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Abstract: Home health care companies provide health care services to patients in their homes. Due
to increasing demand, the provision of home health care services requires effective management
of operational costs while satisfying both patients and caregivers. In practice, uncertain service
times might lead to considerable delays that adversely affect service quality. To this end, this paper
proposes a new bi-objective optimization problem to model the routing and scheduling problems
under uncertainty in home health care, considering the qualification and workload of caregivers.
A mixed-integer linear programming formulation is developed. Motivated by the challenge of
computational time, we propose the Adaptive Large Neighborhood Search embedded in an Enhanced
Multi-Directional Local Search framework (ALNS-EMDLS). A stochastic ALNS-EMDLS is introduced
to handle uncertain service times for patients. Three kinds of metrics for evaluating the Pareto fronts
highlight the efficiency of our proposed method. The sensitivity analysis validates the robustness
of the proposed model and method. Finally, we apply the method to a real-life case and provide
managerial recommendations.

Keywords: home health care; routing and scheduling problems; bi-objective optimization; adaptive
large neighborhood search; uncertainty

1. Introduction

The Home Health Care (HHC) industry has been fast-growing worldwide in recent
years with the development of information technology and transportation systems. HHC
companies provide services at patients’ homes, ranging from nursing care to specialized
medical services [1]. Patients can thus receive treatment in familiar surroundings. This
also helps to decrease hospital admissions and duration of hospital stays [2]. Demand for
HHC has been increasing in recent years as the elderly increasingly prefer to grow old in
their own home, underscoring the critical need for the efficient organization of caregivers’
daily activities.

The integration and coordination of this health service logistic network is a complex
task, and managers have to face many logistics decisions. Network design, transportation
management, staff management, and inventory management are all described as the set
of decision problems related to design and operation in HHC [3]. Depending on the time
horizon from long term to short term, the planning horizon can be categorized into three
levels: the strategic level, the tactical level, and the operational level [4]. The strategic-
level decisions involve defining facility locations, patient districts, transportation modes,
staffing, and service levels. The fleet assignment to patients’ districts, the shift scheduling,
and the definition of inventory policies are considered at the tactical level. The decisions
at the operational level include staff assignment and routing, as well as inventory control.
A fourth level has recently been recognized as a real-time level, where very short-term
planning is needed, according to actual execution.
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The short-term daily activities in HHC services are shown in Figure 1. Once patients
receive their medical treatment prescriptions, service times and staff qualifications are
defined, and managers assign qualified caregivers to patients. They draw up the caregivers’
schedule based on the services requested and on the patients’ available times. Finally,
each caregiver delivers their medical service, starting from the home health care facility
and visiting patients in a planned sequence before returning to the facility.

Figure 1. Daily activities in home health care.

These daily activities in HHC refer to transportation management and can be planned
at the tactical and operational levels. This planning can be modeled as a Home Health Care
Routing and Scheduling Problem (HHCRSP). Caregivers should arrive and leave within
the time frame of patients’ availability, corresponding to a fixed time interval for receiving
the care service, called a time window. A hard time window ensures that the patients are
visited within their time windows. Caregivers are not permitted to perform the service if
they arrive or leave outside of these time windows. A soft time window can be violated at
the cost of a penalty.

When determining routes and schedules, decision-makers strive to identify the most
cost-effective routes while taking into account time windows. This is crucial as transporta-
tion services constitute a substantial portion of a company’s expenses and can impact
operational efficiency. However, both patient satisfaction and caregiver satisfaction also
play an important role in HHC companies’ competitiveness. HHC companies may not be
capable of providing service for all patients in their available time frames. All patients can,
however, receive care if some of them accept visits outside of their available time frames.
The less that arrival and departure times are outside the time window, the more satisfied
patients and caregivers will be. It is therefore particularly important to strike a balance
between costs and quality, which has motivated us to propose two objectives.

In practical care services, caregivers must possess appropriate qualifications to provide
medical care that aligns with the patient’s conditions. The level of treatment required should
correspond to the capabilities of the caregivers. Fairness of caregivers’ workload also has to
be ensured to avoid overwork or refusal of certain treatment tasks. These commonly
considered features, including different staff qualifications and workload balance for
caregivers, contribute to the service quality but make the model more complex.

In addition to the operational constraints, uncertainty is prevalent in such applications.
A caregiver may arrive or leave a patient’s home earlier or later than the previous appoint-
ment time as the schedule and the route are static. The time that a caregiver spends on
the road changes little, except for instances of major road accidents. The arrival time and
service end time are hard to predetermine mainly because the service time of each patient
is related to their physical condition, which is often unstable, especially when emergencies
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or acute diseases are involved. Moreover, providing services to address social isolation
among elderly patients adds to the unpredictability of service time. Individual needs and
preferences for social interaction and companionship can vary significantly. Some patients
may require more time and attention for meaningful conversations or activities than the
planned service times. If caregivers arrive prematurely due to the preceding service ending
sooner, they have to wait. This inadvertently extends their working hours. If the actual
service time is longer than the planned service time, the caregiver may arrive too late at the
next patient’s home. This case where the patient cannot receive service on time degrades
the service quality. In diabetes management, maintaining strict adherence to time schedules
is crucial for stable blood glucose level control [5]. Similarly, time-regulated nutritional
support is needed in palliative care [6]. It is therefore essential to plan robust routes and
schedules for real-life home health care activities.

To conclude, there is an urgent need to define effective routes and schedules while
enhancing the quality of service under uncertain service times. To address this, a new
bi-objective Mixed-Integer Linear Programming (MILP) model is developed, integrating
routing and appointment scheduling. Due to the complexity of solving this model for
practical-sized instances, the Adaptive Large Neighborhood Search within Enhanced Multi-
directional Local Search (ALNS-EMDLS) has been developed and is proposed to speed up
problem-solving and provide the approximation Pareto front. Additionally, a stochastic
version of ALNS-EMDLS is introduced to generate robust solutions in the face of uncertain
service times. These solutions may not be optimal for every service time scenario, but they
perform better on average than the deterministic method.

The rest of this paper is organized as follows. Section 2 reviews the literature related
to vehicle routing and scheduling problems in home health care activities. Section 3
addresses the model with two objective functions. A scenario-based multi-objective solution
methodology is proposed in Section 4. The parameters setting, computational experiments,
and results analysis are presented in Section 5. In Section 6, the parameters inherited
from the sensitivity analysis are utilized in a real-world application, which results in
managerial suggestions. The conclusion of this paper and the perspective of future studies
are summarized in the Section 7.

2. Related Works

In this paper, we focus on the HHCRSP within a daily planning horizon, which is a
variant of the Vehicle Routing Problem with Time Windows (VRPTW) [7]. The VRPTW has
many applications such as telecommunication, waste collection, and cross-docking [8,9].
Determining the optimal solution to VRPTW is NP-hard. Solving the HHCRSP consists
of designing optimal delivery routes from a central location to a set of geographically
distributed patients with various constraints. This entails optimization problems that are
complex and therefore of particular interest to stakeholders. It differs from VRPTW because
of the features [10]: (1) the temporal dependency and the disjunctive nature of services;
(2) the continuity, given that patients are assigned to a restricted set of caregivers; and
(3) caregivers’ skills and patients’ requests. Various constraints and objectives are used in
different studies due to the home care policies of the country under study. Exact, heuristic,
and approximate methods have been proposed to solve related problems [11].

2.1. Operational Constraints

Liu et al. [12] addressed a routing and scheduling problem for home care workers
with the consideration of lunch break requirements. They found an optimal solution by
the Branch and Price (B&P) method. Shahnejat-Bushehri et al. [13] took into account Time
Window (TW), Quality of Caregivers (QC), precedence, and synchronization constraints.
A parameter was used to indicate whether a caregiver had the necessary qualifications to
provide a certain service. Simulated Annealing (SA) and Tabu Search (TS) were applied in
two phases. A Variable Neighborhood Search (VNS)-based heuristic was used to obtain a
feasible solution that had to observe assignment constraints, working time restrictions, time
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windows, and mandatory break times [14]. Constraint Programming (CP) and TS were
used to solve the routing problem while considering the problem of matching the skills
of caregivers and the patient’s conditions [15]. Workload Balance (WB) was considered
as the fair workload assignment to each caregiver in [16]. The constraints in existing
research also include visits incompatibilities [17], multiple modes of transportation [18],
and time-dependent travel times [19].

