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Abstract – Light is characterized by its electric field, yet quantum optics has revealed the im-
portance of monitoring photon-photon correlations at all orders. We here present a comparative
study of two experimental setups, composed of cold and warm Rubidium atoms, respectively,
which allow us to probe and compare photon correlations up to the fourth order. The former op-
erates in the quantum regime where spontaneous emission dominates, whereas the latter exhibits a
temperature-limited coherence time. While both setups present almost-chaotic light statistics, we
discuss how the access to different orders of photon correlations allows one to better characterize
the mechanisms responsible for deviations from those statistics.

Introduction. – Quantum mechanics was applied to
optics, with Roy J. Glauber as one of the pioneers of what
became the field of quantum optics [1]. He introduced
a deeper description of the statistics of light and a pre-
cise definition of optical coherences. Glauber’s approach
is based on the temporal and spatial correlation functions
of the light field, with a complete description of the co-
herence properties of a light source requiring the measure-
ments of these correlations at all orders. Practically, the
first orders are usually used to distinguish different types
of sources, either classical or quantum, such as thermal
sources, lasers or single photon sources.

Among the light sources sharing common statistical
properties, the most common one found in nature is prob-
ably those whose field exhibits Gaussian statistics with
zero mean. In the literature, those sources are referred
to by various names such as chaotic, thermal or Gaussian
sources. Although their statistical features are the same,
the physical processes behind them are not necessarily the
same. On the one hand, thermal source usually refers to
thermal radiation and thus light coming from a black body
in thermal equilibrium such as, to a good approximation,
the light emitted by the stars or by the heated filament
of a light bulb. On the other hand, ’chaotic’ emphasizes
the underlying randomness of the emission process at the
microscopic level, with light coming from a large num-
ber of uncorrelated emitters. Such mechanism emerges,

for instance, from collisions in a gas-discharge lamp, from
motion of disordered defects in the case of a rotating dif-
fuser (it is then also called pseudo-thermal light) [2], or
to temperature (and the subsequent Doppler broadening)
and/or spontaneous emission for the light scattered by a
disordered cloud of cold atoms [3].

The Gaussian nature of the electric field and its zero
mean can be witnessed through different kinds of mea-
surements. More specifically, the associated intensity
probability distribution follows an exponential decay,
P (I) = exp (−I/⟨I⟩)/⟨I⟩ [4], whose moments are given
by: ⟨In⟩/⟨I⟩n = n! [5]. These moments describe the tem-
poral intensity correlation function of order n ≥ 2 at zero
delay, g(n)(0), yet a thorough characterization of the light
requires examining the relation between the temporal cor-
relation function of the electric field at all orders and for
all delays, g(n)(τ).

The implementation and control of nontrivial photon
correlations is also of paramount interest in quantum
physics. Generated from highly nonlinear interactions,
their precise characterization often requires the measure-
ments of higher moments of the generated light fields [6–9].
For some quantum systems such as ultracold atoms [10],
such measurements are increasingly common, with the
broad objective of studying quantum many-body phe-
nomena. Yet systematic measurements for quantum light
sources have been precluded by the stringent experimen-
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tal requirements to observe photon correlation functions
g(n) with n > 2, typically due to the low photon flux.
In order to provide a more precise characterization of the
quantum light states generated, and of the underlying pro-
cesses, a strong effort is being realized over multiple ex-
perimental platforms to access higher-order photon corre-
lations [9, 11–13].

