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Abstract

A new geometrically exact micro-structured model is constructed using a generalisation of the
notion of Riemann-Cartan manifolds and fibre bundle theory of rank 3. This models is based
around the concept of two different length scales: a macroscopic scale − of dimensions 1, 2, or 3 −
and a microscopic one − of dimension 3. As they interact with each other, they produce emergent
behaviours such as dislocations (torsion) and disclinations (curvature). A first-order placement
map F : TB −! TE between a micro-structured body B and the micro-structured ambient space
E is constructed, allowing to pull the ambient Riemann-Cartan geometry back onto the body. In
order to allow for curvature to arise, F is, in general, not required to be a gradient. Central to this
model is the new notion of pseudo-metric, providing, in addition to a macroscopic metric (the usual
Cauchy-Green tensor) and a microscopic metric, a notion of coupling between the microscopic and
macroscopic realms. A notion of frame indifference is formalised and invariants are computed. In
the case of a micro-linear structure, it is shown that the data of these invariants is equivalent to
the data of the pseudo-metric.
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1 Introduction

1.1 Motivations and historical context

In continuum mechanics, one wishes to represent a physical medium though a continuous theory. That
is, a theory making use of only real connected varieties and, as much as possible, smooth functions.
Real matter, however, has little interest in our wishes and is, at a small scale, fundamentally discrete
(e.g. atoms, molecules, biological cells, structural cells of an object, etc.). For this reason, a continuous
model valid and precise for several scales is hard to reach. In order to fill the gap between the macro-
scopic realm − which classical continuum mechanics1 is good at describing − and the microscopic2

realm, new models extending the classical model − referred to as micro-structured models − are re-
quired. In the simplest case, when the micro-structure behaves ideally and emulates the (continuous)
macroscopic structure, the classical models are still valid. Hence, those classical models cease to be
adequate only when the behaviour of the microstructure and the macrostructure start to differ. This
is the case in a wide variety of materials such as crystals, polymers, solids with micro-cracks, bones,
muscles, etc. and, more generally, in the study of plasticity [1]. Such a deviation from an ideal state
is referred to in the literature as a defect of the material. Instead of ideal state one therefore usually
prefer the term defect-free state, whose notion is theoretically as arbitrary as a reference configuration
but which, in practice, is often defined as a perfectly ordered micro-structure [2], [3]. The study of
defect in media is therefore crucial to the elaboration of good micro-structured models.

In 1907, Volterra published [4] one of the first detailed description of defects in crystals, whose
micro-structure is a 3D discrete lattice. This led to the so-called Volterra process [5], [6]. This process
states that all crystals can be obtained by starting from an ideal defect-free crystal − modelled as a
classical 3-dimensional continuum − and adding a finite number of defects in the following way: choose
a surface S, bounded by a curve δS, in the medium and an affine relative displacement δu for each
pair of points on either side of S. Then, apply the relative displacement, removing material where
there would be interpenetration and adding material where there would be a gap. Since δu is affine in
the position, it can be decomposed into a translation b and a rotation ω (seen as its axis vector). The
vector b is called the Burgers vector − as first introduced in the work of the Burgers brothers on crystal
lattices [7] − and yields a dislocation; the vector ω on the other hand is referred to as the Frank vec-
tor − as introduced by Frank in his work on liquid crystals [8] − and yields what is called a disclination3.

Those works led to numerous results in the last century where micro-structured models are obtained
by lessening classical models’ regularities. This may be in the form of discontinuities − as in the works
of Eshelby, Sahoo [5], [6] allowing jumps at dislocation lines − or in the form of non-integrability − as
in the now standard works of Le and Stumpf [1], [9], [10] multiplicatively decomposing the first-order
transformation as an elastic (defect-free) and a plastic (carrying the defects) transformation. Both
approaches are linked, as illustrated by Reina et al. in [11].

Shortly after Volterra, in a paper published in 1909, Cosserat and Cosserat [12] took a different
1In this paper, the term “classical continuum mechanics” and “usual continuum mechanics” will refer to Cauchy’s

continuum theory where a configuration is a C1 embedding of the body into a connected sub-manifold of the 3D Euclidean
space.

2Some authors prefer different names such as “mesoscopic” depending on the actual size or specific nature of the
smaller scale. In this paper, “microscopic” will be used for any scale smaller that the macroscopic one but still large
enough so it can be considered as a continuum.

3Frank originally used the term “disinclination” in [8], to which we shall prefer the term disclination, more widely
used nowadays.
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route by introducing one of the first generalized continua, adding three rotational degrees of freedom at
each point. In addition to the standard displacement field used in a classical continuum mechanics, an
independent unit vector field or, equivalently, a field of 3D Euclidean rotations is additionally specified
on the body. More than a decade later Cartan [13], inspired by this work, constructed the so-called
Riemann-Cartan manifold. This manifold has a Riemannian metric but also makes one of the first uses
of an affine connection inducing torsion and curvature.

In this paper, E. Cartan introduces the notion of “trièdres rectangles” ( i.e. orthogonal frames),
adding that additional rotational degrees of freedom, and deeply talks about the important interpreta-
tion of the lack of closure of parallel transported paths along an infinitesimal loop. More precisely, when
parallel transporting such a frame along a close macroscopic loop, the resulting frame may be slightly
rotated and/or translated compared to the initial frame. Mathematically this leads to the notion of
torsion and curvature on which Cartan focuses in [13]. In the case of crystals, identifying this frames
with the principal directions of the crystal lattice leads to a fundamental result: the correspondence
between this torsion (resp. curvature) and the aforementioned notion of dislocation (resp. disclination)
[3, p. 293], [6, p. 791], [14, p. 12], [1, p. 613].

These pioneer works led to multiple other works, where micro-structured models are created by
enriching classical models with additional degrees of freedom. Among those, the models derived by
Eringen and Suhubi [15], [16], Mindlin [17] and Toupin [18], [19], made explicit Cartan’s interpretation
of the generalised continuum as a macroscopic continuum where each point contains a microscopic
space. This was done using two set of coordinates, one macroscopic and one microscopic. Having
real coordinates, this allows for an easier physical interpretation, at the cost of not being intrinsic
(i.e. covariant) out of-the-box. Those fundamental works in turn led to further developments and
specialisations of the models, which are still ongoing nowadays (e.g. [14], [20], [21]).

1.2 Approach in this work

In this article, a family of generalized continua with their strain measures is introduced, with an em-
phasis on explicit definition of the geometry of the system. Particular care has been given to the
physical interpretation of each mathematical object and hypothesis, with the set of hypotheses being
kept as small as possible.

In section 2 the geometrical tools are introduced, with on emphasis on the physical interpreta-
tion not always highlighted in the standard literature. Following the usual interpretation of micro-
structured continua, the space is modelled as a generic affine bundles A over a macroscopic space A
with dim (A) ∈ {1, 2, 3}. In section 2.2, Cartan’s notion of connection is generalised into the notion
of Ehresmann connection [22], seen as a lifting operator allowing to identify large (i.e. macroscopic)
classical vectors on A with vectors on the generalised continua A. In an analogous fashion, the notion
of solder form is introduced in section 2.3, allowing to identify small (i.e. microscopic) classical vectors
on A with vectors on the generalised continua A. These interpretations of the connection and solder
form as macroscopic and microscopic identifications are expanded upon in section 2.4. In particular,
a solder form encodes a notion of scale of the microstructure via its eigenvalues and is therefore anal-
ogous to the order parameter used in several theories [2], [11], [23]. In section 2.5, the new notion of
pseudo-metric − a relaxation of the notion of metric with a possibly non-trivial kernel − is introduced.

Following a thorough discussion on the physical interpretation of each geometrical object available,
a notion of compatibility of the pseudo-metric is introduced in definition 2.13. Physically, the later
comes directly from the interpretation of the microscopic space Aa at a ∈ A as the set of infinitesimally
close points a+δa. Most importantly, an obstruction to the existence of a compatible metric (i.e. with
a trivial kernel) on the whole continuum A is proven in lemma 2.17. In particular, macroscopic vec-

tors
∂

∂a
and microscopic vectors

∂

∂δa
are not orthogonal. This is a key fact as this non-orthogonality
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contains data on the coupling of macroscopic and microscopic structures, as stated in lemmas 2.17
and 3.16. The pseudo-metric is to be compared with the notion of Sasaki metric in [23]–[25]. Al-
though a Sasaki metric, by construction, renders the microscopic and macroscopic spaces orthogonal
and is therefore not compatible, its restriction on each of those yields a metric which coincides with
the compatible pseudo-metric. This micro-metric is also analogous to the notion of Finslerian metric
[26, p. 198], [23, p. 121] as it is a 3-dimensional metric depending on two sets of coordinates.

In section 3, following the classical literature [22], [27], the generic space A πA−−! A is replaced by a
a material space B πB−! B and an ambient space E πE−! E. A generalisation of the classical macroscopic
placement maps φ : B −! E and F = Tφ : TB −! TE is then sought in order to pull-back the
ambient geometry of E onto B. In section 3.3, based on a physical interpretation of the continuum, the
punctual map φ : B −! E is generalised into an affine bundle morphism:

φ : B −! Eï
X
Y

ò
7−−!

ñ
φ
(
X
)

−!
φv

(
X
)
· Y + tv

(
X
)ô

This form should be compared with the theory of micromorphic media [15], [16], where the transfor-
mation is modelled as a linear morphism. Although the micro-spaces are interpreted as infinitesimal
neighbourhoods, the microscopic part of φ is not required to be the gradient of the macroscopic part.
This freedom is necessary in order to allow for torsion (i.e. dislocations) in the material [14, p. 8].

In section 3.4, further discussion on the physical interpretation of a first-order map leads to a

generalisation of F = Tφ : TB −! TE as a linear bundle morphism F ≡
ñ
Tφ 0

Fv
h

−!
φv

ô
over φ. This

is analogous to the work of [15]–[17] with the fundamental difference that F does not have to be the
gradient of φ, only its restrictions on the macroscopic and microscopic spaces do. In section 3.6, the
generalised first-order placement map F is used to pull-back the ambient connection γ, solder form
ϑ and pseudo-metric g onto B, giving Γ, Θ and G respectively. Crucially, and in contrast to several
works [3], [6], [10], [14], the relaxed form of F allows the material connection to bear some curvature,
i.e. disclinations.

In section 4, a generalisation of the notion of frame indifference is formulated, using the notion of
generalised Galilean group Gal. In the following section, the group Gal is expressed as the stabiliser
of a set of tensors, paving the way for the main result of this article: the computation of the tensorial
invariants of the first-order configuration under the group Gal (theorem 4.7) which directly give the
strain measures on which any frame indifferent function must depend ( lemma 5.3). Those invariants
are the material micro-metric, connection, solder form and "holonomic" connection. Crucially, in the
holonomic case, where F = Tφ, both connections are identical and those invariants correspond to the
three invariants computed in [15], [16, p. 15], [21]. Section 5 contains discussions on the properties of
those invariants, their interpretation and a conclusion. Furthermore, these invariants are also similar
to those computed in [9], which are the elastic metric [1, p. 613] and the torsion of the connection.

The role of the newly introduced pseudo-metric G is central to this model and is analogous to
the role of the Cauchy-Green metric in classical models. Lemmas 2.17 and 3.16 establish an equality
between the kernel of G and the horizontal space of the no-slip connection Γ − Θ [28, p. 7]. As a
consequence, theorem 4.6 implies that most of the information is stored in this pseudo-metric. In
particular, the compatible pseudo-metric prescribes the notion of lengths and angles (macroscopic,
microscopic or mixed alike) and contains the sum of a torsion and a curvature [28, p. 8]. Section 5.3
extends those results in the special case of micro-linear material. That is, materials where all micro-
spaces have centres which are preserved by the placement map. In such a case, the connection Γ is
linear and the solder-form Θ is uniform on the micro-spaces. As a consequence Γ and Θ can canonically
be extracted from the no-slip connection Γ −Θ (by taking the linear part). This means that, in this
case, the torsion and curvature can be obtained from the pseudo-metric alone. Finally, and perhaps
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most importantly, corollary 5.11 concludes this analysis by stating that in such micro-linear materials,
any frame-invariant functional of F − and in particular, the energy − can be expressed in term of the
pseudo-metric G alone. This is the case in the works of Eringen and Suhubi, Mindlin, Toupin [15]–
[19]. This last result should be compared to its classical analogue stating that every frame-invariant
functional of the macroscopic placement F is expressible as a function of the Cauchy-Green metric G
(which is obtainable from G) [27, pp. 275, 283].

2 Geometric structure

Adopting the vision of Cartan, Eringen and Suhubi, Mindlin [13], [15]–[17], points of the macroscopic
space are endowed with a field of microscopic spaces (one for each macroscopic point). The total space
is therefore of dimension n+k − where n is the macroscopic dimension and k the microscopic dimension
− and is equipped with a projection onto the macroscopic space of dimension n. The micro-spaces are
then the set of points sharing a common macroscopic projection. Mathematically, this translates into
the notion of projection structure:

Definition 2.1 − Projection structure

A projection structure is the data of:

• a set A, called the total space

• a set A, called the base space

• a surjective map πA : A −! A, called the projection map

One then says A is equipped with a projection structure on A over A, synthesised as A πA−−! A.
Furthermore, if the projection structure on A is unambiguous then one can also use the following
notations and terminologies:

• A for its corresponding base space (named A in the definition)

• ∀a ∈ A, a := πA(a) ∈ A called the projection of a

• ∀a ∈ A, Aa := π−1
A ({a}) :=

{
a ∈ A

∣∣∣ πA(a) = a
}

called the fibre at a

• ∀U ⊂ A, A|U = π−1
A (U) called the restriction of A over U

• any σ : A −! A which is a right inverse of the projection − that is, πA ◦ σ = Id − will be
called a section of A.

The total space (of dimension n + k) is therefore endowed with a projection structure over the
macroscopic space (of dimension n). The projection can then be seen as providing the macroscopic
part of a point. However, the space is not solely a set but also a smooth variety where one can
differentiate objects. One therefore wants the projection structure to be smooth. Furthermore, one
needs to be able to have, at least locally, a coordinate system splitting the macroscopic and microscopic
parts. This is linked to Cartan’s notion of (microscopic) moving frames in [13]. Mathematically, these
two conditions lead to the notion of affine bundles.

2.1 Affine bundle

An affine bundle can be seen, heuristically, as a projection structure whose total space is locally diffeo-
morphic to a Cartesian product of a base and an affine fibre in a way that preserves the affine structure.
Formally, the definition of an affine bundle is a bit more involved and goes as follows:
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Definition 2.2 − Affine bundle

An affine bundle (resp. vector bundle) is the data of:

• a projection structure A πA−−! A where A and A are both smootha connected orientable
real manifolds and πA is a smooth map.

• a real affine (resp. vector) space FA, defined up to an affine (resp. linear) automorphism,
called the typical fibre.

• a family of diffeomorphisms (Ψa)a∈A, called the local trivialisations, such that:

∀a ∈ A, ∃ Ua neighbourhood of a, Ψa : A|Ua

7−! Ua ×FA

and πA = µa ·Ψa on A|Ua

where µa : Ua ×FA −! Ua

(b, y) 7−−! b

is the canonical left projection of Ua ×FA onto Ua.

• by construction, the transition map Ψa ◦Ψ−1
b

(
defined only when Ua ∩ Ub ̸= ∅

)
induces

a diffeomorphism of FA onto itself, called a vertical change of frame. The last property is
that these diffeomorphisms must be affine (resp. linear).

The set of all vertical changes of frames generates a group GA for the composition, acting on
FA in an affine (resp. linear) way. That is, GA is a sub-group of Aff (FA) (resp. GL (FA)).
The group GA is called the structure group of the affine (resp. vector) bundle A.

aIn this paper, smooth will mean at least continuously differentiable,i.e. C1.

Notice that the third property implies that all fibres Aa of A are isomorphic to FA. This means
that the typical fibre can be retrieved from the projection structure alone. In a similar fashion to how
one would quickly forget about the specific atlas of a manifold, only the existence of such trivialisations
shall be important, not their specific values. In particular, the notion of trivialising coordinates, defined
here after, will often be used:

Definition 2.3 − Trivialising coordinates

A trivialising affine (resp. linear) coordinate system on an affine (resp. vector) bundle A πA−−! A
is a smooth bijective map

c : A −! Rdim(A) × Rdim(FA)

such that, there exist

• a coordinate system c : A −! Rdim(A) called the horizontal coordinates

• for every local trivialisation Ψa : A|Ua

−! Ua ×FA around a ∈ A, an affine (resp. linear)

coordinate system cv ∣∣
Ψa

: FA −! Rdim(FA) on FA such that:

c =

Å
ca × cv ∣∣

Ψa

ã
◦Ψa

The projection of c on the second element gives cv : A −! Rdim(FA). This is a coordinate
system on each fibre Aa (for a ∈ A fixed) called the vertical coordinates.
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A trivialising affine (resp. linear) frame on TA πTA−−−! A is a frame obtained by differentiation:

Tc ≡ (c, dc) : TA −! Rdim(A) × Rdim(FA) × Rdim(A) × Rdim(FA)

of a trivialising affine (resp. linear) coordinate system c on A πA−−! A. By duality, the basis

vectors
∂

∂c
⊂ Rdim(FA) can be used interchangeably with the the coordinate system dc. For

readability reason, the former shall be preferred.

