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Abstract—This paper presents an innovative method using the
YOLOv8 algorithm to automate the creation of digital twins
(DTs) replicating hydrodynamic behaviors of real organisms
in liquid environments. The approach extracts features from
video data, facilitating efficient DT generation. Addressing com-
putational challenges in accurately simulating fish movements,
our method offers insights into animals’ perception and use
of hydrodynamic cues. Training YOLO on a custom dataset,
processing predictions, integrating with computational fluid dy-
namics (CFD), and comparative analysis against ground truth
simulations demonstrate the effectiveness of our automated
digital twin creation.

Index Terms—Computer Vision, Artificial Intelligence, Au-
tomation, Virtual Engineering

I. INTRODUCTION

In this study, we propose a groundbreaking approach to
automating the creation of digital twins (DTs) that faithfully
represent the hydrodynamic characteristics of real organisms,
particularly in liquid environments. Leveraging the YOLOv8
algorithm [1], we aim to extract pertinent features from video
data, offering a swift and cost-effective means to generate
DTs. The automation of DT creation is essential to manage
the extensive volume of experiments conducted by biologists,
facilitating robust statistical analyses. This innovative method-
ology addresses the computational challenges associated with
constructing a DT capable of accurately simulating the intri-
cate movements of real fish, opening new avenues for gaining
profound insights into how animals perceive and leverage
hydrodynamic cues.

This project received funding from the Human Frontier Science Program
Organization under grant no. RGY0059/2022.

Indeed, in the realm of aquatic environments, animals
leave behind hydrodynamic motion cues—a distinctive ’liquid
fingerprint’—containing crucial details about size, identity,
and past movements [2]. This study takes a pivotal role in
a larger project involving the development of a sophisticated
analytical tool. This tool combines data from physical sensors
with the aforementioned swift and cost-effective simulation
approach. The overarching goal is to comprehensively decode
hydrodynamic cues and understand how animals interpret and
utilize them in liquid environments. Fish, in particular, exhibit
sensitivity to these cues, generating vortices with pressure,
velocity, and vorticity information detectable by canal neu-
romasts [3]–[5]. Despite the known role of these cues in
optimizing swimming efficiency [6], their full potential for
guiding animals in search and navigational avoidance tasks
remains largely unexplored.

In the subsequent sections, we will outline our approch,
detailing the processing of predictions of a YOLOv8 model,
trained on a custom dataset, the integration into computa-
tional fluid dynamics (CFD), and the comparative analysis
against ground truth simulations. Through this comprehensive
approach, we aim to demonstrate the effectiveness of our
automated digital twin creation method in capturing dynamic
hydrodynamic behaviors of real organisms.

II. STATE OF THE ART

The immense potential of YOLO [7] and other Computer
Vision algorithms in image analysis has been repeatedly
demonstrated, with numerous studies leveraging their capa-
bilities to varying extents in the development of digital twins.
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While YOLO is a powerful tool, it is not the sole option, as
demonstrated in [8]. This study builds a digital twin using
OpenCV, recognizing the diversity of tools available. The
emphasis here is on simplicity and precision, showcasing
the versatility of computer vision techniques beyond YOLO.
However, for our work, this solution is unsuitable due to color
similarities between certain fish parts and their shadows, hence
the choice to delve into YOLO’s possibilities.

The fundamental application of YOLO indeed lies in image
analysis, making it particularly usefull to scrutinize images
resulting from CFD. This concept is succinctly captured in
[9], which highlights YOLO’s use for automatic flow structure
detection and tracking in shadowgraph imaging within exper-
imental fluid dynamics. This paves the way for harnessing
YOLO’s capabilities to analyze flow fields using high-speed
cameras.

Moving beyond its fundamental application, YOLO proves
highly beneficial for modifying the digital twin of a low
dynamic system. [10]–[12] collectively demonstrate this ver-
satility. In [10], YOLOv5 is introduced for object detection
in a Building Digital Twin (BDT), showcasing its potential in
creating dynamic digital twins within a building environment.
[11] addresses the necessity for high-quality geometric models
in digital twins, combining dynamic mode decomposition
(DMD) for motion detection, YOLOv5 for object detection,
and 3D machine learning for pose estimation. The focus here
is on detecting changes in rotational poses to minimize storage
and bandwidth requirements. In [12], YOLOv7-X is employed
to construct a virtual apple orchard, proposing a semantic com-
munication framework that reduces data transmission costs
through object detection and introduces resource allocation
schemes for enhanced transmission quality.