In this paper, we focus on the temporal coherence and
the measurement of the corresponding correlation func-
tions in two atomic setups producing near-chaotic light.
For such sources and in the stationary regime (an assump-
tion followed throughout this work), one can show that the
higher order temporal correlation functions are simply de-
termined by the light spectrum or, equivalently, by its
Fourier transform, the electric field temporal correlation
function [5]. In the following, the electric field autocor-
relation and the intensity correlation functions at differ-
ent orders are connected through the Siegert relation [14]
and its higher-order generalization in the framework of
classical theory, but one can show that quantum theory
yields the same prediction for chaotic light [15]. The
first atomic setup, operating with cold atoms, provides
access to the simultaneous measurements of field-field and
photon-photon correlation functions, allowing for their di-
rect comparison without any shot-to-shot fluctuations; the
second setup, based on a warm atomic vapor, is able to
monitor three- and four-photon correlations, thanks to a
multiplexed array of single-photon detectors. These mea-
surements allow us to discuss the validity of the Siegert
relation and its higher-order generalizations in the con-
text of these two atomic sources of near-chaotic light.

First and second order correlation functions: the
Siegert relation with cold atoms. –

First order correlation function. A traditional method
to characterize light coherence is the temporal autocorre-
lation of the complex electric field E(t):

g(1)(τ) =
⟨E⋆(t)E(t+ τ)⟩

⟨I(t)⟩
, (1)

with I(t) = E⋆(t)E(t) the intensity, and ⟨.⟩ the ensem-
ble average over a stationary process (it corresponds to
the temporal average for an ergodic system, or the ex-
pectation value for quantum processes). This autocorre-
lation is commonly measured with interferometric setups,
but other techniques exist such as spectroscopic measure-
ments, where the Fourier transform of g(1)(τ) provides the
light spectrum, or the beatnote technique. Next-order cor-
relations correspond to the (temporal) intensity autocor-
relation function, defined as:

g(2)(τ) =
⟨I(t)I(t+ τ)⟩

⟨I(t)⟩2
. (2)

The first platform presented in this paper is based on
cold atoms. Depicted in Fig. 1, it provides simultaneous
access to both autocorrelation functions. The setup has

been described in detail in Refs. [16, 17]: The scatter-
ing medium corresponds to 85Rb atoms at about 200µK
released from a magneto-optical trap. The atoms are uni-
formly illuminated by a circularly polarized laser beam at
resonance with the |3⟩ → |4′⟩ hyperfine transition of the
D2 line. The optical thickness is lower than 1, so multiple
scattering can be neglected.

Fig. 1: Experimental setup to simultaneously measure g(1)(τ)
and g(2)(τ) of the light scattered by cold atoms illuminating
by a circularly polarized laser beam. The scattered light is col-
lected by a polarization-maintaining (PM) single-mode fiber.
The light is then split to illuminate two avalanche photodi-
odes (APDs). Each photon arrival is time-tagged by a time-
to-digital converter (TDC). Finally, a local oscillator (LO),
derived from the incident laser and frequency-shifted by an
acousto-optical modulator (AOM), is injected in the second
input of the fibered beam splitter (FBS). Waveplates (QWP:
quarter waveplate, HWP: half waveplate) and polarizing beam
splitter (PBS) are used to select the polarization and to max-
imize interference contrast when the scattered light interferes
with the LO.

The scattered light is collected at an angle different from
zero from the probe beam axis using the PM fiber. The
latter is connected to a splitter, whose outputs illuminate
two single photon counter detectors, thus implementing a
standard “Hanbury Brown and Twiss” (HBT) setup [18].
The two detectors allow overcoming both their deadtime,
of the order of a few tens of nanoseconds for this setup and
which would prevent the detection of two photons by one
detector with a delay smaller than the deadtime, and the
impact of the detector afterpulsing. However, the split-
ter and the two detectors are not fundamentally required,
neither for classical light nor quantum light. Indeed, ex-
periments performed with only one detector have also re-
ported g(2)(τ) measurements revealing the quantum na-
ture of light [19]. Finally, while the arrival of each photon
is time-tagged by the TDC, the second input of the FBS is
used to inject a local oscillator (LO) derived from the in-
cident laser and frequency shifted with an acousto-optical
modulator by ωBN.
The g(1)(τ) and g(2)(τ) functions are extracted through

