the inner product (-, -) of signature (m,n). The unit sphere S(R™") is the space {x € R™" | (x,x) = 1}.
As usually, we shall write R? and S? instead of R*? and S(R4*1), respectively. An oriented hypersphere
(in short, sphere) of R4 := R? U {co}, is the image of a spherical cap of S¢ under the stereographic
projection. According to the position of the North Pole of S* with respect to the corresponding spherical
cap, there are three types of spheres, namely, solid sphere (positive radius), hollow sphere (negative

radius) or half-space (infinite radius). Any sphere is determined by its center ¢ € R? and its curvature
% € R when is not a half-space, and by its normal vector 7 € S? pointing to the interior and signed

distance to the origin § € R otherwise. We denote by Z(R?) the space of spheres of R4,

2.1. The Lorentzian model of # (@) The space R%! and its corresponding inner product are called
the Lorentzian space and the Lorentzian product in dimension d + 1, respectively. A vector of x € R%!
is future-directed (resp. past-directed) if xq1o > 0 (resp. xg42 < 0). There is a well-known bijection

between %(R?) and the Lorentzian unit sphere S(R**1:1) (see [Wil81] as well as [RR21, Section 2] for

P

further details on this bijection). For any sphere s € Z(R?), we denote by x, € S(R¥*11) the Lorentzian
vector corresponding to s. The inversive coordinates i(s) given by Wilker [Wil81] corresponds to the
Cartesian coordinates of x, in the canonical basis of R¥T51 which can be computed by

Se el —r2 = L]le|2 = k=2 4+ )T ifx A0,
(3) i(s) =
(n,6,6)T ifk=0
where || - || denotes the Euclidean norm of Rd. The inversive product of two spheres is defined as

(s,8) := (xs5,%xs). If x5,%x4 are not both past-directed then

< —1 if s and s’ are disjoint
= —1 if s and s’ are externally tangent (with disjoint interiors)
(4) (s,s") =0 if s and s’ are orthogonal
=1 if s and s’ are internally tangent (with overlapping interiors)
>1 if s and ¢’ are nested

An arrangement of spheres B is a packing if any two spheres are externally tangent or disjoint. For any
arrangement B, we denoted by Gram(B) the Gramian of the corresponding Lorentzian vectors in R4+1:1,

The Mébius group Mob(R?) is the group generated by inversions through spheres. It is isomorphic to
the Orthochronous group, made by the linear automorphisms of R%+1! preserving the Lorentz product

and the time direction. Therefore, Méb(R?) acts transitively on Z(R9) preserving the inversive product.

2.2. The projective model of %#(R%). The Lorentzian unit sphere S(R*%!) can be regarded in the
oriented projective space P,y R4TH = {x € R4TL1\ 0}/ where x ~ y if there is a real number A > 0 such
that x = Ay. Then P, R+l is equivalent to the Euclidean unit sphere S¥! ¢ R4*1! which, under the
gnomonic projection, becomes the union of two affine hyperplanes II1; = {z412 = £1}, which can be
both identified with R%*!, together with Xy = {(x,0) | x € S**1}. The composition of the isomorphism

«@(ﬂ/@) — S(R11) with the projection

S(Rd+l’1) — H1 U Eo U H_1
X if xg42=20

X — 1 .
ol X otherwise

gives an isomorphism between %(R?) and 11 U 3y UTI® ;, where 113, is the set of points in 1113 whose
Euclidean norm is greater than 1. Such a point will be called an outer point of R*+1. We call I3 UXoUII°
the projective model of the space of spheres. In this way, we can construct a bijection between the subset
of spheres whose Lorentzian vector is future-directed and the set oﬁguter points of R+, The reciprocal
bijection between an outer point v € R%*! and a sphere s, € Z(R9) can be obtained geometrically by
taking a light source which illuminates S¢ from v. The illuminated region on S¢ is a spherical cap is
stereographically projected to the sphere s,. We say that v is the light source of s,. In Figure [4 we
illustrate a sphere and its light source within the projective model of the space of spheres.
4
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FIGURE 4. (Left) A sphere of R? and its light source; (right) same setting in the projective
model, together with the corresponding lorentzian vector.

The inversive coordinates of a sphere whose Lorentzian vector is future-directed, can be computed
from the coordinates of its light source by

®) i) = = (1)

The above equality implies that for any two spheres whose Lorentzian vectors are future-directed, their
inversive product is related to the Euclidean inner product of their corresponding light sources by the
following equation

(6) (s 0) = !

V[l = D([lolI* — 1)

where - denotes the Euclidean inner product. The Mobius group acts on the outer points of Rt as the
group of projective transformations preserving S¢ [Spr05].

(w-v—1)

2.3. Polytopes. We recall some basic notions of polytopes needed for the rest of the paper. We refer the
reader to [Sch04] for further details. A (d+1)-polytope P is the convex hull of a finite collection of points
in R, A 2-polytope and a 3-polytope are usually called (conver) polygon and polyhedron, respectively.
For every 0 < k < d+ 1, we denote by Fj.(P) the set of k-faces of P and by F(P) = {0} UL, Fi(P).
The elements of V(P) := Fy(P), E(P) := F1(P), F4_1(P) and Fy(P) are called vertices, edges, ridges
and facets of P, respectively. The graph of P is the graph induced by the vertices and the edges of
P. The face lattice (F(P),C) encodes all the combinatorial information about P. A flag of P is a
sequence of faces ® = (fo, f1,..., fa, P) where for each k = 0,...,d, fix C frkt1. Two polytopes P
and P’ are combinatorially equivalent if there exists an isomorphism between their face lattices. If they
are combinatorially equivalent, we say they have the same combinatorial type and P’ is said to be a
realization of P.

The polar of a set X C R+ is defined as the set of points X* = {u € R4*! |y.v <1 forallv € X}
where - denotes the Euclidean inner product. If P is a (d + 1)-polytope containing the origin in its
interior then P* is also a (d + 1)-polytope containing the origin in its interior and holding the dual
relation (P*)* = P. There is a bijection between F(P) and F(P*) which reverses incidences and maps
every facet f of P to a vertex vy of P*. For every vertex u € f, one has

(7) w-vp =1

The symmetry group of P is defined as the group of Euclidean isometries of R4*! preserving P. P
is reqular if its symmetry group acts transitively on the set of flags P. For any d > 2, a d-polytope is
called uniform if is regular or, recursively, if d > 2, its facets are uniform, and the symmetry group acts
transitively on its vertices. It is well-known that the uniform 3-polytopes are the 5 Platonic solids, the
13 Archimedean solids, and the infinite families of prisms and antiprisms [Gri+03].
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For every 0 < k < d, a (d+1)-polytope P is said to be k-scribed if all its k-faces are tangent to the unit
sphere S ¢ R4, A k-scribed polytope is called inscribed, edge-scribed, ridge-scribed and circunscribed
if k = 0,1,d — 1,d respectively. A polytope is said to be k-scribable if it admits a realization which
is k-scribed. If P is a (d + 1)-polytope containing the origin in its interior then P is k-scribed if and
only if P* is (d — k)-scribed [CP17 m Concerning edge-scribability, in dimension 2 and 3 all polytopes
are edge-scribable. In dimension d > 4, there are non-edge-scribable polytopes [Sch87]. An edge-scribed
(d + 1)-polytope is said to be canonical |Zie94 M if the barycenter of all its tangency pomts with S? is the
origin. It follows from the work of Springborn in [Spr05], that for any edge-scribable polytope P, there
is a unique canonical realization Py, up to Euclidean isometries. For 3-polytopes, canonical realizations
were also called Springborn realizations in | JP2

¢

FIGURE 5. An edge-scribed realization (left) and a canonical realization (right) of a 4-
pyramid.

