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Abstract. The smart factory leads to a strong digitalization of industrial processes and continuous communication between the systems 
integrated into the production, storage, and supply chains. One of the research areas in Industry 4.0 is the possibility of using 
autonomous and/or intelligent industrial vehicles. The optimization of the management of the tasks allocated to these vehicles with 
adaptive behaviours, as well as the increase in vehicle-to-everything communications (V2X) make it possible to develop collective and 
adaptive intelligence for these vehicles, often grouped in fleets. Task allocation and scheduling are often managed centrally. The 
requirements for flexibility, robustness, and scalability lead to the consideration of decentralized mechanisms to react to unexpected 
situations. However, before being definitively adopted, decentralization must first be modelled and then simulated. Thus, we use a 
multi-agent simulation to test the proposed dynamic task (re)allocation process. A set of problematic situations for the circulation of 
autonomous industrial vehicles in areas such as smart warehouses (obstacles, breakdowns, etc.) has been identified. These problematic 
situations could disrupt or harm the successful completion of the process of dynamic (re)allocation of tasks. We have therefore defined 
scenarios involving them in order to demonstrate through simulation that the process remains reliable. The simulation of new 
problematic situations also allows us to extend the potential of this process, which we discuss at the end of the article. 

Keywords: multi-agent planning, cooperative mobile robot, collective problem solving, multi-agent simulation, communication V2X. 

 

1. Introduction 

The smart factory leads to a strong digitalization of 
industrial processes [1, 2], but also to continuous 
communication between the different tools, systems and 
workstations, integrated into production, storage and 
supply chains. Among the challenges of Industry 4.0 are 
the development and optimization of data, product and 
material flows [3]. Certain technological bricks have 
been defined [4], in particular for the use of autonomous 
mobile systems [5]: automated guided vehicle (AGV), 
autonomous industrial vehicle (AIV), and other 
autonomous/intelligent mobile robot [6]. 

The deployment of fleets of AIVs is problematic on 
several levels: the location of the vehicles, the fluidity of 
traffic, the perception of disturbances in the environment 
(dynamics), the vehicle heterogeneity, the acceptability 
by employees and even their cooperation. Currently, to 
achieve their goals, vehicles have navigation autonomy 
linked to rails, physical or virtual beacons. They follow 
predetermined trajectories while detecting obstacles to 
avoid collisions. Their decision-making capacities are 
often limited to following these predetermined 
trajectories and stopping in the event of obstacles. During 
incidents, the presence of obstacles or broken down 
vehicles, for example, the modification of routes is 

ensured by the central system or a supervisor, which 
sends a change of mission order to the vehicles. 

The level of vehicle autonomy is well characterized 
in the context of the road vehicle: six levels of 
autonomous driving have been proposed [7, 8]. However, 
this is not the case for autonomous industrial vehicles. 
The autonomy of AIVs is often limited to local visibility 
of their environment, as well as visibility and knowledge 
of other AIVs operating in the same environment. The 
ability of AIVs in the same fleet to exchange information 
between themselves, with the active elements of the 
infrastructure that they encounter on their route, or with 
the human beings who operate in their environment, 
should improve the decision-making autonomy of these 
vehicles, make the solutions collectively defined more 
robust, and enable greater adaptability to changing traffic 
conditions [9]. 

For an AIV to be autonomous, it must be able to 
manage and control a set of tasks well discussed in the 
literature: perception [10, 11], mapping [12, 11], task 
allocation [13], localization [14, 15], path planning [16, 
17] and path finding [18], motion planning [14], and 
vehicle management [19, 20]. The autonomy of an AIV 
fleet can be further increased if the AIVs can collectively 
manage and optimize the task allocation problem: that 
means they collectively assign the set of tasks to the set 
of AIVs with a high level of efficiency (for instance, 



minimization of energy costs or mission completion 
time) [13, 21]. 

Task allocation and planning are often managed 
centrally, even semi-centrally when global and local 
planning are differentiated [22]. For the proper 
functioning of autonomous and dynamic systems, the 
requirements of flexibility, robustness and scalability, 
lead to consider decentralized mechanisms to react to 
unexpected situations. Autonomy and decentralization 
are two excessively linked notions to the extent that an 
autonomous system operates and make decisions 
autonomously, and a system is decentralized if the 
decision, which are made, are not centrally controlled 
[23, 24]. The problem of task allocation [25, 26], tasks 
which grouped together can constitute missions, must 
therefore be thought of in a decentralized way [13]. 
However, before being definitively adopted, 
decentralization must first be modelled and simulated 
[23]. The concept of multi-agent systems is well suited to 
perform this type of modelling and simulation [27, 28, 
29]. Furthermore, many tools have been developed to 
facilitate agent-based modelling and simulation (ABMS) 
[30]. It should also be noted that multi-agent systems are 
also used to physically control AGVs [31, 32, 33]. 

Some studies have focused on leveraging data from 
other autonomous vehicles within a fleet to control the 
physical behaviour of a specific autonomous vehicle 
from the same fleet. This is the case with reference [34], 
which proposes a suspension control strategy based on a 
deep learning algorithm. Also, based on deep learning 
algorithms, techniques for controlling connected 
autonomous vehicles are well-documented in the 
literature. In [35], the authors addressed this topic for 
adaptive convoy control, while [36], within the same 
subject, specifically considers communication failure 
situations. 

In this article, we start by presenting a state of the art 
on the allocation of tasks in centralized or decentralized 
modes as well as on the different types and standards of 
V2X communication. In section 3, we propose a dynamic 
task (re-)allocation process for an AIV fleet. In section 4, 
we successively present the agent model designed to 
simulate this task (re-)allocation process, the simulation 
interface used and then the different test scenarios 
proposed in an industrial context such as a smart 
warehouse. We discuss the different results obtained in 
simulation in section 5. Finally, we conclude on the 
proposed dynamic task allocation-reallocation process, 
and then we present different work perspectives. 