Moreover, YOLO finds application in constructing more
dynamic digital twins, especially in scenarios where objects
exhibit rapid movement, as showcased in [13]. This study em-
ploys a hybrid deep neural network comprising MobileNetv2,
YOLOv4, and Openpose for small object detection in a Digital
Twin (DT) for smart manufacturing. The objective is to achieve
dynamic synchronization between the physical manufacturing
system and its virtual representation.

While the applications discussed herein provide dynamic
representations of digital twins by focusing on shape and
positioning, [14] underscores a critical aspect. It emphasizes
that achieving enhanced fidelity in digital twins necessitates
a shift towards understanding and incorporating the system’s
behavior. Our work aligns with this perspective, placing sig-
nificant emphasis on capturing the deformation nuances of
digitally reconstructed fish. This approach represents a step
forward in the quest for more comprehensive and behaviorally
faithful digital twins.

III. METHODOLOGY

The goal of this work is to develop a tool that zoologists can
use to have access to the hydrodynamic maps in a water tank
with a moving fish. The different tasks are therefore to segment
the fish, using a video input (III-A), analyze the result of the

Fig. 1: Proposed pipeline for the automation of the design of
our DT in LilyPad.

segmentation to extract the important features of the motion
(III-B), and finally, to implement them in the CFD software
(III-C), which is used in the global project described in the
introduction. Fig 1 sums up our approach.

A. Segmentation with YOLOv8

This subsection aims to provide a concise overview of the
implementation of the YOLOv8 algorithm for segmentation
in our study. Rather than delving into an in-depth explanation
of the inner workings of YOLOv8, we treat it as a black-
box tool without conducting any network customization. Our
focus is twofold: justifying the selection of YOLOv8 over
other versions and offering insights into the training process.

The choice of YOLOv8 as our preferred algorithm is
grounded in its demonstrated effectiveness and advancements
over earlier versions. While we refrain from an exhaustive
comparison, as it has already been done in others articles
such as [7], YOLOv8’s superior performance in terms of
accuracy, speed, and versatility influences our decision. Its
robust object detection capabilities and compatibility with
diverse applications align seamlessly with the multifaceted
requirements of our study.

In this study, our primary goal is to demonstrate the feasi-
bility of creating a dynamic digital twin using the YOLOv8
algorithm. The training approach is intentionally simplified,
avoiding extensive data augmentation and adhering to default
parameters. We use the yolov8n-seg model with a batch size
of 16. This deliberate simplification showcases YOLOv8’s
baseline capabilities for generating digital twins that em-
phasize behavioral nuances, underscoring its out-of-the-box
effectiveness for our specific application. Further details on
our dataset are discussed in the following paragraph.

To facilitate a robust comparison of the output generated
by our pipeline, it is imperative to establish a ground truth. In
pursuit of this, we opt to generate a simulation of a flexible
body within the LilyPad CFD software. This simulated fish-
like body serves as the input for our digital twin construction,
as it has a similar behavior to the fish studied in our project.
To train YOLO for the segmentation task, we employe a two-
step process. First, we utilize various frames from LilyPad’s
FlexNACA CFD simulations, providing diversity in conditions.
Next, we create custom labels for training by employing
OpenCV. This involves generating masks based on pixel color,
effectively delineating the flexible fish within each frame.
These custom labels not only provide the necessary ground
truth for training YOLO but also enable the algorithm to learn
the segmentation of the flexible body within different simu-
lated environments. The following pictures (Fig.2) are taken
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Fig. 2: Example of frame from the dataset and its correspond-
ing mask for label

from the dataset and represent a frame and its segmentation
mask before behind converted to yolo format to create a label.

B. Motion processing

Upon obtaining YOLO’s predicted mask for each frame
in the video, a subsequent series of Python-based steps is
undertaken to ensure a smooth and continuous representation
of the fish. This is crucial for compatibility with the LilyPad
CFD software, which is sensitive to sharp angles and fast,
noisy movements. This smooth representation is necessary to
guarantee the convergence of the simulation.