2.4. Polytopal sphere packings. Let P be an outer (d 4+ 1)-polytope, i.e. whose vertices are outside

the unit sphere S%. We define the arrangement projection of P as the arrangement of spheres of R4
given by B(P) := {s,|v € V(P)}. For any edge uv of P, the spheres s, and s, are disjoint, externally
tangent or with intersecting interiors, if and only if uv cuts transversely, is tangent or avoids strictly S%,
respectively. Therefore, if P is an edge-scribed (d + 1)-polytope then S(P) is a packing.

Definition 2.1. For every d > 2, a sphere packing Bp in Rd is polytopal if there is an edge-scribable
(d + 1)-polytope P such that Bp = S(Py), up to Mébius transformations.

In the previous definition Py denotes a canonical realization of P. Clearly, there are sphere packings
which are not polytopal (see Figure [f). As Chen noticed in [Chel6a, if 3(P) is a packing, then the
tangency graph of S(P) is a spanning subgraph of the graph of P. If in addition, P is edge-scribed, then
the two graphs are isomorphic. Therefore, the tangency relations of any polytopal sphere packing Bp
are encoded by the edges of the polytope P.

FIGURE 6. (Top) Three outer polyhedra with the spherical caps illuminated by their ver-
tices. (Below) The arrangement projection of the three polyhedra. The last two are packings
but only the third one is polytopal.



2.5. Duality. Let Bp any polytopal sphere packing where P is the edge-scribable (d + 1)-polytope
with d > 2. By definition, there is a Mdobius transformation p such that Bp = pf(Py). We define
the dual arrangement of Bp as the arrangement B}, := puf(Py). Notice that B}, is well-defined since
Py contains the origin in its interior. By combining equations @) @ E we have that for any two
vertices (v,vy) € V(P) x V(P*), where vy is the vertex corresponding to a facet f of P containing v,
the spheres s, and s, are orthogonal. Since Py is edge-scribed, Py is ridge-scribed. For d = 2, Py is
also edge-scribed and therefore B is also a packing. The union Bp U B% has been called a primal-dual
circle representation of P [FR18|. Brightwell and Scheinerman proved in the existence and the
uniqueness up to Mobius transformations of primal-dual circle representations for every polyhedron. It
can be seen as a stronger version of the Koebe-Andreev-Thurston Circle packing theorem .

FIGURE 7. (Left) An edge-scribed icosahedron Z* and its polar in blue; (center) the spheri-
cal illuminated regions of Z2 and its polar; (right) a primal-dual circle representation of Z3.

2.6. Plglytopal Apollonian packings. We define the symmetry group of Bp as the stabilizer of
M&b(R?) for Bp, which is isomorphic to the symmetry group of P . The Apollonian group of Bp is
the subgroup A(Bp) < Méb(R?) generated by the inversions through the spheres of Bj,. Since inversions
of M6b(R4) correspond to hyperbolic reflections of the (d + 1)-dimensional hyperbolic space, Apollonian
groups are hyperbolic Coxeter groups. The Apollonian arrangement of Bp, denoted by & (Bp), is the
union of the orbits of the action of A(Bp) on Bp (see Figure[§). If 22(Bp) is a packing, then we shall
call it a polytopal Apollonian packing. For d = 2, 2 (Bp) is always a packing, but this is not true in
higher dimensions. As instance, the Apollonian arrangement of the simplicial packing & (Bya+1) is not
a packing for d > 4. The property of being a packing depends on the intersection angles of the dual
spheres of B%, which must satisfy the crystallographic restriction , or equivalently, the polar P*
must be a Coxeter polytope [Chel6b].

FIGURE 8. A tetrahedral (left) and cubic (right) Apollonian packing. Each colour repre-
sents an orbit under the action of the Apollonian group.
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We define the symmetrized Apollonian group of Bp, denoted by SA(Bp), as the stabilizer of Méb(@)
for Z(Bp). It can be generated by union of a set of generators of the symmetry and the Apollonian group
of Bp. This group was used by Baragar in [Barl8; Bar22| for studying the simplicial cases P = T7+!
ford=2,...,8.

Polytopal Apollonian packings belong to the family of Kleinian sphere packings introduced by Kapovich
and Kontorovich [KK23| or Boyd-Mazwell packings introduced by Chen and Labbé in |CL15]. In di-
mension 2, polytopal Apollonian packings coincide with the family of polyhedral packings introduced
by Kontorovich and Nakamura in [KN19| as a particular case of crystallographic sphere packings, also
studied in more detail by Chait, Cuit and Stier in [CCS20] (see Section [5| for further details).

2.7. Mo6bius uniqueness and the Mobius spectrum. Two sphere packings are Mébius equivalent
(also called conformally equivalent) if one can be sent to the other by a Mobius transformation. Let Be
be a sphere packing whose combinatorial structure is given by a combinatorial object €. We say that B¢
is Mobius unique with respect to € if any other sphere packing By is Mbius equivalent to Be. If € is the
contact graph, then Bg is in general not Mobius unique (see [RR21]). As it is mentioned in the previous
section, in dimension 2, polytopal sphere packings are Mobius unique due to Brightwell-Schneirmann
Theorem [BS93|. Analogously to the case of crystallographic sphere packings [KN19|, Mostow Rigidity
Theorem implies that polytopal sphere packings are also Mobius unique in higher dimensions. To see this,
let us consider two sphere packings Bp, to Bp, in R¢ with d > 2, where P; and P; are two edge-scribed
(d + 1)-polytopes with same combinatorial type. The polytopes of Q1 = Py NPy and Qs = P2 NP5 are
inscribed to S%, so they correspond to ideal hyperbolic polytopes of H4+! with finite volume. Moreover,
Q; and Qj are the fundamental domains of the hyperbolic reflection groups generated by the reflections
on their facets. Due to polarity, all the dihedral angles of the facets are right angles so these groups are
isomorphic. Thus, by Mostow Rigidity Theorem, there iS/E), hyperbolic isometry of H¢t! carrying Q; to

Q, which can be extended to Mobius transformation of R? carrying Bp, to Bp,.

Mobius uniqueness of polytopal sphere packings implies several things. Firstly, by definition [2.1] a
polytopal sphere packing Bp does not depend on the realization but on the combinatorial type of P.
Secondly, the (symmetrized) Apollonian groups of two polytopal sphere packings induced by the same

edge-scribable (d + 1)-polytope for d > 2, are congruent in M6b(R4). Therefore, the corresponding
Apollonian arrangements are also Mdbius unique. From the polytopal perspective, Mobius uniqueness
is equivalent to say that the space of edge-scribable realizations of any edge-scribable polytope, under
projective transformations preserving the sphere, is a point. We can also use the M&bius uniqueness to
define an spectral invariant of edge-scribable d-polytopes for d > 3.

2.7.1. The Mébius spectrum of an edge-scribable polytope. For every d > 3, we define the Mdébius spectrum
M(P) of an edge-scribable d-polytope P as the multiset of the eigenvalues of the Gramian of Bp. By
combining the Mobius uniqueness of edge-scribable polytopes with the invariance of the inversive product
under Mobius transformations, we have that 9t(P) does not depend on the packing and therefore it is
well-defined. In Section [3] we give the M&bius spectrum of each Platonic solid.

3. THE POLYTOPAL DESCARTES’ THEOREM

We present first some notions and lemmas needed for the proof of the main theorem.