the measurement of the temporal correlation of the inten-
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sity of the beat note gBN
(2)(τ) between the scattered light

and the LO [20]. Thanks to the AOM, the two quan-
tities g(1)(τ) and g(2)(τ) are separated in Fourier space,
with g(2)(τ) centered around the DC value and g(1)(τ)
centered at ωBN. Then, they are separately computed
back in the temporal space, the oscillatory component at
frequency ωBN being eliminated. Fig. 2 presents an exam-
ple of the autocorrelation functions obtained with the cold
atom experiment. The atoms are illuminated at resonance
with a saturation parameter s0 ≈ 60, so the scattering
is mainly inelastic: Its spectrum exhibits the well-known
Mollow triplet [21], characterized by a carrier and two side-
bands. The beating between these spectral components
corresponds, in the time space, to Rabi oscillations. As
it can be observed in Fig. 2, the two autocorrelation func-
tions are connected by the relation g(2)(τ) = 1+ |g(1)(τ)|2
which, as we shall now see, results from the Gaussian na-
ture of the electric field.

Fig. 2: Experimental signals of 1+ |g(1)(τ)|2 and g(2)(τ) for the
light scattered by a cold atomic cloud illuminated with a laser
intensity corresponding to s0 ≈ 60. The overlap of the two
curves is a manifestation of the validity of the Siegert relation.

Connecting the field correlation functions: the Siegert
relation. Assuming a quasi-monochromatic field at opti-
cal frequency, the total radiated complex electric field can
be written as E(t) = E0(t)e

−iωt, while the complex am-
plitude E0(t) is a slowly fluctuating process. We hereafter
adopt the mathematical formalism detailed in Ref. [22],
using the complex notation: its real part ℜ[E(t)] denotes
the classical electric field, while the imaginary part ℑ[E(t)]
corresponds to the Hilbert transform of the real part [22].
The statistics of E(t) are thus completely determined by
those of ℜ[E(t)]. One can also show that the autocorre-
lations ⟨ℜ[E(t)]ℜ[E(t+ τ)]⟩ and ⟨ℑ[E(t)]ℑ[E(t+ τ)]⟩ are
equal, while the cross correlations ⟨ℜ[E(t)]ℑ[E(t+ τ)]⟩
and ⟨ℑ[E(t)]ℜ[E(t+ τ)]⟩ have opposite signs.
We now assume that the light field can be treated as a

Gaussian random process, as is the case, for example, for
light scattered by a large number of statically independent
particles. This means that ℜ[E(t)] is a Gaussian random
process as well as the imaginary part, the Gaussian statis-

tics being preserved under linear operations such as the
Hilbert transformation, and the complex electric field is
thus a complex Gaussian random process – see definition
in Ref. [23] based on the distribution characterisation of n-
fold joint probabilities. Furthermore, we assume that the
electric field amplitude has a zero mean, ⟨E0(t)⟩ = 0, and
this class of random variables is called circular complex
Gaussian variable [22]. Applying Isserlis’ theorem [24],
also known as the Wick’s probability theorem in quantum
field theory [25], the expression for intensity autocorrela-
tion (2) leads to the Siegert relation [14]:

g(2)(τ) = 1 + |g(1)(τ)|2. (3)

An additional term, |⟨E(t)E(t+τ)⟩|2/⟨I(t)⟩2, is sometimes
added, as in Ref. [6]. This term is actually equal to zero
due to the properties of the autocorrelations and cross
correlations of the real and imaginary parts of the electric
field described above [22].

