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BALL PACKINGS FOR LINKS

JORGE L. RAMÍREZ ALFONSÍN AND IVAN RASSKIN

Abstract. The ball number of a link L, denoted by ball(L), is the minimum number of solid balls (not necessarily
of the same size) needed to realize a necklace representing L. In this paper, we show that ball(L) ≤ 5cr(L) where

cr(L) denotes the crossing number of L. To this end, we use the connection of the Lorentz geometry with the

ball packings. The well-known Koebe-Andreev-Thurston circle packing Theorem is also an important brick for the
proof. Our approach yields to an algorithm to construct explicitly the desired necklace representation of L in R3.

1. Introduction

A link with n components consists of n disjoint simple closed curves in R3. A knot K is a link with one
component (we refer the reader to [1] for standard background on knot theory). A link diagram of a link L is a
regular projection of L into R2 in such a way that the projection of each component is smooth and at most two
curves intersect at any point. At each crossing point of the link diagram the curve which goes over the other is
specified, see Figure 1. The crossing number of a L, denoted by cr(L), is the minimum number on crossings among
all the diagrams of links which are ambient isotopic to L.

Figure 1. (Left) A knot diagram of the trefoil (denoted by 31): the simplest non-trivial knot.
(Right) A link diagram of the Hopf link (denoted by 22

1) : the simplest non-trivial link.

A chain of balls is a sequence of non-overlapping solid balls in the space where all the consecutive balls are
tangent. The thread of a chain of balls is the polygonal curve formed by joining the centers of consecutive tangent
balls with straight segments. A chain of balls is closed if the last ball is tangent to the first ball. The thread of a
closed chain can be thought of as a polygonal knot in the space. A necklace representation of a link L is a collection
of non-overlapping chains of balls such that theirs threads form a polygonal link ambient isotopic to L.

Figure 2. A necklace representation of the trefoil.
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In [18], Maehara defined the ball number of a link L, denoted by ball(L), as the minimum number of balls (not
necessarily of the same size) needed to construct a necklace representation of L. Little is known about the behavior
of ball(L). Maehara proved that 9 ≤ ball(31) in [18, Theorem 9]. Some years earlier, Maehara and Oshiro showed
that ball(31) ≤ 12 in [21, Theorem 5] and that ball(22

1) = 8 in [20, Theorem 2]. As far as we are aware, these are
the only known results concerning ball numbers of links.

Necklace representations can be regarded as a particular case of polygonal representations of links with a strong
geometric condition. Polygonal representations of links have been of great interest not only in mathematics but
also in chemistry and physics. Indeed, polygonal representations have been applied to the study of the DNA and
knotted molecules [12].

In this paper we present the following upper bound to ball(L) in terms of the crossing number.

Theorem 1. Let L be a link. Then,
ball(L) ≤ 5cr(L).

Our approach allows to come up with an algorithm to construct explicitly the necklace representing the link L.
We are able to compute the coordinates of the centers and the radius of each of the balls of the desired necklace.

Unfortunately, our technique does not allow us to push further the above upper bound. However, we believe
that it can be improved.

Conjecture 1. Let L be a link. Then,
ball(L) ≤ 4cr(L).

Moreover, the equality holds if L is alternating.

Given the connection of the ball number with the Koebe-Andreev-Thurston circle packing Theorem (KAT
Theorem) a linear bound seems inevitable.

A close related invariant to the ball number is the pearl number of a link L in which the balls have to be of
the same size. The latter seems closely connected to another geometric invariant, the rope length of L. There is
a known quasilinear upper bound on rope length in terms of the crossing number and a linear upper bound is
conjectured. In [11], a sequence of knots is given that their rope length grows linearly in the crossing number. It
is natural to ask whether the latter can be refined to pearl necklaces with unequal pearls.

The paper is self-contained and it is organized as follows. In the next section, we briefly introduce some basic
notions on the space of d-balls. We then explain the connection of the Lorentz geometry with the space of d-balls.
We also discuss some definitions and properties of the inverse product and the action of the Möbius group on the
space of d-balls.

In Section 3, after recalling classical background of ball packing theory we introduce and study some geomet-
ric properties of both pyramidal disk systems and crossing ball systems. These are two building blocks for our
construction.

In Section 4, we prove our main result. Let us give a brief outline of the proof. By combining the projection of
a link with its associated medial graph we construct a simple planar graph which contains a subgraph isotopic to
the projection of the given link. By the KAT Theorem we can obtain a disk packing whose tangency graph is the
previous simple planar graph. We then construct a ball packing with same tangency graph as the disk packing.
We finally obtain a necklace representation of the link by adding two balls to the ball packing for each crossing of
the projection. We use the Lorentz geometry and the building blocks defined in Section 3 in order to verify that
our construction works properly.

In Section 5, based on the approach used in the proof of Theorem 1, we will present an algorithm that outputs
the coordinates of the centers and the radius of the balls forming the necklace representation of the given link L.
The examples presented at the end of this paper have been done throughout an implementation of this algorithm.
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2. The space of d-balls.

2.1. From spherical caps to d-balls. Some notations and definitions of this section can be found in the PhD
thesis of Chen [8] and the paper of Wilker Inversive geometry [24]. Let d ≥ 1 be an integer. We denote Rd the
Euclidean space of dimension d and 〈·, ·〉2, ‖ · ‖ the Euclidean inner product and the Euclidean norm respectively.
Let Sd be the unit d-sphere of Rd+1 endowed with the induced metric ‖ · ‖S from Rd+1. A d-spherical cap β of
center γ ∈ Sd and spherical radius ρ ∈ (0, 2π) is the subset

β = {x ∈ Sd | ‖x− γ‖S ≤ ρ}(1)

which gives a partition of Sd in three disjoint subsets: the interior of β, int(β), points of Sd satisfying (1) strictly,
the exterior of β, ext(β), points of Sd not satisfying (1) and the boundary of β, ∂β, points of Sd satisfying the
equality of (1). Let Caps(Sd) denote the family of d-spherical caps. It is well known that Sd is homeomorphic to

R̂d under the stereographic projection where R̂d := Rd ∪ {∞} is the one-point compactification of Rd. A d-ball of

R̂d is the image of a d-spherical cap under the stereographic projection. We denote Balls(R̂d) the space of d-balls,
isomorphic to Caps(Sd) given by the above construction. A d-ball b is called solid ball, hollow ball and half-space
depending on whether the pole of the stereographic projection lies in the exterior, interior or boundary of the

corresponding d-spherical cap βb. More precisely, a d-ball of R̂d of curvature κ ∈ R will be one of the following
subsets:

- Solid ball : {x ∈ R̂d | ‖x− c‖ ≤ 1/κ} when κ > 0.
It is also a standard d-ball of Rd with center c ∈ Rd and radius 1

k .