3.1. The canonical length of uniform polytopes. It is clear that any regular (d + 1)-polytope is
k-scribable for every 0 < k < d. With a little extra effort, it can be proved that uniform polytopes are
inscribable, edge-scribable and, in general, non-circunscribable. Moreover, we have the following.

Lemma 3.1. FEvery edge-scribed uniform polytope is canonical and its barycenter is the origin.

Proof. Let P be a uniform (d + 1)-polytope with d > 2. Let us first clarify that P admits a midsphere.
The vertex-transitivity implies that every symmetry of P fixes the barycenter bar(P). It follows that
the distance from each vertex to bar(P) is constant. Since every 2-face of P is regular, every edge of P
has equal length. By combining these two facts, we get that for every e € E(P), ||bar(e) — bar(P)|| is
constant and e is orthogonal to the line passing through bar(e) and bar(P). Thus, the sphere S centered
at bar(P) and radius ||bar(e) — bar(P)|| is tangent to every edge of P at the barycenters of the edges.

Let us now suppose that P is also edge-scribed, i.e. S = S% and hence, bar(P) is the origin 0 € R4*1,
On the other hand, the vertex-transitivity implies also that every vertex has same degree § > d + 1, and
8



therefore 2| E(P)| = 6|V (P)|. We conclude by showing that P is canonical.

1
Z x = Z bar(e (73)| Z i(u—i—v)

zePNS4 ecE(P) u,v€e€E(P)
1
= deg(v)v = v = bar(P
2|E(P)| ve;P) ( UE;P)

O

As it is described in the above proof, uniform polytopes have equal edge length. We define the
canonical length £p of every uniform polytope P as the half edge length of its canonical realization.

3.2. The polytopal curvatures of a polytopal sphere packing. Let d > 1 and let P be an edge-
scribed (d+1)-polytope. We define the Lorentzian barycenter of a face f € F(P) as the vector x; € R4T11
given by

(8) Xf = W Z Xs,

veV (f)

where s, is the sphere corresponding to v.

Lemma 3.2. Let P be a uniform edge-scribed (d + 1)-polytope with d > 2. Then, for every f € F(P)
we have that (xy,xp) = —(3>.

Proof. By Lemma P is canonical and the barycenter of P is the origin of R4+, Thus, the Euclidean
norm of any vertex v of P and the canonical length of P are related by ||v||> = ¢% + 1. Therefore,
by Equation , the Lorentzian vectors of the vertices of P are contained in the affine hyperplane
O = {za42 = 5"} C RIFLL Therefore, for every face f of P, its Lorentzian barycenter x; € s

Since bar(P) is the origin of R¥*! then xp = E;ledJrg € Hz{l and thus,
P

(xf —xp,xp) =0 & (x¢,Xp) = (Xp,Xp) = —€732.
O
Boyd’s generalization of Descartes’ theorem given in [Boy74] states that for any arrangement B =
{81, 8412} C Z(R?) with full-rank Gramian, the vector of curvatures K = (k1,...,kqy2)? satisfy
(9) K’ Gram(B) 'K =0

We may consider @ from the Lorentzian perspective in order to obtain a stronger statement. Let
XN = €4+1 + eq42 be the vector given by the North Pole in the projective model of the space of spheres,
where e; denotes the i-th canonical vector of R4*1:1 (see Figure [4). Notice that xy lies on the light-cone
L(R™LY) e,

(10) <XN,XN> :0

Let s € #(R9) of curvature x, and let x, be its Lorentzian vector. From the definition of inversive
coordinates given in 7 we have

(11) Ks = —(XN,Xs)

It follows from this equation that the linear transformation which maps (X, ,...,Xs,,5) t0 (Ksy, -+ \ Ksyyy)
translates the equation (10]) into @ In other words, the statement of the generalized Descartes’ theorem
is equivalent to say that the vector of curvatures can be obtained from the North Pole by basis exchange,
and the Lorentzian norm of this vector is 0. In order to extend the relation @ to any basis of R4+11,
we need to define a notion of curvature to any vector x € R¥t1L1 by

(12) Kx = — (XN, X)

We thus clearly have that equation @ holds not only for basis of vectors of R%11 corresponding to
spheres, but for any basis.

Lemma 3.3. For any basis A = (X1, ...,Xa42) of RATL1 the vector of curvatures K = (Kxy - - -, Kixyys)®
satisfies

(13) K’ Gram(A) 'K =0
9



For every polytopal sphere packing Bp, we define the polytopal curvature of Bp with respect to a face
f of P as ky := kx, where x; denotes the Lorentzian barycenter of f. Notice that if f is a vertex v € P,
then x, = Kks,. By linearity, we have that x; corresponds to the following arithmetic mean.

1
(14) Ky = Vi Z Ks,

3.3. Proof of the main theorem. We have now all the ingredients to prove the polytopal Descartes’
theorem that we restate below.

Theorem 3.1. Let Bp a polytopal sphere packing where P is a uniform (d + 1)-polytope with d > 2.
The polytopal curvatures of Bp with respect to the faces in any flag (fo,-- ., fa, far1 = P) satisfy

d

1
(15) (o = Kp)> + 03, (5 — )2 + ) 7
i=2 " fi+1 fi
Proof. Let P be an edge-scribed uniform (d+1)-polytope with d > 2 and let ® = (fo, f1, ..., fd, far1 = P)
be a flag of P. Let A = (yo0,¥1,--.,Yd:Yd+1), Where y; := x5, — xy,,, for every i = 1,...,d, and
Yar1 := xp. Let us compute the Gramian of A. Let v = fy, ¢ = f1 and let v’ be the other vertex of e.

Then,

(qu‘, - Hf71+1)2 = E%R%

<Yan0> = <X1) — Xe, Xy — xe>

= <XU7XU> - 2<Xvaxe> + <X€7Xe>

1= 2, 2 (0 X))+ (0 %), S+ X)) =1 (1= 1) 40 =1

2 2 2
<y0ay1> = <Xvaxv - Xe>
- <Xva %(Xv’ - Xv)>
= %((mev[} — Xy, Xyp)) = %(—1 +1)=0

<Y1aYI> = <X6 — Xfy,Xe — Xf2>
= <X6’X€> - 2<X€’Xf2> + <Xf2’xf2>
_ -2 p-2 _ p-2
- 0+2€f2 7£f2 7£f2
By definition, f; is uniform for every 2 < i < d + 1. Moreover, the intersection of S? with the affine

subspace spanned by f; induces an edge-scribed realization of f;. Therefore, by Lemma (xp,Xxp,) =
—EJTJ_Q for every ¢ < j < d+ 1. Then, for the diagonal entries with 2 < i < d, we have

<Yia}'i> = <Xf7: —Xfip Xfi T Xf71+1>

= <Xfi7xfi> - 2<Xfi7xfi+1> + <Xfi+l7xfi+1>
= -2 +22 + (5

fit1 fi+1
_ p—2 -2
=Ly 4,
(Yas1,Yar1) = (xp,xp) = —l5°

and for the non-diagonal entries with 1 <17 < j < d+ 1, we have

<Yian> = <Xfi —Xfip Xf; T ij+1>
= <Xfwxfj> - <Xfi7xfj+1> - <Xfi+1’xfj> + <Xfi+1’xfj+1>

=2, g2 -2 -2

- _Efj +£fj+1 +€fj - ij+1 =0
Consequently, Gram(A) = diag(l,(;f, e ,E;;il — E;iz, cee —87;2). On the other hand, by linearity, we
have that the vector of curvatures of A is equal to K = (ks, — kf,,..., k1, — ip,kp)T. Since A is a
basis of R41:1 we can apply Lemma [3.3| which gives us

. 1
Kleag(l,E?c2,. .oy W, ey 763))1{ =0
Jis1 fi

which is equivalent to (15). O
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4. THE PLATONIC PACKINGS

In this section, we study the packings based on the simplest family of polytopes covered by the
polytopal Descartes’ theorem: the regular 3-polytopes, also known as the Platonic solids. By applying
Theorem we shall present a generalization of Descartes’ theorem and the Apollonian group in terms
of the Schlifli symbol, which will give us the recipe to construct analogues of integral Apollonian packings
for the Platonic solids. At the end of the section, we present a catalogue summarizing all the properties
discussed in this paper for each Platonic solid.