The validity of this relation for the light scattered in the
cold atom setup can be appreciated in Fig. 2. The proce-
dure to extract simultaneously g(1) and g(2), and com-
pare them, is detailed in Ref. [20]. In particular, once
g(1)(τ) and g(2)(τ) are derived from gBN, g

(1)(τ) is nor-
malised to 1 at zero delay, as well as the g(2)(τ) con-
trast, g(2)(0) − g(2)(∞). While this normalization is set
for g(1)(τ) from its very definition [see Eq. (1)], it is not
the case for g(2)(τ). Indeed, already for classical fields,
g(2)(0) can reach values greater than two, going from Pois-
sonian to superbunched light [26,27]. For quantum light,
g(2)(τ) can take any value greater or equal to 0. In the
cold atom experiment, the validity of the normalisation to
2 has been checked by measuring separately the g(2)(τ)
function of the scattered light without the LO, when no
normalisation is needed [17].

This setup has been first implemented with low satura-
tion parameter [20], the Gaussian statistics of the electric
field coming from the atomic velocity distribution. The
very good overlap between the g(1)(τ) and g(2)(τ) corre-
lation functions in Fig. 2 demonstrates the validity of the
Siegert relation for large saturation parameter, where one
needs to take into account the quantum nature of the scat-
terers. Indeed, for inelastic scattering, Gaussian statis-
tics for the electric field and zero expectation value are
achieved due to the large number of cold atoms and to
the (quantum) randomness of spontaneous emission [3].
This latter effect is also responsible for the coherence time
of a few tens of nanoseconds for the scattered light, which
corresponds to the excited state lifetime. Indeed, the suffi-
ciently low temperature of the atoms allows being sensitive
to quantum aspects such as spontaneous emission, which
would otherwise be hidden for larger temperature, such as
in hot vapors.

The validity of the Siegert relation has been reported
in several scattering media such as polystyrene spheres in
aqueous suspension [28] or cold atoms [17, 20, 29]. Yet
its violation is also possible, indicating that one of the as-
sumptions underlying its derivation is not valid: either the
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Fig. 3: Schematic of the experimental setup for the measure-
ment of first- and higher-order correlations of the light scat-
tered from a warm 87Rb vapor. The scattering of a single laser
beam at 780 nm by atoms in an approximate two-level config-
uration and in the weak saturation limit results in the gener-
ation of chaotic light. The first degree of coherence |g(1)(τ)|
is evaluated by employing Michelson interferometer with vari-
ous time delays. The higher-order photon correlations g(n) for
n = 2, 3, 4 are accessed using a spatially multiplexed array of
single-photon detectors. The optical components were chosen
to guarantee the single-mode detection of chaotic light. SMF -
single mode fiber; L - lens; GT - Glan-Thomson polarizer; FP
- Fabry-Perot resonator.

mean expectation value of the electric field complex am-
plitude is non zero, and/or the statistics are not Gaussian.
This is the case when the scatterers are few in numbers, or
are correlated [29–31]. A non-zero average value can also
stem from a coherent component of the scattered field,
such as in the forward direction where interference oc-
cur. For such non-Gaussian field, higher order correlation
functions may provide access to additional information not
contained in g(2)(τ) [6].

Higher order correlations with warm atoms. –
In this section, we present the measurements of the

light coherence from a warm atom vapor, and achieve the
characterization of the photon correlation functions up
to the fourth order. Using a near-single-mode detection
scheme [32], and due to the temperature-induced phase
randomization of the emission, the sample is expected to
produce chaotic light: The measured correlations func-
tions are indeed in close agreement with the theoretical
prediction for Gaussian statistics [24,25].

This experimental setup is based on the observation of
scattered light from a warm vapor of 87Rb atoms. An ap-
proximation of a two-level interaction limit is achieved by
implementation of weak resonant excitation of 5S1/2(F =
2) ↔ 5P3/2(F