- Hollow ball :{x ∈ R̂d | ‖x− c‖ ≥ −1/κ} when κ < 0.
It can be regarded as the closure of the exterior of a solid ball with its boundary.

- Half-space: {x ∈ R̂d | 〈x, n〉2 ≤ δ} when κ = 0.
By convention, we choose the normal vector n which points towards the interior. The real number δ
represents the signed distance from the boundary to the origin (positive if the origin is contained in the
interior and negative otherwise).

There is a natural embedding of Balls(R̂d) ↪→ Balls(R̂d+1) where a d-ball b of center c and curvature κ (resp. normal

vector n and signed distance δ) is mapped to a (d+ 1)-ball b̂ of center (c, 0) and curvature κ (resp. normal vector
(n, 0) and signed distance δ). We call this mapping the blowing up.

2.2. The intersection angle of two d-balls. For d > 1, let b and b′ be two d-balls with intersecting boundaries.
We define the intersection angle of b and b′, denoted by ](b, b′) ∈ [0, π], as the angle formed by the vectors −→pc and
−→pc′ where c and c′ are the centers of b and b′ and p ∈ ∂b∩∂b′, see Figure 3. The intersection angle does not depend
on the choice of the point in the intersection.

Figure 3. The intersection angle of two disks.

Two d-balls b and b′ with intersecting boundaries are said to be:

- Internally tangent if ](b, b′) = 0.
- Orthogonal if ](b, b′) = π

2 .
- Externally tangent if ](b, b′) = π.

When the boundaries of b and b′ do not intersect the intersection angle ](b, b′) is not well-defined. In this case
we say that b and b′ are disjoint if they have disjoint interiors and nested if one is contained in the other.

Remark 1. The blowing up operation preserves intersection angles.

We notice that the definition of intersection angle does not work when d = 1 since the boundary of a 1-ball is
not simply connected. In this case we can define the intersection angle of two 1-balls as the intersection angle of
the corresponding 2-balls given by the blowing up.
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2.3. The hyperbolic model of Balls(R̂d). Let Hd+1 be the Poincaré ball model of the hyperbolic space of

dimension d + 1 embedded in R̂d+1 as the standard unit (d + 1)-ball. The boundary ∂Hd+1 is exactly the unit

sphere Sd. A d-hyperbolic half-space of Hd+1 is the intersection h := Hd+1∩ b̂h where b̂h is a (d+ 1)-ball orthogonal
to Hd+1. We denote Halfs(Hd+1) the space of hyperbolic half-spaces of Hd+1. At the boundary of Hd+1, the

intersection ∂Hd+1 ∩ b̂h = Sd ∩ b̂h is a d-spherical cap βh which corresponds to a d-ball bh by the stereographic
projection. For any d-ball, the mapping h 7→ βh 7→ bh can be reversed so we can define the following isomorphisms:

Balls(R̂d) Caps(Sd) Halfs(Hd+1)' '(2)

The notions of interior, exterior and boundary are easily extended for d-hyperbolic half-spaces. For d > 1, two
d-balls b and b′ have intersecting boundaries if and only if the corresponding d-hyperbolic half-spaces hb and hb′

have intersecting boundaries. Moreover, the intersection angle of b and b′ is equal to the dihedral angle of hb and
hb′ measured at a non-common region.

2.4. The Lorentzian model of Balls(R̂d). The Lorentzian space of dimension d + 2, denoted by Rd+1,1, is a
real vector space of dimension d + 2 equipped with a bilinear symmetric form 〈·, ·〉 of signature (d + 1, 1). The
Lorentzian product of two vectors u and v of Rd+1,1 is the real number 〈u, v〉 and the Gramian of a collection of
vectors B = {v1, . . . , vn} of Rd+1,1 is the matrix

Gram(B) :=

〈v1, v1〉 · · · 〈v1, vn〉
...

. . .
...

〈vn, v1〉 · · · 〈vn, vn〉


If B = {v1, . . . , vd+2} is a basis of Rd+1,1 then Gram(B) is the matrix of the Lorentzian product in the basis B.
The Lorentzian product of two vectors u, v ∈ Rd+1,1 can be computed by

〈u, v〉 = CB(u)T Gram(B)CB(v)(3)

where CB(u) is the column matrix of the coordinates of u in the basis B. Generalizing the definition of Boyd
in [5], we define the polyspherical coordinates of a vector u ∈ Rd+1,1 with respect to B as the column matrix

PB(u) =
(
〈v1, u〉 · · · 〈vd+2, u〉

)T
which is related to the Cartesian coordinates by

CB(u) = Gram(B)−1PB(u)(4)

Combining equations (3) and (4) we can compute the Lorentzian product in polyspherical coordinates by

〈u, v〉 = PB(u)T Gram(B)−1PB(v)(5)

In practice we will use equation (5) to compute the Lorentzian product in different basis.
From now on, we fix an orthonormal basis B0 = {e1, . . . , ed+2} with Gramian diag(1, . . . , 1,−1). A vector v ∈ Rd+1,1

is called:

- Space-like (resp. time-like) if 〈v, v〉 > 0 (resp. < 0).
- Future-directed (resp. past-directed) if 〈ed+2, v〉 > 0 (resp. < 0).
- Normalized if |〈v, v〉| = 1.

The space of all the normalized space-like (resp. time-like) vectors of Rd+1,1 is usually called de Sitter space (resp.
anti de Sitter space). We denote it by S(Rd+1,1) (resp. T(Rd+1,1)). The anti de Sitter space can be regarded as the
generalization of a two-sheets hyperboloid with two connected components T↑(Rd+1,1) and T↓(Rd+1,1) formed by
the future-directed and the past-directed vectors of T(Rd+1,1) respectively. The hyperboloid model of the (d+ 1)-
hyperbolic space is obtained by taking T↑(Rd+1,1) with the metric induced by the restriction of the Lorentzian
product of Rd+1,1. The isomorphism which maps the hyperboloid model to the Poincaré ball model can be regarded
as the projection Π : T↑(Rd+1,1)→ {ed+2 = 0} from −ed+2, see Figure 2.

A time-like half-space is the subset tv = {u ∈ Rd+1,1 | 〈u, v〉 ≥ 0} where v ∈ S(Rd+1,1). The space of time-like
half-spaces is in bijection with S(Rd+1,1). The image Π(tv ∩ T↑(Rd+1,1)) is a hyperbolic half-space of Hd+1 and
every hyperbolic half-space can be obtained in this way. We can then extend the isomorphisms of (2) by

Balls(R̂d) Caps(Sd) Halfs(Hd+1) S(Rd+1,1)' ' '(6)

The Lorentzian vector of a d-ball b, denoted vb, is the normalized space-like vector obtained by the previous
isomorphisms.
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R̂d

S(Rd+1,1)

Sd Hd+1

b

vb

βb
hb

Figure 4. Geometric interpretation of the isomorphisms of Equation (6).