4.1. Characteristic sequences. Let Bp a polytopal sphere packing in R? where P regular (d + 1)-
polytope. For any flag ® = (fy, ..., fa, P), the set of curvatures of Bp can be deduced from the polytopal
curvatures of the faces of ®. To do so, we shall define a canonical set of curvatures which will serve us
as a basis. The characteristic simplex of P with respect to the flag ® is the simplex

Ag := conv(bar(fo),...,bar(fa), bar(P))

where bar(f) denotes the barycenter of the vertices of f (see Figure E[) When P is regular, the symmetry
group of P coincide to the symmetry group of the characteristic simplex Ag. This group is generated
by the reflections vg,...,ty on the walls of Ag containing the barycenter of P, where t; denotes the
reflection on the wall opposite to the vertex of Ag corresponding to the face f; € ®. We define the
characteristic vertices of P with respect to ® as the subset of vertices Vg = (v1,...,v442) C V(P) given
by

(16) V1 = fo, and Vi+1 ‘=T ti_1(’Uz’)

subindices of v; k = 1,...,d + 1 corrected for every ¢ = 1,...,d + 1 (see Figure E[) A characteristic
bend vector of Sp is a vector B = (by,...,b4y2) with the bends of the spheres corresponding to a set of
characteristic vertices of P.

V4

b

v1 = fo
fi
v

FIGURE 9. The characteristic simplex Ag (in dark gray) and the characteristic vertices
Vo = (v1,v2, v3,v4) with respect to the flag ® = (fo, f1, f2,P) of a cube.

2

4.2. The Platonic Descartes Theorem. The classic Descartes’ theorem is usually stated in terms of
the Descartes quadratic form |[Fucl3] whose corresponding matrix is
1 -1 -1 -1
-1 1 -1 -1
(17) Q=1 _| 1 1 _
-1 -1 -1 1

The matrix Qp derives from Boyd’s generalization (9). For every Schléfli symbol {p,q} of a Platonic
solid, we define the Platonic quadratic form with corresponding matrix Qy, 3 := Qp + Py ) where

0 —Wp — Wy wWp — Wy 0
P | T W (wp +wg) (wp Fwy +2) Wg - Wg Wp — Wq
{par = Wp — Wq wy —wp (wWp +wg) (wp +wg+2) —wp —wy
0 Wp — Wq —Wp — Wy 0

and w,, := 1+ 2cos 27“ We notice that ws =0, wy = 1 and ws = ¢ is the Golden ratio.
11



Proposition 4.1. Let K = (k1, k2, k3, k4)? be a vector of four characteristic curvatures of a Platonic
circle packing Bp with P = {p,q}. Then

(18) K'Q.gK =0.
Proof. Let ® = (v, e, f,P) be a flag of P. Theorem states that

9 1

(19) (Ko — Ke)® + 5?('% —Kf)T+ 722
P TF

(kg — kp)* = lprp
where ¢¢ and ¢p are the canonical length of f = {p} and P = {p, ¢}. These values can be easily computed
in terms of w, and w, by

3—w 2—wp, —w
20 by = P bp =, —2 4
(20) f 14w, P V L+ wp

Let Vo = (v1,v2,v3,v4) and let & = (v', €', f', P) be the flag of P where Vo = (vg,v1,v2,v3) (vg = vy
when P is the tetrahedron). Then, e and ¢’ share the vertex v, and f and f’ share the edge e. By solving
in each of the polytopal curvatures k., ks, after replacing the values in , and then adding both
solutions, we obtain the following relations.

(14 wp)ky + (3 — wp)ky
2
(1+wg)hke + (2 — wp — wy)rp
3 —wp

(21) Ke + Ker =

22 Kf+ ke =2
f f

Let (k1, ka2, K3, k4) be the characteristic curvatures with respect to Vg. By combining the equations
and with the definition of polytopal curvatures of the faces in ® U ®’, we obtain the following
equations

(23) Ky =K1
K1 + Ko
24 =2
K1+ K2 + K3 — Wpka
25 =
(25) Kf 5w,
(26) . :/-11+/£2+143+/£4—(wp+wq)(n2+/~13)
P 4 —2(wp +wgq)

The above relations define a transition matrix T satisfying
(27) Ke =TK

where Kg = (/iv,/iemf,/ip)T and K = (k1,K2,K3,/4)7. Let Qg the matrix of the quadratic form
induced by after combining with . Then, equation becomes

(28) KIQsKs =0 KI'TTQsTK = 0.
It can be checked by direct computations that Qyp, g3 = 4(1 4 wp + wy + wywy) TT Qo T. O

4.3. Matrix representations and integrality conditions. Polytopal Apollonian groups are discrete
subgroups of the Mobius group. The classic linear representation of tetrehadral Apollonian group intro-
duced by Hirst in |[Hir67], and studied for the first time from the number theoretical point of view by
Graham et al. in |Gra+05|, is defined as the discrete group (S1, S2, S3,S4) < Op(Z) where Op(Z) is the
group of orthogonal matrices with entries in Z preserving the Descartes quadratic form. The generating
matrices, called bend matrices in [CCS20], do not depend on the packing and gives the linear relations
on the curvatures under the action of the Apollonian group. We shall give a similar representation of for
each Platonic solid P. To do so, we first give a linear representation of the symmetrized Apollonian group
(Ro,R1,R2,8) < Oy g1 (Z[wy, wy]) where Ogp 1 (Z[wp,wy]) is the group of orthogonal matrices which
preserve the Platonic quadratic form with entries in Z|w,,w,]. The action by conjugation of (Rg, Ry, Ra)
on S gives the finite set of bend matrices {Sy| f € F5(P)} which generate the Apollonian group of P.
We denote by J# (Bp) the set of curvatures of the Apollonian packing & (Bp).
12



Proposition 4.2. Let Bp a Platonic circle packing where P = {p,q}. The symmetrized Apollonian
group of Bp acts transitively on  (Bp) as the discrete subgroup (Ro,Ri,Ra,S) < Ogp 1 (Z[wp,wy])
where

0 1 0 0
1 0 0 0
(29) Ro = Wp —wp 10
wp (Wp +wg) +wg —wp (wp+wg) —wg 01
1 0 0 0
_ Wy —Wwp 1 0
(30) R = wp (—1 + wp) 1—w? Wp 0
wﬁ (—1+wptwy) —wp(l+wp) (14w, +wy) wp(—1+wy+uw,) 1
1 0 0 0
0 1 0 0
(1) R, = Wq Wp —(wp +wg) ) 1
wg (—1+wp+wg) wp(—1+wp+wg) 1—(wp+wg) wpt+uwy
1 0 0 0
0 1 0 0
(32) S = 0 0 1 0