′ = 3) transition using a circularly polar-
ized 780 nm laser beam. The vapor cell was set to a
temperature of 64◦C and the scattered light is observed
at a small angle of about 1.7 ◦, which significantly re-
duces the Doppler broadening. As illustrated in Fig. 3,
the interaction volume close to the output of the vapor
cell is determined by the overlap between excitation and
observation optical spatial modes. The estimated satu-
ration parameter for the measured excitation laser power

of P = 300µW is s0 = 0.14. A sequence of polariza-
tion optical components and Fabry-Pérot frequency filter
in the observation optical mode is used to suppress the
contribution of photons from Raman transitions to the
5S1/2(F = 1) manifold to the detection mode. The suf-
ficiently large linewidth, with a full width at half max-
imum (FWHM) of 0.9 GHz and free spectral range of
30 GHz of the Fabry-Pérot filter, has been selected such
that it does not affect the observable spectral distribu-
tions of photons scattered from the chosen two-level tran-
sition even for multiply-scattered photons [33, 34]. A sin-
gle spatial detection mode is guaranteed by coupling the
scattered light to a PM single-mode optical fiber. The
coherence properties are first analyzed in the setup by in-
cluding a Michelson interferometer, providing access to
the modulus of first-order correlation, |g(1)(τ)|. The cor-
relation functions of order n ≥ 2 are accessed in the low
mean photon flux regime by modifying the HBT setup
into a spatially multiplexed array of single-photon detec-
tors [35]. The observation of near-chaotic photon corre-
lations up to the fourth order is achieved by relatively
high generated and collected photon flux from the warm
atomic ensemble, ⟨n⟩ = (45.8 ± 0.5) × 10−4 photons at
the chosen 1.94 ns time bin, and thanks to the long coher-
ence time of forward scattered photons as compared with
the time resolution of the detectors. Alternatively, tem-
poral or spatio-temporal multiplexing schemes [36, 37], or
superconducting nanowire detectors with photon-number
resolving capabilities can be employed [38].

The measured second-order correlation is plotted in
Fig. 4. The experimental data are fitted using a simple
model considering the Doppler broadening and multiply-
scattered photons in warm atomic vapor [33], with an es-
timated single scattering probability of 91.3±0.7 %. The
measured g(2)(0) = 1.93± 0.02 is close to the value of 2 of
chaotic light, and the FWHM of 28± 1 ns corresponds to
the Doppler broadening of the single-scattered photons at
the chosen observation angle. The measured interference
visibility in the Michelson interferometric setup allows us
to evaluate |g(1)(τ)| for various time delays τ . Compar-
ing 1 + |g(1)(τ)|2 with g(2)(τ), the validity of the Siegert
relation (3) is confirmed for this setup as well – see Fig. 4.

Moving to higher order correlations, the normalized n-
th order intensity correlation function is defined as

g(n)(τ1, ..., τn−1) =
⟨I1(t)...In(t+ τn−1)⟩

⟨I1(t)⟩...⟨In(t)⟩
, (4)

where Ii(t+ τi−1) = E∗
i (t+ τi−1)Ei(t+ τi−1) is the inten-

sity detected by i-th detector [23]. The maximum value
of g(n)(0) for chaotic light is given by n! [5, 25, 39]. As
for the case of g(2)(τ), for chaotic light the higher-order
correlations can be expressed as a function of the g(1)(τ)
function. According to Isserlis’ theorem [24], in the par-
ticular simplified case where we set τn = 0 for any n > 1,
the higher order correlation functions read

g(n)(τ) = (n− 1)!
[
1 + (n− 1)|g(1)(τ)|2

]
. (5)
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Fig. 4: Measured correlation functions g(n)(τ) of light scat-
tered from a resonantly excited warm vapor of 87Rb atoms,
for n = 1, 2, 3, 4. The measured g(n)(0) values and the esti-
mated temporal correlation widths confirm the chaotic nature
of the scattered light, with a temporal coherence set by the
Doppler broadening. The solid lines correspond to the theo-
retical correlation functions for chaotic light from atoms [33],
using generalized Siegert relations and including residual noise
in form of higher-order β parameters [6]. The grey points are
evaluated directly by plugging the measured |g(1)(τ)| into the
ideal generalized Siegert relations (5). Note that the limiting
values of g(n)(τ1 = 0, ..., τn−1 → ∞) are given by the lower-
order normalized correlation g(n−1)(τ1 = 0, ..., τn−2 = 0), and
are affected by the residual Poissonian noise or multimodal
character of detected light.