The projection on the left elements gives c : TA −! Rdim(A) × Rdim(FA), called the
punctual coordinates associated to the frame. The projection on the other elements gives
∂

∂c
: TA −! Rdim(A) × Rdim(FA) (or equivalently dc) which is a coordinate system on every

TaA (for a ∈ A fixed) called the vectorial coordinates.

Tangent bundle

Particular attention should be given to the tangent bundle TA πTA−−−! A4 in the case where A πA−−! A is
an affine bundle. TA can then be endowed with two different projection structures

Assume trivialising affine coordinate systems are given on A and TA. First, the projection struc-
tures on A and TA are unambiguous:

the punctual projection
πTA : TA −! Aï

x
δx

ò
7−−! x

∣∣∣∣∣∣∣∣∣
the macroscopic projection

πA : A −! Aï
x
y

ò
7−−! x

where, underlined, are the name they are given. Secondly, those projections can both be generalised
to TA:

• the first one by substituting A ! A, leading to a vector bundle over A.

the punctual projection πTA : TA −! A
ï
x
y

òï
δx
δy

ò 7−−!

ï
x
y

ò
• the second one, by differentiating, leading to a projection structure5.

the macroscopic projection TπA : TA −! TA
ï
x
y

òï
δx
δy

ò 7−−!

ï
x
δx

ò
All of this is summarised in the following diagram:

4The convention used is the mathematical one, where TA is the set of fixed vectors. That is, the set of couples (a,u)
where a ∈ A and u is a vector tangent to A at a. One therefore has dim(TA) = 2 dim(A).

5The projection TπA fails to induce an affine bundle structure since the fibres are not affine spaces. However, it
induces a more general notion − out of the scope of this article − of a fibre bundle structure over TA with typical fibre
TFA [22, p. 215].
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TA
(a,u)

A
a

TA
(a,u)

A
a

πTA TπA

πA πTA

In this diagram and the remaining of this article, the notation u for the macroscopic part u =
TaπA (u) ∈ TaA of u ∈ TaA was chosen (not to be confused with a = πTA(u) ∈ Aa ).

Since, for a ∈ A, TaA is a vector space it has a zero 0a ∈ TaA. This allows us to define a special
fibre of the TA TπA−−−! TA vector bundle structure as follows:

VaA = (TaπA)
−1 ({0a}) ⊂ TaA

This defines a vector bundle VA πTA−−−! A over A (and not TA) called the vertical bundle which can
also be defined in a more concise way as VA = ker (TπA).

Remark 2.4: Let A πA−−! A be an affine bundle, then one has the following canonical isomor-
phisms:

∀a ∈ A, VaA ≃ TaAa

Indeed, let
Å
x,y,

∂

∂x
,
∂

∂y

ã
be a generic trivialising affine frame on TA. Then it induces

a coordinate system (x(a),y) on Aa, where x(a) are the (fixed) coordinates of a ∈ A.

Differentiating it, one obtains a coordinate system
Å
x(a),y,0,

∂

∂y

ã
on TAa. Specifying it at

a ∈ Aa, one obtains the coordinate system
Å
x(a),y(a),0,

∂

∂y

ã
on TaAa in which only

∂

∂y
is free.

Going the other-way around, restricting
Å
x,y,

∂

∂x
,
∂

∂y

ã
on VA gives the coordinate systemÅ

x,y,0,
∂

∂y

ã
on VA. This is because TπA is simply

Å
x,

∂

∂x

ã
in those coordinates (since

they are trivialising). Specifying the coordinates at a ∈ A, one obtains the coordinate systemÅ
x(a),y(a),0,

∂

∂y

ã
on VaA in which only

∂

∂y
is free. This provides an isomorphism between

TaAa and VaA which does not depend on the choice of frame.

Fibre product along a common base

A useful construct is the fibre product of two affine (resp. vector) bundles along a common base,
defined as follows:
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Definition 2.5 − Fibre product of bundles

Let A1 π1

−! A and A2 π2

−! A be two affine (resp. vector) bundles over the same base A. The
(fibre) product of A1 and A2 along A is the affine (resp. vector) bundle

A1 ×A A2 π×
−−−−! A

with

• total space A1 ×A A2 :=
{(

a1, a2
)
∈ A1 ×A2

∣∣∣ π1
(
a1
)
= π2

(
a2
)}

• projection π× : A1 ×A A2 −! A(
a1, a2

)
7−−! π1

(
a1
) [

= π2
(
a2
)]

and where the transition maps are the Cartesian products of the transitions maps of A1 and A2.

As a direct consequence of the construction, one has that the fibre at a ∈ A is the Cartesian product
of the fibres at a: (

A1 ×A A2
)
a
= A1

a ×A2
a

which directly implies that the same holds for the typical fibre:

FA1×AA2 = FA1 ×FA2

Since the transition maps of the fibre product are the Cartesian products of the transitions maps, one
has that the structure group of the product is a subgroup of the product of the structure groups (or,
equivalently, the direct sum):

GA1×AA2 ⊂ GA1 × GA2 ⊊ Aff (FA1 ×FA2)

2.2 Moving frames and connection

In [13] Cartan describes a notion of frames, depicted as a “trièdre trirectangle” at each x ∈ R3 of
the affine space R3. Such frames allow to “identify infinitely close points”, that is, the frame at x
is a coordinate system of the infinitesimal space TxR3. More precisely, [13] describes it as an affine
basis composed of a “rotation” and a “translation”. Cartan’s space is therefore a principal bundle6

AFrame(R3) −! R3 whose typical fibre is Aff(R3) − the set of affine transformations of R3 seen as
affine frames of R3 − which also corresponds to its structure group.

Furthermore, frames at close points can be compared one to another7 meaning a frame at a point
can be transported into a frame at another close point through a translation and a rotation. This
process is called a parallel transport and leads to the notion of principal Ehresmann connection.

Since transforming affine frames is the same as transforming points in an affine manner, there
exists a one to one correspondence between parallel transport of affine frames of AFrame(R3) and
affine parallel transport of points of TR3

πTR3−−−! R3. Therefore, while Cartan used the principal bundle
AFrame(R3), this paper shall use the affine bundle TR3 directly. The notion of principal Ehresmann
connection then translates to the analogous notion of affine Ehresmann connection, defined as follows:

6The projection structure is not an affine as the fibres are not affine spaces but groups. More technically, this structure
corresponds to the notion of principal bundle [22], which this paper is not interested in.

7“repérer, par rapport au trièdre d’origine A, tout trièdre de référence ayant son origine A′ voisine de A” − [13, p. 593]
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Definition 2.6 − Ehresmann connection

Let A πA−−! A be an affine bundle and TA TπA−−−! TA its associated tangent bundle. An affinea

Ehresmann connection γ on A is a smooth map γ : A×A TA −! TA satisfying the following
properties:

• for all a ∈ A, the image of the horizontal lift operator γa at a is a subset of TaA:

γa : TaA −! TaA
u 7−−! γ (a,u)

• for all a ∈ A, γa is linear and is a section of TA: TπA · γa = Id

• for all u ∈ TaA and every trivialising affine frame on TA (see definition 2.3),
the vectorial coordinate of γ(a,u) ∈ TaA is affine in the vertical coordinate of a.

• the field a 7−! γa is smooth, as defined by Epstein in [22, pp. 240, 246].

The value γa ·u = γ (a,u) is called the horizontal lift of u at a. The set of all connections on A
will be denoted

Con (A) ⊂ Smooth (A×A TA,TA)

aFor the remaining of this paper, the terms of "connection" and "Ehresmann connection" will, unless explicitly
mentioned, refer to the notion of affine Ehresmann connection.

The parallel transport γ (ρ)ts : Aρ(s) ≃ Aρ(t) along a C1 path ρ in A is then defined as the integration
of the flow obtained by lifting Tρ by γ. That is:

γ (ρ)ts : Aρ(s) −! Aρ(t)

a 7−−! a+

∫ t

s
γ · Tuρ du

Parallel transport is illustrated in figure 2.1 as the dotted blue paths. Another tangent notion is
the notion of covariant derivative, defined for a smooth section σσσ : A −! A on A and a vector u ∈ TaA
of the base as

∇γ
u σσσ =

(
Id− γσσσ(a) · Tπ

)
· Taσσσ · u

This is, when γ is linear, Koszul’s definition of a connection8. This is illustrated in figure 2.1 as a
red vertical vector (equal to the difference between the orange and the blue one). One then has the
following result:

Lemma 2.7: Let γ be a linear connection on A πA−−! A. Then, the following data are
equivalent (i.e. any one can be retrieve from any other):

(1) • The horizontal lifting operators
{
γa : TaA −! TaA

∣∣∣ a ∈ A
}

(2) • The horizontal spaces
{
Hγ

a = γa (TaA) ⊂ TaA
∣∣∣ a ∈ A

}
(3) • The parallel transport maps

{
γ (ρ)

∣∣∣ ρ ∈ C1 ([0, 1],A)
}

(4) • The covariant derivatives
{
∇γ

u

∣∣∣ u ∈ TA
}

8See [24, p. 3-5] for a definition of a connection via its covariant derivate or [22, p. 255] for a derivation of the formula
in the A = TA case.
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γa

hγ

a
u

a

A

ρ

γa(ρ)

σσσ ◦ ρ

Aa

∇γ
u σσσ

Figure 2.1: Illustration of lemma 2.7 with a ∈ A, u ∈ TaA, σ : A −! A a section of A, ρ : [0, 1] −! A a
path in A and the notation hγ = γ ·Tπ. Blue indicates macroscopic/horizontal quantities, red indicates
microscopic/vertical quantities and gold indicates mixed quantities.

Of all those equivalent definitions, only the forms (1) and (2) shall be used in this paper, as they
are the most convenient when dealing with linear/affine operators. The forms (3) and (4) are perhaps
the most commonly used in the literature, in particular in the field of general relativity. It should be
duly noted that, in the affine case, while (1), (2) and (3) are well-defined, (4) loses its linearity and is
therefore not a derivative any-more. In an even broader setting, not in the scope of this paper, where
connections are not even affine in the punctual vertical coordinates, only (1) and (2) subsist as (3) may
diverge.

2.3 Solder form

Since the model seeks to be general, the space will not to be restricted TR3. Nevertheless, the fi-
bres must be interpretable as infinitesimal neighbourhoods of the base points. Mathematically, this
translates into the notion of solder form, defined as follows:
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a′
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A

ϑa

Aa

Aa′

a

a′

au

A

ϑa

a

Aa

Figure 2.2: Illustrations of definition 2.8 for a Cosserat media (left side) and a Timoshenko beam (right
side). Blue indicates macroscopic/horizontal quantities, red indicates microscopic/vertical quantities
and gold indicates mixed quantities.

Definition 2.8 − Solder form

Let A πA−−! A be an affine bundle and TA TπA−−−! TA its associated tangent bundle. A solder form
ϑ on A is a smooth injective map ϑ : A×A TA −! TA satisfying the following properties:

• for all a ∈ A, the vertical lift ϑa at a is linear and its image is a subset of VaA:

ϑa : TaA −! VaA
u 7−−! ϑ (a,u)

in particular: TπA · ϑa = 0

• for all u ∈ TaA and every trivialising affine frame on TA (see definition 2.3),
the vectorial coordinate of ϑ(a,u) ∈ TaA is affine in the vertical coordinate of a.

where VaA = kerTaπA ⊂ TaA is the vertical space at a ∈ A, isomorphic to TaAa (see
section 2.1). The set of all solder forms on A will be denoted

Sold (A) ⊂ Smooth (A×A TA,TA)

Since ϑ is injective, the following notation is introduced:

ϑ−1 : VA ⊃ Im (ϑ) −! TA
u 7−−!

[
ϑπTA(u)

]−1
(u)

Being injective, the existence of a solder form on A implies dim (FA) ≥ dim(A). The lack of
equality in general allows to include spaces where the fibres are infinitesimal neighborhoods of the base
points but in a larger space. For example the 3D neighborhood of a curve in R3 where the base would
be the 1D curve.

In the case where dim (FA) = dim(A), for example when A ≃ TA, any solder form will be bijective
at any given point. This allows one to project microscopic (i.e. vertical) vectors onto the macroscopic
world using the microscopic projection ϑ−1:

ϑ−1 : VA −! TA
u 7−−! ϑ−1

πTA(u) · u

12



2.4 TA = HA⊕A VA and the block-wise decomposition

On the TA = HA⊕A VA decomposition

Let γ be a connection on an affine bundle A πA−−! A. As quickly mentioned in lemma 2.7, its image is
called the horizontal space HγA = Im(γ) ⊂ TA which is a vector bundle over A with projection πTA.
By definition, one has:

Hγ
aA ∩VaA =

{
γa (u)

∣∣∣ u ∈ TA and TπA (γa (u)) = 0
}

=
{
γa (u)

∣∣∣ u ∈ TA and u = 0
}

= {γa (0)}
= {0} ⊂ TaA

meaning that:

∀a ∈ A, TaA = HaA⊕VaA

Which decomposes the total tangent space TaA at a ∈ A into a direct sum of the horizontal space
HaA ≃ TaA and the vertical space VaA ≃ TaAa. A connection can therefore be seen as an horizontal
lift while a solder form would be a vertical one. This interpretation is similar to the notion of “internal
observer” described by Kröner [3], allowing to “[jump] from one atom to the next” − this is the role of
the connection through parallel transport − and “distinguish crystallographic directions, i.e. [always
know] what is straight-on, to the left, upwards, etc.” − this is the role of the solder form through the
lifting of a frame.

On one hand, the horizontal space HaA − isomorphic to TaA through TπA − will therefore be
physically interpreted as the set of macroscopic vectors at a. On the other hand, the vertical space
VaA − isomorphic to TaAa (see section 2.1) − will be physically interpreted as the set of microscopic
vectors at a. Furthermore, projections onto the horizontal and vertical spaces are also provided by the
connection. The horizontal projection associated to γ is:

hγ : TA −! HγA
u 7−−! γπTA(u) · TπA · u

while the vertical projection is its complementary:

vγ = Id− hγ : TA −! VA
u 7−−! u− γπTA(u) · TπA · u

Unit-wise, one has that, while the connection is dimensionless (it maps macro. to macro.), the
solder form has mixed unit

[
micro.
macro.

]
. In this paper, [micro.] and [macro.] have the dimension of a

length. Let ℓ and L be respectively the microscopic and macroscopic characteristic scales. Then,
informally, the solder form scales

(
potentially anisotropically13 ) by a factor ζ = ℓ

L , where the real
ζ ∈ R∗

+ is dimensionless. Such a ratio appears in [24, p. 87], [28, p. 14] and [11, p. 235] and is an
example of an order parameter of a model [2]. The horizontal projection can then be seen heuristically
as a rounding to the closest "multiple" of ℓ (or ζ if L is normalised to 1) and the vertical part as its
remainder.

Reference connection and block-wise decomposition

A connection will most of the time be endowed with a physical interpretation corresponding to the
one depicted in section 2.2. Nevertheless, as explained in the previous subsection a connection is,

13Scaling here should be interpreted in the sense of det (ϑ) = ζ3 (which is ill-defined) and not ϑ = ζ · Id.
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mathematically, not much more than a smooth (linear) decomposition of the tangent space as a direct
sum of an horizontal and vertical space. Such a decomposition can be very useful for computation,
even if arbitrary. This is analogous to how specifying a frame or basis helps the computation, even if
no canonical one exists. When such a non-necessarily physical connection exists, it shall be called a
reference connection. Formally, one defines the following:

Definition 2.9 − Reference connection

Let A πA−−! A be an affine bundle. The reference connection of A is a connection
Ref (A) : A×A TA −! TA on A which is either

• canonical: its value is prescribed when A is first defined and never changed afterward

• free: its value is not set (i.e. it is a free variable)

In the second case, expressions depending on Ref (A) can therefore be seen as functions of a
connection and equalities or other statements must remain true whatever the value of that
connection argument.

Regardless of its freedom or canonicity, the reference connection of a space solely depends on
the space and is stable by restriction. That is, Ref is a well-defined functor verifying:

∀U ⊂ A, Ref
(
A|U

)
= Ref (A) |U : A|U ×U TU −! TA|U

When one has a connection γ on an affine bundle A, one also has a decomposition TA = HγA⊕AVA
along with projections hγ : TA −! HγA and vγ : TA −! VA. If one has such a decomposition on
the argument and image space of a linear application, this provides a way to decompose the linear
application in a block-wise manner:

Notation 2.10 − Block-wise decompositions

Let A1

πA1−−! A1 and A2

πA2−−! A2 be two affine bundles. Let (a1, a2) ∈ A1 × A2 and
L : Ta1A1 −! Ta2A2 be a linear application.