2 2(1—wptwy) 2(14wp+uwy) -1

Proof. Let ® = (v, e, f,P) be a flag of P and let {vg, 1,2} the fundamental generators of the symmetry
group of P with respect to ®. Let v' :=tg(v), ¢’ :=t1(e) and [’ := va(f). Then,

tO(v7euf7P):(U/7e7f77))a tl(U,€7f,P):(U,el,f,P), tQ(U,e,f,P):(U,C,f/7P).
From equations and , we have that tg, v; and vs correspond to the matrices

Koy 2Ky — Ke
/ Re | Re
(33) Ry || =]
Rp Rp
Ry Ry
(34) R | B | 2 | TR e+ Ry
1 /Qf I{f
Rp Kp
Ry Ky
K Re
35 Ry | “|=]|:20 2(2—w,—
(35) 2 | 5, (L) o ey 4 2 o
Kkp Kp

By conjugating with the transition matrix T described in , we obtain the matrices Ry, R1, Ra.
By resolving on k4, we obtain

(36) Kayky = K1+ (1 — wp + wg)ke + (1 +wp + wy)ks £ 2\/(1 +wy)(K1k2 + K1K3 + Koks — wpk3)

where k) is the curvature of the sphere s(s,,) and s is the inversion through the sphere corresponding to
the face f. Therefore, since s fixes the spheres corresponding to the vertices of f, then s acts in & (Bp)
as the matrix

K1 K1
(37) s = 2
K3 K3
K4 2k1 +2(1 — wp + wy)ke + 2(1 + wp + wy)k3 — Ka

The elements {tg, t1, 2,56} generate the symmetrized Apollonian group of Bp, which acts transitively on
J (Bp) since P is regular. It can be easily checked that the four matrices belong to Oy, g3 (Z[wp,w,]). O

Corollary 4.1. The Apollonian groups of the Platonic solids are discrete subgroups of Oy, i\ (Z[wp, wq]).
13



For determining all the curvatures in a Platonic Apollonian packing, only three characteristic cur-
vatures are necessary. We denote by J#{, g3 (k1, k2, k3) := £ (Bp) where P is the Platonic solid with
Schlafli symbol {p, ¢} and k1, k2, k3 are three characteristic curvatures of Bp.

Corollary 4.2 (Integrality condition). Let Bp be a Platonic packing where P = {p,q}. If Bp has three
curvatures (K1, K2, K3) in a characteristic sequence satisfying

(38) 1431,1432,:‘6}3,\/(1+wq)(lﬂlll€2+lillﬂ23+ﬁgﬁig — wpk3)
then all the curvatures of the Apollonian packing &2 (Bp) are in Zlwy, wg].

Proof. If k1, ko, k3 satisfy then, by equation , K4 € Zlwp,wq]. By Proposition we have that
%(Bp) = <]3,07 Ri, R, S> . {Iil, K2, K3, I<L4} C Z[wp, wq]. O

Corollary 4.3. For every Platonic solid {p,q}, #{p 4 (0,0,1) C Zlwp,w,]. Moreover, if ¢ = 3, then
Hp3(0,0,1) contains the sequence of perfect squares.

Proof. The integrality follows from Corollary From 7 if k1 = 0,60 = 0,k3 = 1, then k4 =
1+ wp + wy. Let Ko := (0,0,1,1 4+ w, + wy)? and let, for every n > 0, M,, := R;(R2S)"R; and
K, = (n&"),ngn),ng"),nin))T = (M,,K)T. By Proposition K, C #(Bp). It can be proved by
induction on n that k") = n2(1 4 w,). Therefore, for ¢ = 3, k5" = n2. O

The packings giving 7, 1(0,0, 1) are illustred in Figures and We can use the
previous two corollaries to parametrize the triples satisfying the integrality condition. To do so, we must

solve the Diophantine equation derived from .
(39) (1+wy)(zy +yz + 22 — wyy?) = n?

for n,z,y,z € Zwy,w,]. Since this equation is a homogeneous of degree 2, we can find all the solutions
from the initial solution n =0, x =0, y = 0, z = 1 by classical methods.

Corollary 4.4. For every Platonic solid {p,q}, the triples (k1, k2, k3) € Zlwy, wy]® satisfying are
given by

(14 wq)(t2 + t3)ta I (14 wgq)(t2 + t3)ts 5 — (14 wq)(t2 — wpts)ts

d b d d
where t1,ta, t3 € Zlwy,wy| coprimes, d = ged((1+wy) (ta+t3)ta, (1+wy) (ta+t3)ts, 1 —(1+wy) (b2 —wpts)ts)
and k € Zlwy,wq] coprime with d.

(40) R1 = k R3 = k

We use the previous parametrization to find triples for generate the primitive Platonic Apollonian
packings, i.e. the ged of all the curvatures is 1, which are depicted in Figures and
This is given by setting k = 1 in the previous parametrization. We notice that different triples can give
the same packing, so we cannot use it for counting the different primitive packings. For enumerating
methods, see [Gra+03].

4.4. Linear relations on the curvatures. The set of curvatures of a Platonic packing Bp needs four
characteristic curvatures K = (k1, ko, k3, k4) to be fully determined. Indeed, by Proposition the set
of curvatures of Bp is obtained by multiplication of the matrices Ry, R1, Ro on K. If we also multiply
by S, then we generate all the curvatures in the Apollonian packing &(Bp). Equivalently, by applying
recursively the following linear relations, which derive from equations , , , we can obtain the
curvatures of &(Bp) from K without using the matrices.

- (Face relation) If (ko, K1, K2, K3) correspond to four consecutive vertices in a face, then

(41) Ko = wp(K1 — K2) + K3

- (Characteristic sequences)If (K1, ke, k3, k4) and (ka, K3, k4, k5) are two characteristic sequences of cur-
vatures of Bp then

(42) K1 — Ky = (wp + wq) (ke — Ka)

- (Dual inversion) If (k1, ko, k3, k1) and (K1, Ko, k3, k) are two characteristic sequences of Bp and B,
respectively, where B/, is obtained from Bp by the inversion through the dual circle orthogonal to the
circles corresponding to k1, k2, k3, then

(43) Ky = 2K1 + 2(1 — wp + wy)k2 + 2(1 + wp + wy ) kg — Ka
14



4.5. Tetrahedron (p = 3,q = 3). This is the classical case which has been extensively studied. We
write it for the sake of completeness.

4.5.1. Canonical realization and centered arrangement projections. The canonical tetrahedron with the
spherical illuminated regions of its vertices is represented in Figure Its canonical length is £7s = /2.

FIGURE 10. A canonical tetrahedron with the spherical illuminated regions.

In Figure we show three tetrahedral packings obtained by the arrangement projections of the
canonical tetrahedron with a vertex, edge and face, centered at the Pole North, respectively.

DY

FIGURE 11. (From left to right) Vertex-centered, edge-centered and face-centered arrange-
ment projection of the canonical tetrahedron.

4.5.2. Mébius spectrum. The Gramian is equal to the Descartes quadratic form, so the Mobius spectrum
of the tetrahedron is is 9M(73) = ()\(()1)7 )\f’)) where A\g = —2 and A\ = 2.

4.5.3. Descartes’ theorem. The polytopal curvatures with respect to any flag (v, e, f, T3) satisfy
(44) (Ko — Fe)? + 3(ke — kig)? + 6(kp — k7s)? = 2K
The Platonic quadratic form for the tetrahedron is the same as the Descartes quadratic form

1 -1 -1 -1

11 -1 -1
(45) Qear=| 1 1 1 4

-1 -1 -1 1

which implies the classic Descartes’ theorem, i.e. the curvatures k1, ko, k3, k4 of any tetrahedral packing
satisfies the quadratic equation

(46) (F1 4 R2 + K3 + r4)® = 2(KT + K5 + K3 + K3)
4.5.4. Linear relation on the curvatures. The curvatures of any tetrahedral packing By satisfy the
following dual inversion relation.