2. State of the art 

2.1. Task allocation for mobile multi-robots 

Task allocation consists of optimally assigning a set 
of tasks to be performed by agents, actors, robots or 
processes, grouped and organized in a global system [37]. 
This is the case for mobile multi-robot systems [25, 26] 
or the AIV fleets addressed in this article [38, 39]. 

In global way, the multi-robot task planning includes 
two processes: 1) a multi-robot task decomposition that 
refers to how a team mission can be decomposed into 

several subtasks which can be completed by the robots, 
and 2) the multi-robot task allocation that consist to 
determinate how each subtask can be assigned to one 
robot [40]. Thus, two major objective functions are 
defined for analysing a solution to the multi-robot task 
allocation problem: the makespan (number of time steps 
required for all robots to reach their tasks), and sum of 
costs (sum of time steps requires by each robot to reach 
its task) [41]. 

In the field of mobile robotics, the taxonomy 
presented in [13] makes it possible to better characterize 
the task allocation process. A task can be assigned to one 
or more robots, and several tasks can be assigned to 
heterogeneous robots or multitasking robots. These tasks 
can be allocated instantly or extended over time. As many 
combinations as exhaustively detailed by numerous 
surveys on the issue of Multi-robot task allocation [26]. 

Task allocation in multi-robot systems is complex and 
the tasks themselves may have many time, precedence or 
resource constraints [37]. It is then necessary to 
determine the objectives to be optimized, in particular 
among: the travel cost (time, distance, fuel or battery 
consumption), the fitness (quality of task performing), 
the reward (gain of task completing), the priority 
(urgency of task completing), and the utility (balance 
between cost and fitness-reward) [13]. 

For reasons of flexibility, robustness and scalability, 
we are interested in decentralized task allocation 
solutions. These solutions must be able to assign tasks to 
a fleet of homogeneous or heterogeneous robots. 
Different models of solutions are proposed in the 
literature, mainly the following three: 1) solutions based 
on optimization (exact algorithms, dynamic 
programming, heuristics and metaheuristics) [26]; 2) 
solutions based on the Contract Net Protocol, particularly 
in the field of multi-agent systems (an initiating agent 
sends a call for proposals to the entire community of 
agents, chooses the best proposal received, then informs 
all the agents choice) [42]; or 3) solutions based on the 
market concept (announcement by an auctioneer, 
submission by bidders, selection by the auctioneer and 
award by the auctioneer) [43]. Solutions based on the 
market concept can easily be applied in a distributed 
context, where each mobile robot is able to become an 
auctioneer [44]. For each situation, a single mobile robot 
is appointed auctioneer [45]. He retains this role until the 
situation is definitively managed. 

2.2. V2X communication and cooperation 

In order to be able to successfully perform all the 
tasks assigned to them, AIVs must coordinate and 
therefore cooperate and share information about their 
activity and their perception of the environment. Four 
types of coordination can then be implemented according 
to increasing degrees of autonomy: centralized (with the 
assistance of a coordinator), negotiated (with respect for 
a specific negotiation protocol), agreement (with 
dynamic protocol) and emergent (with self-organizing 
algorithms) [46]. The last three coordination approaches 
are characterized as decentralized, they therefore require 
that the AIVs be connected to each other [47, 48, 49] 
and/or communicate frequently [32]. The link between 



V2X communication and cooperation, often presented 
from the perspective of cooperative control, is widely 
emphasized and extensively documented in the literature, 
as exemplified in [50] and [51]. 

The communication that takes place between vehicles 
is commonly referred to as vehicle-to-vehicle 
communication (V2V) [52]. While the literature widely 
covers V2V communications, it seems relevant to 
highlight specific variations, such as decentralized 
intersection traffic light synchronization [53], simulation 
of mixed traffic with cooperative lane changes [54], and 
traffic light optimization [55]. Vehicles can also request 
or receive information from the infrastructure, in 
particular to warn them of the presence of obstacles. This 
communication is then called vehicle-to-infrastructure 
(V2I) communication [52], and is highly developed in 
environments such as smart warehouses [56]. 

Many systems use these two last modes of 
communication to intelligently manage and coordinate 
connected vehicles in problematic situations such as 
crossing an intersection [57], accessing a highway [58], 
allocating a parking space in a smart car park [59], 
platooning and traffic flow optimization [46], or multiple 
vehicle cooperation and collision avoidance [60]. 

Communication between intelligent vehicles and 
pedestrians/humans is also used to increase vehicle 
autonomy and ensure better safety for humans in shared 
human-robot environments [61]. This communication is 
called vehicle-to-pedestrian communication (V2P) [62]. 
It also makes it possible to set up collaboration between 
humans and autonomous vehicles, for example when a 
vehicle has detected an obstacle that requires the 
intervention of a human operator to clear it. In the rest of 
the article, we will call vehicle-to-everything 
communications (V2X) all of the three communication 
modes presented above (V2V, V2I, and V2P) [63]. 

The ETSI (European Telecommunication Standard 
Institute) has defined standard communication messages 
for intelligent transport systems (ITS), which we have 
transposed and used in previous works [64]. The 
Decentralized Environmental Notification Message 
(DENM) (ETSI standard EN 302 637-3 [65]) are alert 
messages, issued at the time of an unexpected event in 
order to notify it, and therefore to cooperate by 
broadcasting information in the geographical area 
concerned. The Cooperative Perception Messages 
(CPM) (ETSI standard TR 103 562 [66]) provide 
warning and help vehicles make decisions on their route. 
Thus, if an AIV detects an obstacle obstructing an aisle 
of a warehouse, it can signal it to the other AIVs which 
can then recalculate and plan a new route, if necessary to 
be able to accomplish their tasks. An infrastructure 
camera can also detect obstacles and send this type of 
message to AIVs. Note that beyond AIVs, recent 
literature suggests various types of V2V 
communications. For instance, [67] proposes, in the field 
of urban transportation, a dynamic control strategy for a 
fleet of connected buses using a multi-agent system that 
leverages bus history along with traffic information. This 
approach enables each bus to adjust its movement based 
on weighted information from downstream buses. 