Let γ1 be a connection on A1. The following notations are introduced:

Lh |γ1
= L · hγ1 Lv |γ1

= L · vγ1

Additionally, if one has A : H
γ1
a1
A1 −! Ta2A2 and B : Va1A1 −! Ta2A2, a new operator ≡ is

defined as follows:
L ≡

[
A B

]∣∣
γ1

⇐⇒ L = A · hγ1 +B · vγ1

This means that the notation can be summarized as:

L ≡
î
Lh |γ1

Lv |γ1
ó ∣∣∣

γ1

Let γ2 be a connection on A2. The following notations are introduced:

Lh ∣∣
γ2

= hγ2 · L Lv ∣∣
γ2

= vγ2 · L

Additionally, if one has A : Ta1A1 −! Ta2A2 and B : Ta1A1 −! Ta2A2, a new operator ≡ is
defined as follows:
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L ≡
ï
A
B

ò ∣∣∣∣
γ2

⇐⇒ L = hγ2 ·A+ vγ2 ·B

This means that the notation can be summarized as:

L ≡

Lh ∣∣
γ2

Lv ∣∣
γ2

∣∣∣∣∣∣
γ2

Given a connection γ1 on A1 and γ2 on A2, the two previous notations are combined in a similar
fashion. This leads to the following "summary":

L ≡

Lh
h
∣∣
γ1,γ2

Lv
h
∣∣
γ1,γ2

Lh
v
∣∣
γ1,γ2

Lv
v
∣∣
γ1,γ2

∣∣∣∣∣∣
γ1,γ2

where Lv
h
∣∣
γ1,γ2

= vγ2 ·L ·hγ1 , etc. The notations are also extended to the case where L is valued

in T⋆A2 by setting Lv
h
∣∣
γ1,γ2

= v⋆γ2 · L · hγ1 , etc. Similarly, the case where L takes its arguments

in T⋆A1 is also included.

Furthermore it is chosen, by convention, that when no connection is specified, the reference
connection is used. Meaning that one has:

L ≡
ï
Lh
h Lh

v

Lv
h Lv

v

ò
where Lv

h = vRef(A2) · L · hRef(A1), etc.

By construction one then has the decomposition

L = Lh
h + Lh

v + Lv
h + Lv

v

= Lh + Lv

= Lh + Lv

Where exponents imply projections of the images and indexes projections of the arguments. The
usefulness of the matrix notation resides in the fact that, because of the orthogonality hγ ·vγ = vγ ·hγ =
0, sum and compositions of linear applications become sum and product of matrices.

Beware that, even in the case where L and all its blocks are invertible,
[
Lh
h

]−1 may differ from[
L−1

]h
h

on Im
(
Lh
h

) Ä
on which

[
Lh
h

]−1 is defined
ä
. The same subtlety arises with the other blocks.

This is analogous to the case of real matrices.

2.5 Metric and pseudo-metric

One goal of this paper is to describe the geometry of a material under deformation. Consequently,
being able to measure lengths and angles is crucial. As is the case in standard mechanics, the existence
of a metric g on the macroscopic space A is therefore postulated. That is, a linear, symmetrical and
positive-definite application18 TaA ∋ u 7−!

〈
u
∣∣
g
∈ T⋆

aA at every a ∈ A. This induces a scalar product

18T⋆D −! D is the cotangent of D, i.e. the algebraic dual space of TD:

∀x ∈ D, T⋆
xD =

{
L : TxD −! R

∣∣∣ L is linear and continuous
}
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⟨u | w⟩g :=
〈
u
∣∣
g
·w and a norm ∥u∥g =

»
⟨u | u⟩g on every tangent space TaA.

The aim of this section is to define an analogous linear application on the total tangent space
TA πTA−−−! A of the total space A πA−−! A. Algebraically, it is required to be symmetric and non-negative
but, for further convenience, not necessarily non-degenerate. Such an object is called a pseudo-metric:

Definition 2.11 − Pseudo-metric and semi-norm

Let A be a smooth manifold and TA πTA−−−! A its tangent bundle.

A pseudo-metric g on A is a smooth application

TaA −! T⋆
aA

u 7−−!
〈
u
∣∣
g

at every a ∈ A
or, equivalently

TA×A TA −! R
(u,w) 7−−! ⟨u | w⟩g :=

〈
u
∣∣
g
·w

such that:

• g is bi-linear: ∀a ∈ A, TaA× TaA ∋ (u,w) 7−! ⟨u | w⟩g is bi-linear

• g is symmetric: ∀a ∈ A, ∀ (u,w) ∈ TaA× TaA, ⟨u | w⟩g = ⟨w | u⟩g

• g is positive semi-definite: ∀u ∈ TA, ⟨u | u⟩g ≥ 0

A semi-norm ∥·∥ on A is a smooth application

∥·∥ : TA −! R+

such that:

• ∥·∥ is absolutely homogeneous: ∀u ∈ TA, ∀λ ∈ R+, ∥λ · u∥ = |λ| · ∥u∥

• ∥·∥ is sub-additive: ∀a ∈ A, ∀ (u,w) ∈ TaA×TaA, ∥u+w∥ ≤ ∥u∥+∥w∥

The non-negativity alone is sufficient to make Cauchy-Schwartz’s lemma proof still work, leading
to the following lemma:

Lemma 2.12: If g is a pseudo-metric on a manifold A then ∥·∥g : TA −! R+

u 7−−!
»

⟨u | u⟩g

is a

semi-norm.

Having a metric g on A and a pseudo-metric g on A, the next step is to investigate the different
relations between the two. As stated in section 2 and after, the affine bundle A is seen as A endowed
with a microscopic space at each point. This vision implies that the space is endowed with a strong
physical interpretation, in particular regarding the physical size of its elements. Leveraging this inter-
pretation, the desired relations shall be obtained.

First, let a ∈ A be a micro-structured point and w ∈ TaA be a vector. Assuming its magnitude
∥w∥g is large enough, one would consider it to physically represent a macroscopic vector. The connec-
tion defined in section 2.2 then implements that vision by allowing us to identify this vector with its
horizontal lift γa ·w ∈ Hγ

aA. However, as a direct consequence of the choice of implementing A as a
continuum, while the magnitude of a vector can be arbitrarily large, it can also be arbitrarily small.
Let therefore u ∈ TaA be another vector. Assuming ∥u∥g is small enough, one would consider u to
physically represent a microscopic vector. The solder form defined in section 2.3 then implements this
other vision by allowing us to identify it with its microscopic lift ϑa · u ∈ VaA. Notice that the later
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can canonically be seen as a vector of TaAa (see section 2.1).

Since those identifications relate objects with the same physical interpretation, one requires them
to preserve lengths and angles. This means in particular that, focusing on length preservation,
∥γa ·w∥g = ∥w∥g and ∥ϑa · u∥g = ∥u∥g. Furthermore, one can go a step further by combining the
two identifications. The vector u+w ∈ TaA − considered to have a microscopic part u and a macro-
scopic part w − can then be identified with the vector ϑa ·u+γa ·w ∈ TaA. Using the same argument,
one requires this identification to preserve lengths and angles. This means that, focusing again on
length preservation, ∥ϑa · u+ γa ·w∥g = ∥u+w∥g.

Although the norm and semi-norm were used for more readability, this reasoning implies simi-
lar equalities for the metric ⟨· | ·⟩g and the pseudo-metric ⟨· | ·⟩g, of the form ⟨u+w | u′ +w′⟩g =
⟨ϑa · u+ γa ·w | ϑa · u′ + γa ·w′⟩g. However, since g and g are bi-linear, this equality holds for some
size of the inputs if and only if it holds for any size. Assumptions on the magnitude of the vector are
therefore unnecessary. Notice that, if one allows vectors to be zero then one can obtain the previous
relations from the later. These observations lead to the following compatibility condition:

Definition 2.13 − Compatibility condition

Let A πA−−! A be a vector bundle. A pseudo-metric g on A is said to be compatible with a metric
g on A, a connection γ on A and a solder form ϑ on A if and only if the following property holds:

∀a ∈ A, ∀ (u,w,u′,w′) ∈ (TaA)4 ,〈
ϑa · u+ γa ·w

∣∣ ϑa · u′ + γa ·w′〉
g
=

〈
u+w

∣∣ u′ +w′〉
g

In the special case where dim (FA) = dim (A), ϑ is bijective just like γ. This means that, in this
case, the set of values taken by ϑa · u + γa ·w covers the whole space TaA. As a direct consequence,
one has the following uniqueness theorem:

Theorem 2.14 − Conditioned uniqueness of a compatible pseudo-metric

Let A πA−−! A be an affine bundle and assume a metric g on A, a connection γ on A and a solder
form ϑ on A are provided.

Then if dim (FA) = dim (A) there exist a unique pseudo-metric g on A compatible with g, γ
and ϑ given by:

g : TA×A TA −! R
(u,w) 7−−! ⟨ι(u) | ι(w)⟩g

wherea ι = TπA + ϑ−1 · vγ : TA −! TA is called the projection of interpretation. In other
words, the only compatible pseudo-metric is the pull-backb g = ι∗g of the metric g by the
projection of interpretation ι.

Furthermore, when dim (FA) ̸= dim (A), a pseudo-metric is compatible if and only if its restric-
tion on Dom(ι) := Im (ϑ)⊕Hγ is compatible. That is, if and only if,

g |Dom(ι)
: Dom (ι) −! Dom(ι)⋆

= ι∗g

aBeware that vγ = Id− γ · TπE is the vertical part of γ. That is, a linear operator not a vector.
bBeware that the pull-back ι∗g (with an asterisk) corresponds to the composition ι⋆ ·g · ι : TA −! T⋆A where

ι⋆ : T⋆A −! T⋆A (with a star) is the transpose of ι. In particular ι∗g ̸= ι⋆ · g
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Proof.

First, for a given a ∈ A, one has VaA ≃ TaAa. Hence, dim (FA) = dim (A) implies:
dim (VaA) = dim (TaAa)

= dim (Aa)

= dim (FA)

= dim (A)
= dim (TaA)

Therefore, ϑa : TaA −! VaA is a linear injective map between two finite dimensional vector
spaces with the same dimension and is hence bijective. Since Im (ϑ) = VA = Im (vγ), ιa is well
defined.

Secondly, one has
Im (ϑa)⊕ Im (γa) = VaA⊕Hγ

aA = TaA

So, if g is a compatible pseudo-metric and (u,u′) ∈ TaA × TaA then there exists a (unique)
quadruplet (v,w,v′,w′) ∈ (TaA)4 such that u = ϑa · v + γa ·w and u′ = ϑa · v′ + γa ·w′. The
compatibility condition then implies ⟨u | u′⟩g = ⟨v +w | v′ +w′⟩g. This proves the uniqueness
of g.

Finally, TaπA · γa = Id = ϑ−1
a · vγ · ϑa and TaπA · ϑa = 0 = vγ · γa. Consequently,

ιa ·γa = ιa ·ϑa = Id. Taking g as stated by the theorem ( i.e. the pull-back of g by ι) and taking
(v,w,v′,w′) ∈ (TaA)4 one then has:〈

ϑa · v + γa ·w
∣∣ ϑa · v′ + γa ·w′〉

g
=

〈
ι · ϑa · v + ι · γa ·w

∣∣ ι · ϑa · v′ + ι · γa ·w′〉
g

=
〈
v +w

∣∣ v′ +w′〉
g

proving that g is compatible. Since the set of elements of the form ϑa · v + γa · w is exactly
Dom(ι), this last series of equalities proves the last statement.

□

Remark 2.15: The projection of interpretation ι comes from the interpretation of the micro-
scopic spaces as infinitesimal neighbourhoods Ex ≃ {x+ δx} [16, p. 4], [21, p. 10]. Applying
this interpretation on vectors, while only keeping the macroscopic part of the point, one gets the
stated projection. Indeed, upon fixing u ∈ TE and choosing some trivialising coordinates, the
projection locally becomes ι |u : TEx −! TE

δu 7−−! u+ δu

which corresponds to the change of frame

between a frame centred at u and one centred at 0.

Going back to the algebraic assumptions, one may wonder if they may require the pseudo-metric
to be a metric, at least in some cases. This leads to the notion of kernel, defined as follows:

Definition 2.16 − Kernel of a pseudo-metric

If g is a pseudo-metric on a manifold A then its kernel at a ∈ A is the following sub-vector-space
of TaA:

kera g =
{
u ∈ TaA

∣∣∣ ∀w ∈ TaA, ⟨u | w⟩g = 0
}
=

{
u ∈ TaA

∣∣∣ ∥u∥g = 0
}

The projection of TA turns it into a projection structure ker g
πTA−−−! A but, in general, it fails to

be a vector bundle as, among other things, the scalar field dim (kera g) on A may not be uniform. A
pseudo-metric is then a metric if and only if kera g = {0a} for all a ∈ A. In the special case where g is
compatible one sees that ∥γ · u− ϑ · u∥g = ∥u− u∥g = 0 meaning that the kernel is non-trivial. More
precisely, one has the following:
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Lemma 2.17: Let A πA−−! A be a vector bundle and g a pseudo-metric on A compatible with
a metric g on A, a connection γ on A and a solder form ϑ on A. Then one has the following
inclusion:

∀a ∈ A Hγ−ϑA ⊂ kera g

leading to the following inequalities:

∀a ∈ A dim (A) ≤ dim (kera g) ≤ dim (FA)

In particular, when dim (A) = dim (FA) one has

ker g = Hγ−ϑA

Proof.

First, one has:
TπA · (γ − ϑ) = TπA · γ − TπA · ϑ = Id− 0

meaning that γ−ϑ is an affine connection. Then, since g is compatible, one has for any u ∈ TaA:
⟨γa · u− ϑa · u | γa · u− ϑa · u⟩g = ⟨u− u | u− u⟩g = 0

showing that Hγ−ϑA ⊂ kera g. Since γ − ϑ : TaA −! Hγ−ϑA is injective, one then has:
dim (A) = dim (TaA)

= dim
Ä
Hγ−ϑA

ä
≤ dim (kera g)

For the second inequality, one uses the following form for ga (with a ∈ A):

ga : TaA −! T⋆
aA

u 7−−!
〈
u
∣∣
g
= u 7! ⟨u | u⟩g

This application is a linear application between vector spaces whose kernel is ker ga = kera g.
Since g is compatible, ga reduces on Hγ

aA into ga |Hγ
aA

: u 7−!
î
w 7! ⟨TaπA · u | TaπA ·w⟩ga

ó
.

Since TaπA |Hγ
aA

: Hγ
aA ≃ TaA is bijective (of inverse γa ) one has:

rank (ga) ≥ rank

Å
ga |Hγ

aA

ã
= rank (ga) = dim (A)

This means that:
dim (kera g) = dim (T⋆

aA)− rank (ga)

= dim (A)− rank (ga)

= dim (FA) + dim (A)− rank (ga)

≤ dim (FA) + dim (A)− dim (A)
≤ dim (FA)

If dim (A) = dim (FA) then dim (kera g) = dim (A) = dim
Ä
Hγ−ϑ

a A
ä
. One being a subspace of

the other they have to be equal.
□

3 Material placement and induced geometry

In classical mechanics, one has a macroscopic material space B placed into the macroscopic Euclidean
ambient space E using a macroscopic punctual placement19 map φ : B −! E. Elements of B are inter-

19The somewhat standard term "placement" shall be used, avoiding the ambiguity of the term "configuration", used in
the literature to refer to the placement map φ : B −! E [16, p. 4][29, p. 25][30, p. 5] but also its image space Im (φ) ⊂ E
[31, p. 50][27, p. 112][30, p. 28].
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preted as macroscopic particles while elements of E are seen as macroscopic positions. From the punc-
tual placement map, one then induces a first order macroscopic placement map F = Tφ : TB −! TE.
The later is used to pull the ambient geometry − which only consist of the Euclidean metric g − back
onto the material space via G = F

⋆ · g · F. Where ⋆ denotes transposition.

This process is crucial as, using this material geometry, one can measure deformations and postulate
energies. The aim of this section is to extend this process to the generalised continua covered in this
paper.

3.1 Material space, ambient space and the standard interpretation

Based on the discussion in section 2, the material and ambient spaces are modelled as affine bundles
where the projections provide the macroscopic part of, respectively, a material particle or an ambient
position. Those macroscopic parts live in the (macroscopic) spaces of classical mechanics. In fact, one
can go even further and require that every object of the micro-structured model has a macroscopic
part living in the classical model. This thinking leads to the following axiom, which will be called the
standard interpretation:

Axiom 3.1 − Standard interpretation of micro-structured continuum mechanics

Each kinematic space of the continuum mechanics of micro-structured media (µCM) has a
projection structure whose basis is a kinematic space of the continuum mechanics of classical
media (cCM).

Each kinematic object of the µCM belongs to such a projection structure. Its projection onto
the associated base is referred to as its macroscopic part.

A mathematical quantity is physically observable if and only if it belongs to a kinematic space
of the cCM.

The first direct consequence of this axiom is that the material and ambient spaces must both have
a projection structure over the usual macroscopic body B and macroscopic 3-dimensional Euclidean
space E. These spaces are denoted B and E respectively:

The material bundle: B πB−! B The ambient bundle: E πE−! E

In accordance with section 2, these spaces are required to be affine bundles. An element x ∈ E
(resp. X ∈ B ) therefore has a macroscopic part x = πE(x) ∈ E

(
resp. X = πB(X) ∈ B

)
. The

notion of microscopic part, on the other-hand, requires a trivialisation to be defined20 and would be
a fundamentally local concept. Following interpretation of the microscopic parts of Kröner, Cartan,
Eringen and Suhubi, Mindlin [3], [13], [15]–[17], [21], [26], the dimension of the microscopic spaces −
that is, the rank of B and E − are required to be 3:

rank (B) := dim (FB) = 3

rank (E) := dim (FE) = 3

This corresponds to setting k = 3 in section 2.