- If (K1, Ko, k3, k4) and (K1, Ko, k3, K)) are the curvatures of Brs and B/, respectively, where B is
obtained from B7s by the inversion through the dual circle orthogonal to the circles corresponding to
K1, Ko, k3, then

(47) k4 + k) = 2(Kk1 + K2 + K3)
15



4.5.5. Apollonian group. The following matrices generate the symmetrized Apollonian group of the tetra-
hedron.

01 0 0 1000 1000 100 0
1 000 001 0 0100 01 0 0
Ro=119 091 0 Ri=f4 1 00 Ra=1 190 0 1 S=10 01 o
00 0 1 00 0 1 0010 2 2 2 -1
The action by conjugation of (Rg, R1,R2) on S gives the following set of 4 matrices
-1 2 2 2 10 0 0 10 0 0 100 0
0 1 0 0 2 2 -1 2 01 0 0 01 0 0
51 0 0 1 0 2= 5 0 1 0 Ss=1 49 9 1 9 Si=1 0901 o
0 0 0 1 00 0 1 00 0 1 2 2 2 -1

The discrete subgroup (S1,S2,83,84) < Oy331(Z) = Op(Z) is the classic linear representation of the
tetrahedral Apollonian group.

4.5.6. Primitive Apollonian packings. If a triple of curvatures of a tetrahedral packing Bys verify

(48) K1, kg, K3, VR1kg + K1k3 + Rakz € Z
then the Apollonian packing £ (Bys) is integral. The primitive triples of curvatures satisfying the
previous condition are parametrized by

13 + tot3 tots + 3 12 — tot3
= s R2 = ) K3 = )

d d d

where t1,t2,t3 are three coprime integers and d = ged (t% + tots, tats + 13,13 — tgtg), In Figure we
show two examples given by this parametrization.

(49) K1

FicURE 12. The tetrahedral Apollonian gaskets generated by t; = 1, to = 0, t3 = 0 =
(Hl, K2, l€3) = (0,07 1), and tl = ]., t2 = —2, t3 =4 = (Iﬁ:l,:‘iz,lﬁlg) = (—4,8,9)

16



4.6. Octahedron (p = 3,q = 4). Octahedral packings appear in the works of Boyd in |[Boy74], Guettler
and Mallows [GMO0S8| and Zhang |[Zhal§|.

4.6.1. Canonical realization and centered arrangement projections. A canonical octahedron with the
spherical illuminated regions of its vertices is represented in Figure [I3] Its canonical length is fps = 1.

FIGURE 13. A canonical octahedron with the spherical illuminated regions.

In Figure we show three octahedral packings obtained by centered arrangement projections of a
canonical octahedron.

) O8O Y

FIGURE 14. (From left to right) Vertex-centered, edge-centered and face-centered arrange-
ment projection of the canonical octahedron.

4.6.2. Mdbius spectrum. The Mébius spectrum of the octahedron is MM(O3) = ()\81),)\?),)\%3)) where
Ao = —4, Ay =0 and X2 = 6. It can be computed with the values of Table [I}

Graph distance ‘O 1 2
Inversive product ‘ 1 -1 -3

TABLE 1. The inversive product given by the distance in the graph for octahedral packings.

4.6.3. Descartes’ theorem. The polytopal curvatures of an octahedral packing with respect to any flag
(v, e, f,03) satisfy
3
(50) (Ky — Ke)? + 3(ke — Kp)? + i(ﬁf — kp3)? = Ko
The Platonic quadratic form for the octahedron is given by the matrix

1 -2 -2 -1

-2 4 0 -2
(51) Qua=| 2 ¢ 14 -2

-1 -2 -2 1
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which implies that any sequence of characteristic curvatures (k1, ko, k3, /4) of an octahedral packing

satisfies the quadratic equation

(52) (k1 — K1) + (K1 — 200 + Ka)? + (k1 — 263 4 K4)? = 2(k1 + Kg)?

which is equivalent to the quadratic equation given in [GMOS]|.

4.6.4. Linear relations on the curvatures. The set of curvatures of any octahedral packing Bos satisfy

the following linear relations.

- (Characteristic sequences) If (k1, k2, ks, k4) and (Ka, K3, K4, k5) are two characteristic sequences of
curvatures of Bps, then

(53) K1+ K4 = Ko + K5

which is equivalent to the linear equation given in |[GMOS].

- (Dual inversion) If (k1, ko, k3, k4) and (K1, k2, k3, k) are two characteristic sequences of Bps and B,
respectively, where By,); is obtained from Bps by the inversion through the dual circle orthogonal to
the circles corresponding to k1, ko, k3, then

(54) K4 + Hil = 2(I€1 + 2/€2 + 2/&3)

4.6.5. Apollonian group. The following matrices generate the symmetrized Apollonian group of the oc-
tahedron.

0 1 00 1 00 0 10 0 0 100 0
1 0 00 001 0 01 0 0 010 0
Ro=1 9 o0 1 0 Ri=10 100 Ro=11 0 -1 1 S=10 01 o
1 -1 0 1 00 0 1 00 0 1 2 4 4 -1

The action by conjugation of (Rg,Rj,Rso) on S gives the set of 8 matrices which generates the linear
representation of the octahedral Apollonian group as a discrete subgroup of O3 43(Z).

4.6.6. Primitive Apollonian packings. If an octahedral packing Bos has a characteristic sequence (k1, ko, k3)
satisfying
(55) /‘61,/‘62,/‘63,\/2(H1K2+/£1K3+/€2H3) cZ

then the Apollonian packing £ (Bps) is integral. The primitive triples of curvatures satisfying the
previous condition are parametrized by

2t2 + 2ot 2ots + 22 12 — 2ot
(56) /@1272—; =3 52:723;_ 3, kg = L 273 d23’

where t1,t2,t3 are three coprime integers and d = ged (215% + 2tot3, 2tots + 2t§, t% — 2t2t3). In Figure
we show two primitive octahedral Apollonian packings given by this parametrization.

FicURE 15. The octahedral Apollonian gaskets generated by t1 = 1, to = 0, t3 = 0 =
(K)l, K2, K)3) = (0,07 ].), and tl = ]., t2 = ]., t3 = -2= (Iﬁ:l,:‘iz,lﬁlg) = (—2,4,5)
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4.7. Cube (p = 4,q = 3). Cubic packings were studied by Stange in [Stalb] as a particular case of
Schmidt arrangements.

4.7.1. Canonical realization and centered arrangement projections. A canonical cube with the spherical

illuminated regions of its vertices is represented in Figure Its canonical length is ¢z = %

FIGURE 16. The canonical cube with the spherical illuminated regions.

In Figure[I7] we show three cubic packings obtained by centered arrangement projections of a canonical
cube.

CEE S

FIGURE 17. (From left to right) Vertex-centered, edge-centered and face-centered arrange-
ment projection of the canonical cube.

4.7.2. Mébius spectrum. The Mobius spectrum of the cube is 9M(C?) = ()\(()1), /\54)7 /\S”)) where Ao = —16,
A1 =0 and Ay = 8. It can be computed with the values of Table [2]

Graph distance ‘0 1 2 3
Inversive product ‘ 1 -1 -3 -5

TABLE 2. The inversive product given by the distance in the graph for cubic packings.