In most other studies, the time window is used to limit the service starting time.
The service starting time outside the time window leads to a penalty due to patients’
dissatisfaction. However, it is more reasonable that the time window is defined as the
time frame during which the patient is available. There will also be a penalty if caregivers
perform a service and then leave the patients’ homes outside the time windows. We,
therefore, define patients’ and caregivers’ satisfaction as minimizing the segmented penalty
due to arrival times and departure times being out of the time windows. If the penalty
is continuous, only one patient is likely to endure a long delay. The segmented penalty
promotes a more equitable distribution of service punctuality and increases the fairness
in scheduling for patients and caregivers. Different levels of caregivers are required by
patients depending on the severity of their conditions. We assume a fixed number of
caregivers to be assigned to the daily schedule. The number of patients to be served by
one caregiver is limited for the sake of balancing the workload. We first consider these
properties together.

2.2. Multi-Objective Optimization

Decision-makers balance various factors, including cost, requiring the simultaneous
optimization of multiple objectives, an approach facilitated by Multi-Objective Optimiza-
tion (MOO) [20]. There is seldom a single global solution, and it is often necessary to
determine a set of points that all fit a predetermined definition of an optimum (for more
concepts, see [21]). One of the most intuitive methods is to optimize the weighted sum
of all the objective functions as a single objective optimization. It is implemented simply
but is highly dependent on weights. The bounded objective function method minimizes
the single most important objective function, while others are used to form additional
constraints. The bounded value and the most important objective function are hard to
pre-select. The optimization process of the lexicographic method is carried out individually
on each objective function following the order of importance and stops when a unique
solution is obtained. In a game theoretic approach, objective functions are assumed to be
the players that are ultimately controlled by the decision-maker and can be expected to
reach an agreement, meaning the game is cooperative. This was proposed in [22], and
an improvement was stated in [23]. A single solution method can be used if the decision-
makers’ preference is known. However, if they cannot explicitly express their preference, it
is preferable to provide them with a range of solutions to choose from. Some multi-objective
optimization algorithms are capable of obtaining Pareto solutions, which represent the set
of non-dominated solutions in a multi-objective optimization problem. These solutions
are essential for decision-makers to evaluate trade-offs between conflicting objectives. A
normal-boundary intersection is a technique intended to find the portion that contains
the Pareto optimal solutions, delineating the boundary of the set of attainable objective
vectors [24]. A genetic algorithm is also suitable to obtain Pareto fronts since it can process a
set of solutions in parallel. Non-dominated sorting genetic algorithms and other algorithms
based on the genetic algorithm combine the use the random numbers and information from
previous iterations to evaluate and improve a population of points [25]. Recently, the Pareto
Q-learning algorithm was used for solving MOO, learning deterministic, non-stationary,
and non-dominated multi-objective policies while mapping the entire Pareto front [26,27].

Recent advances in HHC research have moved to explore the multi-objective opti-
mization method to obtain the Pareto front instead of using a weighted objective function.
Decerle et al. [28] combined distance and visit penalties into a single objective function,
finding genetic algorithms and local searches that yielded instance-flexible results. In [29],
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the weighted sum of travel time, a score of continuity of care, overtime, idle time, and
penalty for unscheduled patients, was minimized. Yang et al. [30] minimized travel costs,
inconsistency, and workload balance using an artificial bee colony metaheuristic to generate
non-dominated solutions. Braekers et al. [31] analyzed the trade-off between operating
costs and service levels. A bi-objective optimization model was developed to address
the travel costs and downgrading costs of nurses in [32]. This model was solved by an
ϵ-constraint-based approach. Fathollahi-Fard et al. [33] considered travel costs and CO2
emissions as objective functions, using hybrid versions of metaheuristics and developing
four fast heuristics for Pareto optimal solutions.

Although improving service quality and patient satisfaction is as important as reducing
costs, there is still less related research on the subject. This has motivated us to introduce
a bi-objective model to reconcile the interests of different stakeholders in HHC. We do
not depend on the preference of decision-makers (for example, weights assigned to the
objectives) to aggregate the objectives into one. Decision-makers can select their preferred
solution from a Pareto optimal set according to different operational situations.

Table 1 summarizes the research that built deterministic models for routing problems
in HHC. Compared with the deterministic models in recent research, our work takes into
account the time windows, workload balance, and skills matching. We propose a novel
approach ALNS-EMDLS. It is easy to implement and ignores the gradient information
and the nature of objective functions and constraints. It contains fewer hyperparameters
compared to genetic algorithms.

Table 1. Deterministic models and methods used in the latest research.

Author MOO TW WB QC Other Methods

Liu, Yuan, and Jiang [12] × Lunch break B&P
Shahnejat-Bushehri et al. [13] × × Idle time, synchronization SA, TS
Trautsamwieser et al. [14] × × Over time, break time VNS
Bertels and Fahle [15] × × × CP, TS
Decerle et al. [28] × × × Synchronization MAMO
Braekers et al. [31] × × × Patients inconvenience MDLS
Our study × × × × ALNS-EMDLS

MOO, Multi-Objective Optimization; TW, Time Windows; WB, Workload Balance; QC, Quality of Caregivers; B&P,
Branch and Price; SA, Simulated Annealing; TS, Tabu Search; VNS, Variable Neighborhood Search; CP, Constraint
Programming; MAMO, Memetic Algorithm for Multi-objective Optimization; and MDLS, Multi-Directional
Local Search.

2.3. Uncertainties

Some parameters that are represented in a stochastic manner can model uncertainties
such as service times, travel times, and demands of patients. Two common models used
in general formulations are the Chance Constrained Programming (CCP) model and the
Stochastic Programming with Recourse (SPR). Li et al. [34] conducted a comparative study
of these two models for the vehicle routing problem under uncertain travel times and service
times. Based on the results obtained by TS, the authors concluded the CCP might not be a
suitable model for the target problem. This is attributed to the computational challenges
arising from the stringent constraints imposed by the confidence levels. Consequently,
the stochastic programming model has been chosen for handling the uncertain service
times in our study.

The robust optimization aims to obtain robust solutions that remain relatively un-
changed under uncertainties. The uncertainties can be modeled deterministically, prob-
abilistically, or possibilistically [35]. The uncertainties in HHC can be mainly quantified
based on certain distributions [30,36,37], the triangular fuzzy numbers [38,39], the budget
uncertainty polytopes [40], and a set of scenarios with fixed probabilities [41,42]. The worst-
case philosophy and expected performance of all scenarios can be employed to construct
the robust objective function of the original formulation. The former, though conservative,
can yield impractical solutions when overly large domains are chosen. Therefore, we define
the robust counterpart of the original objective function based on the expectation. We
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assume that the uncertainty in our study follows the normal distribution. If solutions
are obtained with optimal expected values while involving uncertainties that are random
variables or follow probability distributions, it can be also called stochastic optimization.

To solve the HHCRSP under uncertainties, some studies in the HHCRSP utilize numer-
ical techniques to transform the robust optimization problem into a normal optimization
problem by using strong mathematical assumptions. Yuan et al. [43] used an approximate
formula to replace the expected penalty for late arrival and thus to reduce computing
effort. In [30], the objective functions and constraints related to uncertain service time and
travel time were considered and transformed into their deterministic equivalents based on
uncertainty theory. This consistent HHCRSP was solved by an improved multi-objective
Artificial Bee Colony (ABC) metaheuristic. The objective function was rewritten as a recur-
sive function based on the theory of budget in [40]. However, this approach may be limited
by the need for strong mathematical assumptions like first- or second-order derivatives,
which may not always be accessible. In most studies, the robust objective function is typi-
cally calculated by the simulation method, and then exact, matheuristic, or metaheuristic
methods are applied [36,37].

In other fields, some researchers apply the scenario-based method to solve a stochastic
multi-objective model [44–46]. A multi-objective optimization problem under uncertainty
in transmission expansion planning was proposed in [47]. The objective functions were the
total cost, the robustness, and the flexibility criterion. The proposed process for solving this
problem considered the performance of solutions in all scenarios simultaneously. It could
be applied to a situation where there were not too many scenarios because the model needs
to be optimized under each scenario. In the micro-grid operation field, Niknam et al. [48]
modeled load demand, available output power, and market price, by means of scenario-
based stochastic programming.

In our study, we develop the stochastic model and method to obtain robust routes
and schedules. Given a certain distribution of the service time, we aim to optimize the
expectation of the objective functions instead of using only the mean of the service times for
a deterministic model. It is hard to calculate the integration of complex objective functions.
Sampling from the distribution into a finite set also generates a big increase in the number of
variables and constraints. Therefore, we propose a stochastic ALNS-EMDLS that combines
a scenario-based method to deal with the uncertain service times.