YOLO generates a list of points corresponding to the edges
of the flexible body shape within each frame. However, due to
variations, the number of points may differ between frames.
To address the variability in point numbers, a standardization
process is initiated. This involves setting a predefined number
of points, followed by rolling the list to position the smallest
value as the first element. Duplicate points are then eliminated
to ensure data consistency. Achieving a coherent representation
of the fish shape involves parametric interpolation. Leveraging
scipy’s splprep function, with default parameters except for
the smoothing factor equal to half the number of coordinates
and periodicity set to True, the rolled and de-duplicated point
list is processed. Subsequently, the splev function is employed
to perform parametric interpolation. This step is crucial for
creating a smooth and continuous representation of the shape’s
edges. The final output of the interpolation undergoes a
normalization process to meet the specific format requirements
of the CFD software. This step ensures seamless integration of
the predicted mask into the simulation environment. Finally,
unlike the spatial aspect of the prediction where interpolation
facilitates the use of a straightforward finite differencing
approach, thus directly computed in Digital Twin construction
phase, the temporal consistency has yet to be addressed. Given
the complexity introduced by temporal dynamics, a different
differentiating method is required to ensure CFD convergence.
Hence, the choice to employ the SmoothedFiniteDifference
function from the pySINDy package [15], which provides
a tailored solution for capturing temporal variations in noisy
scenarios, by applying a Savitzky Golay smoother beforehand.

By meticulously executing these steps, the predicted mask
from YOLO is transformed and refined into three csv files

for the x and the y coordinates and the temporal derivatives
for every points in space and time, rendering it suitable for
integration into the CFD software. This process not only
ensures consistency across frames but also provides a dynamic
and accurate representation of the flexible shape’s behavior in
the digital twin environment.

C. CFD parametrization

In this section, we outline the Computational Fluid Dynam-
ics (CFD) parametrization employed for the construction of
the digital twin, based on the architecture of the FFlexNACA
example provided in the LilyPad library. Lilypad is a 2D low-
fidelity CFD software that uses the Boundary Data Immersion
Method (BDIM) to solve the Navier-Stockes equation [16],
independently from the shape that is being simulated as it is
not sensitive to the grid [16]. It is prefered to some other CFD
solutions for its fast computing and simplicity, though it might
not be the most precise solver.

A custom class named CSV2DigitalTwin is devised to adapt
the FlexNACA framework to accommodate the unique require-
ments of our digital twin. Key distinctions lie in the utilization
of three CSV files obtained from the previous phase, enabling
a more comprehensive representation. This class takes the
previously mentionned files as input. Initialization involves
loading these files, establishing initial parameters, and creating
instances for further computation. A crucial step is the com-
putation of spatial derivatives using the loaded CSV files. This
is necessary for the integration of LilyPad’s inbuilt functions
and essential for accurately simulating the dynamic behavior
of the deformable fish shape and its inpact on the fluid. The
digital twin is constructed by placing points corresponding
to the first time step onto the canvas. These points serve
as the initial configuration of the digital twin. Subsequently,
as time progresses, the positions of these points are updated
based on the information extracted from the CSV files. This
iterative process generates a deformable fish, mirroring the
motion observed in the original FlexNACA simulation. The
enhanced capabilities of the CSV2DigitalTwin class enable
the redefinition of inbuilt LilyPad functions tailored for fluid
mechanics simulations. These include:

• WallNormal: Providing the adjusted normal vector to the
base shape, considering the local deformations introduced
by the digital twin.

• Velocity: Calculating the velocity of the digital twin,
incorporating the effects of both the base shape and the
deformations introduced over time.

• Distance: Determining the distance between points on the
digital twin and the rest of the canvas, accounting for
spatial variations induced by the system’s dynamics.

The digital twin evolves dynamically over time, capturing
the intricate interplay between the deformable fish shape and
the surrounding fluid. This dynamic evolution is achieved
through continuous updates to the coordinates of the digital
twin based on the information extracted from the CSV files,
ensuring a faithful representation of the original simulation’s
fluid-structure interactions. To complete the simulation setup,



it is essential to define the remaining parameters, including
the canvas size, viscosity, and time step. In order to maintain
consistency and facilitate a direct comparison with the output
of the proposed pipeline, we opt to retain the parameters
from the original FlexNACA simulation. These parameters,
initially set as the default values provided by LilyPad, ensure
a standardized environment for the comparison, aligning with
the conditions of the reference simulation.

This CFD parametrization framework provides a robust
foundation for the digital twin, allowing it to mirror the
behavior of the flexible fish shape in a fluid flow. The
subsequent sections will delve into the performance metrics,
validation against ground truth, and insights gained through
the application of this parametrization methodology.

IV. RESULTS

A. Training results

The initial YOLO training utilizes a dataset comprising 500
images, divided into a training set and a test set with an 80/20
ratio. Examination of the training and test losses reveales a
positive outcome, indicating that the model is not overfitting,
see Fig.3. This initial observation markes a promising starting
point for further refinement. However, upon a deeper anal-
ysis of additional metrics (mean average precisions mAP50
and mAP50-95), it becomes apparent that the model could
potentially benefit from more extensive training data. Metrics,
while satisfactory, show room for improvement, as they deviate
notably from the ideal value of 1 (Fig.3). Recognizing the
potential for enhanced learning, a decision is made to retrain
the model with a larger dataset, specifically 30,000 frames. It is
worth remembering that while this training may not adhere to
the most rigorous standards, it serves the purpose of exploring
the model’s potential (III-A).