Another type of V2V communication could be useful 
to improve cooperation between AIVs in carrying out 

their tasks. Indeed, if an AIV finds itself blocked by 
obstacles in a warehouse aisle, broken down or generally 
unable to perform the task in progress, it sends a DENM 
message by default. It could then be useful for him to 
send a cooperative message to delegate the realization of 
his task with the necessary information. 

We therefore propose a new Cooperative Task 
Message (CTM), which would allow in particular 
delegating a task. Häfner et al. [68] propose a protocol 
with four new types of messages, including the 
Cooperative Response Message (CRM) for transmitting 
the response to a request for cooperation. The AIV 
agents, modelled in the simulation part of this article (cf. 
§4), will use this type of message in feedback from the 
CTM messages to signify their agreement to take charge 
of a task for example. 

3. Tasking process for AIV fleets 

The common objective of the AIVs belonging to the 
same fleet is to perform all the tasks assigned to them 
while respecting a certain number of time and priority 
constraints. In this context, given Т a set of tasks to be 
performed, a task t Î Т is defined by the following tuple 
(1): 
t = <tid, k, pstart, pend, tstart, tend, pr, s>  (1) 

Where tid is the task identifier; k is the task category 
(for example in a warehouse, move goods, i.e.: “load the 
goods at a starting point to bring it to an ending point”); 
pstart is the task starting point; pend is the task ending point; 
tstart is the task starting time; tend is the task ending time; 
pr is the task priority; and s is the task status. 

A set of n tasks can be grouped to form a mission m 
defined as follows (2): 
m = <t1, ..., tn> (2) 

Given two sets V and T, such that V = {v1, ..., vn} is a 
set of n AIVs and T = {t1, ..., tm} is a set of m tasks, we 
define the two following functions: the function 𝒞 which 
allows to calculate the cost 𝑐t!,	#" 	 ∈ 𝐶 of performing a 
task ti by an AIV vj (3), and the function 𝒜 which allows 
to allocate each task ti Î T to an AIV vj Î V, depending 
on the cost 𝑐t!,	#" (4). 

𝒞 ∶ 𝑇, 𝑉	 → 𝐶 (3) 
𝒜 ∶ 𝑇, 𝑉, 𝐶	 → 𝐴 (4) 

The task allocation process that we have defined is 
based on a market model type solution [45]. The 
flexibility of this solution allows a good adaptation for a 
decentralized system. In the rest of the article, we will 
apply and test this task allocation process to a fleet of 
homogeneous mobile robots, loading and unloading 
goods in a warehouse. Its process is depicted in Figure 1. 

When a task has been defined by an organizational 
actor (call supervisor in the rest of the article), it is sent 
by the supervisor using a CTM message to an available 
AIV (i.e., having no tasks to be accomplished at this 
time), who will play the role of auctioneer. Then, this 
AIV auctioneer will send an acknowledgment using a 
CRM message, upon receipt of the work package. 



For greater efficiency, before starting the auctions, 
the AIV auctioneer can cluster certain tasks received. 
This involves, in particular, associating tasks having 
ending points and starting points in common. For 
example, consider the task t1 “Bring material from a 
parking source node n°21, to a storage point node n°13” 
(t1 = [21, 13]). An associated task t2 could be to go to a 
parking lot after completing task t1, for instance: “Take 
material from storage point node n°13 and bring it to 
parking node n°25” (t2 = [13, 25]). Then, the two 
clustered tasks t1 and t2 are represented by the mission 
mi = <t1, t2> = <[21, 13], [13, 25]> (in the tables of 
section §5, we simplify the writing of the mission mi by 
using the triplet <21, 13, 25>). 

Following the association of tasks to form missions, 
these are sent to all vehicles by the AIV auctioneer. Then, 
AIVs calculate costs to perform the various missions, 
taking into account a set of performance indicators 
(distance, energy, time, etc.), and produce their bids. 

Each AIV returns all of its bids to the AIV auctioneer. 
This runs a simple optimization algorithm: the clustered 
tasks are listed in priority order. Subsequently, the AIV 
that bid with the lowest cost for a mission wins the 
auction (strategy of choice by the auctioneer for the least 
expensive proposal). 

To summarize at the communication level, the AIV 
auctioneer allocates a task (eventually clustered tasks) to 
each chosen AIV, sending to it via a CTM message. The 
receipt of this CTM message by an AIV ends with a CRM 
message sent to the auctioneer in order to inform him of 
his acceptance. The different interactions between the 
supervisor, the AIV auctioneer and the other AIVs are 
identified in the sequence diagram of Figure 2. This 
allocation mechanism is also used for task reallocation. 
Indeed, a robot can re-auction a task becoming an 
auctioneer in turn to manage the reallocation of all or part 
of its tasks. The robot offering the best bid will then add 
the reallocated task(s) to the set of tasks it must perform. 
 

 
Figure 1. Task allocation process 

 

 
Figure 2. CTM and CRM messages exchanged during 

task allocation 

4. Multi-agent simulation of AIV fleets 

4.1. Agent model for AIVs 

Many simulation-based approaches have been 
proposed in literature in the context of Industry 4.0, 

mainly : Agent-based modelling and simulation, Discrete 
Event Simulation, System Dynamics, Virtual Reality, 
Augmented Reality, Artificial Intelligence, Petri Nets 
simulation, Hybrid Simulation (characterized by the 
combination of two or more simulation methods, i.e., 
multi-paradigm model), Digital Twins, or Virtual 
Commissioning [23]. Among these approaches, the use 
of the agent paradigm to simulate or model complex, 
interactive, adaptive, distributed or cooperative systems 
has become common [27]. Indeed, the properties for 
which the agent-based approach is most suitable are: 
modularity [69], decentralization [28, 24], autonomy 
[30], flexibility [70] and agility [23]. Agent-based 
systems (ABS) have thus been proposed in many 
engineering fields, such as for industrial applications 
[71], for intelligent manufacturing [72, 73, 74], for 
supply chain management [75], for autonomous vehicles 
[29, 76], or for AGV [31]. In this last area, the case study 
“AGV control in an industrial bakery” proposed by Mes 
and Gerrits is well representative of the developments of 
ABS to control AGVs in the context of industry 4.0 [33]. 
The distribution of agents (decentralization) allows the 
systems that implement them to be more flexible and 
reactive. On the other hand, the agent concept is well 
suited for modelling and simulating cyber-physical 
systems [77] including AGVs or AIVs. 