Here, without loss of generality, τ represents the tunable
delay between any two chosen detectors in the symmet-
ric multiplexing setup, where all other mutual temporal
delays are equal.

The measurements presented in Fig. 4 exhibit bunching
for the normalized three-photon and four-photon correla-
tions, with g(3)(0) = 5.5 ± 0.03 and g(4)(0) = 20.8 ± 1.3.
Note that the signal-to-noise ratio decreases with the in-
creasing correlation order n, evaluated over the same total
measurement period. This is due to the exponential de-
pendence of the corresponding mean probability of the
n-fold coincidence on the overall photon detection effi-

ciency, ∼ ηn, which is critical in detecting higher order
photon correlations in the high-loss detection limit of free-
space atomic light sources. Nevertheless, the measured
correlation functions present a good agreement with the
generalized Siegert relation (5), consistently with a chaotic
nature for the scattered light – the ideal values being
g(3)(0) = 6 and g(4)(0) = 24. Furthermore, the temporal
profile of the different correlation functions are very simi-
lar, as expected from a chaotic behavior, and within evalu-
ated error bars [11]. The minor deviations observed when
comparing the g(n) curves with the values predicted from
the generalized Siegert relation (5) and from the |g(1)(τ)|
measurement can be accounted for by simulating a model
composed of an ideal chaotic light statistics with a small
contribution of Poissonian noise: The relative probability
of 0.04 of the latter corresponds to the sum of all resid-
ual noise sources, such as detector background counts,
leakage of the excitation laser to detectors, and tempo-
ral multi-modeness resulting from the finite resolution of
the employed single-photon counting modules, particu-
larly relevant for the large-bandwidth multiple-scattered
photon contribution. Alternatively, this discrepancy can
be conveniently incorporated in the higher-order β pa-
rameters [6]. The fit of the generalized Siegert equa-
tion including residual multimodal effects as discussed in
Ref. [6] leads to β1 = 0.93 ± 0.02, β2 = 0.84 ± 0.02, and
β3 = 0.8 ± 0.04. These values follow approximately the
predicted scaling βn = βn

1 for uncorrelated chaotic light
modes [6]. The sensitivity to such deviations, including
the estimation of the multi-modal character of the light
field or its corruption by diverse noise sources, are substan-
tially enhanced when measuring higher-order correlations:
Many-photon correlations thus can be seen as a sensitive
tool to probe and characterize small fluctuations beyond
chaotic light [40–42].

Conclusion. – We have investigated the chaotic na-
ture of the light scattered from two complementary atomic
setups, a cold and a warm one. In the former setup, an im-
portant benefit is the simultaneous measurement of g(1)(τ)
and g(2)(τ) functions within a single experiment, effec-
tively circumventing potential experimental drift or fluctu-
ations that would arise if conducted separately. Addition-
ally, this method does not require any moving components,
nor precise control over different paths at scales smaller
than the light wavelength. However, this technique relies
on the LO being well under control in terms of phase noise,
as compared to the collected scattered field. In the sec-
ond setup, we have access to correlation functions up to
the 4th order. While it is achievable when correlations are
continuously measured, this is more challenging in a cold
atom setup due to its limited duty cycle. The probe pulse
in such setups lasts about 20 to 100 µs compared to a to-
tal cycle duration of about 100ms, significantly reducing
the signal-to-noise ratio over the entire experimental dura-
tion. Finally, the Michelson interferometer offers a direct
access to the |g(1)(τ)| function by measuring the fringe
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contrast, and higher resolution for small delays τ com-
pared to g(2)(τ) which can be impacted by the finite tem-
poral resolution of employed single-photon detectors. This
becomes particularly relevant for the measurements with
hot atoms where a large bandwidth of multiple-scattered
photon contributions imposes limits on detectors’ tempo-
ral resolution on the nanosecond scale. Yet, the price to
pay is a more challenging implementation for large τ for
which the overall path fluctuations can significantly affect
the interference contrast.