The inversive product of two d-balls b and b′, denoted by 〈b, b′〉 := 〈vb, v′b〉, is the Lorentzian product of their
corresponding Lorentzian vectors. Equivalently, we define the Gramian of a collection of d-balls as the Gramian
of the collection of the Lorentzian vectors of the d-balls. We denote −b the d-ball corresponding to the Lorentzian
vector −vb which is the d-ball with same boundary as b and int(−b) = ext(b). We notice that 〈−b, b′〉 = −〈b, b′〉.
The inversive product is a fundamental tool to encode configurations of d-balls [24]. Indeed,

〈b, b′〉 =

 cosh dH(hb, hb′) if b and b′ are nested
cos](b, b′) if ∂b and ∂b′ intersect
− cosh dH(hb, hb′) if b and b′ are disjoint

where hb and hb′ are the corresponding hyperbolic half-spaces and dH(hb, hb′) is the hyperbolic distance between
∂hb and ∂hb′ . In particular, we have

〈b, b′〉 =


> 1 if b and b′ are nested

1 if b and b′ are internally tangent
0 if b and b′ are orthogonal
−1 if b and b′ are externally tangent

< −1 if b and b′ are disjoint

(7)

In [24], Wilker defined the inversive coordinates of a d-ball b as the column-matrix of the Cartesian coordinates of
vb with respect to B0. We overuse the notation vb to refer both the Lorentzian vector and the inversive coordinates
of the d-ball b. The latter can be given in terms of the curvature κ and center c (normal vector n and signed
distance δ for half-spaces) by

vb =


κ

2
(2c, ‖c‖2 − 1

κ2 − 1, ‖c‖2 − 1
κ2 + 1)T if κ 6= 0,

(n, δ, δ)T if κ = 0.

(8)

With the inversive coordinates one can compute the inversive product by

〈b, b′〉 = vTb Qvb′(9)

where Q = diag(1, · · · , 1,−1) is the Gramian of B0.

2.5. The Möbius group. The Möbius Group Möb(R̂d) can be defined as the group of the continuous automor-

phisms of R̂d mapping d-balls to d-balls [23]. An element of the Möbius Group is called a Möbius transformation.
For every solid or hollow (resp. half-space) d-ball b we define the inversion on b, denoted by σb, as the sphere
inversion (resp. Euclidean reflection) on ∂b. Alternatively, σb can be defined as the only Möbius transformation

which maps b to −b and fixes a d-ball b′ if and only if b′ is orthogonal to b. It is well-known that Möb(R̂d) is
generated by the inversions on d-balls [23]. The product σb ◦ σb′ of the inversions on two d-balls centered at the
origin with non-zero curvatures κ and κ′ gives a scaling of Rd of scaling factor (κ′/κ)2. Thus, the group of Euclidean

isometries and scalings of Rd is a subgroup of Möb(R̂d).
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The Möbius Group defines a group action (on the left) on the space of d-balls. The following group isomorphisms
and equivariant group actions can be obtained by using the isomorphisms given in (6)

Balls(R̂d) Caps(Sd) Halfs(Hd+1) S(Rd+1,1)

Möb(R̂d) Möb(Sd) Isom(Hd+1) O↑(Rd+1,1)

' ' '

' ' '

(10)

where Möb(Sd) is the Möbius group defined on Sd acting on the family of d-spherical caps, Isom(Hd+1) is the group
of hyperbolic isometries acting on the space of hyperbolic half-spaces and O↑(Rd+1,1) is the Orthochronous Lorentz
Group which is the group of linear maps of Rd+1,1 preserving the Lorentz product and the time orientation.

The latter acts on the space of normalized space-like vectors of Rd+1,1. Moreover, for any b ∈ Balls(R̂d), the

isomorphism Möb(R̂d) → O↑(Rd+1,1) maps the inversion σb to the Lorentzian reflection on the boundary of the
time-like half-space tvb , which corresponds to the linear map

σvb : u 7→ u− 2〈u, vb〉vb.(11)

Since the Orthochronous Lorentz Group preserves the Lorentz product, the Möbius Group preserves the inversive
product of d-balls.

3. d-ball packings

A collection of d-balls B = {b1, . . . , bn} in R̂d is called a d-ball packing if every pair of d-balls bi, bj ∈ B are either
externally tangent or disjoint. The tangency graph of a d-ball packing B is the simple graph G = (V,E) where
V = {1, . . . , n} and E = {ij | bi and bj are externally tangent}. A simple graph G is said to be d-ball packable if

there is a d-ball packing BG with tangency graph G. In this case G can be embedded in R̂d by taking the centers
of the d-balls of BG and the straight segments between the centers of any tangent pair. This embedding is usually
called the carrier of the d-ball-packing, see Figure 5. The Möbius Group preserves tangency graphs and maps
carriers to carriers [22].

Figure 5. A 2-ball packing with its carrier.

A d-ball packing B is said to be standard if it contains the half-spaces bi = {xd ≥ 1} and bj = {xd ≤ −1}.
We denote this property by [B]ij . We notice that the tangency point bi ∩ bj is at the infinity and the rest of the

d-balls of [B]ij must lie inside the region {−1 ≤ xd ≤ 1}. For any d-ball packing B whose tangency graph contains

at least one edge ij, a Möbius transformation φ : B 7→ [B]ij will be called a standard transformation. Standard
transformations exist for every edge ij of G and they can be obtained as the product of an inversion in a d-ball
centered at the tangency point bi ∩ bj , a Euclidean isometry and a scaling of Rd, see Figure 6.
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bj

bi

Standard
transformation

bi

bi

Inversion

bi

bj

Euclidean isometry
bi

bj

Scaling

Figure 6. Example of a standard transformation.

Two d-ball packings B and B′ will be said to be Möbius congruent if there exists µ ∈Möb(d) such that µ : B 7→ B′.
If in addition µ is a Euclidean isometry then we will say that B and B′ are Euclidean congruent.

Remark 2. Any d-ball packing is Möbius congruent to a d-ball packing formed by solid balls.

For any simple graph G we define the space of equivalence classes under the action of the Möbius Group

Md(G) := {d-ball packings with tangency graph G}/Möb(d).

We notice that a graph G is d-ball packable if and only if Md(G) is not empty. We say that a d-ball packable
graph is Möbius rigid if all the d-ball packings with tangency graph G are Möbius congruent, which is equivalent
to say that Md(G) ' 1. The advantage of a Möbius rigid graph G is that all the properties which are preserved
under the action of the Möbius group can be read in just one example of a disk packing BG. A useful result to
compute the space Md(G) is the following:

Lemma 1. Let BG and B′G be two d-ball packings with same tangency graph G and let ij be an edge of G. Then
BG and B′G are Möbius congruent if and only if [BG]ij and [B′G]ij are Euclidean congruent.