The basic definition of an agent is something that 
acts, to which it is useful to add three key properties: 



autonomous, interactive and adaptive. Thus, an agent is 
an autonomous entity that can adapt to and interact with 
its environment or other agents [42]. 

Other properties can be associated with the concept 
of agent: situated, social, flexible, proactive, and robust 
[33]; but also, mobile, intelligent, rational, temporally 
continuous, coordinative, cooperative, competitive, 
rugged (able to deal with errors and incomplete data 
robustly) [78]. These different properties will be 
discussed in section 5, in relation to the results obtained 
during the simulation of the scenarios proposed to 
illustrate this article. 

The basic behaviour of an agent can be modelled by 
an automaton [79]: 1) an agent perceives inputs using 
detectors (sensors); 2) it analyses, processes and 
interprets its inputs (recognizes, normalizes, etc.); 3) it 
determines the actions to be performed by interpreting 
the data, examining its goals and its current state; then 4) 
it performs the actions through effectors (its outputs). 

The design of an agent-based system (ABS), often 
studied from a processual or methodological point of 
view [80], supposes that the designer proceeds with a 
local vision to respect the fact that each agent manages 
its own knowledge and actions (autonomy). ABS design 
support languages are numerous [13, 81]. The support 
tools, both for agent-based modelling and for agent-based 
simulation, are also very numerous: JADE, GAMMA, 
Matlab, MASON, NetLogo, AnyLogic, SN2, Sinalgo, 
etc. [82, 83, 84]. 

In [85], we proposed a four-step ABS design method 
that largely refers to AUML (Agent Unified Modelling 
Language) [86]: 

Step 1. Definition of use case diagrams (services 
provided by ABS). 

Step 2. For each use case, draw sequence diagrams 
representing the interactions (exchanges of messages and 
scheduling) between the agents involved. 

Step 3. From the sequence diagrams, which identify 
the agents, the objects and their interactions, create a 
class diagram: the objects are associated with classes, the 

messages exchanged (requests for service between 
objects) are translated into operations on classes, 
parameters associated with operations are translated into 
class attributes – it may be possible to complete this 
diagram with a collaboration diagram. 

Step 4. From the class diagram, define the behaviours 
of each agent using a state or activity diagram. These 
behaviours integrate a whole set of functionalities 
fulfilled by the agents. As an example, Mes and Guerrits 
specify a set of six generic functionalities to be fulfilled 
by AGV agents [33]: DemandManagement, 
ParkManagement, VehicleScheduling, VehicleRouting, 
ConflictResolution and BatteryManagement. 

Figure 3 below presents the agent architecture 
developed to simulate the AIV traffic situations that we 
wish to study. Each agent of this architecture has its own 
knowledge (in particular on the other AIV agents, on the 
traffic environment, as well as on the paths and tasks 
allocated), and has functional capacities of observation, 
communication, decision and of action [39]. 

In this architecture, an industrial infrastructure 
(production lines, warehouses, etc.) is deployed in an 
environment, and is composed of a circuit and active 
elements such as beacons, tags, stations and cameras. 
These active elements are modelled as agents. Static or 
dynamic obstacles (e.g. human operators) may be present 
in the environment. Human workers or operators, with 
whom AIV agents can communicate to carry out 
cooperative activities, are also modelled as agents. 

AIV agents, grouped in the same agent community, 
perform missions defined by paths on the traffic map. 
They are equipped with a radar that allows them to evolve 
in a partially known environment, and can thus avoid 
obstacles and collisions between them. The internal 
architecture of these agents is defined in such a way as to 
allow them to manage the four essential functions of an 
autonomous mobile robot: perception, localization, 
planning and control [87]. 
 

 
Figure 3. Simulator architecture: dynamic elements in red, static in green, and not related to the environment in purple 



AIV agents cooperate with each other to optimize the 
performance of a set of missions, which are transmitted 
to them by a supervising agent who acts as an organizing 
service (these missions can be sent to the AIV in packets 
or in continuous flow). The active elements of the 
infrastructure (cameras, tags, beacons, stations, etc.) 
participate in the cooperation [88], in particular by 
contributing to the safety of AIV travel. To ensure this 
cooperation based on inter-agent communications in 
VTX mode, different types of standardized messages are 
used (CAM, MCM, CPM, CTM, CRM and DENM). 

The environment chosen in this article, to illustrate 
our scenarios of problematic situations, is a typical 
warehouse presented in Bechtsis et al. [89]. Certainly, 
this environment is small, but it allows us to detail very 
finely and from an educational point of view all the 
scenarios that we have defined, in particular the 4 
scenarios studied in the following sections. However, the 
framework presented in Figure 3 was developed to model 
larger warehouses and to simulate problematic traffic 
situations involving a large number of AIVs (for 
example, it is currently used to simulate the activity of a 
hundred baggage conveyor robots in an airport). 

The warehouse circuit shown in figure 4.a comprises 
several intersections, in which the vehicles can arrive 
from different sides as in a warehouse. This type of traffic 

plan offers the different characteristics of an industrial 
environment and allows us to carry out simulated 
experimental tests, in accordance with realistic scenarios 
of an industrial context. Five AIV agents are integrated 
into this environment corresponding to the five parking 
spaces available in this environment. One of the major 
interests of simulation is to be able to test the size of the 
vehicle fleet. Also, if the flow of tasks proposed to the 
AIVs becomes too great, leading to waiting times that are 
too long for the allocation of these tasks, the simulation 
conditions could be easily adapted in the environment 
with the addition of new AIVs and of AIVs parking lots. 