The outcomes of the retraining validates the intuition. The
losses remains favorable (Fig.4), indicating effective training
without overfitting. Notably, mAP50 and mAP50-95 shows
marked improvement, approaching values close to 1. This
shift in metrics suggests that the increased dataset indeed
contributes to a better understanding of the object detection
task. Interestingly, the metrics reaches a plateau early in the
training while the validation loss doesn’t decrease as fast as
the training one. This observation prompts consideration for
future studies to diversify the dataset further, introducing a
broader range of scenarios and complexities to enhance the
model’s robustness and the digital twin’s performance, as it
will be highlighted in the subsequent sections.

In summary, the YOLO training results demonstrate a
positive trend (Fig. 5). The transition from the initial dataset to
a larger one led to improved metrics, reaffirming the model’s
capability for object detection. The pursuit of a more diverse
dataset remains a logical next step, aiming to address potential
limitations and further elevate the model’s performance.

B. CFD results under static flow

In order to compare the original simulation with the digital
twin, a static flow scenario is established(Fig.6). This con-

Fig. 3: Training metrics provided by YOLOv8 for a 500 frames
dataset, with a 80/20 split between train and test sets.

Fig. 4: Training metrics provided by YOLOv8 for a 30 000
frames dataset, with a 80/20 split between train and test sets.

figuration serves as the baseline for the original simulation.
Notably, the mean pressure field of the digital twin demon-
strates intriguing similarities to the original simulation, albeit
with reduced intensity. A notable discrepancy emerges in the
nose region of the fish, warranting further investigation.

To delve into this observed difference, various simulations
of the digital twin are conducted with combinations of cus-
tomizations, and for each of them, metrics such as the mean
pressure, different norms or varaince are computed (Tab.I).
For instance, individual elements extracted from the YOLO
output, such as the spatial derivative, are implemented while
retaining the temporal derivative and distance function from
the original simulation. This sensitivity analysis aimes to
pinpoint the most impactful customizations influencing the
discrepancies observed. Results from the sensitivity checks
shed light on the significance of the temporal derivative as
the primary factor influencing the observed differences. Its
impact is nevertheless reduced when coupled with all the other
customization. This insight provides valuable guidance on
areas for potential improvement in the digital twin simulation,
while still keeping in mind the improvements that could come
out of a proper training.

In summary, the comparison between the original simulation
and the digital twin in a static flow scenario reveals a generally
comparable mean pressure field. However, specific differences

(a) (b)

Fig. 5: Original shape (a) vs the reconstructed one using
YOLOv8 output (b)



(a) (b)

Fig. 6: Mean pressure field measured in the ground truth
simulation (a) and in the digital twin simulation (b), both in
a static flow.

in the nose region prompts a deeper exploration through
sensitivity analyses. The findings underscore the importance
of the temporal derivative as a key element influencing the
simulation outcomes, guiding future refinement efforts for
enhanced fidelity in the digital twin representation.

TABLE I: Pressure field metrics for all combinaisons of
customization using spatial (dhdx), temporal (hdot) derivation
and distance (dist) function, in a static flow.

mean l1 norm l2 norm l∞ norm
Custom shape 96.3 97.9 98.6 108

dhdx 71.5 99.0 98.2 108
hdot 93.9 111 167 568
dist 51.4 94.0 93.5 69.2

dhdx & hdot 91.9 111 167 568
dhdx & dist 45.7 93.2 92.6 68.7
hdot & dist 56.4 94.7 122 311

all 50.2 95.0 122 312
all (forced flow) 135 145 332 8450
All values are percentages of original simulation metrics.

C. CFD results under forced flow

Recognizing the limitations in the initial scenarios, efforts
are directed towards creating more realistic conditions for the
comparison between the original simulation and the digital
twin. The key adjustment involves increasing the size of the
water tank to more accurately simulate real-world conditions.
By virtually enlarging the tank by using a forced flow, the
goal is to allow perturbations generated by the fish’s motion to
unfold in a more natural manner, minimizing interactions with
the tank boundaries and enhancing the overall realism of the
simulation. The results from these refined scenarios, while still
displaying qualitative differences, exhibite improvements com-
pared to the initial experiments. The adjustments in flow speed
contributes to a more realistic representation of the interaction
between the fish and its environment. Although differences
persiste, they are observed in a less pronounced manner on
the mean pressure field (Fig.7), offering a clearer insight into
the nuanced dynamics between the original simulation and
the digital twin. The metrics, on the other hand, present an