Proof. Let φ : BG 7→ [BG]ij and ψ : B′G 7→ [B′G]ij be two standard transformations.

(Sufficiency) If there is a Euclidean isometry γ : [BG]ij 7→ [B′G]ij then ψ−1 ◦ γ ◦ φ defines a Möbius transformation
mapping BG to B′G.

(Necessity) Let us suppose that there is a Möbius transformation µ : BG 7→ B′G. Then θ := ψ ◦ µ ◦ φ−1 is a Möbius
transformation mapping [BG]ij to [B′G]ij and leaving fixed the half-spaces bi and bj . Therefore, θ is generated by
inversions on d-balls which are simultaneously orthogonal to bi and bj . A d-ball simultaneously orthogonal to two
parallel half-spaces must be also a half-space. Therefore, θ can be expressed as a product of Euclidean reflections
so θ is a Euclidean isometry. �

The family of d-ball packable graphs are fully characterized for d = 1, 2. Such characterization is still unknown
nowadays when d ≥ 3. Indeed, d-ball packable graphs are closely related to the (d− 1)-ball packable graphs which
can be made by (d − 1)-balls of same size. It has been proved that the recognition of the tangency graphs of
disk packings made by equal disks (and more generally disks with bounded ratio of diameters) turned out to be
NP-hard [2], see also [14]. However, many properties and constructions of 3-ball packable graphs has been found,
see [19], [18], [21], [16], [9], [3].

From now on, we shall focus our attention to d-ball packings for d = 2, 3. In order to simplify the notation, we
will call disks (resp. balls) the 2-balls (resp. 3-balls) and the collections of disks and balls will be denoted by D
and B respectively.
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Disk packable graphs were fully characterized in 1936 by Koebe [15]. The latter was rediscovered by Thurston by
using some results of Andreev on hyperbolic 3-polytopes. The well-known Koebe-Andreev-Thurston circle packing
Theorem (KAT Theorem) states

Theorem 2. A graph G is disk packable if and only if G is a simple planar graph. Moreover, if G is a triangulation
of S2 then G is Möbius rigid.

For a detailed survey on the applications of the KAT Theorem we refer the readers to a recent paper of Bowers [4].

3.1. Pyramidal disk systems. The graph of a polyhedron is the graph made by its vertices and edges. Steinitz
proved that the graphs of convex polyhedra are the 3-connected simple planar graphs. We denote 4, ♦ and � the
graphs of the tetrahedron, octahedron and a square pyramid respectively with the labeling given in Figure 7.

1 2

3

4

(a)

1 2

3

−1−2

−3

(b)

x

−1−2

1 2

(c)

Figure 7. (a) A planar embedding of 4; (b) a planar embedding of ♦; (c) a planar embedding
of �.

Notice that � is isomorphic to the subgraph of ♦ obtained by deleting one vertex. These three graphs are simple
and planar and hence disk packable by the KAT theorem. We call a disk packing DG tetrahedral, octahedral and
pyramidal if G = 4, ♦, � respectively.

d1 d2

d3

d4

d1 d2

d3

d−1d−2

d−3

d−1d−2

d1 d2

dx

(a) (b) (c)

Figure 8. (a) A tetrahedral disk packing; (b) an octahedral disk packing; (c) a pyramidal disk
packing.

Tetrahedral and octahedral disk packings have been well-studied. Since 4 and ♦ are triangulations of S2, 4
and ♦ are Möbius rigid. Many nice properties about the behaviour of the curvatures of the disks in tetrahedral
and octahedral disk packings can be deduced from the Möbius rigidity, see [17]. Unfortunately, pyramidal disk
packings are not Möbius rigid as we show in the following.

Proposition 3.1. M2(�) ' R.

Proof. Let [D�]−1
x (κ1) = {dx, d1, d2, d−1, d−2} be a standard disk packing where d2 and d−2 are two unit disks

tangent to the half-spaces d−1 = {y ≥ 1}, dx = {y ≤ −1} and d1 is a disk of curvature κ1 ∈ R tangent to d2, d−2

and dx.
First of all, notice that 1 < κ1 < 4. Indeed, when κ1 < 1 (resp. κ1 > 4) the disks d1 and d−1 (resp. d2 and d−2)

intersect internally and when κ1 = 1 (resp. 4) d1 and d−1 (resp. d2 and d−2) would be tangent and the tangency
graph would be other than �, see Figure 9. We also notice that the collection of disk-packings {[D�]−1

x (κ1)}1<κ1<4

are Euclidean non-congruent. Therefore, by Lemma 1, they represent different equivalence classes in M2(�).
Moreover, these are the only possible standard pyramidal disk packings. Hence,M2(�) is in bijection to the open
interval (1, 4) which is homeomorphic to R. �
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d−1

dx

d1

d2d−2

κ1 = 1

d−1

dx

d1

d2d−2

κ1 = 4

d−1

dx

d1

d2d−2

1 < κ1 < 2

d−1

dx

d1

d2d−2

κ1 = 2

d−1

dx

d1

d2d−2

2 < κ1 < 4

Figure 9. Extreme cases with an extra edge (top figures) and the equivalence classes of M2(�)
(bottom figures).

Pyramidal disk packings are one of the main ingredients for constructing the desired necklace. Since � is not
Möbius rigid all the properties and the added structures must be carefully verified in each equivalence class of
M2(�). To this end, in the same flavour as in the above proof, we define for every i = 1, 2,−1,−2, the standard
curvatures of a pyramidal disk packing D� the numbers 1 < κi < 4 corresponding to the curvature of the disk di
in [D�]−ix . The standard curvatures can be used to identify the equivalence class of D� in M2(�). We define also
the smaller standard curvature κ := min{κ1, κ2, κ−1, κ−2}. We notice that a pyramidal disk packing is a subset of
an octahedral disk packing if and only if κ = κ1 = κ2 = κ−1 = κ−2 = 2.

We define a pyramidal disk system as the collection of disks (D�, d
∗
1, d
∗
2, dt) formed by

� D� = {dx, d1, d2, d−1, d−2}: a disk-packing with tangency graph �.
� The mirror disks d∗1 and d∗2 where d∗1 is the disk orthogonal to d2, d−2, dx and d1 ⊂ d∗1; d∗2 is the disk

orthogonal to d1, d−1, dx and d2 ⊂ d∗2.
� The tangency disk dt: the disk whose boundary passes through all the tangency points d1 ∩ d2, d1 ∩ d−2,
d−1 ∩ d2 and d−1 ∩ d−2 and dx ⊂ dt.