Notably, we conclude the main research gaps by comparing our study with the fol-
lowing literature that is closely related. The authors of [43] modified the objective function
and constraints with stochastic service times by an approximate formula, while the authors
of [37] used Monte Carlo simulation. However, they only focused on single-objective
optimization problems using Monte Carlo simulation or the scenario-based method. Our
study is the first to apply the scenario-based stochastic method in addressing the multi-
objective optimization problem in this domain. The scenario-based stochastic method
is data-driven and enhances decision-making under uncertainty by evaluating multiple
scenarios, allowing for more informed strategies [49]. The multi-objective optimization
model and algorithm that we propose offers a broader range of choices where manager
preferences are unknown.

The main contributions of our work are as follows:

• We develop a new bi-objective MILP model that aims to optimize the travel cost as well
as the satisfaction of caregivers and patients, considering the alignment of caregivers’
qualifications with patients’ requirements as well as workload balance.

• We propose the ALNS-EMDLS to solve the problem. The effectiveness of the new
approach is validated by experimental results thanks to the comparison with the
Gurobi solver [50]. The stochastic ALNS-EMDLS is proposed to deal with uncertainties.
The contrast between the stochastic and original versions demonstrates the stochastic
method’s robustness.

• In order to refine and enhance the application of our method, we conduct a sensi-
tivity analysis to identify suitable parameters and apply them to real-world data
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in a case study, providing actionable management recommendations to choose the
suitable schedules.

3. Problem Statement

In this section, a mathematical model and its components representing the extension
of VRPTW in HHC have been formulated. From the perspective of graph theory: let
G = (V, A), where V = {0} ∪ N = {1, 2. . . , n} is the vertex set and represents the depot
and the patients. A = {(i, j) ∈ V, i ̸= j} is the set of arcs. We aim to find minimum-cost
routes that serve the vertices once and satisfy the side constraints of arc R⊆A.

It is assumed that all caregivers leave the depot at time 0. Caregiver k ∈ K starts
from the facility, moves once to each patient, and returns to the depot. Each caregiver has
the qualification level Qk. Fixed levels of qualification Q = {1, ..., q} are defined in this
paper. A visit is therefore allowed only if the patient’s requirement is lower or equal to
the qualification level of the caregiver. The skill level of nurses is mainly based on their
experience in dealing with complex cases. Patients are assured of receiving appropriate
levels of care. The qualification matching ensures the service quality and safety.

Patients are spread across different locations. Each patient i has requirement RCi for a
specific level of the caregiver. The patients’ requirement set is aligned with the qualification
set of the caregivers. The patients indicate their preferred time for home care during the
registration process. The time window [ei, li] of the patient i is defined as the earliest time
of starting service and the latest time of ending service that can be tolerated by the patient.
If the caregiver arrives earlier than ei, the service will start before reaching ei; if the arrival is
after ei, the service begins immediately. The caregiver will leave immediately after serving
for service time δi.
The departure time of node i can be calculated as (1):

dik = max(aik, ei) + δi (1)

The arrival time of patient j is calculated as (2):

ajk = xijk(dik + tij). (2)

Note that ajk is meaningless when patient i is not visited by caregiver k, that is, xijk = 0.
Caregivers who arrive too early may face long waiting times, while arriving too late can
lead to decreased patient satisfaction. A penalty cost is introduced in objective functions
when caregivers arrive or leave outside the time window. Minimizing the penalty can
enhance service punctuality and reduce waiting times, thereby improving the satisfac-
tion of both patients and caregivers. Different penalty values are assigned to [0, ei − 30],
(ei − 30, ei − 15], (ei − 15, ei], (ei, li], (li, li + 15], (li + 15, li + 30], (li + 30, ∞]. In other words,
we have two loose time windows [ei − 30, li + 30] and [ei − 15, li + 15] and one tight time
window [ei, li]. Discrete penalties can prevent a few patients from suffering from large
delays. When yik = 1, the penalty is determined using (3) and (4); otherwise, pa

ik and pa
ik

are equal to 0. Figure 2 shows the penalties schematically.

pa
ik =


β0, aik ≤ ei − 30
β1, ei − 30 < aik ≤ ei − 15
β2, ei − 15 < aik ≤ ei
β3, ei < aik ≤ li
β4, li < aik

, (3)

pd
ik =


α0, dik ≤ li
α1, li < dik ≤ li + 15
α2, li + 15 < dik ≤ li + 30
α3, li + 30 < dik

(4)
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Figure 2. Illustration of discrete penalty. (a) Discrete penalty for arrival time; (b) discrete penalty for
departure time.

The notation to describe the model is summarized in Table 2.

Table 2. Notation.

Notation Definition

Sets
N set of patients
V set of depot and patients
A all arcs
K set of caregivers
Q set of levels of qualification

RC set of requirements of patients for levels of caregivers
H set of number of intervals divided by departure time
G set of number of intervals divided by arrival time

Parameters
i,j index of patients
k index of caregivers
cij travel cost between i and j
tij travel time between i and j, is cij
Qk level of qualification of caregiver k
RCi requirement of patient i for qualification level of a caregiver
δi service time of patient i

ei, li time window of patient i
m,n minimal number of patients and maximal number of patients that

one caregiver is able to visit
αh degree coefficient if departure time is located at hth interval
βg degree coefficient if arrival time is located at gth interval

Decision variables
xijk binary decision variable: 1 if caregiver k moves from i to j, 0

otherwise
yik binary decision variable: 1 if patient i is served by caregiver k, 0

otherwise
aik arrival time of caregiver k’s visit to patient i
dik departure time that caregiver k leaves patient i

pd
ik, pa

ik continuous decision variable: the penalties that arrival time and
departure time are outside of time windows

wd
ik, wa

ik auxiliary variables: continuous, pik = wik ∗ yik, ∀i ∈ N, ∀k ∈ K
uig, vih binary decision variable: 1 if caregivers’ arrival (departure) time

at patient i is located at gth (hth) interval, 0 otherwise
ri binary decision variable: 1 if caregiver arrives after ei
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The objective functions and constraints are formulated by (5)–(38).

f1 = min ∑
i,j∈A

∑
k∈K

cijxijk (5)

f2 = min ∑
i∈N

∑
k∈K

Pik (6)

Pik = pd
ik + pa

ik (7)

s.t. ∑
j∈V,i ̸=j

∑
k∈K

xijk = 1, ∀i ∈ N (8)

∑
i∈V,i ̸=j

xijk = ∑
i∈V,i ̸=j

xjik, ∀k ∈ K, ∀j ∈ V (9)

∑
j∈N

x0jk = 1, ∀k ∈ K (10)

yik ∗ RCi ≤ Qk, ∀i ∈ N, ∀k ∈ K, ∀Qk ∈ Q (11)

yik = ∑
j∈V,i ̸=j

xijk, ∀i ∈ N, ∀k ∈ K (12)

m ≤ ∑
i∈N

∑
j∈V

xijk ≤ n, ∀k ∈ K (13)

dik + tij ≤ ajk + (1− xijk) ∗M, ∀i ∈ N, ∀j ∈ V, ∀k ∈ K, i ̸= j (14)

dik + tij ≥ ajk − (1− xijk) ∗M, ∀i ∈ N, ∀j ∈ V, ∀k ∈ K, i ̸= j (15)

ajk ≤ t0j + (1− x0jk) ∗M, ∀j ∈ N, ∀k ∈ K (16)

ajk ≥ t0j − (1− x0jk) ∗M, ∀j ∈ N, ∀k ∈ K (17)

d0k = 0, ∀k ∈ K (18)

dik ≥ aik + δi, ∀i ∈ N, ∀k ∈ K (19)

dik ≥ ei + δi, ∀i ∈ N, ∀k ∈ K (20)

dik ≤ aik + δi + (1− ri) ∗M, ∀i ∈ N, ∀k ∈ K (21)

dik ≤ ei + δi + ri ∗M, ∀i ∈ N, ∀k ∈ K (22)

∑
h∈H

vih = 1, ∀i ∈ N (23)

dik ≤ li ∗ vi0 + (li + 15) ∗ vi1 + (li + 30) ∗ vi2 + M ∗ vi3, ∀i ∈ N, ∀k ∈ K (24)

dik ≥ li ∗ vi1 + (li + 15) ∗ vi2 + (li + 30) ∗ vi3, ∀i ∈ N, ∀k ∈ K (25)

wd
ik = ∑

h∈H
αhvih, ∀i ∈ N, ∀k ∈ K (26)

pd
ik ≤ wd

ik + M ∗ (1− yik), ∀i ∈ N, ∀k ∈ K (27)

pd
ik ≥ wd

ik −M ∗ (1− yik), ∀i ∈ N, ∀k ∈ K (28)

pd
ik ≤ M ∗ yik, ∀i ∈ N, ∀k ∈ K (29)