4.7.3. Descartes’ theorem. The polytopal curvatures of a cubic packing with respect to any flag (v, e, f, C?)
satisfy

(57) 2Ky — Ke)® + 2(ke — K p)? + 2(kp — Kes)? = Kaa
The Platonic quadratic form for the cube is given by the matrix
1 -2 0 -1

-2 4 -2 0
(58) Qusi=| g _9 4 _o

-1 0 -2 1
which implies that any sequence of characteristic curvatures (K1, ke, k3, k4) of a cubic packing satisfy
(59) 2Ky — Ka)? + 2(ka — k3)? + 2(k3 — K4)? = (k1 + Ka)?
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4.7.4. Linear relations on the curvatures. The set of curvatures of any cubic packing Bes satisfy the
following linear relations.

- (Face relation) If (Ko, K1, K2, k3) correspond to four consecutive vertices in a square face, then
(60) Ko + K2 = K1 + K3

- (Characteristic sequences) If (k1, kK2, ks, k4) and (Ka, K3, K4, k5) are two characteristic sequences of
curvatures of Bes, then

(61) K1+ K4 = Ko + K5

- (Dual inversion) If (K1, k2, k3, k4) and (K1, K2, K3, KYy) are two characteristic sequences of Bes and B,
respectively, where B(; is obtained from Bes by the inversion through the dual circle orthogonal to the
circles corresponding to k1, ks, k3, then

(62) kg + Ky = 2(K1 + 2K3)

4.7.5. Apollonian group. The symmetrized Apollonian group of the cube is generated by

0 1 00 1 0 0 0 10 0 0 1 00 0
1 0 0 0 1 -1 1 0 01 0 0 010 0
Ro=171 11 0 Ri=19 0 1 0 Re=11¢ 1 -1 1 S=1001 o0
1 -1 0 1 0 0 0 1 00 0 1 2 0 4 -1

The action by conjugation of (Rg,Rj,R2) on S gives a set of 6 matrices which generates the linear
representation of the cubic Apollonian group as a discrete subgroup of Oyy 31(Z).

4.7.6. Primitive Apollonian packings. If a cubic packing Bes has a characteristic sequence of curvatures
(K1, ko, k3) satisfying

(63) /@1,/@2,/@3,\/m@—l—mm—&—@mg—/@g cZ

then the Apollonian packing &?(Bcs) is integral. The primitive triples of curvatures satisfying the
previous condition are parametrized by
12 + tots tots + 3 12 — tot3 + 3
— , = -, K3 = )
d d ° d
where t1,ts,t3 are three coprime integers and d = ged (t% + totg, tots + t%, t% — tots + t%) In Figure
we show two primitive cubic Apollonian gaskets given by this parametrization.

(64) K1 K2

-3

FiGURE 18. The cubic Apollonian packings generated by ¢; = 1 =
(K1, k2, k3) = (0,0,1), and t; = 0, ta = 5, t3 = =3 = (K1, k2, k3) = (5, —3,12).
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4.8. Icosahedron (p = 3,q = 5). Icosahedral packings were studied by Bolt et al. as a particular case

of Apollonian ring packings |BBH1§]

4.8.1. Canonical realization and centered arrangement projections. A canonical icosahedron is repre-
sented in Figure The canonical length of the icosahedron f7s = ¢~ 1.

FIGURE 19. A canonical icosahedron with the spherical illuminated regions.

In Figure [20] we show three icosahedral packings obtained by centered arrangement projections of a
canonical icosahedron.

B OO Y

FIGURE 20. (From left to right) Vertex-centered, edge-centered and face-centered arrange-
ment projection of the canonical icosahedron.

4.8.2. Mébius spectrum. The Mébius spectrum of the icosahedron is M(Z3) = ()\él),)\gg),)\g?’)) where
Ao = —12¢% A\ = 0 and Ay = 4(1 + ¢?). It can be computed from the values in Table

Graph distance ‘ 0 1 2 3
Inversive product ‘ I -1 1-2p7 —1-—2¢2

TABLE 3. The inversive product given by the distance in the graph for icosahedral packings.

4.8.3. Descartes’ theorem. The polytopal curvatures of an icosahedral packing with respect to any flag
(v, e, f,I?) satisfy
(65) (ko — ke)? + 3(ke — w)* + 3™ (1 — k13)? = 9™ KT
The Platonic quadratic form for the icosahedron is given by the matrix
1 —p? —¢? -1
2 4 2
¥ 2 (2
66 =
( ) Q{375} _(pQ © <p4 —<p2
-1 7902 7902 1
which implies that any sequence of characteristic curvatures (k1, K2, k3, k4) of an icosahedral packing
satisfy

(67) (K1 + Ko + K3 + k)" + 97 (51— k)® = 2(k] + K5 + K3 + K1) + (k2 + K3)?
21



4.8.4. Linear relations on the curvatures. The set of curvatures of any icosahedral packing Bzs satisfy
the following linear relations.

- (Characteristic sequences) If (k1, ko, ks, k4) and (ka, K3, K4, k5) are two characteristic sequences of
curvatures of Bzs, then

(68) K1 — ks = @(Kk2 — Ka)

- (Dual inversion) If (k1, ko, k3, k4) and (K1, ko, k3, k) are two characteristic sequences of Bzs and B,

respectively, where B/ is obtained from Bzs by the inversion through the dual circle orthogonal to the
circles corresponding to k1, ks, k3, then

(69) Ky + Ky = 2(k1 + ©* Ko + @2 k3)
4.8.5. Apollonian group. The symmetrized Apollonian group of the icosahedron is generated by

0 1 0 0 1 00 0 1 0 0 0 1 0 0
1 0 00 0010 01 0 0 0 1 o0
Ro=14¢9 0o 1 0 Ri=191 0 0 Ry = o 0 —p 1 S=10 o 1
o —¢ 0 1 0 0 0 1 1 0 —p o 2 207 297

<

The action by conjugation of (Rg, Ry, R2) on S gives a set of 20 matrices which generates the linear
representation of the icosahedral Apollonian group as a discrete subgroup of O3 53 (Z[]).

4.8.6. Primitive Apollonian packings. If an icosahedral packing Bzs has a characteristic sequence of
curvatures (K1, ke, k3) satisfying

(70) K1, K2, K3, VK1K2 + K1K3 + Kaks € Z[p]

Error in the previous version then the curvatures of icosahedral Apollonian packing &?(Bzs) are in Z[p].
The primitive triples of curvatures satisfying the previous condition are parametrized by

2 2 2 2
to +t3)t to + t3)t t tot
(71) Iil—*iga(zd 3)2, H2:7§0(2d 3)3, kg = 1T 2% fl 23,

where t,ta,t3 € Z[p] coprimes and d = ged (apQ(tQ +t3)ta, P2 (ta + t3)ts, t7 — <p2t2t3). In Figure , we

show two primitive icosahedral Apollonian gasket given by this parametrization.

F1cURE 21. The icosahedral Apollonian packings generated by t; = 1, to = 0, t3 = 0 =
(k1,k2,k3) = (0,0,1), and t; =1, ta = =2+ 2¢p, t3 = 4 — 4 = (K1, k2, k3) = (—4,8,9).

It follows from the integrality conditions of the tetrahedron and the icosahedron , that any
primitive triple of characteristic curvatures generates both a tetrahedral and an icosahedral Apollonian

gaskets (see Figures|12| and .
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4.9. Dodecahedron (p =5,q = 3).

4.9.1. Canonical realization and centered arrangement projections. A canonical dodecahedron is repre-
sented in Figure Its canonical length is ¢ps = 2.

FIGURE 22. A canonical dodecahedron with the spherical illuminated regions.

In Figure we show three dodecahedral packings obtained by centered arrangement projections of
a canonical dodecahedron.

o) 3 G0

FIGURE 23. (From left to right) Vertex-centered, edge-centered and face-centered arrange-
ment projection of the canonical dodecahedron.