Lemma 2. For any pyramidal disk packing the mirror disks and the tangency disk are well-defined.

Proof. We first prove the Lemma for the standard [D�]−1
x (κ1) which appears in the Figure 10.

The orthogonality conditions of d∗1 imply that the boundary of d∗1 must be the circle with center (0,−1) which
passes through the tangency point dx ∩ d2. The orientation of the interior is determined by the condition d1 ⊂ d∗1.

For d∗2, a disk orthogonal to d1, d−1 and dx must be a half-space with y-axis as the boundary. As before, the
orientation of the interior comes from the condition d2 ⊂ d∗2 which gives that d∗2 is the half-space {x ≥ 0}.

For dt, by symmetry, the only circle passing through the tangency points d1 ∩ d2, d1 ∩ d−2 and d−1 ∩ d2 must
passes through d−1 ∩ d−2. Again, the orientation is determined by the condition dx ⊂ dt.

It is clear that the previous arguments works for any standard [D�]−1
x (κ1) with 1 < κ1 < 4. Since the conditions

defining the mirror disks and the tangency disks are preserved under Möbius transformations, the Lemma is also
true for all the pyramidal disk packings which are in the same class of [D�]−1

x (κ1) in M2(�), for any 1 < κ1 < 4.
As we showed in the proof of Proposition 3.1, these class contains all the pyramidal disk packings.

�
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d1

d2

d−1

d−2

dx

d∗1

d∗2

dt

Figure 10. The pyramidal disk system of a standard [D�]−1
x (κ1) with the center of d1 lying on

the y-axis. The boundaries of the mirror disks in dashed and for the tangency disk in dotted. The
label of each disk lies on its interior.

Disks Curvature (δ) Center Inversive coordinates

dx 0 (1) 0 −1 0 −1 1 1
d1 κ1 0 1

κ1
− 1 0 1− κ1 −1 κ1 − 1

d2 1 2√
κ1

0 2√
κ1

0 2
κ1
− 1 2

κ1

d−1 0 (1) 0 1 0 1 1 1
d−2 1 −2√

κ1
0 −2− 2√

κ1
0 2

κ1
− 1 2

κ1

d∗1
√
κ1

2
0 −1 0

−√κ1

2
−1√
κ1

κ1−2
2
√
κ1

d∗2 0 (0) 1 0 1 0 0 0

dt
−κ1√
κ2
1+4

0 2
κ1

0 −2√
κ2
1+4

κ1√
κ2
1+4

0

Table 1. Curvature, center and inversive coordinates of the disks of the pyramidal disk system
in Figure 10 in terms of the curvature of d1. When a disk is a half-space the algebraic distance is
given in brackets and the coordinates of the center are the coordinates of the normal vector.

Given the inversive coordinates of Table 1 we may compute the inversive products of the disks of a pyramidal
disk system for each equivalence class of M2(�) in terms of the standard curvatures.

Lemma 3. The following relations hold for every pyramidal disk system (D�, d
∗
1, d
∗
2, dt) and for every i = 1, 2:

(a) 〈di, d−i〉 = −1− 2κi = −1− 8
κj

with i 6= j.

(b) κi = κ−i.

(c) κ1κ2 = 4.

(d) −7 < 〈di, d−i〉 < −1.

(e) (1− 〈d1, d−1〉)(1− 〈d2, d−2〉) = 16.

(f) ∂dt ⊂ d1 ∪ d2 ∪ d−1 ∪ d−2.

(g) d∗1, d∗2 and dt are mutually orthogonal.

(h) σd∗i (dj) =

{
d−j if i = |j|
dj otherwise

for every j ∈ {1, 2,−1,−2, t}.

Proof. The relations can be obtained by simple calculations (combining equation (9) and the inversive coordinates
given in Table 1). �

The equalities (a), (b) and (c) tell us that a pyramidal disk packing has essentially two different standard
curvatures κ1 and κ2 which are inversely proportional and the smaller standard curvature must verify 1 < κ ≤ 2.
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We define the closest disjoint pair of D� the disjoint pair {di, d−i} satisfying κ = κi, i = 1 or 2. The other
disjoint pair will be called the farthest disjoint pair. In the following we use the indices {dc, d−c} and {df , d−f}
with {c, f} = {1, 2} and c 6= f to denote the closest and the farthest disjoint pair of D�. By convention, we define
c = 1 and f = 2 when κ1 = κ2.

d1

d2

d−1

d−2

dx

d−1d−2

d1 d2

dx

d1 d2

d−1

d−2

dx

(a) (b) (c)

Figure 11. The closest disjoint pairs in darker gray in three different cases:
(a) κ = κ1 = 1.33; (b) κ = κ1 = κ2 = 2; (c) κ = κ2 = 1.6.

3.2. The crossing ball system. The main strategy for the proof of our main result is to construct a local ball
packing around each crossing of the given diagram. We then stick together the local ball packings of two consecutive
crossings. These local packings must take into account which piece of the curve goes over/under the other at each
crossing of the link diagram. To this end, we may introduce crossing ball systems which are made from the blowing-
up of a pyramidal disk system. There will be an over/under choice which is determined by a signed parameter
ε ∈ {+,−}.
Remark 3. The blowing up operation preserves the inversive product.

A pyramidal ball packing B� = {bx, b1, b2, b−1, b−2} is a ball packing obtained by blowing up a pyramidal disk
packing. We define equivalently the closest and farthest disjoint pairs as in the planar case. Let (D�, d

∗
1, d
∗
2, dt)

be a pyramidal disk system. We define for every ε ∈ {+,−}, a crossing ball system (B�, b∗1; b∗2, bt, bε3, b
′
ε3) as the

arrangement of balls formed by:

• The pyramid ball packing B� : the blowing up of D�.
• The mirror balls b∗1 and b∗2: the blowing up of the mirror disks d∗1 and d∗2 respectively.
• The tangency ball bt: the blowing up of the tangency disk dt.
• The bridge balls bε3 and b′ε3 where:

(i) bε3 is the unique ball externally tangent to bc, bf , bx, internally tangent to b∗c and contained in the
half-space {εz ≥ 0}, where {bc, b−c} and {bf , b−f} denotes the closest and the farthest pair of B�.

(ii) b′ε3 is the ball obtained by the inversion of bε3 on the mirror ball b∗c .