∑
g∈G

uih = 1, ∀i ∈ N (30)

aik ≤ (ei − 30) ∗ ui0 + (ei − 15) ∗ ui1 + ei ∗ ui2 + li ∗ ui3 + M ∗ ui4, ∀i ∈ N, ∀k ∈ K (31)

aik ≥ (ei − 30) ∗ ui1 + (ei − 15) ∗ ui2 + ei ∗ ui3 + li ∗ ui4, ∀i ∈ N, ∀k ∈ K (32)

wa
ik = ∑

g∈G
βguig, ∀i ∈ N, ∀k ∈ K (33)
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pa
ik ≤ wa

ik + M ∗ (1− yik), ∀i ∈ N, ∀k ∈ K (34)

pa
ik ≥ wa

ik −M ∗ (1− yik), ∀i ∈ N, ∀k ∈ K (35)

pa
ik ≤ M ∗ yik, ∀i ∈ N, ∀k ∈ K (36)

xijk, yik, ri, uig, vih ∈ {0, 1}, ∀i ∈ V, ∀j ∈ V, ∀k ∈ K, ∀g ∈ G, ∀h ∈ H, i ̸= j (37)

aik, dik, pd
ik, pa

ik, wd
ik, wa

ik ≥ 0, ∀i ∈ N, ∀k ∈ K (38)

The first objective function (5) is to minimize the travel cost. The second objective
function (6) represents the penalty cost to be minimized. A smaller penalty cost indicates
greater satisfaction for both caregivers and patients. Constraints (8) ensure that a caregiver
is assigned to exactly one route. Constraints (9) mean each caregiver visits the patient
and then leaves the patient. Constraints (10) indicate that caregivers start from the depot
and return to the depot after finishing services. Caregivers can perform the service only if
their qualification levels are satisfied by constraints (11) and (12). Constraints (13) indicate
that each caregiver must serve a certain number of patients in relation to the workload
balance. Constraints (14)–(17) linearize the Formula (2). The arrival time at node j is the
sum of the departure time from node i and the travel time from i to j, when xijk = 1.
Constraint (18) specifies that caregivers start their routes from the depot at time 0. The de-
parture times at patients’ locations are defined by constraints (19)–(22), which convert the
Formula (1) into linear. Constraints (14)–(22) guarantee the schedule feasibility and make
subtours impossible. (23)–(36) are the variants of (4) and (3). Constraints (37) and (38) set
the domains of decision variables.

For the MILP model, the optimal solutions of each objective function can be obtained
by Gurobi Solver. We use a weighted sum method to obtain the approximation of a
Pareto optimal set. The sum of the weights of two objectives satisfies ω1 + ω2 = 1 for
normalization. This normalization ensures that the relative importance of each objective
is expressed as a fraction of the whole. In the next iteration, ω

(t+1)
1 = ω

(t)
1 + ∆ and

ω
(t+1)
2 = ω

(t)
2 − ∆. We keep only non-dominated solutions from T solutions, which are

obtained after T iterations.

4. Multi-Objective Algorithms

Our proposed method ALNS-EMDLS is divided into two main components: the En-
hanced Multi-directional Local Search (EMDLS) described in Section 4.1, and the Adaptive
Large Neighborhood Search (ALNS) detailed in Section 4.2. To address uncertain service
times, the stochastic version of ALNS-EMDLS is proposed in Section 4.3.

4.1. Enhanced Multi-Directional Local Search Algorithm (EMDLS)

The multi-directional local search method was first proposed by Tricoire [51]. Each
local search is performed for a single objective (direction) iteratively to improve the non-
dominated front F. Each local search works separately without considering the importance
of the objectives. Only non-dominated solutions are kept after one iteration. This strategy
has fewer parameters and can yield well-spread solutions. The savings algorithm is a kind
of constructive heuristic and can be used to construct the initial solution. In each direction,
we use the ALNS to improve solutions and put the solutions in F. The Deb non-dominated
sorting method is used to keep the non-dominated front after each iteration. F is saved as
an ordered list to reduce the number of times executing non-dominated sorting.

Our EMDLS differentiates from the original algorithm in two ways. Firstly, unlike
the original algorithm where a single solution from set F initiates the next iteration, our
approach retains multiple solutions in each direction to enhance diversity. Secondly, our
method selects solutions from F based on crowding distance, drawing inspiration from
NSGA-II [52], rather than making random selections. The crowding distance of point i
in F can be regarded as the perimeter of the hypercube, which is surrounded by the two
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adjacent points i − 1 and i + 1. The two boundary points are assigned to a very large
number. The solution with a larger crowding distance is more likely to be chosen.

4.2. Adaptive Large Neighborhood Search (ALNS)

In the ALNS, various destroy and repair operators are selected adaptively to construct
new solutions, which are accepted if their objective function values meet the record-to-
record criterion, as detailed in the following subsections.

4.2.1. Destroy and Repair Operators

Three destroy operators and three repair operators are designed based on the previous
work in [53]. We remove nodes from the solution by the destroy operators and then insert
the removed nodes by the repair operators. To satisfy the constraints (13), we select the
routes with over m patients for destruction and those with less than n patients for repair. We
choose the routes where caregivers meet patients’ demands to respect the constraints (11).

A certain number of nodes are randomly removed and inserted by the random destroy
operator and the random repair operator, respectively. These operators can easily be
implemented to run faster than others. The worst destroy operator chooses the nodes with
the largest saving that appear to be placed in the wrong position in the solution, while the
relatedness destroy operator tends to select the nodes that are similar and can easily be
exchanged. The relatedness of the first objective function (5) can be calculated by 1

cij/cmax+v ,

while the objective function (6) by 1
(|ei−ej |+|li−lj |)/twmax+v , where cmax denotes the largest

cost of all pairs of i and j, twmax, is the length of the longest time window. If the node
i and the node j are in the same route, v = 0; otherwise, v = 1. We iteratively find the
node with minimum cost position in the greedy repair operator. But for the nodes that
are expensive to insert in the last iteration, there are not many opportunities for inserting
them because many of the routes are “full”. The regret operator chooses the nodes from the
removal set by calculating i = arg maxi∈u[∑k

j=1 (∆ f j
i − ∆ f 0

i )], where u is the removal set,

and ∆ f j
i denotes the insertion value of the node i in the jth cheapest insertion position. This

method selects the insertion that has a larger possibility to improve the overall performance
than the greedy method. Appendix A contains the details of the destroy operators and the
repair operators.

4.2.2. Adaptive Weight Adjustment and Acceptance Criterion

Only one destroy operator and one repair operator are chosen by probability
wj

∑k
i=1 wi

in one iteration, where wj is the weight of the jth operator to be chosen, i ∈ {1, 2, ..., k}.
The entire search is divided into several segments. A segment is a number of iterations of
the ALNS. The weight wj is automatically updated after a segment and is calculated by the
Formula (39).

wj = (1− γ) ∗ wi + γ ∗ rscore

onum (39)

The variable onum means the usage frequency of operator i in the latest segment. The reac-
tion factor γ controls how quickly the weight adjustment algorithm reacts to the changes in
the effectiveness of the heuristics. The rscore can take three values: r1, r2, and r3, correspond-
ing to three types of acceptance criteria, which assess the heuristic’s recent performance.
A high score corresponds to a better performance. More specifically, in the record-to-record
method, a neighborhood solution generated by the destroy and repair operators is always
accepted if it outperforms the current solution, the best solution, and the sum of the best
solution and deviation.
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We allow infeasible solutions where some patients in the removal set may not be
scheduled by a repair operator. In this case, the number of remaining patients incurs
penalties in two objectives by the following formulas:

min ∑
i,j∈V

∑
k∈K

cijxijk + η ∑
i∈N

zi, (40)

min ∑
i∈N

∑
k∈K

Pik + η ∑
i∈N

zi, (41)

where zi = 1 if the patient i can not be inserted; otherwise, zi = 0.
Algorithm 1 presents each step of the ALNS-EMDLS.