3.2 Ambient geometry

In order to be able to pull-back the ambient geometry on the material, the geometry of E needs to be
prescribed first. Since E is the set of positions, it lacks any defaults caused by fibres miss-alignment

20In a trivialisation E loc.≃ E × FE one can interpret the Cartesian product as a macro × micro decomposition. Since
trivialisations are in general local, one would not be able to compare distant objects. When well-defined, having the
same microscopic part would not be trivialisation-dependent (although its value in FE would ).
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or shape irregularity (since those are in the material B). Heuristically, this means that all microscopic
fibres will be of the same size and shape (g is uniform), perfectly aligned with the macroscopic space
(ϑ is "trivial") and perfectly aligned with each others (γ is "trivial"). In order to implement this
vision, the ambient geometry is implemented as the following generalized Euclidean geometry:

• The ambient space is E ≃ TE with E the 3D Euclidean space.

Let ex =
(
ex1 , e

x
2 , e

x
3

)
be the canonical coordinates on E. Then

(
ex, ey

)
:=

Å
ex,

∂

∂ex

ã
is a frame

on E ( i.e. a field of bases of TE). This means that E ≃ TE ≃ E×E is trivial with FE ≃ E. Differ-

entiating once more, one obtains the coordinates
Å(

ex, ey
)
,

Å
∂

∂ex
,

∂

∂ey

ãã
of TE or, equivalently,

the trivialization TE ≃ TE × TE ≃ E2 × E2. Since this last trivialization is Euclidean-valued,
linear applications Tx1E −! Tx2E can be seen as linear applications E2 −! E2, that is, block-
matrices.

These trivializations are called holonomic coordinates21. In those coordinates, the macroscopic
projections become:

πE : E ≃ E× E −! Eï
x
y

ò
7−−! x

TπE ≡
[
Id 0

]
: TE ≃ TE× TE −! TE

ï
x
y

òï
δx
δy

ò 7−−!

ï
x
δx

ò
• The connection γ is the Levi-Civita connection which is linear and, in this trivialization, becomes:

γ ≡
ï
Id
0

ò
: E ×E TE −! TE

ï
x
y

òï
x
δx

ò 7−−!


ï
x
y

òï
δx
0

ò
• The solder form ϑ is the canonical solder form which, in this trivialization, becomes:

ϑ ≡
ï
0
Id

ò
: E ×E TE −! VE ⊂ TE

ï
x
y

òï
x
δx

ò 7−−!


ï
x
y

òï
0
δx

ò
In this geometry and this trivialization, the (compatible) pseudo-metric g : TE 7−! T⋆E takes the

following form:
21The term holonomic comes from the grec terms ὅλος (holos) meaning "whole" and νόμος (nomos) meaning "law".

Several uses of this word exist in the literature. In this paper, holonomic will be used in the sense of to characterise an
integrable system [14, p. 8], that is, a system expressible as a gradient.

21



ι = TπE + ϑ−1 · vγ
= TπE + ϑ−1 · (Id− γ · TπE)

≡
[
Id 0

]
+
[
0 Id

]
·
Åï

Id 0
0 Id

ò
−
ï
Id
0

ò
·
[
Id 0

]ã
≡

[
Id Id

]
g =

(
TπE + ϑ−1 · vγ

)⋆ · g ·
(
TπE + ϑ−1 · vγ

)
≡
ï
Id
Id

ò
·
[
Id
]
·
[
Id Id

]
≡
ï
Id Id
Id Id

ò



g : TE −! T⋆E
ï
x
y

òï
δx
δy

ò 7−−!


ï
x
y

òï
δx+ δy
δx+ δy

ò
Even if E and TE are then technically isomorphic, their elements will be interpreted differently

(as affine points and linear vectors respectively). This isomorphism shall therefore be forgotten for
the remainder of this article. One could think that the solder form ϑ defined this way states that the
macroscopic and microscopic worlds are of the same size since it does not seem to scale the vectors
(see section 2.4). However, this is not necessarily true: the coordinate system is simply chosen such
that the scaling is 1.

On the choice of reference connection

In accordance with definition 2.9, the ambient reference connection is set to be the Levi-Civita con-
nection:

Ref (E) := γ

and the material ambient reference connection is left free. Nevertheless, a more compact notation is
introduced:

Γref := Ref (B)

3.3 Physical acceptability − punctual maps

Let φ : B −! E be a smooth map of the micro-structured system. Not all such maps are physically
meaningful. This section aims at specifying some properties which make such a map physically accept-
able.

Assume a local trivialisation on B is given and let X ≡
ï
X
Y

ò
∈ B and x = φ(X) ≡

ï
x
y

ò
. Then,

the last statement of axiom 3.1 implies that there is a projection structure on the set of physically
acceptable applications such that φ : B −! E is the macroscopic part of φ. However, φ maps X −
whose macroscopic part is X − to x − whose macroscopic part is x. One therefore requires that the
macroscopic part of the transformation by φ is the transformation by φ of the macroscopic part. That
is:

x := φ(X) = φ
(
X
)

or, equivalently, πE ◦φ = φ ◦πB. This means that the macroscopic part of the image solely depends on
the macroscopic part of its pre-image or, put differently, that φ does not break apart microscopic fibres.
Physically, this implies that if one were to zoom out and only see the macroscopic worlds B and E, then
φ would still be expressible and not break apart macroscopic points (or "grains") in a indescribable way.
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One therefore has φ : B ∋
ï
X
Y

ò
7−!

ï
φ
(
X
)

φv
(
X,Y

)ò =:

ï
x
y

ò
∈ E . As mentioned in earlier sections, the

coordinate X of B is physically interpreted as a macroscopic quantity and the coordinate Y of BX as a
microscopic quantity. This paper will treat only materials in which the microstructure is several order
of magnitudes smaller than the macrostructure, itself of order close to 1. In other words, one has

|Y | ≪
∣∣X∣∣ ≃ 1

A direct consequence is that Y 2 is several orders of magnitude smaller that Y . This means that, in
φv’s Taylor expansion, higher orders will not have any physically significant contributions. The vertical
coordinate φv is therefore required to be affine. Since for two local trivialisations the change of vertical
coordinates is affine in Y , this requirement is independent of the choice of coordinates.

All of these requirements can be summarised in the following mathematical concept, which for-
malises a notion of structure preservation:

Definition 3.2 − Morphisms

Let A πA−−! A and D πD−−! D be two projection structures. An application f : A −! D is called
fibre-preserving if and only if there exists an application f : A −! D such that the following
diagram is commutative:

A D

A D

πA πD

f

f

which means that for any (a1, a2) ∈ A×A:

πA(a1) = πA(a2) =⇒ πD(f(a1)) = πD(f(a2)) =: f (πA(a2))

The map f will be called the shadow of f . One can also say that f is over f .

For a ∈ A, the following notation for the restriction of f over a is introduced:

fa = f |Aa

: Aa −! Df(a)

Let A πA−−! A and D πD−−! D be two affine bundles. A smooth map f : A −! D is called an affine
bundle morphism if and only if f is fibre-preserving, its shadow f is smooth and f is affine.
Where the later means that fa is affine on Aa for all a ∈ A.

Respectively, if A πA−−! A and D πD−−! D are vector bundles, f is called a vector bundle morphism
if and only if it is an affine bundle morphism and fa is linear on Aa for all a ∈ A.

The set of fibre-preserving applications from A to D is denoted FibPres (A,D). It is equipped
with a projection structure over the set DA of applications from A to D, whose fibres are denoted
FibPresf (A,D)

(
for f ∈ DA ):

πFibPres(A,D) : FibPres (A,D) −! DA

f 7−−! f

23



The sets of affine (resp. vector) bundle morphisms from A to D are denoted Aff (A,D) ⊂
FibPres (A,D) (resp. L (A,D) ⊂ Aff (A,D)). They are equipped with the induced projection
structures, whose fibres are denoted Afff (A,D)

Ä
resp. Lf (A,D)

ä
, for f ∈ Smooth (A,D):

πAff(A,D) : Aff (A,D) −! Smooth (A,D)
f 7−−! f

∣∣∣∣ πL(A,D) : L (A,D) −! Smooth (A,D)
f 7−−! f

In the case where the structure on A and/or D is ambiguous one can use the notations
FibPres

Ä
A πA−−! A,D πD−−! D

ä
, Aff

Ä
A πA−−! A,D πD−−! D

ä
and L

Ä
A πA−−! A,D πD−−! D

ä
.

By construction, one then has that φ : B −! E is physically acceptable if and only if it is an
affine bundle morphism φ ∈ Aff (B, E). Its macroscopic part is then its shadow φ ∈ Aff (B, E) =
Smooth (B,E).

3.4 Physical acceptability − first-order maps

Let F : TB −! TE be a smooth map of the micro-structured system. Physically, the spaces TB
and TE are interpreted as the set of first-order variations of particles and positions respectively. As
for punctual maps, not all such maps are physically relevant. This section aims at specifying some
properties which make such a map physically acceptable. In classical mechanics, physically acceptable
maps are the first-order transformations associated to a punctual transformation, that is, gradient
maps Tφ : TB −! TE. One therefore needs to generalise this property to microstructured media.

First of all, F must be over a punctual transformation. That is, if two vectors of TB are over the
same point of B, then their images must be over a common point of E . Secondly, such a mapping
of vectors must be linear, which is well defined since the pre-images and images are over common
points and can therefore be summed. These two properties are exactly equivalent to saying that F is
a morphism F ∈ L

Ä
TB πTB−−! B,TE πTE−−! E

ä
for the punctual projections.

F is therefore over a certain shadow φ : B −! E . Since F needs to be physically acceptable, its
shadow φ has to be physically acceptable. That is, φ ∈ Aff (B, E). In trivialising affine coordinates, φ
and F take the forms

φ : B −! Eï
X
Y

ò
7−−!

ñ
φ
(
X
)

φv
(
X
)
· Y +

−!
t
v (

X
)ô ∣∣∣∣∣∣∣ Fï

X
Y

ò ≡ ïFh
h

(
X,Y

)
Fh
v

(
X,Y

)
Fv
h

(
X,Y

)
Fv
v

(
X,Y

)ò
Here, axiom 3.1 comes into play. Indeed, the standard interpretation stipulates that F must be

part of a projection structure such that its macroscopic part is of the form F : TB −! TE. Using the
same reasoning as for punctual transformations, the macroscopic part of the transformation by F is
required to be the transformation by F of the macroscopic part. That is:

∀U ∈ TB, u := F ·U = F ·U

or, equivalently, TπE ◦F = F◦TπB. This requirement is equivalent to saying that F is fibre-preserving
for the macroscopic projections:

F ∈ FibPres
(
TB TπB−−−! TB,TE TπE−−! TE

)
This forces Fh

v to be zero, as stated in the following lemma:
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Lemma 3.3: Let A πA−−! A and D πD−−! D be two affine bundles and L ∈ L (TA,TD).
Then:

Lh
v = 0 ⇐⇒ L ∈ FibPres

(
TA TπA−−−! TA,TD TπD−−−! TD

)
in which case its shadow as an element of FibPres

(
TA TπA−−−! TA,TD TπD−−−! TD

)
is

L = TπD · L ·Ref (A)

Proof.

One has the following sequences of implications, where the left side proves the direct sense while
the right side shows that L verifies L · TπA = TπD · L, which implies the indirect sense:

TπA = TπA · hRef(A)

L · TπA = L · TπA · hRef(A)

TπD · L = TπD · L · hRef(A)

Ref (D) · TπD · L = Ref (D) · TπD · Lh

hRef (D) · L = hRef (D) · Lh

Lh = Lh
h

Lh
v + Lh

h = Lh
h

Lh
v = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L · TπA = TπD · L ·Ref (A) · TπA
= TπD · L · hRef(A)

= TπD · Lh

= TπD · hRef(A) · Lh

= TπD · Lh
h

= TπD · Lh since Lh
v = 0

= TπD · hRef(A) · L
= TπD · L

□

Furthermore, since F : TB −! TE is the macroscopic part of F, it is required to be a map of the
classical macroscopic model. As stated above, this means that F is a gradient. Since F is over φ, this
means

(3.1) F = Tφ

This determines Fh
h. Physically this means that, if one were to zoom out and pause time, macroscopic

vectors would be mapped via a gradient map, as is the case in classical continuum mechanics.

On the opposite side lie the microscopic spaces. In this paper, all materials considered will have
the property that their microscopic spaces are a scaled-down version of their macroscopic spaces. This
last sentence must be interpreted as stating that the classical theory of continuum mechanics is also
valid on the microscopic spaces.

Mathematically, since F is fibre-preserving, microscopic vectors are mapped to microscopic vectors.
The restriction of F on the microscopic spaces is therefore well-defined and corresponds to Fv

v. The
aforementioned physical requirement implies that Fv

v must also be a gradient. One therefore requires

that for all X ≡
ï
X
Y

ò
∈ B:

(3.2) F |VB
= (Tφ) |VB

where (Tφ) |VXB
≃ TXφX ≃ φv

(
X
)

through VXB ≃ TXBX . This means that neither the purely
macroscopic nor the purely microscopic terms break the holonomy. If the later is to be broken, it must
therefore be by the coupling term Fv

h. The later has been, until now, a generic term depending on X
and Y . Since Y is small, this dependency is required to be affine in Y .

All those properties are summarised in what are called physically acceptable (tangential) maps:
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Definition 3.4 − Physically acceptable tangential map

Let A πA−−! A and D πD−−! D be two affine bundles. A map L : TA −! TD is said to be a
physically acceptable (tangential) map from TA to TD if and only if:

• L is a morphism for the punctual projection with shadow ℓ ∈ Aff (A,D).

L ∈ LAff(A,D)

Ä
TA πTA−−−! A,TD πTD−−−! D

ä
• L is fibre-preserving for the macroscopic projection, with shadow L := Tℓ ∈ Lℓ (TA,TD).

L ∈ FibPresTℓ

(
TA TπA−−−! TA,TD TπD−−−! TD

)
• L is a gradient on the micro-fibres.

L |VA
= (Tℓ) |VA

• for all u ∈ TaA and every trivialising affine frame on TA and TD (see definition 2.3),
the vectorial coordinate of La · u ∈ Tℓ(a)D is affine in the vertical coordinate of a ∈ A.

The set of physically acceptable tangential maps from TA to TD is denoted

PA (TA,TD) ⊂ LAff(A,D)

Ä
TA πTA−−−! A,TD πTD−−−! D

ä
∩ FibPres

(
TA TπA−−−! TA,TD TπD−−−! TD

)
It inherits from both the projection structures of LL(A,D)

Ä
TA πTA−−−! A,TD πTD−−−! D

ä
and

FibPresTℓ

(
TA TπA−−−! TA,TD TπD−−−! TD

)
. In accordance with previous notations, the over-line

notation L : TA −! TD for L ∈ PA (TA,TD) shall be used to refer to its shadow as an element
of the later ( i.e. its "macroscopic" shadow).

Intuitively, one has that F : TB −! TE is physically acceptable if and only if it is over a physically
acceptable map φ ∈ L (B, E),

(
Fh
h,F

v
v

)
are identifiable with (Tφ, (Tφ)v) and Fv

h is affine in the micro-
scopic punctual coordinate. More formally, if one specifies everything in a local trivialisation, one gets
the following lemma:
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Lemma 3.5: Let L : TA −! TD be a smooth map between vector bundles. Then L ∈
PA (TA,TD) if and only if, in every affine trivialising coordinates on A and D, L can be
expressed in the induced frames in the following form:

L : TA loc.≡ T (A×FA) −! TD loc.≡ T (D×FD)


ï
X
Y

òï
δX
δY

ò 7−−!



 ℓ
(
X
)

ℓv
(
X
)
· Y + tv

(
X
)



∂ℓ

∂X
· δX

ℓv
(
X
)
· δY +

[
Lcoupl

(
X
)
· Y + Tcoupl

(
X
)]

· δX




with ℓ, ℓv, tv, Lcoupl and Tcoupl all smooth and trivialisation-dependent and where A · b (resp.
A·b·c) denotes linear (resp. bilinear) dependency (everything is trivialised, hence in Rn, n ∈ N).

In such a case,
î
Lcoupl

(
X
)
· Y +Tcoupl

(
X
)ó

is the coordinate representation of Lv
h. When

L = Tℓ, this is
ñ
∂ℓv

∂X
· Y +

∂tv

∂X

ô
. In general, however, Lcoupl and Tcoupl are entirely free.

3.5 Placement map

The previous discussion specifies how the desired generalised placement maps must be physically ac-
ceptable. However, this condition does not suffice. In particular, axiom 3.1 states that the macroscopic
part are classical placement maps, which are required to be differential embeddings. This relates to the
non-interpenetrability of matter. As this is not a purely macroscopic phenomena, the whole generalised
placement map is required to be a (physically acceptable) differential embedding. This leads to the
following definitions:

Definition 3.6 − Generalised placement maps

An application φ : B −! E is a generalized punctual placement map if and only if:

• φ is a C1-differential embedding. That is, it is a differentiable injective bi-continuous map
onto its image with an everywhere injective differential.

• φ ∈ Aff (B, E) is an affine bundle morphism ( i.e. is physically acceptable)

An application F : TB −! TE is a generalized first-order placement map if and only if:

• F is a differential embedding

• F is physically acceptable:
F ∈ PA (TB,TE)

• The punctual shadow of F ( for the punctual projections πTB and πTE ) is a punctual
configuration φ : B ↪−! E .

The set of generalized first-order placement map from B to E will be denoted

Conf (TB,TE) ⊂ PA (TB,TE)
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In this definition three things are to be noticed:

• In accordance with definition 3.4 and axiom 3.1, the overline notation is used for the macroscopic
shadow F : TB ↪−! TE of F, not to be confused with its punctual shadow φ : B −! E .