The costs in distance between the different nodes of 
the circuit are represented in the directed graph of figure 
4.b. They have been chosen and applied to favour certain 
directions of circulation. These costs are used to find the 
shortest paths in the graph (minimization of distance 
costs in this case), in order to optimize the times for 
performing tasks by AIV agents. The interested reader 
will find presentations and discussions on the different 
types of optimization algorithms that allow a mobile 
robot to determine a shortest path (Dijkstra, A*, D*, 
Genetic algorithm or Particle Swarm Optimization) in 
many surveys [14, 38, 90]. 

 

 

   
Figure 4. a) Representation of the circuit, and b) directed graph corresponding to the circuit 

 

4.2. Multi-agent simulation interface 

The simulation interface presented in Figure 5 has been 
designed generically to integrate different types of traffic 
plans. We use and develop this simulator for various 
laboratory experiments, and for teaching engineering 
students. In order to facilitate community utilization, we 
are releasing the code of our project, on the Github page: 
https://gitlab.inria.fr/jgrosset/AIV_Simulator.  

Its implementation respects the agent model 
presented in Figure 3. 

This interface is divided into five frames: 
- Frame 1: visualization of the warehouse presented 

in figure 4.a. The white squares represent tag agents, used 
by AIV agents to locate themselves. AIV agents are 
visualized by coloured circles, and obstacles are 
surrounded by a red circle of variable size corresponding 
to their level of obstruction in the aisle. The four camera 

agents of the infrastructure are identified by a black 
square evoking their viewing area of the aisle. 

- Frame 2: application management and its various 
features. It is thus possible: 1) to simulate the four types 
of scenarios illustrated in the rest of the article, as well as 
a random scenario; 2) to generate obstacles randomly on 
the circuit; 3) to emulate a robot or camera failure; or 4) 
to view a model of the circuit with the node numbers, as 
in figure 4.b, by clicking on the circuit button. 

- Frame 3: supervision of AIV agents. This frame 
makes it possible to visualize the missions assigned to the 
various AIV agents, their paths, their statuses and other 
information useful to the supervisor agent. When an AIV 
agent plays the role of auctioneer, he is graphically 
identifiable by a frame. 

- Frame 4: supervision of camera agents. This 
frame makes it possible to identify their status, their 
position and their detection of obstacles. When a camera 



agent has detected an obstacle, it is graphically 
identifiable by a black frame. 

- Frame 5: task supervision. This frame makes it 
possible to monitor the progress of the performance of 
the tasks allocated to the AIVs. The states of the different 
task attributes are updated there: task identifiers, task 
starting point and ending point, and task states (attribute, 
in progress, blocked, completed). 

The traffic plan chosen, and presented in the form of 
a directed graph in figure 4.b, makes it possible to start a 
set of problem scenarios that can be easily configured in 
the interface. In the following, we will focus on three 
scenarios called sc1, sc2 and sc3. The missions will be 
named mi and the nodes ni. These different scenarios are 
detailed in the following subsection. 

 

 
Figure 5. Multi-agent simulation interface 

 

4.3. Dynamic task (re-)allocation scenarios 

In [64], we proposed AIV agent blocking scenarios 
that highlighted the need to increase 
cooperation/communication between agents if we 
wanted to effectively manage these problems. In [39], we 
showed that the use of MCM, CAM and DENM 
messages made it possible to respond effectively to the 
problem of avoiding obstacles and collisions between 
AIV agents.  

To verify the ability of AIV agents to carry out their 
missions while cooperatively managing the problems of 
obstacles or AIV agent breakdown, we have defined four 
new scenarios. These scenarios include five AIV agents, 
simulating five real AIVs of the same type, and illustrate 
the different types of V2X cooperation/communication 
that allow agents to anticipate problems and thus improve 
the performance of their missions collectively: V2I for 
the first scenario, V2V for the second, and V2P for the 
third. All information concerning the communication 
during these scenarios is resumed in the Table 10. The 
scenarios are run in the environment shown in Figure 4.a 
(a simplified warehouse). VIAs perform simple tasks: 1) 
load goods at a source storage point, then 2) drop them 
off at a destination storage point. Each AIV agent has 
knowledge of the environment, i.e. the position of aisles, 
intersections, parking lots, storage points, battery 

replacement points and active elements of the 
infrastructure such as camera agents.  

The first scenario sc1 is represented in figures 6.a and 
6.b. It makes it possible to test the contribution of the 
cooperation between the AIV agents and the 
infrastructure agents for the performance of the tasks 
entrusted to the AIV agents. In this scenario, the camera 
agent placed to monitor the area around storage point 
n°14 detects an obstacle and send a CPM message to the 
five AIV agents. The AIV agents, whose mission 
involves passing through the aisle obstructed by the 
obstacle, are able to re-plan their rout in advance. Thus, 
this cooperation with the infrastructure makes it possible 
to avoid waiting for an AIV agent to detect the obstacle 
with its LIDAR and to warn the four other AIV agents 
when it passes near the obstacle (therefore saving time on 
detection). This scenario allows measuring the 
performance of a collective strategy including the 
infrastructure compared to a collective approach based 
only on V2V communications between AIV agents. 

The sc2 scenario corresponds to an inability for an 
AIV agent to complete his mission. This one can be 
blocked by obstacles or have a breakdown but without 
this preventing it from communicating (figures 7.a and 
7.b). In this case, it is the dynamic task allocation 
mechanism presented in section 3, which is launched to 
reallocate the unfinished mission. The blocked AIV agent 



becomes an auctioneer. He transmits all the tasks he had 
to perform to the four other AIV agents using a CTM 
message. The AIV agents bid according to their situation 
and the tasks they are performing, which allows the AIV 
auctioneer agent to make his choice for the reallocation 
of the tasks he cannot complete. 