Algorithm 1 ALNS-EMDLS

Input: a set F only including an initial solution x, repair operators, destroy operators,
deviation d, iterseg, r1, r2, r3

Output: the Pareto front F
1: repeat
2: xcur ← crowd_distance(F)
3: xbest ← xcur

4: G ← ∅
5: for k←1 to K do
6: for j←1 to iterALNS do
7: for i←1 to iterseg do
8: choose destroyi and repairi based on weight w
9: xnew ← repairi(destroyi(xcur))

10: if fk(xnew) < fk(xcur) then
11: xcur ← xnew

12: if fk(xnew) < fk(xbest) then
13: xbest ← xnew

14: update score by r1
15: else
16: update score by r2
17: end if
18: else if fk(xnew) < (1 + d) fk(xbest) then
19: xcur ← xnew

20: update score by r3
21: end if
22: end for
23: update w by Formula (39)
24: end for
25: add multiple solutions of optimizing kth objective to G
26: end for
27: F ← Deb_nondominated_sorting(F, G)
28: until stopping criterion is met

4.3. Stochastic Method

An objective function of a stochastic optimization problem can be written as f (x, Y(ω)),
where x is the decision variable and Y is a random variable that associates a real number
to each element ω of a sample space Ω. We simply write it as f (x, ω). Without loss of
generality, we consider the form of the stochastic K-objective optimization problem as [54]:

min( f1(x, ω), f2(x, ω), . . . , fK(x, ω)) s.t.x ∈ X . (42)

It can be reduced to a deterministic model by defining fi as an s-dimensional vector
F (s)

i ( fi(x, ω)) (for other transformations, see [55,56]). Expectation E( fi(x, ω)), which is a
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specific functional F (s)
i , is used in this paper. To make the expectation computationally

tractable, each objective function is estimated by a sample average approximation method.
E( fi(x, ω)) can be replaced by an unbiased consistent estimator [57].

1
U ∑

ωv∈S
fi(x, ωv), (43)

where S = {ω1, ω2, . . . , ωU} is a fixed finite set of scenarios drawn in advance.
We assume the service time follows a certain probability distribution that is known

in advance. We generate U scenarios from the distribution for each patient by means of
the Monte Carlo method. The second objective function varies under different scenarios.
The first objective function is not calculated by the service time, but it is indirectly affected.

The objective function (6) can be rewritten as:

f̃2 =
1
U ∑

s∈S
∑

Rk∈R
∑

rj∈Rk

Ps
rj

, (44)

where Ps
rj

denotes the penalty of node rj under scenario s; R = {R1, R2 ..., R|K|} is a set of

routes. Here, |K| represents the number of routes, and Rk means the kth route in the set R.
In the stochastic version of ALNS-EMDLS, the second objective function f2 is replaced by
f̃2, and it can be calculated by Algorithm 2 under different scenarios of service time.

Algorithm 2 Stochastic simulation for computing the expectation of penalty cost

Input: a solution, a number of scenario U, s = 1, sum = 0
Output: estimate expected value of penalty cost

1: while s ≤ U do
2: for Rk in R do
3: for rj in Rk do

4: generate δ̃
(t)
rj from sample space according to the probability measure.

5: compute the arrival time and departure time according to (1) and (2), then
calculate Prj by (4) and (3).

6: sum = sum + Ps
rj

7: end for
8: end for
9: end while

10: the estimated expected value is sum = sum/U

5. Computational Study

In this section, our experiment datasets and settings are presented. Some metrics
are used to evaluate the quality of non-dominated solutions and the efficiency of multi-
objective algorithms. We analyze the results obtained by an exact solution approach (the
Gurobi Solver) and two approximate solution approaches (the ALNS-EMDLS and the
stochastic ALNS-EMDLS). All of the algorithms have been implemented in Python [58].
For all the experiments, we have used an Intel(R) Core (TM) i5-10310U CPU (@ 2.21 GHz)
CPU with 16GB of RAM memory.

The computational study was carried out on two types of data sets. First, and to
extend the study of the performance and robustness of the proposed method, a series of
tests was created based on literature instances. Second, a several dataset was taken directly
from the field. It was used to analyze the proposed solutions in terms of business practices
and to draw out managerial insights.
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5.1. Data Sets and Experimental Setup

No benchmark results exist in the literature for our problem. Hence, we generate
six different types of (C1, C2, R1, R2, RC1, and RC2) instances based on the Solomon
dataset [59], which contains various instances with different sizes and characteristics for
the VRPTW problem. This variety allows for comprehensive testing of our algorithm
across different instances. The Solomon dataset provides necessary details such as
locations, time windows, and service times, aligning well with our proposed problem.
The data sets that support the findings of this study are openly available in “figshare”
at http://doi.org/10.6084/m9.figshare.21339072 (accessed on 1 March 2024). We have
compared problems involving 25, 50, and 100 patients, focusing on the characteristics
including the geographical data, the length of the scheduling horizon, and the proportion
of time-constrained patients. The geographical data are randomly generated in R1 and
R2, clustered in C1 and C2, and a mix of both structures in RC1 and RC2. The sets R1, C1
and RC1 have a short scheduling horizon, while the sets R2, C2, and RC2 have a longer
one. Each type comprises four sets. For example, C1 consists of C1-a, C1-b, C1-c, and C1-d.
The only distinction between C1-a and the other three sets lies in the presence of some
patients having time windows that are scarcely constrained in sets C1-b, C1-c, and C1-d.

Each patient is available only between the ready time and the due time. Distance is
Euclidean, and the value of the travel time is equal to the value of distance between two
nodes. We assign random values to patient requirements for caregiver levels and service
times. To be more practical, we diversity the service time of each patient. The mean value
of service time δ accounts for twenty to sixty percent of the time window. We assume that
the service time of each patient is an independently normally distributed random variable

and follows N(µi, σ2
i ). We set µ = δ and σ =

√
δ
5 . We assume that three caregivers are

assigned to 25 patients, five caregivers to 50 patients, and 10 caregivers to 100 patients.
Before starting the problem-solving, the parameters are set. For solving the MILP

by Gurobi Solver, we set ∆ as 1/50. The ALNS is affected by random factors, so we
utilize the average value of the metrics from five runs for every experiment. In each
iteration, the number of nodes removed by destroy operators is randomly set between
2 and 4, as reflected in the variable q in Algorithms A1 and A2 (refer to Appendix A). η
in Formula (40) is set to 1000. Given the impracticability of testing all hyperparameter
combinations, we employ Bayesian optimization for efficient exploration [60]. It is assumed
the hyperparameters are in a black box (an unknown function), with the function’s output
evaluated via a metric known as the hypervolume indicator (detailed in Section 5.2).
In Bayesian optimization, it assumes the unknown function stems from a Gaussian process
prior, updating the posterior distribution with new observations. An acquisition function is
chosen for the next evaluation point. The tuned hyperparameters of the proposed method
and their best values after 50 iterations are shown in Table 3.

Table 3. Hyper parameters.

Notation Definition Value

r1 score if f (xnew) < f (xcur) 21.38
r2 score if f (xnew) < f (xbest) 18.93
r3 score if f (xnew) < (1 + d) f (xbest) 7.08
γ coefficient of weight (see Formula (39)) 0.68
iterseg the number of iterations to update weight 4
iterALNS the number of iterations of ANLS of each direction 19
d percentage of the objective value of the best solution 0.13

http://doi.org/10.6084/m9.figshare.21339072
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5.2. Performance Metrics

The metrics are used to measure the convergence and diversity (diversity includes
ductility and uniformity) of the solutions [61], including the number of Pareto optimal
points (N), the hypervolume indicator (HV), and the Spread metric (S) [62]. These metrics
provide a comprehensive assessment of an algorithm’s performance in identifying a diverse
and well-distributed set of solutions.

The objective values are scaled between 0 and 1 before calculating these metrics.
The HV gives the volume x enclosed by a reference point and the solutions and is shown in
the following Formula (45):

HV =
⋃

x∈A
V(x, R). (45)

The reference point R is commonly set to the point (1,1) for minimizing a bi-objective
problem. This metric measures convergence and diversity. A larger value of hypervolume
signifies the better quality of the solutions. The spread metric evaluates the diversity of
solutions and is given by:

sp =
d f + dl + ∑n−1

i |di − d|
d f + dl + d(n− 1)

, (46)

where d f and dl are the Euclidean distances between the extreme solutions in true Pareto
front and non-dominated solutions (NDS). d is the average of the whole distance di, and di
is the Euclidean distance between one solution and the next nearest solution, where
i ∈ [1, |NDS| − 1].

We assume the extreme values of a true Pareto front are (0,1) and (1,0). Smaller values
indicate better distribution.

5.3. Deterministic Bi-Objective Solutions

This is a base case in which the service times are considered as deterministic quantities.
We compare the ALNS-EMDLS and the Gurobi Solver to measure the performance of our
proposed method.