• Although the micro-spaces are interpreted as infinitesimal neighbourhoods, the microscopic part
of φ is not required to be the "gradient" of the macroscopic part22. This freedom is necessary in
order to allow for torsion (i.e. dislocations) in the material [14, p. 8].

• Similarly, nothing states that F corresponds to Tφ. In fact, previous works ( [28, p. 16], [24],
[32]) showed that this cannot be the case if the material has some curvature. Requiring the
curvature to be zero is pretty common in the literature and corresponds to the requirement that
the material should only exhibit dislocation defects and no disclination [3], [6], [10], [14].

Most of the properties enumerated in definition 3.6 can be summarized in the circular commutative
diagram of figure 3.1.

TB

B TB

B

TE

E TE

E

πTB TπB

πB πTB

πTE TπE

πE πTE

F

φ

Tφ

φ

Figure 3.1: The circular commutative diagram associated to a generalized first-order placement map
F : TB −! TE . All arrows represent smooth maps, ↠ means the map is surjective and ↪! means
it is injective. The top-left quadrant comes from F ∈ L

Ä
TB πTB−−! B,TE πTE−−! E

ä
, the top-right from

F ∈ FibPres
(
TB TπB−−−! TB,TE TπE−−! TE

)
, the bottom-left from φ ∈ Aff (B, E) and the bottom-right

from Tφ ∈ L (TB,TE).

Inverse map

Since F is injective F−1 : Im (F) −! B is a well-defined application. One may wonder whether F−1 is
fibre-preserving. This question is answered by the following result:

22This notion is hill-defined in general but makes sense when B ≃ TB− which is the case for crystals − or more generally
when B ≃ TBM for B ⊂ M and dim (M) = 3 − which is the case for shells (dim (B) = 2) and beams (dim (B) = 1).
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Lemma 3.7: Let A πA−−! A and D πD−−! D be two projection structures and f ∈ FibPres (A,D)
be injective with an injective shadow. Then:

f−1 ∈ FibPres
Ä
Im (f)

πA−−! Im
(
f
)
,A
ä

and f−1 = f
−1

Proof.

By contradiction, if f−1 is not fibre-preserving then there exist y ∈ A2 and (y, y′) ∈ A2
y such

that f−1(y) ̸= f−1(y′). But since f is injective :
f−1(y) ̸= f−1(y′) =⇒ f

Ä
f−1(y)

ä
̸= f
Ä
f−1(y′

ä
=⇒ f (f−1(y)) ̸= f (f−1(y′))

=⇒ y ̸= y′

For the shadow one has, for (a, d) ∈ A×D:

f
Ä
f−1(d)

ä
= f

Ä
f−1(d)

ä
= f (f−1(d))

= d

∣∣∣∣∣∣∣∣
f−1

(
f(a)

)
= f−1

Ä
f(a)
ä

= f−1 (f(a))

= a

□

This result implies the following crucial lemma:

Lemma 3.8: Let A πA−−! A and D πD−−! D be two affine bundles and L ∈ Conf (TA,TD).
Then:

L−1 ∈ Conf (Im (L) ,TD)

with the following structures on Im (L):

Im (L)
πTD−−−! Im

(
L
)

and Im (L)
TπD−−−! Im (ℓ)

Block-wise decomposition

Recall lemma 3.3 stating that F ∈ PA (TA,TD) takes a lower-triangular form. Consequentially, the
inverse also takes a special form:

Lemma 3.9: Let A πA−−! A and D πD−−! D be two affine bundles and L ∈ PA (TA,TD) be an
injective map with both shadows injective. Then:

Lh
h ·

(
L−1

)h
h
= hRef(D) Lv

v ·
(
L−1

)v
v
= vRef(D)(

L−1
)h
h
· Lh

h = hRef(A)

(
L−1

)v
v
· Lv

v = vRef(A)

and (
L−1

)v
h
= −

(
L−1

)v
v
· Lv

h ·
(
L−1

)h
h

Proof.

Lh
h ·

(
L−1

)h
h
= Lh

h ·
(
L−1

)
h

since Lh
h ·

(
L−1

)v
h
= 0

= Lh ·
(
L−1

)
h

since Lh
v = 0

= hRef(D) · L · L−1 · hRef(D)

= hRef(D)

The same reasoning applies for the other three equalities.
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□

The relations for the diagonal parts mean that, on HΓrefB,
(
F−1

)h
h

is the inverse of Fh
h. Similarly,

Fh
h is the inverse of

(
F−1

)h
h

on HγE and Fv
v and

(
F−1

)v
v

are inverses of one another on VB and VE .
These observations lead to the following notations:

Notation 3.10 − Partial inverses

Let A πA−−! A and D πD−−! D be two affine bundles and L ∈ PA (TA,TD) be an injective map
with both shadows injective. The following notations are introduced:

Lh
h
−1

:=
(
L−1

)h
h

Lv
v
−1

:=
(
L−1

)v
v

called the pseudo-inverses of Lh
h and Lv

v respectively.

With these notations, F and F−1 take the following block-wise forms:

F ≡
ï
Fh
h 0

Fv
h Fv

v

ò
F−1 ≡

ñ
Fh
h
−1

0

−Fh
h
−1 · Fv

h · Fv
v
−1

Fv
v
−1

ô
The term pseudo-inverse comes from the fact that the products do not yield identities but projectors:

Fh
h · Fh

h
−1

= hγ , Fh
h
−1 · Fh

h = hΓref
, etc. Therefore, these are actual inverses only on Hγ , HΓref , etc.

3.6 Material geometry

Having defined everything, the next step is to use the first-order placement map F to pull the ambient
geometry back onto B. Let X ∈ B and U ∈ TXB. Then the placement map places X at x = φ (X) ∈ E
and U at u = F ·U ∈ TxE. Using γ, one can lift this vector into a vector u = γx ·u ∈ Hγ

xE . Using the
injectivity of FX one has that, if u is in its image, there exist a unique U ∈ TXB placed at u. This
process defines a connection Γ on B, as stated in the following theorem:

Theorem/Definition 3.11 − Material connection

Let F : TB −! TE be a first-order placement map, φ : B −! E its associated punctual
placement and γ be a connection on E . Then the following application, called the pull-back of
γ by F, is a well-defined affine connection on B:

ΓX = F−1 · γφ(X) · F ∀X ∈ B

Furthermore, its horizontal space HΓB is the preimage of HγE :

HΓB = F−1 (HγE)

and its horizontal projection is:
hΓ = hΓref

− Fv
v
−1 · Fv

h

or, equivalently:
Γ =

î
Id− Fv

v
−1 · Fv

h

ó
· Γref

One can use the notation F∗γ := Γ if the dependency on F needs to be made explicita.
aOnce again ∗ denotes pull-backs, not to be confused with ⋆ for transposition.

Proof.
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First, let X ∈ B and U ∈ TXB. Since F ∈ FibPres
(
TB TπB−−−! TB,TE TπE−−! TE

)
, one has23

FX · TXB|U ⊂ Tφ(X)E ∣∣
F·U

and, since those are both vector spaces of dimension 3 (thanks to the injectivity of FX ), the
inclusion is in fact an equality. Since γ is a connection on E , one further has:

γφ(X) · F ·U ∈ Tφ(X)E ∣∣
F·U

These relations imply that ΓX ·U := F−1 · γφ(X) · F ·U is well defined and verifies

ΓX ·U ∈ TXB|U

meaning in particular that TπE · Γ = IdTB.

Secondly, the horizontal projection is given by:
hΓ :=Γ · TπB

=F−1 · γ · F · TπB
=F−1 · γ · TπE · F
=F−1 · hγ · F
=
(
F−1

)
h
· Fh

h

=
[
Fh
h
−1 − Fv

v
−1 · Fv

h · Fh
h
−1

]
· Fh

h

=hΓref
− Fv

v
−1 · Fv

h
Furthermore, for U ∈ TB, one has:

∃u ∈ TE , F ·U = hγ · u ⇐= ∃U′ ∈ TB, F ·U = hγ · F ·U′

∃u ∈ TE , F ·U = hγ · u =⇒ ∃u ∈ TE , hγ · F ·U = hγ · u = F ·U
∃u ∈ TE , F ·U = hγ · u =⇒ ∃U′ ∈ TB, F ·U = hγ · F ·U′

Meaning one has:
F−1

({
hγ · u

∣∣∣ u ∈ TE
})

= F−1
({

hγ · F ·U′
∣∣∣ U′ ∈ TB

})
The horizontal space is then given by:

HΓB =
{
hΓ ·U

∣∣∣ U ∈ TB
}

=
{
F−1 · hγ · F ·U

∣∣∣ U ∈ TB
}

= F−1
({

hγ · F ·U
∣∣∣ U ∈ TB

})
= F−1

({
hγ · u

∣∣∣ u ∈ TE
})

= F−1HγE
Lastly, since F ∈ PA (TB,TE), F−1 ∈ PA (TE ,TA) is affine in the punctual vertical coordi-

nate, so is φ. Since γ is affine, Γ will be too.
□

This process also works for the solder form and the pseudo-metric as stated by the following
theorems:

23Recall that, for A πA−−! A an affine bundle, x ∈ A and u ∈ TxA, the following notations are used

TA|u := [TπA]−1 ({u}) TxA|u := TA|u ∩ TxA
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Theorem/Definition 3.12 − Material solder form

Let F : TB −! TE be a first-order placement map, φ : B −! E its associated punctual
placement map and ϑ a solder form on E . Then the following application, called the pull-back
of ϑ by F, is a well-defined solder form on B:

ΘX = F−1 · ϑφ(X) · F ∀X ∈ B

One can use the notation F∗ϑ := Θ if the dependency on F needs to be made explicita.
aOnce again ∗ denotes pull-backs, not to be confused with ⋆ for transposition.

Proof.

Using the same argument as in the proof of theorem/definition 3.11 one has
F ·VB = F · TB|0

= TE |F·0
= VE

where restrictions are for the macroscopic projections (TπB and TπE ) and 0 ⊂ TB is the zero
section of TB. This means that ΘX = F−1 ·ϑφ(X) ·FX is well defined. Then one has, for X ∈ B:

TπB ·ΘX = TπB · F−1 · ϑφ(X) · FX

= F
−1 · TπE · ϑφ(X) · FX

= 0
Meaning that Θ is a solder-form. Lastly, Θ is affine for the same reason Γ is in theorem/defi-
nition 3.11.

□

Remark 3.13: The third condition on F stated in definition 3.4 (or eq. (3.2)), namely that
it must be a gradient on the micro-fibres, is equivalent to requiring F∗ϑ = (Tφ)∗ ϑ. Roughly
speaking, this is because this equality looks like Fv

v
−1 · ϑ · F = (Tφ)vv

−1 · ϑ · Tφ and the second
condition of definition 3.4 (or eq. (3.1)) already states that F = Tφ.

Theorem/Definition 3.14 − Material pseudo-metric

Let F : TB −! TE be a first-order placement map and g : TE −! T⋆E be a pseudo-metric on
E . Then the following application, called the pull-back of g by F, is a well-defined pseudo-metric
on B:

G = F⋆ · g · F

Similarly, if g : TE −! T⋆E is a metric on E, the following pull-back is a well-defined metric on
B:

G = F
⋆ · g · F

and corresponds to the classical notion of the right Cauchy-Green tensor.

One can use the notations F∗g := G and F
∗
g := G if the dependencies on F and F need to be

made explicita.
aOnce again ∗ denotes pull-backs, not to be confused with ⋆ for transposition.

Proof.

Let X ∈ B and (U,W) ∈ TXB × TXB. Recall that one has: ⟨U | W⟩G := ⟨F ·U | F ·W⟩g
Symmetry and non-negativity are then automatically verified since g verifies it. The bi-linearity
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on the other hand comes from the linearity of F. A similar statement holds for G. The
definiteness of G then comes from the injectivity of F and the definiteness of g as G · U =
0 =⇒ g · F ·U = 0 =⇒ F ·U = 0 =⇒ U = 0.

□

Two key facts regarding the metrics and the connection are two be highlighted:

• The metrics G : TB −! T⋆B and Gv
v
∣∣
X

: VBX −! V
⋆BX , X ∈ B will always be curvature-free.

• The connection Γ will, in general, not be the Levi-Civita connection associated to G. In partic-
ular, it may possess some torsion and/or curvature.

An important consequence is that, contrary to several models where the metric carries the curva-
ture, here the curvature is carried by the (independent) connection Γ. More generally, G will be the
Cauchy-Green tensor of classical mechanics of continuum media while Γ and Θ will be the one carrying
the micro-structure data.

Regarding the value of G, a thorough derivation of the computation leads to the following formulae:

Lemma 3.15: Let g : TE −! T⋆E be a pseudo-metric and G : TB −! T⋆B its pull-back by
F ∈ PA (TB,TE). Then, one has:

Gh
h = (Fh)

⋆ · g · Fh Gh
v = (Fh)

⋆ · g · Fv

= Fh
h
⋆
ghhF

h
h + Fh

h
⋆
ghvF

v
h + Fv

h
⋆
gvhF

h
h + Fv

h
⋆
gvvF

v
h = Gv

h
⋆

Gv
h = (Fv)

⋆ · g · Fh Gv
v = (Fv)

⋆ · g · Fv

= Fv
v
⋆
gvhF

h
h + Fv

v
⋆
gvvF

v
h = Fv

v
⋆
gvvF

v
v

On the compatibility of the pull-backs

By use of these theorems one now has a way of pulling the geometrical tools from the ambient space
to the material space using a given first order placement map. Nevertheless, these objects had certain
relations. In particular, the pseudo-metric was compatible. These properties are preserved by the
pull-back operation:

Lemma 3.16: Let F : TB −! TE be a first-order placement map, γ a connection on E , ϑ a
solder form on E , g a metric on E and g a compatible pseudo-metric on E . Let Γ, Θ, G and G
be their respective pull-backs by F. Then:

• G is compatible with Γ, Θ and G

• kerG = HΓ−ΘB

Proof.

Let X ∈ B and let U, W, U′, W′ be vectors in TXB. Then one has:〈
ΘX ·U+ ΓX ·W

∣∣∣ ΘX ·U′
+ ΓX ·W′

〉
G

=
〈
F ·ΘX ·U+ F · ΓX ·W

∣∣∣ F ·ΘX ·U′
+ F · ΓX ·W′

〉
g

=
〈
ϑφ(X) · F ·U+ γφ(X) · F ·W

∣∣∣ ϑφ(X) · F ·U′
+ γφ(X) · F ·W′

〉
g

=
〈
F ·U+ F ·W

∣∣∣ F ·U′
+ F ·W′

〉
g

=
〈
U+W

∣∣∣ U′
+W

′
〉
G
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showing the compatibility condition. For the kernel, one has using lemma 2.17, ker g =
Hγ−ϑE . Furthermore, one has :

⟨U | U⟩G = 0 ⇐⇒ ⟨F ·U | F ·U⟩g = 0

⇐⇒ F ·U ∈ Hγ−ϑE

⇐⇒ U ∈ F−1
Ä
Hγ−ϑE

ä
⇐⇒ U ∈ HΓ−ΘB

where the equality F−1
(
Hγ−ϑE

)
= HΓ−ΘB comes from theorem/definition 3.11 and the fact

that Γ−Θ is the pull-back of γ − ϑ by F (by linearity).
□

It is important to notice that dim (FB) may differ from dim (B), in which case theorem 2.14 does
not apply and G is not the unique pseudo-metric compatible with G, Θ and Γ.

4 Frame invariance

Having the material geometry fully defined, the next step is to be able to define some properties of the
material, with the later goal of formulating some energies. In order to do so, a key concept in classical
mechanics is the notion of frame invariance. A property of a material is then a frame invariant function
of the current state of the material. In this paper the state will be the generalised first-order placement
map F. This section aims at generalising this notion of frame invariance from E to E .

4.1 Generalised Galilean group

In classical mechanics, frame invariance refers to the invariance of a function in the event of a change
of Galilean frame. These changes of frame are given by the set of rigid transformations, i.e. bijective
affine transformations that preserve the metric g. Those transformations, composed of a rotation and
a translation part, form a group Gal called the Galilean group defined as:

Gal :=


ï
R
t

ò
: E −! E

x 7−−! R · x+ t

∣∣∣∣∣∣∣ R ∈ O(3), t ∈ TxE


∣∣∣∣∣∣∣ TGal :=

{
TO

∣∣∣ O ∈ Gal
}

In practice, in the classical case, the state of the system is often entirely depicted by its first order
placement map F = Tφ. In this case, a frame invariant function is a function of F invariant under
the action of TGal on F. The later action being the gradient of the left action of Gal on the punctual
placement map φ. One therefore seeks to generalise TGal into a group acting on the whole space TE ,
and therefore on F.

Assume a generalised first order Galilean transformation A : TE −! TE is given. Not knowing
much about what such a generalisation may look like, one can still require it to be, at least, physically
acceptable. That is, A ∈ PA (TE ,TE). Furthermore, one wants such a transformation not to alter the
state of the system, adding neither defects nor misalignments. In particular, this means that A must
transform vectors and points through a similar process. Namely, A = Ta for some a : E −! E . Under
this condition, the requirement A ∈ PA (TE ,TE) becomes equivalent to a ∈ Aff (E , E).

Recall the projection of interpretation defined in theorem 2.14:

ι := TπE + ϑ−1 · vγ : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!