Scenario sc3, depicted in Figure 8.a, illustrates the 
ability of an AIV agent to handle the blocking problem 
when a task cannot be completed due to an event 
occurring on the warehouse circuit or in the defined 
environment to perform the task. It is further assumed 
that this blocking could not be detected by an 
infrastructure agent and therefore that its resolution was 
carried out by an AIV agent. For example, if a stock point 
designated as a target in the mission of an AIVi agent is 
inaccessible (for instance, because of the presence of 
several obstacles), then the AIVi agent must be able to 
inform the four other AIV agents that its mission cannot 
be carried out, using a CPM message. Subsequently, a 
human or an AIVj agent having the ability to clear the 
obstacles in the aisle can intervene in response to the 
request made to it by the AIVi agent, by sending a DENM 
message (Figure 8.b). The task that could not be 

performed before the human intervention is put back to 
auction as soon as the human has informed the AIVi 
agent that the aisle is clear again, by sending a CPM 
message. The AIVi agent then temporarily becomes an 
auctioneer to manage the reallocation of the task. This 
prevents the AIVi agent from waiting for human 
intervention to be able to continue its mission, and can 
possibly complete another tasks. 

Scenario sc4 presents a situation similar to Scenario 
sc3, where an AIV agent encounters what seems to be an 
obstacle, as detected by a camera. However, in this 
instance, the camera's assessment is faulty, and there is 
no actual obstruction present. Upon detecting the 
apparent obstacle, the camera notifies both the five AIV 
agents and the worker. However, upon closer inspection, 
it is revealed that the obstacle does not exist. 
Subsequently, the worker promptly sends two messages 
to the five AIV agents: a CPM message confirming the 
absence of an obstacle at the specified location, and a 
DENM message alerting about the failure of the camera 
agent. 

 

 

   

Figure 6. a) Simulation of the detection of an obstacle by a camera agent, b) sequence diagram of the scenario sc1 
 

   

Figure 7. a) Simulation of an AIV agent breakdown at access point n°14, b) sequence diagram of the scenario sc2 
 



     

Figure 8. a) Simulation of a blocked task at access point n°15, b) sequence diagram of the scenario sc3  

 

 

Figure 9. Simulation of a worker checking for an obstacle at storage point 15 detected by the camera, b) sequence 
diagram of the scenario sc4 

 

5. Results and discussion 

The four scenarios presented in the previous section 
were tested with the same dataset. The different types of 
V2X communications illustrated in the scenarios are 
summarized in the Table 9. The choice therefore fell on 
an allocation of tasks by packet, rather than continuously. 
A supervisor agent sends 10 tasks to an available AIVi 
agent (when the AIV agents have no more missions to 
perform, they inform the supervisor agent). The AIVi 
agent starts by clustering the tasks in missions, and then 
offers them up for auction. 

The four scenarios were analysed with the following 
performance indicators: 

- tasks to be performed, 
- tasks fully completed, 
- difference between the number of tasks to be 

performed and the number of tasks fully performed by 
each AIV agent, 

- total distance covered by each AIV agent, 
- load distribution (in particular to distribute the 

energy costs between the different vehicles and facilitate 
the management of battery charging). 

Table 1 corresponds to the performance of all the 
tasks by the AIV agents, without them encountering any 
problem. This table includes the performance indicators 
listed above: the tasks requested then allocated to each 
AIV agent, the tasks actually performed by the AIV 
agents, the ratio between the tasks allocated and 

performed, as well as the total distance covered by each 
AIV agent (distance in meters in this case). 
 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> <21,14,25> 2/2 124 

AIV2 <22,13,22> <22,13,22> 2/2 116 

AIV3 <23,15,21> <23,15,21> 2/2 112 

AIV4 <24,14,23> <24,14,23> 2/2 114 

AIV5 <25,13,24> <25,13,24> 2/2 114 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

<21,14,25> 
<22,13,22> 
<23,15,21> 
<24,14,23> 
<25,13,24> 

10/10 580 

Table 1. Test sets for the four scenarios 

The results obtained during the execution of the 
scenario sc1 corresponding to figure 6.a are given in table 
3. The obstacle was detected by the camera, which saves 
time on obstacle detection. Indeed, we tested this same 
scenario by disabling the camera agent. It was necessary 
to wait for the AIV4 agent to arrive near the obstacle for 
it to be detected by its LIDAR. These results appear in 
Table 2. Thus, the total distance covered is 640 in the case 
where the camera agent detects the obstacle (Table3), and 
710 if the camera agent is deactivated (Table 2). This 
makes it possible to verify that cooperation with the 



infrastructure via camera agents can save time for the 
detection of obstacles, in particular by anticipating 
problems, and thus minimize distances for the 
performance of the missions of AIV agents. 

The scenario sc2 was simulated in two cases: 
- the delegation of a complete mission (two 

clustered tasks), 
- the delegation of the second part of a mission 

(only one task). 
These delegations of mission by an AIV agent can 

occur when the latter is unable to perform the mission in 
progress, following a breakdown or a blockage in an aisle 
for example. Thus, in tables 4 and 5, it is possible to 
observe that the AIV2 agent could not finalize its mission 
because its number of tasks performed is not equal to its 
number of tasks to be carried out. In table 5, the AIV2 
agent was able to perform one task out of two of its 
mission. He then started the task reallocation process, 
which resulted in the second uncompleted task being 
auctioned off. This task was won and performed by the 
AIV1 agent. The latter therefore perform three tasks, 
whereas two tasks had initially been assigned to him. The 
second test for task delegation corresponds to table 5 
where it is possible to see that the entire mission of the 
AIV2 agent has been reallocated. In this case, it was the 
AIV1 agent who took over the complete mission, while 
minimizing the overall distance covered. 
 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> <21,14,25> 2/2 164 

AIV2 <22,13,22> <22,13,22> 2/2 116 

AIV3 <23,15,21> <23,15,21> 2/2 112 

AIV4 <24,14,23> <24,14,23> 2/2 204 

AIV5 <25,13,24> <25,13,24> 2/2 114 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

<21,14,25> 
<22,13,22> 
<23,15,21> 
<24,14,23> 
<25,13,24> 

10/10 710 

Table 2. Obstacle obstructing an aisle, detected by the 
AIV4 agent 

 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> [[21,14],[14,25]] 2/2 144 

AIV2 <22,13,22> [[22,13],[13,22]] 2/2 116 

AIV3 <23,15,21> [[23,15],[15,21]] 2/2 112 

AIV4 <24,14,23> [[24,14],[14,23]] 2/2 154 

AIV5 <25,13,24> [[25,13],[13,24]] 2/2 114 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