We also define the crossing region R of a crossing ball system as R =

( ⋂
b∈B�

− b

)
∩ bt.

b1

b−2

b−1

b2

R
b3
b′3

b−1b−2

b1 b2

R
b′−3

b−3

b1 b2

b−1

b−2

Rb′3
b3

(a) (b) (c)

Figure 12. The pyramidal ball packing, bridge balls (blue) and crossing region (yellow) of three
crossing ball systems seen from above: (a) κ = κ1 = 1.33, ε = +; (b) κ = κ1 = κ2 = 2, ε = −; (c)
κ = κ2 = 1.6, ε = +.
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Lemma 4. Let (B�, b∗1, b∗2, bt, bε3, b′ε3) be a crossing ball system. The bridge balls bε3 and b′ε3 are well-defined for
every ε ∈ {+,−}. Moreover, they are externally tangent and both are contained in the crossing region R.

Proof. Consider the collection of balls

B = {bx, bc, bf , b∗c , bεz}
where {bc, b−c} and {bf , b−f} are the closest and the farthest disjoint pair of B� and bεz is the half-space {εz ≥ 0}.
Since the inversive product is preserved by the blowing up operation, we can compute the Gramian of B by using
the inversive coordinates given in the Table 1 in terms of the smaller standard curvature.

Gram(B) =


1 −1 −1 0 0
−1 1 −1

√
κ 0

−1 −1 1 0 0
0
√
κ 0 1 0

0 0 0 0 1

 and Gram(B)−1 =
1

2


κ
2 −1 κ

2 − 1
√
κ 0

−1 0 −1 0 0
κ
2 − 1 −1 κ

2

√
κ 0√

κ 0
√
κ 2 0

0 0 0 0 2


Since det(Gram(B)) = 4 6= 0 the Lorentzian vectors of B form a basis of R4,1. In order to show that the bridge
balls are well-defined we compute the polyspherical coordinates of bε3 with respect to B using the definition of bε3
and equation (7):

PB(bε3) =


−1
−1
−1
1
λz,3

 with λz,3 ≥ 1.(12)

By using equation (5) we can normalize to get λz,3 =
√

3 + 2
√
κ− κ. It can be checked that λz,3 > 1 for every

1 < κ ≤ 2. The latter implies the existence and the uniqueness of bε3 and hence for b′ε3 := σb∗c (b3) for every
pyramidal ball packing. Moreover,

〈bε3, b′ε3〉 = 〈bε3, σb∗c (bε3)〉
= 〈bε3, bε3 − 2〈bε3, b∗c〉b∗c〉 by (11)

= 1− 2〈bε3, b∗c〉2

= −1

so bε3 and b′ε3 are externally tangent.
A ball b is contained in the crossing region of the crossing ball system (B�, b∗1, b∗2, bt, bε3, b′ε3) if and only if

(13) 〈bi, b〉 ≤ −1 for every bi ∈ {bx, bc, bf , b−c, b−f} and 〈bt, b〉 ≥ 1.

By combining the invariance of the inversive product under inversions, the intersection angles of the mirrors and
the other balls given in Lemma 3 (h) and the tangency conditions in the definition of bε3 we obtain

〈bx, b′ε3〉 =〈σb∗c (bx), σb∗c (b′ε3)〉 = 〈bx, bε3〉 = −1,

〈b−c, b′ε3〉 =〈σb∗c (b−c), σb∗c (b′ε3)〉 = 〈bc, bε3〉 = −1 and

〈bf , b′ε3〉 =〈σb∗c (bf ), σb∗c (b′ε3)〉 = 〈bf , bε3〉 = −1.

For the rest of inversive products we use Lemma 3 (h), equation (5) and the inversive coordinates of Table 1 :

〈bc, b′ε3〉 = 〈σb∗c (bc), σb∗c (b′ε3)〉 =〈b−c, bε3〉
=PB(b−c)

T Gram(B)−1PB(bε3)

=
(
−1 −2κ+ 1 −1 −

√
κ 0

)
Gram(B)−1


−1
−1
−1
1√

3 + 2
√
κ− κ


=− 1− 2

√
κ < −1 for 1 < κ ≤ 2.

By the same procedure we obtain:

〈b−f , b′ε3〉 =〈σb∗c (b−f ), σb∗c (b′ε3)〉 = 〈b−f , bε3〉 = 3− 4√
κ
− 8

κ
< −1 for 1 < κ ≤ 2 and

〈bt, b′ε3〉 =〈σb∗c (bt), σb∗c (b′ε3)〉 = 〈bt, bε3〉 =
2 + 2

√
κ− κ√

4 + κ2
≥ 1 for 1 < κ ≤ 2.

�
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4. The proof of the main theorem.

4.1. From links to disk packable graphs. The medial graph of a planar graph G, denoted med(G), is con-
structed by placing one vertex on each edge of G and joining two vertices if the corresponding edges are consecutive
on a face of G. Medial graphs are 4-regular planar graphs but may have loops or multiple edges, see Figure 13
(c). We define the simplified medial graph of G, denoted med(G), the simple planar graph obtained from med(G)
by deleting loops and multiple edges. Every link diagram L with at least one crossing leads to a 4-regular planar
graph GL where the vertices are the crossings and the edges are the arcs joining the crossings. Again, this graph
is not simple in general, see Figure 13 (b). We define the pyramidal patchwork of L the simple planar graph given
by the simultaneous drawing of GL ∪med(GL) and we denote this graph

⊗
(L) = (V⊗, E⊗). The set of vertices

can be divided in two sets V⊗ = V× ∪ Vm where V× is the set of vertices of GL and Vm is the set of vertices of
med(GL). We call the vertices of V× the crossing vertices.

(a) (b) (c) (d)

Figure 13. (a) A diagram L of the Figure-eight knot; (b) GL; (c) GL with its medial in dashed;
(d) the pyramidal patchwork of L.

Since GL is 4-regular, the subgraph of
⊗

(L) induced by a crossing vertex and its 4 neighbours is a pyramidal
graph. Therefore, the pyramidal patchwork of L can be obtained as the union of n pyramidal graphs where n is
the number of crossings of L. Moreover, we have

(14) |V⊗| = |V×|+ |Vm| = n+
1

2
(4n) = 3n.

We now have all the ingredients to proceed with the proof of Theorem 1.

4.2. Proof of Theorem 1. For trivial links the theorem is trivially true. Let L be a non-trivial link and let L
be a minimal crossing diagram of L. By the KAT theorem, there is a disk packing D⊗

(L) with tangency graph⊗
(L) = (V×∪Vm, E⊗). Let B⊗(L) be the blowing up of D⊗

(L). For every crossing vertex x ∈ V×, D⊗
(L) admits a

pyramidal disk system with disk packing D�(x) and therefore B⊗(L) admits a crossing ball system with pyramidal
ball packing B�(x) and bridge balls {bεx3, b

′
εx3}. We notice that

D⊗
(L) =

⋃
x∈V×

D�(x) and B⊗(L) =
⋃
x∈V×

B�(x).