The two extreme points of Pareto front ([ f min
1 , f2] and [ f min

2 , f1]), HV, S, the CPU
execution time of the program measured by seconds (TCPU), and the number of Pareto
points (N) for the small size (10 patients) and the real-life size (25, 50, and 100 patients)
instances are shown in Table 4. We find that the running time of the Gurobi Solver is much
longer than that of the ALNS-EMDLS. The extreme values of the two objectives are very
close. The outcomes produced by the proposed method, which encompass a broad-range
Pareto front, are remarkably comparable to those of the Gurobi Solver while requiring less
time. Moreover, the results of the ALNS-EMDLS involve more solutions than the Gurobi
Solver. Real-world instances typically contain a larger number of patients. With large
instances, solving the problem to optimality is troublesome, and we found no solution
within a limited time using the Gurobi Solver. We, therefore, considered the ALNS-EMDLS.
Computation times shown in Table 4 indicate that the ALNS-EMDLS is effective. Other
metrics show the Pareto fronts achieved by the proposed method are well distributed and
have satisfactory diversity.

The numerical simulation processes of stochastic programming require a lot of time.
Utilizing the Gurobi Solver to derive solutions for the stochastic model would require
significantly more time compared to the deterministic model. The proposed method is
adequate to find satisfactory solutions. The performances of the proposed method are
very close to the best-found solutions obtained by the Gurobi Solver. Therefore, for large
instances, we propose employing the stochastic version of ALNS-EMDLS to solve the
problem under uncertainty.
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Table 4. Results of Gurobi Solver and ALNS-EMDLS.

min f1 min f2

f min
1 f2 f min

2 f1 HV S N TCPU

Gurobi Solver
10-C1 128.64 52.00 32.00 147.69 0.72 0.15 4.00 293.13
10-C2 163.35 62.00 39.00 189.59 0.61 0.09 4.00 625.47
10-R1 194.47 85.00 21.00 258.70 0.68 0.07 6.00 233.86
10-R2 194.47 68.00 18.00 344.84 0.66 0.06 7.00 271.53

10-RC1 218.06 81.00 23.00 336.60 0.74 0.12 8.00 285.31
10-RC2 230.23 75.00 18.00 462.66 0.68 0.02 10.00 293.19

ALNS-EMDLS
10-C1 128.64 52.00 33.00 153.64 0.74 0.15 4.00 21.35
10-C2 163.35 62.00 39.00 189.59 0.62 0.07 6.00 20.55
10-R1 194.47 85.00 21.00 258.70 0.69 0.12 8.00 23.15
10-R2 194.47 68.00 18.00 344.84 0.68 0.00 18.00 26.70

10-RC1 218.06 81.00 23.00 336.60 0.75 0.04 16.00 31.90
10-RC2 230.23 75.00 18.00 462.66 0.71 0.004 15.00 26.11

% 0.00 0.00 0.005 0.007 2.45 −29.02 65.08 −91.60
ALNS-EMDLS

25-C1 182.33 108.00 12.50 527.05 0.76 0.06 25.75 64.08
25-C2 240.45 131.75 26.00 497.09 0.86 0.04 19.00 59.19
25-R1 352.94 162.00 48.75 500.59 0.66 0.05 19.00 60.40
25-R2 350.88 166.50 7.00 820.81 0.80 0.03 24.25 63.59

25-RC1 294.99 135.50 5.25 386.91 0.71 0.04 26.75 58.32
25-RC2 294.99 149.00 3.75 935.51 0.78 0.04 28.25 61.94
50-C1 344.90 226.25 20.50 1220.02 0.72 0.02 39.50 138.76
50-C2 447.31 176.00 27.50 1476.68 0.72 0.02 34.00 134.35
50-R1 564.50 360.25 139.25 947.44 0.77 0.06 29.50 136.68
50-R2 570.02 251.00 2.50 1419.08 0.73 0.02 36.00 139.71

50-RC1 529.73 235.00 26.00 665.48 0.63 0.04 29.50 144.86
50-RC2 591.95 253.75 1.75 1721.49 0.73 0.03 37.50 145.97
100-C1 823.09 414.25 38.75 3297.75 0.68 0.01 56.25 256.97
100-C2 887.19 501.25 41.75 3417.91 0.74 0.01 54.00 241.71
100-R1 935.09 621.75 141.00 1526.37 0.70 0.01 44.25 249.72
100-R2 941.73 530.50 14.25 2692.53 0.72 0.02 55.25 256.78

100-RC1 1006.43 613.50 108.25 1610.18 0.70 0.02 42.00 249.80
100-RC2 1019.04 468.50 8.50 3326.02 0.74 0.03 48.75 256.62

5.4. Stochastic Bi-Objective Solutions

Table 5 shows the metrics and extreme objective function values of the Pareto front of
the Stochastic ALNS-EMDLS (S_EMDLS).

On average, a considerable difference exists between the solution for minimum travel
cost and the solution for minimum penalty cost in terms of both objectives. Hence, the qual-
ity of services that decision-makers decide to offer to patients has a significant impact on
operating costs, underscoring the need for careful decision-making. The instances C1 and
C2, which are clustered, have lower minimum travel costs than R and RC. We compared
the results under different lengths of time windows. Data types 2, including C2, R2, and
RC2, have longer time windows than type 1. Table 5 shows that most of the values of the
minimum penalty of type 2 are less than those of type 1.
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Table 5. Results of S_EMDLS.

min f1 min f2

S_EMDLS f min
1 f2 f min

2 f1 HV S N TCPU

25-C1 182.35 110.05 22.73 569.10 0.82 0.06 37.25 1318.99
25-C2 239.94 131.46 28.49 597.37 0.85 0.02 27.25 1256.51
25-R1 349.69 179.25 49.63 516.97 0.75 0.02 20.75 1176.40
25-R2 352.78 121.94 13.03 923.21 0.76 0.02 39.75 1306.94

25-RC1 294.99 114.43 9.89 390.71 0.67 0.01 37.25 1196.68
25-RC2 294.99 140.60 6.24 1129.41 0.82 0.02 41.25 1357.98
50-C1 347.27 219.11 39.74 1375.92 0.80 0.02 47.50 2985.87
50-C2 449.06 199.25 33.66 1618.00 0.78 0.02 47.50 2766.20
50-R1 568.73 298.00 143.21 1020.79 0.81 0.05 26.00 3034.78
50-R2 566.30 248.64 15.29 1624.68 0.75 0.02 49.00 2954.02

50-RC1 539.62 222.38 40.75 737.78 0.74 0.04 31.50 2819.57
50-RC2 570.14 231.47 5.62 2235.57 0.76 0.02 48.25 2991.65
100-C1 831.97 485.78 73.61 3591.33 0.74 0.01 63.75 6370.87
100-C2 916.35 459.38 65.52 3754.04 0.77 0.01 61.75 5635.48
100-R1 948.95 599.82 157.89 1758.63 0.69 0.01 40.25 5790.88
100-R2 947.37 539.87 42.95 2942.96 0.75 0.01 64.00 6022.64

100-RC1 1013.65 559.13 122.02 1727.37 0.70 0.02 45.00 5824.40
100-RC2 1016.62 463.38 19.54 3973.91 0.75 0.01 68.00 6000.49

The data sets 25-C1-a, 25-C1-b, 25-C1-c, and 25-C1-d are used to test the effect caused
by different percentages of patients with time windows. In 25-C1-a, all patients are available
only at certain periods of the day. 28%, 52%, and 68% patients are available for the full
working time of caregivers for 25-C1-b, 25-C1-c, and 25-C1-d, respectively. Most patients
do not have time windows in the 25-C1-d set. The Pareto fronts are shown in Figure 3.
The solutions of 25-C1-d dominate 25-C1-a, 25-C1-b, and 25-C1-c.
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Figure 3. Time windows comparison of 25 patients.

We use Algorithm 2 to evaluate the solutions obtained by the Deterministic (original)
ALNS-EMDLS (D*_EMDLS). The number of solutions and HV and S metrics are compared
in Table 6.

It can be inferred from the results that the modeling of uncertain service times will
increase computing time because the S_EMDLS needs to handle more information than
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only one scenario. Using the proposed stochastic framework, more scenarios contribute to
the output. The S_EMDLS is therefore more realistic. In Table 6, the results of the ANOVA
test show there is no significant difference in the means of HV and S between the solutions
of D*_EMDLS and S_EMDLS since the p-values are greater than 0.005. This means that
the stochastic method can yield solutions that are at least as good as the deterministic one.
The proposed stochastic approach is designed to optimize the expected values of objective
functions. Its solutions may not be global optimal solutions for the individual scenario, but
they are robust, providing possible realizations despite uncertain service times.