[[21,14],[14,25]] 
[[22,13],[13,22]] 
[[23,15],[15,21]] 
[[24,14],[14,23]] 
[[25,13],[13,24]] 

10/10 640 

Table 3. Obstacle obstructing an aisle, detected by a 
camera agent 

 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> <21,14,25> 2/2 124 

AIV2 <22,13,22>  0/2 24 

AIV3 <23,15,21> 
<23,15,21> 
<22,13,22> 

4/2 236 

AIV4 <24,14,23> <24,14,23> 2/2 114 

AIV5 <25,13,24> <25,13,24> 2/2 114 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

<21,14,25> 
<23,15,21> 
<22,13,22> 
<24,14,23> 
<25,13,24> 

10/10 612 

Table 4. Breakdown during part 1 of the AIV2 mission 

 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> 
<21,14,25> 

[13,22] 
3/2 234 

AIV2 <22,13,22> [22,13] 1/2 44 

AIV3 <23,15,21> <23,15,21> 2/2 112 

AIV4 <24,14,23> <24,14,23> 2/2 114 

AIV5 <25,13,24> <25,13,24> 2/2 114 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

<21,14,25> 
[[13,22],[22,13]] 

<23,15,21> 
<24,14,23> 
<25,13,24> 

10/10 618 

Table 5. Breakdown during part 2 of the AIV2 mission 

The results of the simulated dataset with a problem 
accessing a stock point appear in Table 6. They 
correspond to the simulation of the sc3 scenario with the 
blocking of stock point n°15 identified in Figure 8. We 
can notice that the AIV3 agent who had two tasks related 
to the deposit or the retrieval of stock at stock point n°15 
could not perform his tasks. Only eight of the ten tasks 
provided by the supervisor agent could be performed in 
this scenario. It is therefore necessary in this case, that an 
AIV agent or a human can come and unblock the 
situation (Figure 8.b). 

The modified scenario, with human intervention and 
all tasks completed, is named sc3’. It is defined in Figure 
8.b and the simulation results are presented in Table 7. 
Furthermore, the supervisor agent can also be informed 
so that it does not request the performance of other tasks 
related to this storage point as long as it is not accessible. 

Finally, the results of the scenario sc4 presented in 
Figure 9 appear in Table 8. The results obtained are the 
same as those in Table 7. The time differences compared 
to the scenario sc3 occur if there are tasks continuous 
tasks. Because the AIVs will continue to pass through 
this area, and they will not have to wait for clearance by 
a worker or another robot related to an obstacle, as in 
scenario sc3. This scenario sc4 demonstrates qualitative 
gains and robustness in processing. It highlights the 
importance of verifying information provided by the 
infrastructure because it can be faulty. This scenario 
underscores the importance of reliable infrastructure and 
effective communication channels among human 



operators, AIVs, and surveillance systems to address 
inaccuracies and ensure operational efficiency. 
 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> <21,14,25> 2/2 124 

AIV2 <22,13,22> <22,13,22> 2/2 116 

AIV3 <23,15,21>  0/2 22 

AIV4 <24,14,23> <24,14,23> 2/2 114 

AIV5 <25,13,24> <25,13,24> 2/2 114 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

<21,14,25> 
<22,13,22> 

 
<24,14,23> 
<25,13,24> 

8/10 490 

Table 6. Stock point n°15 has become inaccessible 

 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> <21,14,25> 2/2 124 

AIV2 <22,13,22> <22,13,22> 2/2 116 

AIV3 <23,15,21> <23,15,21> 2/2 112 

AIV4 <24,14,23> <24,14,23> 2/2 114 

AIV5 <25,13,24> <25,13,24> 2/2 114 

Worker <1,15,1> <1,15,1> 2/2 116 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

<21,14,25> 
<22,13,22> 
<23,15,21> 
<24,14,23> 
<25,13,24> 

10/10 

580 
AIVs 

+ 
116 

Worker 

Table 7. The stock point n°15 has become inaccessible, 
then cleared by a worker (human operator) 

 

Agent Requested and 
allocated tasks Completed tasks Ratio Distance 

covered 

AIV1 <21,14,25> <21,14,25> 2/2 124 

AIV2 <22,13,22> <22,13,22> 2/2 116 

AIV3 <23,15,21> <23,15,21> 2/2 112 

AIV4 <24,14,23> <24,14,23> 2/2 114 

AIV5 <25,13,24> <25,13,24> 2/2 114 

Worker <1,15,1> <1,15,1> 2/2 116 

Global / 
Supervisor 

[[23,15],[25,13]] 
[[22,13],[24,14]] 
[[21,14],[15,21]] 
[[13,24],[13,22]] 
[[14,23],[14,25]] 

<21,14,25> 
<22,13,22> 
<23,15,21> 
<24,14,23> 
<25,13,24> 

10/10 

580 
AIVs 

+ 
116 

Worker 

Table 8. A worker checks the presence of camera-
detected obstacle 

 

Table 9. The various V2X communications in the different scenarios proposed 

We indicated in section §4.1 that a certain number of 
properties can be associated with the concept of agent: 
situated, social, flexible, proactive, robust, mobile, 
intelligent, rational, temporally continuous, coordinative, 

cooperative, competitive, rugged (able to deal with errors 
and incomplete data robustly). The four scenarios 
presented in this article, as well as the one proposed in a 
previous article [39], which we will call Sc0, make it 

Scenario Problem / Solution Descriptive Figure / Result Table Communication 

Sc0 
Nominal 

case 

AIVs perform all tasks (mission, 
allocation, path planning) without 
encountering any problems. 

Figure 4: Representation of the circuit 

Table 1: Test sets for the 3 scenarios 

I2V: Supervisor gives tasks to auctioneer AIV 
V2V: CTM and CRM messages for the task 
allocation (auctions, reception and feedback) 

Sc1 
Obstructed 

aisle 

If an obstacle obstructs an aisle, then 
an AIV that has to cross this aisle 
must quickly replan its path. 