ï
x

δx+ δy

ò
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The macroscopic projection TπE maps a vector at x ∈ E to the vector at x one would be able to
measure, keeping only the macroscopic part. The projection of interpretation ι on the other hand,
maps a vector at x ∈ E to the vector at x it physically represents, its so-called interpretation. That is,
it also includes the microscopic part of the original vector, scaled down by ϑ−1.

Although one would only see the macroscopic part of a vector, reality also cares about its inter-
pretation. In fact, frame invariance should also apply to it. A generalised Galilean transformation
A : TE −! TE should physically represent a Galilean transformation of the total space. Therefore, it
must transform interpretations in a Galilean manner. That is:

∃
ï
R
t

ò
∈ Gal, ι ◦A = T

ï
R
t

ò
◦ ι

= TR ◦ ι+Tt

the interpretation of the image is the interpretation of the pre-image, up to a (first-order) Galilean
transformation. By definition, this is equivalent to saying:

A ∈FibPresTGal

Ä
TE ι

−! TE,TE ι
−! TE

ä
Notice the TGal as an index, stating that the shadow for the projection structure ι is Galilean.

Based on this analysis, the generalised first-order Galilean group is defined as follows:

Definition 4.1 − Generalised Galilean group

The generalised (first-order) Galilean group is the group, noted TGal, defined as follows:

TGal =TAff (E , E) ∩ FibPresTGal

Ä
TE ι

−! TE,TE ι
−! TE

ä
=
{
Ta

∣∣∣ a ∈ Aff (E , E) , ∃O ∈ TGal, ι ◦ Ta = O ◦ ι
}

⊂PA (TE ,TE)

In the holonomic coordinates of E , elements of TGal take a particular form, as stated in the fol-
lowing lemma:

Lemma 4.2: Let A : TE −! TE . Then A ∈ TGal if and only if there exist
ï
R
t

ò
∈ Gal

and
ï
R
tv

ò
∈ Gal with the same rotational part such that, in the holonomic coordinates of TE , A

takes the following form:

A : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!


ï
R · x+ t
R · y + tv

òï
R · δx
R · δy

ò 
Proof.

Assume A ∈ TGal, then A = Ta with a ∈ Aff (E , E) and ι ◦A = O ◦ ι with O ∈ TGal. In the
holonomic coordinates of E and TE one therefore has:
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a : E −! Eï
x
y

ò
7−−!

ï
a(x)

av(x) · y + tv(x)

ò
ι : TE −! TE

ï
x
y

òï
δx
δy

ò 7−−!

ï
x

δx+ δy

ò
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

O : TE −! TEï
x
δx

ò
7−−!

ï
R · x+ t
R · δx

ò
O ◦ ι : TE −! TE

ï
x
y

òï
δx
δy

ò 7−−!

ï
R · x+ t

R · δx+R · δy

ò
A = Ta : TE −! TE

ï
x
y

òï
δx
δy

ò 7−−!


ï

a(x)
av(x) · y + tv(x)

òñ
a′(x) · δxÄ

av
′
(x) · y + tv

′
(x)
ä
· δx+ av(x) · δy

ô
ι ◦A : TE −! TE

ï
x
y

òï
δx
δy

ò 7−−!

ñ
a(x)Ä

a′(x) + av
′
(x) · y + tv

′
(x)
ä
· δx+ av(x) · δy

ô
Where primes denote differentiation with respect to the unique argument. Identification of

monomials then successively yields:

• av(x) = R hence av
′
(x) = 0

• a(x) = R · x+ t hence a′(x) = R

• a′(x) + tv
′
(x) = R hence tv

′
(x) = 0 (using last point)

This means A takes the stated form. Reciprocally, if A has the stated form then ι◦A = T

ï
R
t

ò
◦ι

and A ∈ TGal.
□

This result shows that a generalised Galilean transformation is, in a way, the composition of two
"coupled" classical Galilean transformation, one macroscopic and one microscopic.

4.2 TGal as a stabiliser

In the classical case, the Galilean group Gal can be described as the group of affine transformations
preserving the Euclidean metric g. That is, a stabiliser of g for the pull-back action. One may there-
fore wonder how the generalised Galilean group TGal compares to the set of physically acceptable
transformations preserving the pseudo-metric.

Let A ∈ PA (TE ,TE) be over a : E −! E . Preserving g implies, in particular, preserving gvv and
gvh. Using lemma 3.15 one therefore respectively has:
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A∗g = g =⇒ Av
v
⋆ · gvv ·Av

v = gvv

=⇒ ∀x ∈ E , Av
v
∣∣⋆
x
· ϑ−1

a(x)

⋆ · ga(x) · ϑ−1
a(x) ·A

v
v
∣∣
x
= ϑ−1

x
⋆ · gx · ϑ−1

x

=⇒ ∀x ∈ E , ϑ⋆
x ·Av

v
∣∣⋆
x
· ϑ−1

a(x)

⋆ · ga(x) · ϑ−1
a(x) ·A

v
v
∣∣
x
· ϑx = gx

=⇒ ∀x ∈ E , ϑ−1
a(x) ·A

v
v
∣∣
x
· ϑx =: Ox ∈ O

(
gx, ga(x)

)
A∗g = g =⇒ A∗gvh = gvh

=⇒ Av
v
⋆ · gvh ·Ah

h +Av
v
⋆ · gvv ·Av

h = gvh

=⇒ ∀x ∈ E , Av
v
∣∣⋆
x
· ϑ−1

a(x)

⋆ · ga(x) · Ta(x)πE ·Ah
h
∣∣
x

+ Av
v
∣∣⋆
x
· ϑ−1

a(x)

⋆ · ga(x) · ϑ−1
a(x) ·A

v
h
∣∣
x
= ϑ−1

x
⋆ · gx · TxπE

=⇒ ∀x ∈ E , ϑx
⋆ ·Av

v
∣∣⋆
x
· ϑ−1

a(x)

⋆ · ga(x) · Ta(x)πE ·Ah
h
∣∣
x

+ϑx
⋆ ·Av

v
∣∣⋆
x
· ϑ−1

a(x)

⋆ · ga(x) · ϑ−1
a(x) ·A

v
h
∣∣
x
= gx · TxπE

=⇒ ∀x ∈ E , O⋆
x · ga(x) · Ta(x)πE ·Ah

h
∣∣
x
+O⋆

x · ga(x) · ϑ−1
a(x) ·A

v
h
∣∣
x
= gx · TxπE

=⇒ ∀x ∈ E , gx ·O−1
x · Ta(x)πE ·Ah

h
∣∣
x
+ gx ·O−1

x · ϑ−1
a(x) ·A

v
h
∣∣
x
= gx · TxπE

=⇒ ∀x ∈ E , O−1
x · Ta(x)πE ·Ah

h
∣∣
x
+O−1

x · ϑ−1
a(x) ·A

v
h
∣∣
x
= TxπE

=⇒ ∀x ∈ E , O−1
x · Ta(x)πE ·Ah

h
∣∣
x
· γx +O−1

x · ϑ−1
a(x) ·A

v
h
∣∣
x
· γx = Idx

=⇒ ∀x ∈ E , Ta(x)πE ·Ah
h
∣∣
x
· γx + ϑ−1

a(x) ·A
v
h
∣∣
x
· γx = Ox

=⇒ ∀x ∈ E , Ax + ϑ−1
a(x) ·A

v
h
∣∣
x
· γx = Ox

with the notation

O
(
gx, ga(x)

)
=

{
Ax : TxE −! Ta(x)E

∣∣∣ Ax
⋆ · ga(x) ·Ax = gx

}
which, using holonomic coordinates, can be identified with the group O(3) of orthogonal matrices.
One then obtains two equalities that must be satisfied by any pseudo-metric-preserving map A. By
substituting those equalities back into lemma 3.15 and simplifying, one cycles back to A∗g = g. This
means that these two equations are also sufficient. One therefore has the following equivalence:

Lemma 4.3: Let A ∈ PA (TE ,TE), then one has:

A∗g = g ⇐⇒ ∀x ∈ E ,
Ax + ϑ−1

a(x) ·A
v
h
∣∣
x
· γx = ϑ−1

a(x) ·A
v
v
∣∣
x
· ϑx ∈ O

(
gx, ga(x)

)
⇐⇒ ∀x ∈ E , ∃Ox ∈ O

(
gx, ga(x)

)
,

Ax ≡
ñ

γa(x) ·Ax · TxπE 0

ϑa(x) ·
(
Ox −Ax

)
· TxπE ϑa(x) ·Ox · ϑ−1

x

ô
In particular, this lemma shows that, while preserving g is equivalent to being Galilean in the

classical case, preserving g is not enough in the generalised case. The missing step is the following
lemma:

Lemma 4.4: Let A ∈ PA (TE ,TE) be injective over an injective a : E −! E , then:

A∗γ = γ ⇐⇒ Av
h = 0
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Proof.
A∗γ = γ ⇐⇒ ∀x ∈ E , (A∗γ)x = γx

⇐⇒ ∀x ∈ E , (A∗γ)x · TπE = γx · TπE
⇐⇒ ∀x ∈ E , Ax

−1 · γa(x) ·Ax · TπE = hγ

⇐⇒ ∀x ∈ E , Ax
−1 · γa(x) · TπE ·Ax = hγ

⇐⇒ ∀x ∈ E , γa(x) · TπE ·Ax = Ax · hγ
⇐⇒ ∀x ∈ E , hγ ·Ax = Ax · hγ
⇐⇒ Ah = Ah

⇐⇒ Ah
h = Ah

h +Av
h

⇐⇒ 0 = Av
h

where Ah
v = 0 has been used, since A ∈ PA (TE ,TE).

□

By using this lemma with A and Ta, one eventually has enough equations to retrieve TGal. The
result, contained in the following lemma, states that the group TGal is composed of those physically
acceptable maps A which are not only a stabiliser for g and γ but whose shadow’s tangent Ta is a
stabiliser of γ:

Theorem 4.5 − TGal as the intersection of stabilisers

The first-order Galilean group can be given by the following equations:

TGal =

ß
A ∈ PA (TE ,TE)

∣∣∣∣ A inversible, a inversible,
A∗g = g, A∗γ = γ and Ta∗γ = γ

™
where a : E −! E implicitly refers to the punctual shadow of A in L (TE ,TE).

Proof.

First, let x ∈ E be a fixed value. From lemma 4.3 one has that, if A∗g = g, there exists some
Ox ∈ O

(
gx, ga(x)

)
such that:

Ax ≡
ñ

γa(x) ·Ax · TxπE 0

ϑa(x) ·
(
Ox −Ax

)
· TxπE ϑa(x)−1 ·Ox · ϑx

ô
Using lemma 4.4, one then sees that A∗γ = γ further implies ϑa(x) ·

(
Ox −Ax

)
· TxπE = 0.

That is, since TπE is surjective and ϑ is injective, Ox = Ax. In particular Ox only depends
(smoothly) on x.

Furthermore, by definition, A ∈ PA (TE ,TE) implies a ∈ Aff (E , E) and Av
v = (Ta)vv. Where

the later is the gradient of a ∈ Aff (E , E) in the (punctual) vertical coordinate. One therefore
sees that those two conditions imply that, in the holonomic coordinates, O corresponds to both
the macroscopic gradient Ta and the microscopic gradient (Ta)vv. That is, A takes the form:

A : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!


ï

a (x)
Ox · y + tv(x)

òï
Ox · δx
Ox · δy

ò 
with a′(x) = Ox, where prime denote derivation with respect to the sole argument. By

integrating, one has for (x1, x2) ∈ E2

38



d (x1, x2) =

∫ a(x2)

a(x1)
∥dx∥g dx

=

∫ x2

x1

∥Ox · dx∥g dx

=

∫ x2

x1

∥dx∥g dx

= d (x1, x2)
where d is the euclidean distance. This means that a is an isometry of E and, using standard
results of the Euclidean geometry, a(x) = R · x+ t or, in other words, Ox = R constant. Using

lemma 4.4 with (Ta)∗ γ = γ one has (Ta)vh = 0. That is,
∂R · y + tv(x)

∂x
= 0. This means

∂tv(x)

∂x
= 0. A therefore takes the following form:

A : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!


ï
R · x+ t
R · y + tv

òï
R · δx
R · δy

ò 
According to lemma 4.2, this implies A ∈ TGal. Reciprocally, the form stated in lemma 4.2
describes a fully invertible element of PA (TE ,TE) which always verifies A∗γ = (Ta)∗ γ = γ
and A∗g = g thus proving the equality.

□

4.3 Orbital invariants of TGal

Let B πB−! B be an affine bundle. The set TGal of generalised Galilean transformations is a group for
the composition, acting on Conf (TB,TE) ⊂ PA (TB,TE) by composition:

TGal× Conf (TB,TE) −! Conf (TB,TE)
(O,F) 7−−! O ◦ F

The aim of this section is to characterise the orbits24 of this action TGal

⟳

Conf (TB,TE) using
a complete set of invariants. That is, functionals of F ∈ Conf (TB,TE) which are constant on the orbits.

One could characterise the orbits of F using F∗g, F∗γ and Tφ∗γ, as suggested in section 4.2, how-
ever they are quite inhomogeneous in size. Indeed, while both connections are, roughly speaking, n×3
matrices (with n = dim (B)), the pseudo-metric is significantly larger with (n + 3) × (n + 3) entries.
Before continuing, splitting G into smaller elements may improve the clarity. This is done using the
following equivalence of data:

Theorem 4.6 − Data equivalence

Let F ∈ LConf (TB,TE) be unknown. Then, the data of G = F⋆ · g ·F is equivalent to the joint
data of:

• the micro-metric Gv
v : VB −! V⋆B

• the connection Γ−Θ : B ×B TB −! TB

Furthermore:
G = Θ⋆ ·Gv

v ·Θ

In particular, given that Θ is known and dim (FB) = dim (B), the data of Gv
v is equivalent to

the data of G.

24Let F ∈ Conf (TB,TE). Then the orbit of F under the action of TGal is OrbTGal (F) =
{
O ◦ F

∣∣∣ O ∈ TGal
}
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Proof.

First, G implies Gv
v by standard restriction from TB to VB and Γ−Θ through kerG = HΓ−Θ.

For the reverse implication one has:

vΓ−Θ = Id− (Γ−Θ) · TπB
= Id−

(
F−1 · γ · F · TπB − F−1 · ϑ · F · TπB

)
= Id−

(
F−1 · γ · TπE · F− F−1 · ϑ · TπE · F

)
= Id− F−1 · (γ − ϑ) · TπE · F
= F−1 · vγ−ϑ · F

∣∣∣∣∣∣∣∣∣∣∣∣∣

vγ−ϑ = Id− (γ − ϑ) · TπE
= Id− hγ + ϑ · TπE
= vγ + ϑ · TπE

ϑ−1 · vγ−ϑ = ϑ−1 · vγ +TπE

= ι

ϑ−1 · vγ · F · vΓ−Θ

= ϑ−1 · vγ · F · F−1 · vγ−ϑ · F
= ϑ−1 · vγ · vγ−ϑ · F
= ϑ−1 · vγ−ϑ · F
= ι · F

∣∣∣∣∣∣∣∣∣∣∣∣∣

v⋆Γ−Θ ·Gv
v · vΓ−Θ

= [· · · ]⋆ · g ·
[
ϑ−1 · vγ · F · vΓ−Θ

]
= F⋆ · ι⋆ · g · ι · F
= F⋆ · g · F
= G

And one sees that the term v⋆Γ−Θ ·Gv
v · vΓ−Θ only involves Gv

v, Γ−Θ and TπB.

For the second part, one has:
Θ⋆ ·Gv

v ·Θ =
[
F
⋆ · ϑ⋆ · Fv

v
−1⋆

]
·
î
Fv
v
⋆ · gvv · Fv

v

ó
·
î
Fv
v
−1 · ϑ · F

ó
= F

⋆ · ϑ⋆ · gvv · ϑ · F

=
î
F
⋆ · ϑ⋆

ó
·
î
v⋆γ · ϑ−1⋆

ó
· g ·

[
ϑ−1 · vγ

]
·
[
ϑ · F

]
= F

⋆ · g · F
= G

Meaning that Θ ∈ Iso
(
G,Gv

v

)
is an isometry. And allows to acquire G from Gv

v, and vis-versa
if Θ is invertible (which is the case iff dim (FB) = dim (B)).

□

Let F ∈ Conf (TB,TE) and F′ ∈ Conf (TB,TE) be two, possibly distinct, placement maps (beware
that primes are not derivatives). Let F̂ := F′ · F−1 : Im (F) −! TE and let φ, φ′ and φ̂ be their
respective punctual shadows. Then, F̂ ∈ PA (TE ,TE). Furthermore, one has:

OrbTGal (F) = OrbTGal

(
F′) ⇐⇒ ∃A ∈ TGal, F′ = A · F

⇐⇒ ∃A ∈ TGal, F′ · F−1 = AIm(F)

⇐⇒ F̂ ∈ TGal |Im(F)

where TGal |S :=
{
A |S

∣∣∣ A ∈ TGal
}

. Using the fact that the pull-back is a group action − that

is, (A1 ◦A2)
∗ κ = A∗

1 (A
∗
2κ) − one obtains that pulling back by F̂ preserves a tensor if and only if

pulling back by F and F′ gives the same new tensor.

These two observations, along with earlier results, are the ingredients allowing us to prove the main
result of this paper:
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Theorem 4.7 − Orbital invariants of TGal

⟳

Conf (TB,TE)

Let B πB−! B be an affine bundle, TGal be the generalised first-order Galilean group on E acting
on the left of Conf (TB,TE) and S++

v (B) be the set of micro-metricsa on B.