Table 6. Deterministic model tested on uncertain environment.

min f1 min f2

D*_EMDLS f min
1 f2 f min

2 f1 HV S N

25-C1 182.33 107.10 26.62 476.12 0.77 0.04 21.50
25-C2 240.45 126.21 30.70 542.94 0.87 0.08 18.50
25-R1 352.94 142.54 52.70 480.16 0.61 0.03 17.50
25-R2 350.88 150.13 16.83 826.24 0.79 0.01 24.00

25-RC1 294.99 122.17 10.97 386.25 0.68 0.03 24.25
25-RC2 294.99 139.35 10.41 947.57 0.78 0.05 30.00
50-C1 344.90 223.08 50.22 1141.53 0.74 0.01 35.00
50-C2 447.32 175.01 41.00 1452.68 0.74 0.09 30.50
50-R1 564.50 329.10 151.81 961.09 0.80 0.09 28.75
50-R2 570.02 232.62 25.47 1423.64 0.74 0.06 30.25

50-RC1 529.73 220.87 49.27 653.99 0.62 0.02 24.00
50-RC2 591.95 244.33 12.24 1814.66 0.74 0.02 35.75
100-C1 823.09 412.46 96.72 3250.29 0.71 0.10 42.25
100-C2 887.20 493.36 73.05 3258.56 0.74 0.01 50.50
100-R1 935.09 579.99 173.21 1544.58 0.68 0.03 37.00
100-R2 941.73 501.50 65.53 2739.26 0.73 0.03 51.50

100-RC1 1006.43 567.45 144.81 1623.38 0.68 0.03 35.50
100-RC2 1019.04 458.41 35.52 3588.20 0.76 0.01 46.00
ANOVA

F 0.00 0.01 0.37 0.26 2.51 6.08 8.64
p 0.98 0.92 0.55 0.61 0.12 0.02 0.01

6. Management Recommendations

6.1. The Influence of Uncertainty on Cost and Care Quality

To identify the behavior of the proposed model and method and examine the influence
of uncertain service times on objective values, several sensitivity analysis are performed on
the main parameters. In this regard, a small test problem of 25 patients and three caregivers
is selected. The parameters include the ending time of the loose time windows (ET) and
variance of distribution (VD), which can indicate the range of uncertain service times. Each
parameter has three levels, namely, small, medium, and large. To validate the robustness of
solutions, we also compare the results of D*_EMDLS and S_EMDLS. We use the solutions
obtained by the deterministic model to evaluate their sensibilities under uncertain service
times. We normalize the Pareto set to [0,1] and calculate the distance between the origin
and each point in the Pareto set. The solution with a minimum distance (D) is defined as a
trade-off solution in our case. The objective values (travel cost (TC), penalty (P), normalized
travel cost (NTC), and normalized penalty (NP)) of the trade-off solutions and minimum
distances are summarized in Tables 7 and 8.

li means the latest time of the tight time window. If the departure time somehow
exceeds the time window by a certain level, there will be a penalty cost. If the departure
time lies within (ei, li], (li, li + c1], (li + c1, li + c2] or (li + c2, ∞] (c1 < c2), the penalty
cost will be 0, α0, α1, α2, α3, respectively (see Figure 2 and Formula 4). That is to say, we
have loose time windows. If c1 and c2 are bigger, patients give more flexibility to the
decision-makers and caregivers. Three levels of ET are compared when the VD is δ ∗ 2
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in Tables 7 and 8. The results of the two methods do not dominate each other when the
ET levels are small and medium. But the result of D*_EMDLS is dominated by S_EMDLS
when c1 = 30 and c2 = 45. If patients have more flexibility, the S_EMDLS is better to deal
with uncertain service times.

Table 7. Results of different levels of ET and VD using D*_MDLS.

D*_MDLS Levels D NTC NP TC P

ET
Small li + 5, li + 15 0.38 0.33 0.18 491.23 169.40

Medium li + 15, li + 30 0.33 0.28 0.18 453.71 159.82
Large li + 30, li + 45 0.40 0.37 0.16 479.28 154.78

VD
Small δ/3 0.38 0.33 0.18 425.81 119.06

Medium δ 0.57 0.37 0.43 436.65 156.08
Large δ ∗ 2 0.40 0.37 0.16 479.28 l154.78

Table 8. Results of different levels of ET and VD using S_MDLS.

S_EMDLS Levels D NTC NP TC P

ET
Small li + 5, li + 15 0.39 0.34 0.19 492.77 163.08

Medium li + 15, li + 30 0.34 0.30 0.15 464.14 154.40
Large li + 30, li + 45 0.37 0.32 0.20 444.33 150.42

VD
Small δ/3 0.38 0.27 0.26 425.29 121.88

Medium δ 0.50 0.39 0.31 446.94 143.72
Large δ ∗ 2 0.37 0.32 0.20 444.33 150.42

Regarding VD, sensitivity analysis has been performed by increasing the variance of
normal distribution. We sample the service times from normal distributions. If the variance
is bigger, which means patients are more likely to have larger or smaller service times that
deviate from the average value, the results of S_EMDLS dominate D*_EMDLS (shown
in the last rows of Tables 7 and 8). Figure 4 shows the Pareto points of D*_EMDLS and
S_EMDLS with different VD and ET. The short lines in the box plots denote the median
of TC or P. In (e), when VD = δ ∗ 2, LD = (li + 30, li + 45), the median of S_EMDLS is
obviously smaller than D*_EMDLS. However, the S_EMDLS is more realistic as it takes
into account multiple scenarios, leading to increased computing time. If the variance of
service times is not too large, the D_EMDLS can be chosen to save computing time.

The values of travel cost and penalty of trade-off solutions for different approaches
are shown in Table 9 and Figure 5. The values of travel cost of the D*_EMDLS are less
stable than those of S_EMDLS. When VD increases from δ/3 to δ ∗ 2.5, the penalty of
S_EMDLS increases by 28.24%, while the growth for the D*_EMDLS is 43.32%. The penalty
of S_EMDLS changes more sluggishly than that of D*_EMDLS when VD changes. There-
fore, S_EMDLS has better robustness than the D*_EMDLS. The objective values are more
stable and perform better for the cases with large variations in service times by using the
S_EMDLS, while D_EMDLS is more appropriate for cases with small variations in service
times to save computing time. Decision-makers can select one of the solutions from the
Pareto sets depending on their companies’ operating profitability. They can select which
method to use in order to attain better objective values based on varying conditions.
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Figure 4. TC and P with different VD and ET. (a) VD = δ ∗ 2, LD = (li + 5, li + 15);
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Figure 5. Objective values of trade-off solutions with changing of VD. (a) Travel cost; (b) penalty.
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Table 9. Objective values of trade-off solutions with changing of VD.

Methods δ/3 δ δ ∗ 1.5 δ ∗ 2 δ ∗ 2.5

Travel cost
D*_EMDLS 425.81 436.65 404.40 479.28 412.53
S_EMDLS 425.29 446.94 414.51 444.33 413.67

Penalty
D*_EMDLS 119.06 156.08 161.34 154.78 170.64
S_EMDLS 121.88 143.72 148.26 150.42 156.30

6.2. Practical Application for Enhanced Understanding

In this section, we apply the results derived from Section 6.1 to a real-life case and
provide some actionable management recommendations for choosing schedules.

Using the real-life data provided by “Soins et Santé”, a home health care company
located in Lyon, France, we implement our methods to create routes and schedules. A total
of 27 patients receive home care services. The available data set includes patients’ locations,
service times, and available time sessions. The duration of each service varies, ranging
from 5 to 46 minutes. The patients are visited in three time sessions: morning sessions from
7:30 to 12:00, afternoon sessions from 13:00 to 15:30, and evening sessions from 17:00 to
19:30. We create the time windows based on the patient’s preferred time sessions for visits.
The length of the time windows ranges from 30 to 150 minutes. We also create the required
level of caregiver for each patient.

Figure 6 shows the results when VD = δ ∗ 2, LD = (li + 30, li + 45), m = 4, and n = 10.
In this figure, the Pareto front of the S_EMDLS dominates that of the D*_EMDLS algorithm.
The S_EMDLS is capable of generating a more diverse range of solutions. In real-life cases,
when implementing the solution obtained by the D_EMDLS, if the difference between the
real service times and the planned service times is small, the actual objective function values
are close to the original ones. However, if the real service times are significantly different
from the planned service times, the solution obtained by the S_EMDLS can be chosen to
achieve smaller objective values on average. If it is not possible to determine the extent
to which the patients’ service times differ from the planned service times, the solution
obtained by S_EMDLS can be used by decision-makers to have higher stability.