We choose εx such that the thread of the chain made by the balls (bc, bε3, b
′
ε3, b−c) is over/under the thread of

the chain (bf , bx, b−f ) according to the diagram L. Let B∧(L) be the collection of all the bridge balls with the
appropriate signs with respect to L for each crossing vertex. Let BL be the ball collection B⊗(L) ∪ B∧(L). If
BL were a packing then its carrier would contain a polygonal link ambient isotopic to L (by construction). More-
over, the number of balls |BL| = |B⊗(L)|+|B∧(L)| = 3cr(L)+2cr(L) = 5cr(L) since L is a minimal crossing diagram.

We need thus to prove that BL is a packing. To this end, it is enough to show the following three claims:

(1) B⊗(L) is a packing.
(2) Every ball of B⊗(L) is at most tangent to every ball of B∧(L).
(3) B∧(L) is a packing.
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Claim (1)] This is obtained directly by the Remark 3.

Claim (2)] Let x be a crossing vertex with corresponding pyramidal disk system (D�, d
∗
1, d
∗
2, dt), crossing ball

system (B�, b∗1, b∗2, bt, bεx3, b
′
εx3) and crossing region R. Since D⊗

(L) is a packing then, as a consequence of Lemma
3 (f), any disk d ∈ D⊗

(L) \ D� must be disjoint to dt. Therefore, the corresponding ball b ∈ B⊗(L) \ B� must be
disjoint to bt and thus, b is disjoint to R that contains the bridge balls bεx3 and b′εx3 by Lemma 4. Hence, bεx3 and
b′εx3 are disjoint to every ball of B⊗(L) \ B�. In the other hand, Lemma 4 ensures that bεx3 and b′εx3 are at most
tangent to the balls of B�.

Claim (3)] We first notice that, by Lemma 4, the bridge balls of a crossing system are externally tangent.
It remains to show that the bridge balls of different crossing systems have disjoint interiors. Since L is non-
trivial,

⊗
(L) has at least two crossing vertices. Let x and x′ be two different crossing vertices of

⊗
(L) and let

D� = {dx, d1, d2, d−1, d−2} and D′� = {dx′ , d1′ , d2′ , d−1′ , d−2′} be the corresponding pyramidal disk packings in
D⊗

(L). Let n be the number of disks in common of D� and D′� and let R and R′ be their respective crossing
regions. We end the proof by showing that in each of the five cases (n = 0, 1, 2, 3, 4), R and R′ have disjoint in-
teriors. This implies, by Lemma 4, that the bridge balls of the crossing ball systems of x and x′ are at most tangent.

If needed we may relabel D′� in order to work with the labelling of the graphs showed on the left.

n = 0
x

1

2−1

−2
x′
−2′

−1′2′

1′ Since D⊗
(L) is a packing then, by Lemma 3 (f), the boundaries of dt

and dt′ do not intersect. Therefore, dt and dt′ are disjoint as well as
bt and bt′ . Hence, R∩R′ = ∅.

n = 1 x

1 = 1′

2

−1

−2

x′

2′

−2′

−1′

The (possibly empty) region dt∩dt′ must be contained in d1 so bt∩bt′
is contained in b1. As a consequence, int(R) ∩ int(R′) = ∅.

n = 2
x

1 = 1′

2 = 2′

−1

−2

x′
−2′

−1′

We can apply a standard transformation to get a standard disk pack-
ing [D� ∪D′�]12 where the disks d1, d2, dt and dt′ become half-spaces
as in Figure 14.

d1

d2

d−1

d−2

dx
dt d−1′

d−2′

dx′

dt′

d1

d2

d−1

d−2

dx
d−1′

d−2′

dx′

dt dt′

(a) (b)

Figure 14. (a) D� ∪ D′� in the case n = 2 together with their tangency disks; (b)[D� ∪ D′�]12.

The lines ∂dt and ∂dt′ in [D� ∪ D′�]12 either intersect in a point lying in d1 ∪ d2 or they are parallel implying, in
both cases, that the region dt ∩ dt′ is contained in d1 ∪ d2. Therefore, bt ∩ bt′ is contained in b1 ∪ b2 and thus
int(R) ∩ int(R′) = ∅.
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n = 3
x

1 = 1′

2 = 2′

−1 = −1′

−2 x′ −2′ The boundaries of dt and dt′ intersect at the tangency points of d1 ∩ d2 and
d−1 ∩ d2, see Figure 15. Therefore dt ∩ d′t is contained in d2 which implies that
bt ∩ b′t is contained in b2 and hence int(R) ∩ int(R′) = ∅.

d1

d2

d−1

d−2
dxdt d−2′

dx′ dt′

d1

d2

d−1

d−2

dx

d−2′

dx′

dt dt′

(a) (b)

Figure 15. (a) D� ∪ D′� in the case n = 3 together with their tangency disks; (b)[D� ∪ D′�]12.

n = 4 x

1 = 1′

2 = 2′

−1 = −1′

−2 = −2′

x′

In this case, the tangency graph of D� ∪ D′� is isomorphic to the octahedral
graph by taking x′ = 3 and x = −3, see Figure 16. We have that dt = −dt′
which implies that bt and bt′ are externally tangent. Thus, int(R)∩ int(R′) = ∅.

�

d1

d2

d−1

d−2

dx

dt
dt′

dx′

d1

d2

d−1

d−2

dx dx′

dt dt′

(a) (b)

Figure 16. (a) D� ∪ D′� in the case n = 4 together with their tangency disks; (b)[D� ∪ D′�]12.

We notice that our method requires two balls for each bridge in order to connect the closest pair. Unfortunately,
this cannot be done with a single ball since it would be too large to be contained in the crossing region, a central
request in our proof.
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5. The necklace algorithm

In this section we present an algorithm arisen from the constructive proof of our main result. The necklaces
representations of the Figures 17 and 18 are based on this algorithm.

The balls are given in inversive coordinates. Instead of computing the bridge balls by using the basis with the mir-
ror ball b∗c (as done in the proof of Lemma 4), we use the basis B = {bx, bc, bf , b−c, bεz} which avoids the computation
of b∗c . To this end, we need the inversive products λ−c,3 := 〈b−c, bε3〉 = 〈bc, b′ε3〉 and λz,3 := 〈bεz, bε3〉 = 〈bεz, b′ε3〉.
These values are given in the proof of Lemma 4 in terms of the smaller standard curvature by λ−c,3 = −1− 2

√
κ

and λz,3 =
√

3 + 2
√
κ− κ. The smaller standard curvature can be computed by using Lemma 3 (a) obtaining

κ =
1−λc,−c

2 = 8
1−λf,−f

where λc,−c := 〈bc, b−c〉 and λf,−f := 〈bf , b−f 〉. In order to obtain a disk packing from the

tangency graph we use the well-known algorithm of Collins and Stephenson given in [10] where the radius of the
outer disks and the visual precision can be chosen. In all our examples we set the outer radii to be equal to 1 and
precision 10−4.