The two experimental setups are also complementary in
terms of the physical process responsible for the chaotic
nature of the scattered light. In the cold atom setup,
the random nature of the emission stems from the quan-
tum randomness of spontaneous emission, whereas in
the warm vapor experiment it results from temperature-
induced Doppler broadening. Both setups exhibit tempo-
ral correlations, at all measured orders, consistent with
chaotic light. In particular, the generalized Siegert rela-
tion, which establishes a relation between the first-order
correlation g(1)(τ) and the higher-order ones, is satisfied
in both.

The minor deviations from this relation can be at-
tributed to technical artefacts such as intensity fluctua-
tions of the probe, finite probe coherence, existence of
a static field [29], or beyond-single-mode detection (in
terms of polarization or spatial modes). In this context,
the higher sensitivity of higher-order correlations to these
sources of noise make them a tool of choice to investigate
the underlying mechanisms. Note that even without such
artifacts, the Siegert relations may not be satisfied. For
example, other properties related to the scattering pro-
cess, such as intermittent dynamics, maybe affect differ-
ently the field-field and photon-photon correlations [43].
Finally, while the moments may obey the Siegert rela-
tions, deviations at nonzero delays can occur when the
relaxation and coherence times are different [43], or in
the presence of emitter correlations giving rise to sub- and
super-radiant coupling in partially coherent nanolasers for
instance [44]. Hence, beyond the emblematic Siegert re-
lation which applies to the broad class of light whose field
exhibit Gaussian statistics, the study of temporal corre-
lations at different orders remains an important tool to
characterize the nature of the photon emission and the
scattering processes behind it. One can cite, for exam-
ple, the characterization of the laser threshold [45], or the
tunability of light states with an increased second-order
coherence, yet a low first-order coherence as in quantum
dot superluminescent diodes [46].
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[17] Lassègues P., Biscassi M. A. F., Morisse M., Cidrim
A., Matthews N., Labeyrie G., Rivet J.-P., Vakili
F., Kaiser R., Guerin W., Bachelard R. and Hug-
bart M., The European Physical Journal D, 76 (2022)
246.

[18] Hanbury Brown R. and Twiss R. Q., Nature, 177
(1956) 27.

[19] Steudle G. A., Schietinger S., Höckel D., Doren-
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and Fouché M., American Journal of Physics, 88 (2020)
831.

[21] Mollow B. R., Phys. Rev., 188 (1969) 1969.
[22] Goodman J., Statistical Optics Wiley Series in Pure and

Applied Optics (Wiley) 2015.
[23] Mandel L. and Wolf E., Optical coherence and quan-

tum optics (Cambridge university press) 1995.
[24] Isserlis L., Biometrika, 12 (1918) 134.
[25] Wick G.-C., Physical review, 80 (1950) 268.
[26] Ficek Z. and Swain S., Quantum interference and coher-

ence: theory and experiments Vol. 100 (Springer Science
& Business Media) 2005.

[27] Marconi M., Javaloyes J., Hamel P., Raineri F.,
Levenson A. and Yacomotti A. M., Phys. Rev. X, 8
(2018) 011013.

[28] Wolf P., Maret G., Akkermans E. and Maynard
R., Journal de Physique, 49 (1988) 63.

[29] Ferioli G., Pancaldi S., Glicenstein A., Clement
D., Browaeys A. and Ferrier-Barbut I., Non-
gaussian correlations in the steady-state of driven-
dissipative clouds of two-level atoms (2023).

[30] Voigt H. and Hess S., Physica A: Statistical Mechanics
and its Applications, 202 (1994) 145.

[31] Kovalenko A., Babjak D., Lešundák A., Podhora
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