By providing a more comprehensive view of the various solutions within the Pareto
front, managers can gain a deeper understanding of the strengths and weaknesses of
the solutions in the Pareto front. This knowledge can then be used to make decisions
on selecting the most appropriate solution for their needs. We examine three points on
the Pareto front, namely, the solution with the minimum travel cost (S1), the trade-off
solution (S2), and the solution with the minimum penalty (S3). These points are clearly
marked with three star icons within Figure 6. We chose the trade-off solution with objective
values closest to the origin. Table 10 presents the objective values and their respective
indicators. The indicator PERe represents the percentage of patients who are visited by
caregivers before the earliest time of their time windows. The indicator PERl denotes
the percentage of patients whose services are completed by caregivers after the latest
time of their time windows. The indicators WTmin and WTmax mean the minimum and
maximum daily working hours, respectively. The values of f1 for S1 and S2 are lower
compared to S3, whereas f2 and PERl for S1 and S2 exceed those of S3. This reveals that
S3 offers improved service punctuality but leads to higher travel costs. The values of
WTmin and WTmax for S3 are lower than those for S1 and S2, signifying shorter waiting
times for caregivers, contributing to a more equitable distribution of workload. The routes
corresponding to these solutions are visualized in Figure 7. The locations of the patients
(expressed by their longitude and latitude) and the planned routes are displayed on a map
with a blank background to ensure their anonymity. The routes of S3 are too complicated
to be constructed manually, and our model and method proposed a useful tool to construct
them. We offer actionable recommendations for choosing solutions as follows.
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1. If the majority of patients have a higher tolerance for exceeding their end time of
the time windows, the manager may opt for a solution located on the left side of the
Pareto front, which prioritizes minimizing travel costs.

2. Although the minimum and maximum numbers of patients that each caregiver needs
to visit (m and n) are limited in the proposed model, the solution S3 can be chosen to
achieve a better workload balance.

3. The routes of S3 can be selected when the manager prefers better satisfaction for
patients and caregivers.
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Figure 6. Pareto front on a real-life case.

(a) (b) (c)
Figure 7. Routes displayed on a blank background map. (a) S1; (b) S2; and (c) S3.

Table 10. Indicators for three solutions.

Solutions f1 f2 PERe PERl WTmin WTmax

S1 17.87 206.36 28.96% 71.11% 298.99 806.27
S2 27.24 109.82 52.30% 35.19% 424.29 714.94
S3 49.81 66.42 45.33% 28.30% 263.57 677.99

7. Conclusions

We developed a bi-objective model for the HHC problem. This model aims to optimize
the travel costs and satisfaction of both patients and caregivers, considering several practical
constraints: the soft time windows, the matching of patient needs and caregiver skills,
and the workload balance. Additionally, we consider uncertain service times to enhance
the practicality and robustness.
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To solve the bi-objective optimization problem, we developed an ALNS-EMDLS to
obtain Pareto fronts. The Stochastic ALNS-EMDLS (S_EMDLS) was proposed to deal with
the problem under the uncertain service times. First, we considered only one determin-
istic scenario: the average value of service times sampling from the normal distribution.
The comparison between the Gurobi Solver and the ALNS-EMDLS revealed the latter’s
superior efficiency and competitively high-quality solutions. Second, we considered un-
certain service times, assuming they follow the normal distribution. In the D*_EMDLS,
the solutions obtained by the ALNS-EMDLS were evaluated under uncertain service times.
The results showed that when the two parameters, i.e., the ending time of the loose time
and variance of distribution, are bigger, the S_EMDLS outperforms since its solutions
dominate those of D*_EMDLS. We evaluated the trade-off solutions of D*_EMDLS and
S_EMDLS under varying variances. The outcomes confirmed S_EMDLS’s robustness, effec-
tively demonstrating its efficacy in managing uncertain service times. Finally, a real-life
application was conducted to provide practical managerial suggestions for choosing routes
and schedules.

As a future development, we will create new heuristics and use exact methods to
compare the results of this study. More practical objectives and constraints motivated by
the needs of HHC companies can be added to further studies. We will try to accelerate
the computing time as the S_EMDLS takes over twenty times longer to implement than
the D_EMDLS. At present, the study is conducted on a daily planning horizon; in the
future, mid-term or long-term planning of HHC activities will be considered. For future
applications, we aim to ensure seamless model integration into the current HHC manage-
ment system, focusing on real-time data for more accurately and effectively predicting
future uncertainties.
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Appendix A. Algorithms

Algorithm A1–A4 shows the detail of the worst destroy operator, the relatedness
destroy operator, the greedy repair operator, and the regret repair operator.
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Algorithm A1 Worst destroy operator

Input: a solution x, the number of nodes to be removed q
Output: the removal list D

1: while q > 0 do
2: L contains all nodes of the solution
3: for each node i in x do
4: remove node i from x
5: costi ← f (x)− f (x−i)
6: end for
7: sort L in descending order of costi
8: random number yq in interval [0,1)
9: d← L[yq|L|]

10: remove d from x
11: D ← D ∪ d
12: q = q− 1
13: end while

Algorithm A2 Relatedness destroy operator

Input: a solution x
Output: the removal list D

1: d← random_choose(x)
2: while q > 0 do
3: d← random_choose(R)
4: for each node i in x do
5: relatednessi ← cal_relatedness(i, d, x)
6: end for
7: sort L in descending order of costi
8: random number yq in interval [0,1)
9: d← L[yq|L|]

10: remove d from x
11: D ← D ∪ d
12: q = q− 1
13: end while

Algorithm A3 Greedy repair operator

Input: the solution x′ without the nodes in the removal list D
Output: a new solution xnew

1: while |D| > 0 do
2: for each node d in D do
3: for each insert position i← 1 to |route| − 1 do
4: insert node d at position i
5: cost(d, i)← f (x′)− f (x′+i)
6: end for
7: end for
8: find smallest cost(d, i) and its corresponding d and i
9: xnew ← insert(d, i, x′)

10: remove node d from D
11: end while
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Algorithm A4 Regret repair

Input: the solution x′ without the nodes in the removal list D, regret_n
Output: a new solution xnew

1: while |D| > 0 do
2: for node d in D do
3: L← ∅
4: for each insert position i← 1 to |route| − 1 do
5: insert node d at position i
6: cost(d, i)← f (x′+i)
7: L← L ∪ cost(d, i)
8: end for
9: g← 0

10: L← sort_ascending(L)
11: for i← 1 to regret_n do
12: g← g + L[i]− L[0]
13: end for
14: find the biggest g and its corresponding d and i
15: end for
16: xnew ← insert(d, i, x′)
17: remove node d from D
18: end while

References
1. Chahed, S.; Matta, A.; Sahin, E.; Dallery, Y. Operations management related activities for home health care providers. IFAC Proc.

Vol. 2006, 39, 641–646. [CrossRef]
2. Rodriguez, C.; Garaix, T.; Xie, X.; Augusto, V. Staff dimensioning in homecare services with uncertain demands. Int. J. Prod. Res.

2015, 53, 7396–7410. [CrossRef]
3. Grieco, L.; Utley, M.; Crowe, S. Operational research applied to decisions in home health care: A systematic literature review.

J. Oper. Res. Soc. 2021, 72, 1960–1991. [CrossRef]
4. Gutiérrez, E.V.; Gutiérrez, V.; Vidal, C.J. Home health care logistics management: Framework and research perspectives. Int. J.

Ind. Eng. Manag. 2013, 4, 173. [CrossRef]
5. Dolinar, R. The importance of good insulin injection practices in diabetes management. US Endocrinol. 2009, 5, 49–52. [CrossRef]
6. Holdoway, A. Nutrition in palliative care: Issues, perceptions and opportunities to improve care for patients. Br. J. Nurs. 2022,

31, S20–S27. [CrossRef] [PubMed]
7. Toth, P.; Vigo, D. Vehicle Routing; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2014.
8. Bazirha, M. A novel MILP formulation and an efficient heuristic for the vehicle routing problem with lunch break. Ann. Oper.

Res. 2023, 1–26.. [CrossRef]
9. Baniamerian, A.; Bashiri, M.; Zabihi, F. Two phase genetic algorithm for vehicle routing and scheduling problem with cross-

docking and time windows considering customer satisfaction. J. Ind. Eng. Int. 2018, 14, 15–30. [CrossRef]
10. Fikar, C.; Hirsch, P. Home health care routing and scheduling: A review. Comput. Oper. Res. 2017, 77, 86–95. [CrossRef]
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