Let I be the following application:b

I : Conf (TB,TE) −! S++
v (B)× Con (B)× Con (B)× Sold (B)

F 7−−! I (F) = ( F∗gvv, F∗ϑ, F∗γ, Tφ∗γ)
= ( Tφ∗gvv, Tφ∗ϑ, F∗γ, Tφ∗γ)

The application I is constant on the orbits of the action TGal
⟳

Conf (TB,TE) and provides,
using the fundamental theorem on homomorphisms, the following bijection:

Conf (TB,TE)⧸TGal ↪
I

−−−−!! Im (I)

In other words, I is complete, meaning it characterises the orbits:

∀ (F1,F2) ∈ Conf (TB,TE)2 , OrbTGal (F1) = OrbTGal (F2) ⇐⇒ I (F1) = I (F2)

The four elements F∗gvv, F
∗γ, Tφ∗γ and F∗ϑ will be called the principal tensorial invariants.

I will be called principal tensorial invariants quadruplet or, by metonymy, simply principal
tensorial invariants.

aThe data of M ∈ S++
v (B) is the smooth data of a metric MX ∈ S++ (BX) on BX for each X ∈ B. In

particular, locally, S++
v (B) looks like Smooth

(
B,S++ (FB)

)
.

bRecall the notation F∗gvv = Fv
v
∗
gvv = Fv

v
⋆ · gvv · Fv

v = Gv
v.

Proof.

First, one has:
F∗gvv = Fv

v
∗
gvv

= (Tφ)vv
∗
gvv

= Tφ∗gvv

∣∣∣∣∣∣∣∣
F∗ϑ = Fv

v
∗
ϑ

= (Tφ)vv
∗
ϑ

= Tφ∗ϑ

Secondly, the first result of the theorem is implied by the last one through the funda-
mental theorem on homomorphisms. Therefore, only the later needs to be proven. Let F
and F′ be two elements of Conf (TB,TE) and F̂ = F′ · F−1 : Im (F) −! Im (F′). Let
κ : E ×E TE ∋ (x,u) 7−! κx · u ∈ TE be smooth, then:

F̂∗κ = κ |Im(F)
⇐⇒ ∀x ∈ Im (F) ,

Ä
F̂x

ä−1
· κφ̂(x) · F̂x = κx

⇐⇒ ∀X ∈ B,
Ä
F̂φ(X)

ä−1
· κφ̂(φ(X)) · F̂φ(X) = κφ(X)

⇐⇒ ∀X ∈ B, FX · F′
X

−1 · κφ′(X) · F
′
X · FX

−1
= κφ(X)

⇐⇒ ∀X ∈ B, F′
X

−1 · κφ′(X) · F
′
X = FX

−1 · κφ(X) · FX

⇐⇒ ∀X ∈ B, F′∗κ = F∗κ

By setting κ = γ then κ = ϑ and by noticing that the formula remains true in the particular
F = Tφ and F′ = Tφ′ cases

Ä
and accordingly F̂ = Tφ̂

ä
, one gets:

F̂∗γ = γ ⇐⇒ F∗γ = F′∗γ

F̂∗ϑ = ϑ ⇐⇒ F∗ϑ = F′∗ϑ

∣∣∣∣∣ Tφ̂∗γ = γ ⇐⇒ Tφ∗γ = Tφ′∗γ

Tφ̂∗ϑ = ϑ ⇐⇒ Tφ∗ϑ = Tφ′∗ϑ

Furthermore, the pull-back operation is also a group action on metrics:

41



F̂∗gvv = gvv ⇐⇒ ∀x ∈ E , F̂v
v
∣∣∣⋆
x

· gv
v
∣∣
φ̂(x)

· F̂v
v
∣∣∣
x

= gv
v
∣∣
x

⇐⇒ ∀X ∈ B, F̂v
v
∣∣∣⋆
φ(X)

· gv
v
∣∣
φ̂(φ(X))

· F̂v
v
∣∣∣
φ(X)

= gv
v
∣∣
φ(X)

⇐⇒ ∀X ∈ B,
Ä
Fv
v
−1ä⋆ · F′v

v

⋆
· gv

v · F′v
v · Fv

v
−1

= gv
v
∣∣
φ(X)

⇐⇒ ∀X ∈ B, F′v
v
∣∣∣⋆
φ(X)

· gv
v
∣∣
φ′(X)

· F′v
v
∣∣∣
φ(X)

= Fv
v
∣∣⋆
φ(X)

· gv
v
∣∣
φ(X)

· Fv
v
∣∣
φ(X)

⇐⇒ ∀X ∈ B, F′v
v

∗
gvv = Fv

v
∗
gvv

Noticing that F̂ ∈ PA (TE ,TE) and that F̂ and φ̂ are invertible, one obtains the following
chain of equivalences:

OrbTGal (F) = OrbTGal

(
F′)

⇐⇒ F̂ ∈ TGal |Im(F)

⇐⇒
Ä
F̂∗g, F̂∗γ, Tφ̂∗γ

ä
= (g, γ, γ) (section 4.2)

⇐⇒
ÄÄ

F̂∗gvv, F̂∗γ − F̂∗ϑ
ä
, F̂∗γ, Tφ̂∗γ

ä
=
ÄÄ

gvv, γ − ϑ
ä
, γ, γ

ä
(theorem 4.6)

⇐⇒
Ä
F̂∗gvv, F̂∗ϑ, F̂∗γ, Tφ̂∗γ

ä
=
Ä
gvv, ϑ, γ, γ

ä
⇐⇒

Ä
F∗gvv, F∗ϑ, F∗γ, Tφ∗γ

ä
=
Ä
F′∗gvv, F′∗ϑ, F′∗γ, Tφ′∗γ

ä
⇐⇒ I (F) = I

(
F′)

□

Technically, the term "tensorial" is abusive as F∗γ and Tφ∗γ are connections and hence not tensors.
However, the difference of two connections is a tensor. One can therefore replace I by I − Iref , where
Iref is the value of the invariants in a reference placement map Fref , and obtain tensors. This means
that, in practice, a reference placement map is required. However, in order to keep the discussion clear,
this reference placement map will be omitted and I used instead of I− Iref . For lack of a better word,
the term "tensorial" shall be used, albeit abusively.

Remark 4.8: From the result of theorem 4.6, one has that the data of the Cauchy-Green
G : TB −! T⋆B is contained in the data of Gv

v : VB −! V⋆B (and hence also in G). It is
therefore obtainable from the principal invariants of theorem 4.7.

5 Discussions

5.1 On the values taken by I

As stated in theorem 4.7, the principal invariants quadruplet I is complete, meaning it characterises
the orbits. However, another important property for a set of invariants is whether or not the given
choice is optimal, in the sense that no invariant is redundant. When such a property is verified, one
says that the set is minimal. In the given case, the quadruplet is actually strongly minimal. That is,
removing an invariant adds ambiguity not only to (at least) two orbits, but to all of them:
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Lemma 5.1: Let I ≡ (I1, I2, I3, I4) be the principal tensorial invariants quadruplet. Then I is
strongly minimal. That is, a given triplet of principal invariants characterises no orbit:

∀σ ∈ S4, ∀F ∈ Conf (TB,TE) , ∃F′ ∈ Conf (TB,TE) ,(
Iσ(1) (F) , Iσ(2) (F) , Iσ(3) (F)

)
=

(
Iσ(1)

(
F′) , Iσ(2)

(
F′) , Iσ(3)

(
F′))

and Iσ(4) (F) ̸= Iσ(4)
(
F′)

Proof page 51

Although this result may seem to close the subject of minimality, it does not as it treats tensors
as indivisible blocks. Those tensors however may be split into smaller invariants, for example scalar
ones. This results says nothing about the minimality of such a set of smaller invariants. That is, even
though the principal tensorial invariants are not redundant, they may "overlap" and have common
sub-invariants. In particular, choosing the value of some of the principal tensorial invariants may re-
strict the set of possible values of the others.

This discussion relates to the fact that I is not surjective. In fact, determining Im (I) is a hard
problem. The first major issue lies not in the linear part, but in its relation with the punctual transfor-
mation. Indeed, in definition 3.4 one requires F = Tφ and Fv

v = (Tφ)vv. These equations yield several
scalar integrability conditions of the form curl = 0

(
one per line of the matrices F and Fv

v

)
along

with Schwarz-like compatibility conditions, which make determining the set Im (I) a tedious problem.
Lastly, the second major issue comes from the additional requirements in definition 3.6 requiring F
and φ to be differential embeddings. The interested reader may refer to the similar work of Le and
Stumpf [10], where the curvature-free case for the F = Fe · Fp model − where the invariants are the
elastic metric and the torsion of the connection − has been done in the settings of large transformations.

A heuristic approach using degrees of freedom may yield useful insight on the problem. Setting
n = dim(B) and fixing X0 ∈ B and x0 = φ(X0) ∈ E , the degrees of freedom of I(F) and OrbTGal (F)
verify (due to I being injective):

ν (OrbTGal (F)) = ν (I(F)) ≤ ν
Ä
Gv

v

ä
+ ν (Γ) + ν (Tφ∗γ) + ν (Θ)

ν (OrbTGal (F)) = ν (F)− ν (TxGal)

= ν
Ä
Fh
h

ä
+ ν
Ä
Fv
h

ä
+ ν
Ä
Fv
v

ä
+ ν
Ä
Tφv

h

ä
− ν (O(3))

= 3× n+ 3× n+ 3× 3 + 3× n− 3 for X0 and x0 fixed
= 9n+ 6

ν
Ä
Gv

v

ä
+ ν (Γ) + ν (Tφ∗γ) + ν (Θ)

=
3× (3 + 1)

2
+ 3× n+ 3× n+ 3× n for X0 fixed

= 6 + 9n

The difference being zero, one heuristically has that, when X0 and x0 are fixed, the invariant can be
considered independent. However, when considering the degrees of freedom for a varying X ∈ B and
x = φ(X) ∈ E , compatibility conditions arise as stated above. This means that the block of which F
is composed are not independent fields, meaning ν (OrbTGal (F)) is lower that this heuristic suggests.
Since I is a bijection, this means the different invariants must also have compatibility conditions,
in turn reducing ν (I(F)). Beware that these heuristics only give an initial idea in order to help
visualise the issue. Nevertheless, all this discussion seems to converge to the statement that frame
invariance is probably expressible in term of smaller, less interdependent, invariants. A recent work of
Tamarasselvame and Rakotomanana [33, p. 313] goes in that direction. By carefully using the related
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notion of form-invariance, they were able to determine that a form-invariant Lagrangian depending on
a metric and a (compatible) connection must be expressible as a functional of the metric, torsion and
curvature alone.

5.2 On the dependencies on the invariants

As stated in section 4, we are interested in frame invariant functions of the placement map, which will
be the properties of the material:

Definition 5.2 − Frame invariant function

Let S be a set. A function ω : Conf (TB,TE) −! S is said to be frame invariant if and only if:

∀F ∈ Conf (TB,TE) , ∀O ∈ TGal, ω (F) = ω (O ◦ F)

The set S is voluntarily generic and may take any mathematical form. In practice, however, it will
most often be the set of reals (e.g. ω gives the total energy, the mass, the volume, etc.), scalar fields
(e.g. ω gives the energy field, the local dilatation, etc.) or tensor fields (e.g. ω gives the curvature or
torsion fields). Notice that, by construction, I is frame invariant with S ⊃ Im (I). In fact, as a direct
corollary of theorem 4.7, one has the following result:

Lemma 5.3: Let S be a set and ω : Conf (TB,TE) −! S. Then, ω is frame invariant if and
only if there exists a (unique) ω̂ : Im (I) −! S such that:

ω = ω̂ ◦ I

Well-defined material properties are, as discussed in section 4, exactly those frame invariant func-
tions. The last results then states that being frame invariant is equivalent to depending on I. However,
a property rarely depends on all four invariants. One can then wonders if the dependency on a given
subset of I can be reformulated in term of a certain invariance. This question relates to the meaning
of each of the four principal invariants.

Two of the four components of I are connections: F∗γ and Tφ∗γ. One may therefore wonder
how exactly those two differ. This can be done by analysing what it means for a property to depend
explicitly one one and not the other. First, having a dependency on F∗γ which can be simplified out,
relates to the notion of holonomic dependency:

Definition 5.4 − Holonomic dependency

Let S be a set. A function ω : Conf (TB,TE) −! S is said to have a purely holonomic depen-
dency if and only if:

∀F ∈ Conf (TB,TE) , ω (F) = ω (Tφ)

where φ : B −! E implicitly refers to the shadow of F for the punctual projections.

Lemma 5.5: A function ω : Conf (TB,TE) −! S has a purely holonomic dependency if and
only if there exists a (unique) ω̂holo such that:

∀F ∈ Conf (TB,TE) , ω(F) = ω̂holo

Ä
Tφ∗gvv, Tφ∗ϑ, Tφ∗γ

ä
One can interpret this results as stating that the dependency of ω in F∗γ can be simplified iff ω is

blind towards the non-holonomy of F. Or, in other words, that F∗γ captures this non-holonomy. One
the other hand, one has that having a dependency in Tφ∗γ which can be simplified out, relates to the
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notion of vectorial dependency:

Definition 5.6 − Mat operator and vectoriality

Let Fref ∈ Conf (TB,TE) be a chosen placement with punctual shadow φref : B −! E . Let
F ∈ Conf (TB,TE). The matrix of F in the reference Fref at X ∈ B, denoted MatFref (F) |X ,

is the matrix of FX ·
(
Fref

)−1

φref(X)
in the holonomic frames on Tφref(X)E and Tφ(X)E . Or, in a

more concise way:

MatFref : Conf (TB,TE) −! Smooth
(
B,GLdim(B)(R)

)
F 7−−! X 7! Matholo

(
FX ·

Ä
Fref
ä−1

φref(X)

)

Let S be a set. An application ω : Conf (TB,TE) −! S is said to have a purely vectorial depen-
dency if and only if there exist ωvec : Smooth

(
B,GLdim(B)(R)

)
−! S and Fref ∈ Conf (TB,TE)

such that ω = ωvec ◦MatFref .

Lemma 5.7: Let S be a set. An application ω : Conf (TB,TE) −! S has a purely vectorial
dependency if and only if there exists a (unique) ω̂vec such that:

∀F ∈ Conf (TB,TE) , ω(F) = ω̂vec

Ä
F∗gvv, F∗γ, F∗ϑ

ä
Proof page 52

The proof of lemma 5.7 is relatively tedious but mostly relies on the polar decomposition and its
inverse. Notice that the reference placement map Fref does not appear explicitly. One can interpret
lemma 5.7 as saying that Tφ∗γ encodes the data of the holonomic coupling (Tφ)vh not present in the
vectorial part of F.

Regarding the role of the last invariants Gv
v = F∗gvv and Θ = F∗ϑ, the proof of lemma 5.1 can be

extended to prove that:

• the dependency in Gv
v can be simplified out, iff the functional is invariant under arbitrary syn-

chronous uniform transformations
ï
A 0
0 A

ò
∈ TAff (E , E) of TE (with A ∈ GL(3) uniform on

E).

• the dependency in Θ can be simplified out, iff the functional is invariant under arbitrary asyn-

chronous uniform micro-metric-preserving transformations
ï
A 0
0 R

ò
∈ TAff (E , E) of TE (with

A ∈ GL(3) and R ∈ O(3) uniform.).

The energy of a system is a well-defined property of the later; hence, it is frame invariant. Choosing
the nature of a material (gaz, sand, fluid, solid, micromorphic media, etc) relates to choosing a subset
of the set of principal invariants, or of their sub-invariants. Then, choosing a constitutive equation
(rubber, metal, stone, etc.) relates to choosing the dependency of the energy on those invariants.
This, along with the earlier discussion of this section, is to be compared with Zheng [34], in which
a correspondence is established between group of symmetries of a (classical) system and the set of
invariants on which the energy can depend.

5.3 On the micro-linear case

Of particular interest is the special case of micro-linear materials, which are materials where the micro-
spaces have a linear structure. That is, micro-linear materials are vector bundles. In such a case,
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one requires the physically acceptable maps to preserve that linear structure, leading to the notion of
micro-linear maps, as detailed in the following definition:

Definition 5.8 − Micro-linear maps

Let A πA−−! A and D πD−−! D be two vector bundles. A map L ∈ PA (TA,TD) is said to be
micro-linear if and only if:

• the punctual shadow ℓ : A −! D of L is linear.

ℓ ∈ L (A,D)

• for all u ∈ TaA and every trivialising affine frame on TA and TD, the vectorial coordinate
of La · u ∈ Tℓ(a)D is linear in the vertical coordinate of a ∈ A

The set of micro-linear elements of PA (TA,TD) are denoted:

LPA (TA,TD) ⊂ PA (TA,TD)

Le B πB−! B be a material bundle. One has the following notations:

Confholo (TB,TE) :=Conf (TB,TE) ∩ TAff (B, E)
LConf (TB,TE) :=Conf (TB,TE) ∩ LPA (TB,TE)

Where the last notation is only defined when B πB−! B is a vector bundle. That is, when the
material has a linear micro-structure.

Physically, the micro-linearity can be interpreted as stating that each microscopic space has a point
(e.g. its center of mass) which is preserved by the placement. This assumption has been used in the
fundamental works of Eringen and Suhubi, Mindlin, Toupin [15]–[19]. In (linear trivialising) coordi-

nates, being micro-linear means that, setting


ï
x
y

òï
δx
δy

ò = F ·


ï
X
Y

òï
δX
δY

ò, one has that y and δy are linear

in Y (instead of affine) while x and δx are still blind towards it.