Table 2. The necklace algorithm.

Input: A link diagram L with n crossings of a link L.
Output: A necklace representation BL of the link L with 5n balls.
Algorithm:

1. Construct the pyramidal patchwork
⊗

(L) = (V× ∪ V©, E⊗)

2. Construct a disk packing D⊗
(L) of tangency graph

⊗
(L)

3. Construct a ball packing B⊗(L) obtained by blowing-up D⊗
(L)

4. Set B∧(L) = {}, Q = diag(1, 1, 1, 1,−1), bz =
(
0 0 1 0 0

)T
5. For x ∈ V× do:

(a) Give to B�(x) a pyramid labeling B�(x) = {bx, b1, b2, b−1, b−2}
(b) Compute the inversive product λ = bT1 Qb−1

(c) If λ ≥ −3 then:
i. B = (bx|b1|b2|b−1|bz), κ = 1−λ

2

(d) else:
i. B = (bx|b2|b1|b−2|bz), κ = 8

1−λ

(e) λ−c,3 = −1− 2
√
κ, λz,3 =

√
3 + 2

√
κ− κ

(f) b3(x) = (
(
−1 −1 −1 λ−c,3 λz,3

)
B−1Q)T

(g) b′3(x) = (
(
−1 λ−c,3 − 1 −1 λz,3

)
B−1Q)T

(h) If the thread made by the bridge balls is under-crossing in L then:
i. b3(x)← diag

(
1 1 −1 1 1

)
b3(x)

ii. b′3(x)← diag
(
1 1 −1 1 1

)
b′3(x)

(i) B∧(L) ← B∧(L) ∪ {b3(x), b′3(x)}
6. BL = B⊗(L) ∪ B∧(L)

We believe that this algorithm can be useful to investigate 3D invariants of links such as the rope length or the
stick number. We end with the following.

Corollary 5.1. Let K be a non-trivial knot. Then, there is a non-planar 3-ball packable graph on 5cr(K) vertices
admitting a piece-wise linear embedding in R3 and containing a Hamiltonian cycle ambient isotopic to K.

Proof. By applying the Necklace algorithm to a minimal crossing diagram of K we obtain a ball packing BK . Let
H be its tangency graph. By construction, |V (H)| = 5cr(K). Since K is non-trivial H has at least one crossing
vertex x. Let Hx be the subgraph of H induced by x and its 6 neighbors. It is easy to see that Hx contains the
complete graph of 5 vertices as a minor and thus, by Kuratowski theorem, H is non planar. Furthermore, the
carrier of BK is a piece-wise linear embedding of H in R3. The cycle corresponding to the thread of the necklace
representation of K in BK is a Hamiltonian cycle of H.

�



BALL PACKINGS FOR LINKS 17

Link 731
Ball x y z r
1 0. 0. 0. 1.
2 0.4068 1. -0.1882 0.0958
3 0.519 1.083 -0.1184 0.0603
4 0.6344 1.0947 0. 0.1054
5 0.7338 1.0234 0.0655 0.0334
6 0.7762 0.9686 0.071 0.0362
7 0.8407 0.7983 0. 0.1593
8 1. 0.5458 0. 0.1392
9 2. 0. 0. 1.
10 1.4814 0.9131 0.1095 0.0558
11 1.4327 0.9925 0.0815 0.0415
12 1.3656 1.0947 0. 0.1054
13 1.3204 0.9813 -0.0604 0.0307
14 1.2858 0.9279 -0.065 0.0331
15 1.1593 0.7983 0. 0.1593
16 1.1253 0.6243 0.1733 0.0886
17 1. 0.4638 0.2589 0.1323
18 2. 2. 0. 1.
19 1.0949 1.4501 0.1314 0.0671
20 1. 1.3938 0.0956 0.0489
21 0.8873 1.3285 0. 0.1127
22 1. 1.211 0. 0.0501
23 1.1302 1.0863 0. 0.1302
24 1.2695 0.9745 0. 0.0485
25 1.3864 0.9006 0. 0.0898
26 1.546 1. 0. 0.0982
27 0. 2. 0. 1.
28 1. 1.5198 0. 0.1093
29 1.1127 1.3285 0. 0.1127
30 1.0501 1.2136 0.0693 0.0354
31 1. 1.162 0.0714 0.0365
32 0.8698 1.0863 0. 0.1302
33 0.7305 0.9745 0. 0.0485
34 0.6136 0.9006 0. 0.0898
35 0.454 1. 0. 0.0982 Figure 17. Necklace representation of the link 73

1 with 35 balls.

Knot 817
Ball x y z r
1 0. 0. 0. 1.
2 0.5168 0.958 0.2146 0.1094
3 0.6549 1.0442 0.1381 0.0704
4 0.7919 1.0508 0. 0.1243
5 0.9356 1.0528 -0.0671 0.0343
6 0.9982 1.0317 -0.0625 0.0319
7 1.081 0.9676 0. 0.09
8 1.1502 0.8904 0.0455 0.0232
9 1.164 0.8497 0.0395 0.0202
10 1.1595 0.7925 0. 0.0494
11 1.0879 0.7759 0. 0.0241
12 1.0007 0.7799 0. 0.0633
13 0.902 0.7895 0. 0.0358
14 0.7559 0.8166 0. 0.1127
15 0.5757 0.9527 0. 0.1132
16 0.1772 1.9921 0. 1.
17 1.1772 1.4541 0. 0.1356
18 1.3308 1.212 0. 0.1511
19 1.4928 1.1678 -0.1645 0.084
20 1.6347 1.0364 -0.2477 0.1265
21 2. 0. 0. 1.
22 1. 0.4186 0.2005 0.1025
23 0.9104 0.5354 0.1241 0.0634
24 0.895 0.6486 0. 0.1053
25 0.876 0.7684 -0.0535 0.0273
26 0.8848 0.8205 -0.0502 0.0256
27 0.9271 0.9005 0. 0.0779
28 0.9571 1.0187 0. 0.044
29 1.0243 1.2064 0. 0.1554
30 1.0559 1.3765 -0.1686 0.0861
31 1.1772 1.533 -0.2525 0.1289
32 2.1772 1.9921 0. 1.
33 1.5588 1.0432 0. 0.1327
34 1.3111 0.9157 0. 0.1459
35 1.1441 0.8682 0. 0.0278
36 1.0843 0.8388 0. 0.0389
37 1.0718 0.7954 0.0305 0.0156
38 1.0717 0.7615 0.0372 0.019
39 1.1051 0.6481 0. 0.1049
40 1. 0.4677 0. 0.1039

Figure 18. Necklace representation of the knot 817 with 40 balls.
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