4.9.2. Mébius spectrum. The Mébius spectrum of the dodecahedron is 9(D3) = ()\(1), /\516), )\é3)) where
Ao = —20¢*, A\ = 0 and Ay = 20¢?. It can be computed with the values in Table

Graph distance ‘ 0 1 2 3 4 5
Inversive product ‘ 1T -1 1-207 1—4¢? 1-2p% 1-6¢?

TABLE 4. The inversive product compared to the graph-distance for dodecahedral packings.

4.9.3. Descartes’ theorem. The polytopal curvatures of a dodecahedral circle packing with respect to any
flag (v, e, f, D?) satisfy

(72) (ko = ke)? + (T = 4p)(Ke — f)? + (18 = 119) (ks — kipa)® = (5 — 3) ks
The Platonic quadratic form for the dodecahedron is given by the matrix
1 —? ot -1
2 4 2 -1
—p @ L 22
73 = T
(73) Q¢s,3) R S ot Zp?
-1 o1 —p? 1

which implies that any characteristic curvatures (k1, K2, k3, k4) of a dodecahedral packing satisfy
@_1((}61 + /€3)2 + (HQ + H4)2)—|—(/€1 — I~€4)2 + (K2 — H3)2

+¢? ((k1 — K2)? + (k2 — K3)* + (k3 — Ka)?) = 20(k1 + K4)?
23
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4.9.4. Linear relations on the curvatures. The set of curvatures of any dodecahedral packing Bps satisfy
the following linear relations.

- (Face relation) If (Ko, K1, K2, k3) correspond to four consecutive vertices in a pentagonal face, then
(75) Ko — Kz = (K1 — K2)

- (Characteristic sequences) It (k1, ko, K3, k4) and (ka, K3, K4, k5) are two characteristic sequences of
curvatures of Bps, then

(76) K1 — K5 = QK2 — Ka)

- (Dual inversion) If (K1, Ko, K3, £4) and (K1, K2, k3, k) are two characteristic sequences of Bps and B,
respectively, where Bf,; is obtained from Bps by the inversion through the dual circle orthogonal to
the circles corresponding to k1, ko, k3, then

(77) Ky + Ky = 2(k1 — @ ' ho + ©?K3)

4.9.5. Apollonian group. The symmetrized Apollonian group of the dodecahedron is generated by

0 1 00 1 0 0 0 1 0 0 0 1 0
B 1 0 00 e —» 1 0 o1 0 o o 1
Ry = o —¢ 1 0 Ri=13 —p ¢ 0 R2=1 g o —p 1 S=10 o
? —p? 0 1 o —¢* 1 1 01 —p ¢ 2 207!

The action by conjugation of (Rg, R1,Rg) on S gives the set of 12 matrices which generates a linear
representation of the dodecahedral Apollonian group as a discrete subgroup of O¢s 31(Z[¢]).

4.9.6. Primitive Apollonian packings. If a dodecahedral packing Bps has a characteristic sequence of
curvatures (K1, ke, k3) satisfying

(78) K1, K2, K3, \/Iilfﬁg + K1kg + Koks — pK2 € Z[y]

then the curvatures of Apollonian packing &?(Bps) are in Z[p]. The primitive triples of curvatures
satisfying the previous condition are parametrized by

12 + tot3 tots + t2 12 — tots + @t2
79 = 72 — 3 — 1 3
( ) K1 d ) K2 d B K3 d )

where t1,t2,t3 € Z[p] coprimes and d = ged (t% + tots, tats + 13,12 — tots + cpt%). In Figure we show
two primitive dodecahedral Apollonian gaskets given by this parametrization.

=

FIGURE 24. The dodecahedral Apollonian packings generated by ¢t =1, to =0, t3 =0 =
(Kil, HQ,Hg) = (0,0, 1), and t; = 1, to =1+ p, t3 = —1= (lil,lig,lizg) = (gO +1, —1,2(,0).
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5. CONCLUSIONS

5.1;\Integra1 polytopes. We have explored the family of polytopal sphere packings, which are packings
in R9 carrying a rich structure induced by an edge-scribable (d+1)-polytope, with d > 2. Specifically, the
vertices, edges and facets of the polytope correspond to spheres, tangency relations, and dual mirrors of
the packing, respectively. The action of the group generated by the dual mirrors on the packing gives an
infinite arrangement of spheres which, in certain cases, results in an integral Apollonian packing. While
it remains unknown which polytopes are z'mfegmﬂ7 in the sense that they admit an integral Apollonian
packing, significant progress has been made for polyhedra. Based on the work on crystallographic sphere
packings due to Kontorovich and Nakamura |[KN19], Chair, Cui and Stier gaved in [CCS20] the list
of the only 10 integral uniform polyhedra, and defined the glueing operations on polyhedra preserving
integrality. We wonder if a similar list and operations can be defined in higher dimensions.

5.2. Polytopal Descartes’ theorem. Descartes’s theorem is a central algebraic tool used to study
integral Apollonian packings. In this paper, we present a Descartes’ theorem for polytopal sphere pack-
ings that arise from uniform polytopes. The equation we obtain encompasses several generalizations of
Descartes’ theorem, and we can express it in terms of the geometry of the polytope. This enables us to
obtain integrality conditions from the combinatorial information of the polytope without the coordinates
of an initial packing, as we have done for the truncated tetrahedron depicted in Figure [3]

In the first version of this paper, the polytopal Descartes’ theorem was restricted to regular polytopes
exclusively. However, we later discovered that the same formula is also valid for uniform polytopes,
and we are confident that it could be extended to other families, such as the quasi-uniform polytopes.
These polytopes are obtained by replacing the vertex-transitive condition with vertex-congruence, which
means that all vertex-figures are Fuclidean congruent. In dimension 3, there is only one quasi-uniform
polyhedron that is not uniform: the 37th Johnson solid [Grii+03]. We have checked that for this
polyhedron the polytopal Descartes’ theorem holds.

5.3. Regular polytopes and beyond. We have studied the polytopal Apollonian packings arising from
Platonic solids as the simplest family of polytopes to which the polytopal Descartes’ theorem applies.
Analogue constructions for the regular polytopes in higher dimensions are investigated in |[Ras21]. One
of the advantages of the regular case, is that the polytopal Descartes’ theorem yields a unique quadratic
form for the polytopal curvatures with respect to the faces of any flag. In the case of non-regular uniform
polytopes, there is a different quadratic form for each class of flags up to symmetry. We believe that it
would be interesting to study the nature of the quadratic forms arising from uniform polytopes in every
dimension.

5.4. Mobius spectrum of polyhedral graphs. Spectral techniques, which rely on the eigenvalues and
eigenvectors of the adjacency or Laplace matrices of graphs, have proven to be powerful and effective
tools for studying various graph properties. In this vein, we have defined an spectral invariant for edge-
scribable d-polytopes, which we call the Mobius spectrum, for every d < 3. Steinitz’s well-known theorem
[Ste28] states that the graph of a polyhedron is a 3-connected simple planar graph, which is also known
as a polyhedral graph. Given that all polyhedra are edge-scribable, the M&bius spectrum can be defined
for any polyhedral graph. We are curious whether the Mdbius spectrum serves as a complete invariant
for edge-scribable polytopes, and particularly for polyhedral graphs.

Question 1. For any d > 3, are there two combinatorially different edge-scribable d-polytopes with
same Mébius spectrum? In particular, are there two non isomorphic polyhedral graphs with same Mobius
spectrum?
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