The micro-linearity of the placement map F ∈ LPA (TB,TE) has a noticeable impact on the in-
variants. First, one has that the connection Γ := F∗γ := F−1 · γφ ·F is linear. Furthermore, the solder
form Θ := F∗ϑ := Fv

v
−1 · ϑ · F is constant in the vertical punctual coordinate (this is true for any

F ∈ Conf (TB,TE)). Indeed, coordinate-wise one has:

Γ : B ×B TB −! TB
ï
X
Y

òï
X

δX

ò 7−−!



ï
X
Y

ò
 δX

Fv
v
−1 ∣∣∣

X

· Fv
h
∣∣ïX
Y

ò · δX



Θ : B ×B TB −! TB
ï
X
Y

òï
X

δX

ò 7−−!


ï
X
Y

ò
 0

Fv
v
−1 ∣∣∣

X

· Fh
h
∣∣
X
· δX




where, since F ∈ PA (TB,TE), Fh
h and Fv

v are blind towards Y and, by assumption, Fv
h is linear

in Y . This means that Γ and Θ are respectively the linear and constant part of the affine connection
Γ − Θ and can, in particular, canonically be obtained from it. From theorem 4.6 one has that G is
equivalent to

(
Gv

v,Γ−Θ
)
. In the case of micro-linear placement maps, one therefore has the following

corollary:
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Corollary 5.9 − Data equivalence (micro-linear case)

Let F ∈ LConf (TB,TE) be unknown. Then, the data of G = F⋆ · g ·F is equivalent to the joint
data of:

• the micro-metric Gv
v : VB −! V⋆B

• the connection Γ : B ×B TB −! TB

• the solder form Θ : B ×B TB −! VB

The second major impact concerns the material holonomic connection Tφ∗γ. Indeed, looking at the
proof of theorem 4.5, one realises that the condition Ta∗γ = γ was only used to ensure the homogeneity
of the punctual microscopic translation tv. However, by definition, this very translation is zero when
the map is micro-linear. As a direct consequence, one has the following corollary:

Corollary 5.10 − TGal ∩ LPA (TE ,TE) as the intersection of stabilisers

The first-order micro-linear Galilean group can be given by the following equations:

TGal ∩ LPA (TE ,TE) =
ß
A ∈ LPA (TE ,TE)

∣∣∣∣ A inversible, a inversible,
A∗g = g

™
where a : E −! E implicitly refers to the punctual shadow of A in L (TE ,TE).

Proof.

From theorem 4.5, one has A∗g = g, A∗γ = γ and Ta∗γ = γ. From the discussion above, one
has that, for A ∈ LPA (TE ,TE), the later is immediate and, since A∗γ is canonically obtainable
from A∗g, A∗g = g implies A∗γ = γ.

□

By combining those two corollaries, one obtains the following crucial corollary:

Corollary 5.11 − Tensorial invariants (micro-linear case)

Let B πB−! B be a vector bundle. Let S+ (B) be the set of pseudo-metrics on B and let G be
the following application:

G : LConf (TB,TE) −! S+ (B)
F 7−−! G (F) = F∗g

= Tφ∗g

The application G is constant on the orbits of the action TGal

⟳

LConf (TB,TE) and provides,
using the fundamental theorem on homomorphisms, the following bijection:

LConf (TB,TE)⧸TGal ↪
G

−−−−!! Im (G)

In other words, G is complete, meaning it characterises the orbits:

∀ (F1,F2) ∈ LConf (TB,TE)2, OrbTGal (F1) = OrbTGal (F2) ⇐⇒ G (F1) = G (F2)

Proof.

First, one must notice that TGal does not send LConf (TB,TE) into LConf (TB,TE) but rather
into Conf (TB,TE). The notation LConf (TB,TE)⧸TGal therefore needs to be specified as it
does not correspond to a group action any-more. As before, one defines it as

LConf (TB,TE)⧸TGal =
{
OrbTGal (F)

∣∣∣ F ∈ LConf (TB,TE)
}
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The orbit can then be generalised in two ways:

OrbTGal (F)v1 =
{
O · F

∣∣∣ O ∈ TGal
}

or OrbTGal (F)v2 = OrbTGal (F)v1 ∩ LConf (TB,TE)

This leads to two equivalent definition of the quotient, in the sense that there is a natural
bijection between the two. Furthermore, if F1 = O · F2 with O ∈ TGal and (F1,F2) ∈
LConf (TB,TE) then O = F1 · F−1

2 ∈ LPA (TE ,TE). This implies that one has:

LConf (TB,TE)⧸TGal =
LConf (TB,TE)⧸TGal ∩ LPA (TE ,TE)

The proof then follows the same sketch as the proof of theorem 4.7:
OrbTGal (F1) = OrbTGal (F2)

⇐⇒ OrbTGal∩LPA(TB,TE) (F1) = OrbTGal∩LPA(TB,TE) (F2)

⇐⇒ F̂ := F1 · F−1
2 ∈ TGal ∩ LPA (TB,TE)

⇐⇒ F̂∗g = g

⇐⇒ F∗
1g = F∗

2g

□

This means that any frame-invariant functional and, in particular, any energy formulated in a
micro-linear model can be expressed as a functional of the pseudo-metric G : TB −! T⋆B. Equiv-
alently (corollary 5.9), it can be expressed as a functional of the three invariants of the micro-linear
case

(
Gv

v,Θ,Γ
)
. This result should be compared with its classical analogue stating that all classical

energies are functionals of the Cauchy-Green tensor G : TB −! T⋆B [27, pp. 275, 283].

Using the vocabulary of the previous sub-section, one notices that the result implies that every
frame-invariant functional of the micro-linear placement map has a purely vectorial dependency. Note
that, contrary to the holonomic case, the converse is false as having a purely vectorial dependency does
not mean one is expressible as a functional of the micro-linear part. This is because the translational
part of the coupling Fv

h may have some contribution. Beware that the fact that the holonomic con-
nection Tφ∗γ is not a principal invariant in the micro-linear case does not mean it does not contribute
nor that it is equal to Γ = F∗γ. That being said, it does mean that Tφ∗γ will be a functional of the
other three invariants

(
Gv

v,Θ,Γ
)
.

As mentioned above, the micro-linear assumption is built-in the models of Eringen and Suhubi,
Mindlin, Toupin [15]–[19]. As an example, the principal invariants

(
Gv

v,Θ,Γ
)

can be compared to the
“set of strain measures” obtained in [16, p. 15]. By carefully matching the definitions, one can see that
the three strain measures are as follows:

• the “deformation tensor”, which [16] denoted C, is

Θ · TπB : TB −! VB

• the “micro-deformation tensor”, which [16] denoted C, is

Gv
v : VB −! V⋆B

• the “wryness tensor”, which [16] denoted Γ, is

hΓref
− hΓ = Fv

v
−1 · Fv

h : TB −! VB

One notices that theses “strain measures” are therefore equivalent to the three principal tensorial
invariants of the micro-linear case. However, in [16], the placement map is also holonomic, i.e. F = Tφ.
As a direct consequence, F∗γ = Tφ∗γ. When generalising the results to the entire set Conf (TB,TE),
the two connections start to differ and the dependency in (F∗γ,Tφ∗γ) may take a lot of different forms.

48



Based on the previous section, one sees that, among all the possible dependencies on I, the general-
isation may in particular be: purely vectorial ( i.e. using F∗γ as written above), purely holonomic
( i.e. using Tφ∗γ as the connection) or have a generic mixed dependency. Depending on the case, the
material will be different. In particular, the second case will always render the functional blind to any
curvature of the placement map ( i.e. disclinations of the material).

As described in the introduction of this paper, several other models exist, to which this paper can
also be partially compared, albeit in a less direct manner. Among those, some kept B as the base space
but weakened the regularity of φ. As an example [35] used a weakly-continuous map, allowing some
discontinuities, while [36] used a multi-valued map, an alternative interpretation of the non-holonomy25

of F. Another approach is to make extensive use of germ theory and group theory, as in [37].

6 Conclusion

In this paper, a generalised notion of continuum media has been introduced along with a notion of
placement map. On the ambient space E πE−! E, a generalisation TGal of the classical Galilean group
TGal has been constructed. From the invariance of this group and some physical assumption on the
material, a set of tensorial invariants has been computed. The result is a model which is:

• entirely governed by its first-order placement map F, with no other hidden degree of freedom.

• non-holonomic ( i.e. F ̸= Tφ in general), hence potentially displaying curvature.

• geometrically exact, to be understand as in [38], [39]. This means that no approximation have
been done once the mathematical definitions are given.

• valid in small and large transformations, as a direct consequence of the geometrical exactness.

• valid for solids, fluids and gases as B and F are left as generic as possible.

• valid for any macroscopic dimension and multiple structures. In particular, beams and rings can
be model by setting dim (B) = 1; while plates, membranes and shells would have dim (B) = 2.

Furthermore, the nomenclature defined in this papers allows for a rigorous numerical implementa-
tion which is:

• strongly typed. Points belong to a given space, functions maps a given space to another, com-
position of function is only valid if the spaces are the same, etc.

• straightforward. Once a given coordinate system is fixed, everything can be implemented in term
of field of matrices over a real domain and, most of the time, computations can be made at a
fixed point; hence, no advanced system is required as would be the case for group theory, germ
theory or even multi-valued functions.

• fast. Since most of the computation are linear algebra, computations are usually as fast as would
their classical, purely macroscopic, counterpart be.

Having exhaustively described our model, future work may focus, among other things, on specifying
the energy and computing the statical equilibrium states for some particular materials; establishing
more (partial) correspondences with other models or adding time to the model and studying its dy-
namics.

25One can obtain such a multi-valued map using the parallel transport of Γ. When F = Tφ this yields φ, but is
multivalued otherwise.
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Proofs

Proof of lemma 5.1 page 43:
In each case, F′ shall be expressed as A◦F with A ∈ PA (TE ,TE) a differential embedding (see
definition 3.6) with punctual shadow a : E −! E a differential embedding too. This means that
F′ = A ◦ F will automatically be an element of Conf (TB,TE). There are four distinct cases,
depending on the choice of σ(4):

• if Iσ(4) = F
∗
gvv then a uniform total dilation by λ ∈ R∗

+ suffices:

A : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!


ï
λ · x
λ · y

òï
λ · δx
λ · δy

ò
Indeed, one then has:

F′∗gvv =
Ä
λ · Fv

v

ä⋆
· gvv ·

Ä
λ · Fv

v

ä
= λ2 · Fv

v
⋆ · gvv · Fv

v

= λ2 · F∗gvv

F′∗ϑ = (λ · F)−1 · ϑ ·
(
λ · F

)
= F−1 · ϑ · F
= F∗ϑ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F′∗γ = (λ · F)−1 · γ ·
(
λ · F

)
= F−1 · γ · F
= F∗γ

Tφ′∗γ = (λ · Tφ)−1 · γ · (λ · Tφ)
= Tφ−1 · γ · Tφ
= Tφ∗γ

• if Iσ(4) = F∗ϑ then a purely macroscopic non-trivial rotation R ∈ O(3) suffices:

A : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!


ï
R · x
y

òï
R · δx
δy

ò
Indeed, one then has:

F′∗gvv = F′v
v

⋆
· gvv · F′v

v

= Fv
v
⋆ · gvv · Fv

v

= F∗gvv

F′∗ϑ = Fv
v
−1 · ϑ ·R · F

̸= F−1 · ϑ · F
̸= F∗ϑ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F′∗γ =
[
Id− F′v

v

−1
· F′v

h

]
· Γref

=
î
Id− Fv

v
−1 · Fv

h

ó
· Γref

= F∗γ

Tφ′∗γ =
[
Id−

(
Tφ′)v

v

−1
· Tφ′v

h

]
· Γref

=
[
Id− (Tφ)vv

−1 · Tφv
h

]
· Γref

= Tφ∗γ

• if Iσ(4) = F∗γ then one can choose F′v
h freely as it does not appear in F′∗g, F′∗ϑ nor

Tφ′∗γ. For example, setting F′v
h = Fv

v ·R for R ∈ O(3) and keeping everything else the
same suffices. Indeed, it yields F′∗γ = (Id−R) ·Γref which cannot be equal to F∗γ for all
R. One can verify that the F′ defined this way is still in Conf (TB,TE).

• if Iσ(4) = Tφ′∗γ then a total transformation obtained from a non-uniform (differential of
a) microscopic translation tv suffices:
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A : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!


ï

x
y + tv(x)

ò
 δx
∂tv(x)

∂x
· δx+ δy




Indeed, only Tφ′v
h is change and, similarly to the case of F∗γ, this term does not appear

in the formulae of F′∗g, F′∗ϑ and F′∗γ. For Tφ′v
h one has:

Tφ′∗γ =
[
Id− Tφ′v

v

−1
· Tφ′v

h

]
· Γref

=
î
Id− Tφv

v
−1 · Tavv

−1 ·
î
Tavh · Tφh

h +Tavv · Tφv
h

óó
· Γref

=

ñ
Id− Tφv

v
−1 · ∂t

v(x)

∂x
· Tφh

h − Tφv
v
−1 · Tφv

h

ô
· Γref

= Tφ∗γ − Tφv
v
−1 · ∂t

v(x)

∂x
· Tφh

h · Γref

which differs from Tφ∗γ as soon as tv is non-uniform.

□

Statement page 43

Proof of lemma 5.7 page 45:
The first result comes directly from theorem 4.7 and the fundamental theorem on homomor-
phisms. For the second result, fixing X ∈ B and committing it for brevity, let

MatFref (F) :=

ï
MatFref

(
Fh
h

)
0

MatFref

(
Fv
h

)
MatFref

(
Fv
v

)ò
then

MatFref

Ä
F∗gvv

ä
= MatFref

Ä
Fv
v

ät
·MatFref

Ä
Fv
v

ä
is invertible. Let Q · U be the polar decomposition of MatFref

(
Fv
v

)
, where Q ∈ O3(R) and

U ∈ Sn++(R). Then

U :=
»
MatFref

(
F∗gvv

)
= Q−1 ·MatFref

Ä
Fv
v

ä
= MatFref

Ä
(A · F)vv

ä
∣∣∣∣∣∣∣∣∣∣

A : TE −! TE
ï
x
y

òï
δx
δy

ò 7−−!


ï
Q−1 · x+ t
Q−1 · y + tv

òï
Q−1 · δx
Q−1 · δy

ò 
where A ∈ TGal and the values of t and tv are not important. One can then set:

MatFref

(
AF

)
= MatFref

(
A · ϑ−1 · ϑ · F

)
= MatFref

(
ϑ−1 ·A · ϑ · F

)
= MatFref

Ä
ϑ−1 ·A · Fv

v · F∗ϑ
ä

= Matholo
(
ϑ−1

)
·Matholo

Ä
A · Fv

v

ä
·MatFref (F∗ϑ)

= Matholo
(
ϑ−1

)
·MatFref

Ä
A · Fv

v

ä
·MatFref

Ä
Fref · F∗ϑ

ä
MatFref

Ä
(A · F)vh

ä
= MatFref

Ä
A · Fv

v · Fv
v
−1 · Fv

h

ä
= MatFref

Ä
A · Fv

v · (hΓref
− hF∗γ)

ä
= Matholo

Ä
A · Fv

v

ä
·MatFref (hΓref

− hF∗γ)

= MatFref

Ä
A · Fv

v

ä
·MatFref

Ä
Fref · (hΓref

− hF∗γ)
ä
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Where ϑ−1
x ·A = A · ϑ−1

x − true for any A ∈ TGal − has been used. This defines uniquely
MatFref (A · F) in term of Fref , ϑ, Γref , F∗gvv, F

∗γ and F∗ϑ. Using the fact that the first three
are given, one has an application

υ :
Ä
F∗gvv,F

∗γ,F∗ϑ
ä
7! MatFref (A · F)

One then sets ω̂Mat = ωMat ◦ υ, which is well defined since A ∈ TGal and α is supposed to be
invariant under TGal

⟳

Conf (TB,TE).

Reciprocally, if such a map ωMat exists then one needs to construct

η : MatFref (F) 7!
Ä
F∗gvv,F

∗γ,F∗ϑ
ä

First, let:
Matholo

(
gvv

ref
)
:= MatFref

Ä
Fv
v

ät
·Matholo

Ä
gvv
ä
·MatFref

Ä
Fv
v

ä
:= Matholo

Å
Fv
v
ref−1⋆

· Fv
v
−1⋆ · gvv · Fv

v · Fv
v
ref−1

ã
Matholo

Ä
γref
ä
:= MatFref (F)−1 ·Matholo (γ) ·MatFref (F)

:= Matholo

(
Fref · F−1 · γ · F · Fref

)
Since Fref is fully known, this defines uniquely gvv

ref ∣∣∣
φref(X)

and γref ∣∣
φref(X)

. One then has

Gv
vX = Fv

v
ref⋆ · gv

v
ref ·Fv

v
ref and ΓX = F

ref−1
· γref ·Fref . Using the same process with ϑ instead

of γ one obtains ΘX . This gives η. One then concludes by setting ωMat = ω̂Mat ◦ η. Notice that
Tφ∗γ could not be obtained, since the matrix MatFref

Ä
(Tφ)vh

ä
is missing.

□

Statement page 45
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