Cooperation AIV « infrastructure 

Figure 6: Simulation of the detection of 
an obstacle by a camera agent 

Table 2: Obstacle detected by an AIV 
Table 3: Obstacle detected by a camera  

I2V: - Supervisor gives tasks to auctioneer AIV 
         - Camera send a CPM “Obstacle detected” 
V2V: CTM and CRM messages for the task 
allocation (auctions, reception and feedback) 

Sc2 
AIV 

breakdown 

An inability for an AIV to complete 
its mission (obstacles or breakdown). 

Cooperation between the AIVs (for 
sharing missions). 

Figure 7: Simulation of an AIV 
breakdown at access point n°14 

Breakdown of an AIV mission during 
part 1 (Table 4) or part 2 (Table 5) 

I2V: Supervisor gives tasks to auctioneer AIV 
V2V: - CTM and CRM messages for the task 
allocation (auctions, reception and feedback) 
          - CTM messages to share missions 

Sc3 
Inaccessible 
stock point 

An inability for an AIV to complete 
its mission due to an event occurring 
in the defined environment to 
perform the task (stock point is 
inaccessible). 

Cooperation AIV « Worker (to 
remove an obstacle). 

Figure 8: Simulation of the access point 
n°15 blocked 

Table 6: Stock point n°15 has become 
inaccessible 
Table 7: Stock point n°15 has become 
inaccessible, and then cleared by a 
worker. 

I2V: - Supervisor gives tasks to auctioneer AIV 
         - Camera send CPM: obstacle detected 
I2P: CPM message for an obstacle at stock point 
V2V: - CTM and CRM messages for the task 
allocation (auctions, reception, and feedback) 
          - CTM messages to share missions 
V2P: DENM messages for a blocking problem 
P2V: CPM message indicating no more obstacle 

Sc4 
Camera 
failure 

If a camera sends false information, 
this information has to be checked. 

Cooperation AIV « Worker or 
between the AIVs (to verify 
information sent by the camera) 

Figure 9: Simulation of a worker 
checking for an obstacle at stock point 
n°15 

Table 8: A worker checks the presence of 
camera-detected obstacle 

I2V: - Supervisor gives tasks to auctioneer AIV 
         - Camera send CPM: obstacle detected 
I2P: CPM message for an obstacle at stock point 
V2V: - CTM and CRM messages for the task 
allocation (auctions, reception, and feedback) 
          - CTM messages to share missions 
V2P: DENM messages for a blocking problem 
P2V: - CPM message indicating no more obstacle 
           - DENM message for the camera failure 



possible to verify the relevance of agent-based 
simulation. Indeed, all of the above properties are 
addressed during the realization of these scenarios (Table 
10), where the AIVs agents will: 

- carry out their missions in an environment where 
they will be located; 

- communicate with each other, with the 
infrastructure and with workers, to establish collective 
intelligence; 

- pursue a common objective of carrying out all 
tasks by cooperating with each other, with the 
infrastructure or with a worker; 

- re-plan their paths and missions, or reallocate 
tasks, if necessary; 

- listen to other AIVs and active elements of  
infrastructure, and continue to act even if they are 
blocked; 

- coordinate themselves by using an auction 
mechanism for the allocation of tasks; 

- collectively check possibly incorrect information 
and communicate with a worker to resolve any 
problems; 

- act even when having incomplete data when 
receiving information without the AIVs being able to 
verify it themselves. 
 

 

Scenarios 
Agent properties 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 

Sc0 � � »  » � » � �  �   

Sc1 �  �  � � » � �  �  » 

Sc2 � � � » »  � � » � � � » 

Sc3 � � � � »  � � » � � � » 

Sc4 � � » » � � � � �  �  � 

Table 10. The symbols means agent properties are captured � or partially captured », and the properties are : P1 – 
Situated; P2 –Social; P3 – Flexible; P4 – Proactive; P5 – Robust; P6 – Mobile; P7 – Intelligent; P8 – Rational; P9 - 

Temporally continuous; P10 – Coordinative; P11 – Cooperative; P12 – Competitive; P13 - Rugged. 

 

6. Conclusion and perspectives 

In the context of the current smart factory, mobile 
robots must become increasingly autonomous in order to 
perform their missions effectively, i.e. optimize their 
activity according to performance indicators such as 
distances covered, energy consumed, time for perform 
missions, availability, etc. Autonomy and 
decentralization are two excessively linked notions to the 
extent that an autonomous system operates and make 
decisions autonomously, and a system is decentralized if 
the decision, which are made, are not centrally 
controlled. Therefore, we proposed a dynamic task (re-
)allocation process model for autonomous industrial 
vehicles, managing their activity in a decentralized 
context. We then developed a multi-agent application to 
be able to simulate this process and test it on different 
scenarios of problematic traffic situations. The proposed 
scenarios allow us to move towards strong cooperation 
between AIV agents, but also between AIV agents and 
infrastructure agents (cameras, tags, beacons, etc.). The 
V2X communication implemented to enable this 
cooperation is an essential element of our decentralized 
agent-based simulation approach. We have shown that it 
brings more flexibility and robustness in the management 
of problematic dynamic situations. We wish to 
accentuate these types of cooperation to increase the 
autonomy of the AIVs that we use in real experiments. 

The different perspectives that emerge from our work 
are data fusion and shared memory of AIV agents. For 
example, how to merge data related to the detection of an 
obstacle by an AIV agent and by a camera agent at 
different times. We want also to work on ways to verify 

the presence of an obstacle, for example by asking an 
AIV agent to go and verify the presence of it. A shared 
memory would allow AIV agents to have, for example, 
global information on task delegation requests, but also 
to map the environment. For this, we plan to suppress the 
CRM messages, and to choose to return to all AIV agents 
the mission assigned to them. These prospects for 
enhanced cooperation would make it possible to increase 
the autonomy and efficiency of autonomous industrial 
vehicles. Furthermore, we continue to develop the 
simulation platform to integrate fleets of heterogeneous 
robots, therefore with robots that will not be able to 
perform all the defined tasks. 
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