(a) (b)

Fig. 7: Mean pressure field measured in the ground truth
simulation (a) and in the digital twin simulation (b), both in
a forced flow.

alternative perspective. While variations are observed in the
mean and l1 norm between the two setups, the most notable
shifts are evident in the l2 and l∞ norms. In the case of
an open tank, these metrics experience a significant surge,
reaching differences of 332% and 8450% between the original
and digital twin, in contrast to 122% and 312% for the closed
tank (Tab.I). This suggests the possibility of pressure outliers
in specific areas of the digital twin simulation, which once
again could be the nose area, consequently resulting in more
substantial discrepancies in metrics that emphasize variations,
such as the l2 and l∞ norms.

D. CFD results for a flow with U∞ = 1 in a wide tank

Our exploration into an open tank scenario prompts an in-
triguing investigation into the influence of a larger observation
window, four times the size of the original. Utilizing the same
parameters as before, but with an expanded spatial scope,
we shift our focus to examining a specific frame of vorticity
from the simulation rather than the mean pressure map. The
results reveals a distinct vorticity pattern in the digital twin
that deviates notably from the original simulation (Fig.8),
particularly as we move further downstream the fish. While
this experiment do not unveil new differences, it provides
valuable insights into the cumulative impact of the earlier
observed small discrepancies, particularly when applied to a
dynamic and chaotic environment. In essence, this experiment
highlights that, despite qualitative similarities between the
digital twin and the original simulation, the reconstructed
system’s simulation will inherently tend to diverge over time.
However, it is essential to approach these results with a
degree of caution. The comparison involves the digital twin
simulation of a fully controlled system against its ground truth.
In a real-world scenario, such as digitalizing a living fish,
the absence of a ground truth complicates the evaluation. In
addition, no living fish has such a regular and symmetrical
alternating movement creating such wake. Also a realisitc
turbulence level of the water causes more dissipation, which
is not considered here. The alternative approach would be
manual design of the digital twin, a process inherently prone to
introducing subtle differences from reality due to the inherent



challenge of capturing the entirety of a system’s dynamics.
In essence, both approaches result in a similar situation, but
the manual design method demands significantly more time
for simulation construction, thus emphasizing the efficiency
and practicality of the proposed YOLO-based method, without
underestimating the remaining necessary improvements.

Fig. 8: Vorticity maps for the digital twin (top) and the original
simulation (bottom) in a wider tank after 28 tailbeats.

V. CONCLUSION

In this study, we embarke on a comprehensive exploration
of enhancing digital twin simulations through the integration
of YOLO-based object detection, focusing on the motion
dynamics of a flexible body in fluid flow scenarios. By
employing YOLO as a segmentation model, we successfully
reconstruct the shape and motion of the fish, offering a
dynamic representation for digital twin simulations.

This approach presents a notable improvement over previ-
ous methods, as it leverages state-of-the-art computer vision
techniques to capture the intricate details of the system’s be-
havior and fast deformation. The segmentation model, trained
on a relatively small dataset, exhibites promising results in
object detection, enabling a faithful recreation of the fish’s
motion. Moreover, the incorporation of sensitivity analyses
and realistic scenarios allowed us to identify key factors
influencing the simulation outcomes. While the digital twin
demonstrates qualitative proximity to the original simulation,
the study shed light on nuanced differences, particularly in
dynamic and chaotic environments. Notably, the impact of
temporal derivatives emerges as a critical aspect influencing
simulation fidelity. To further refine this digital twin design,
future efforts should prioritize the incorporation of a more
diverse dataset, encompassing a range of scenarios and shapes
of body to enhance the model’s robustness. Additionally,
addressing the observed differences in dynamic environments
requires to investigate more powerfull methods to extract the
temporal derivatives from the raw data. Tools such as SINDy
from the pySINDy package are being considered. Looking
ahead, one exciting avenue for exploration is the application

of these methods to real fish videos. This next step promises to
bridge the gap between simulations and real-world scenarios,
offering opportunities for validating and refining the digital
twin approach in actual, uncontrolled environments.

In conclusion, this study represents a significant advance-
ment in digital twin simulations, showcasing the potential of
YOLO-based object detection in capturing the complexities
of dynamic systems. By understanding the uncovered lim-
itations and nuances, we lay the foundation for continued
refinement, aiming for a digital twin solution that not only
qualitatively mirrors the original simulation but also adapts to
the challenges of dynamic and evolving scenarios, including
real-world fish behaviors.
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