
HAL Id: hal-04526918
https://hal.science/hal-04526918v1

Submitted on 29 Mar 2024 (v1), last revised 2 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

pygarg: A Python Engine for Argumentation
Jean-Guy Mailly

To cite this version:
Jean-Guy Mailly. pygarg: A Python Engine for Argumentation. IRIT/RR–2024–02–FR, IRIT -
Institut de Recherche en Informatique de Toulouse. 2024. �hal-04526918v1�

https://hal.science/hal-04526918v1
https://hal.archives-ouvertes.fr

Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

pygarg: A Python Engine for
Argumentation

Jean-Guy Mailly*
IRIT, Toulouse University, CNRS, INP, UT3, UT1C, Toulouse, France

jean-guy.mailly@irit.fr
* contact author

March 29, 2024

Technical report No. IRIT/RR–2024–02–FR
(version 1)

https://www.irit.fr/
https://en.univ-toulouse.fr/
mailto:jean-guy.mailly@irit.fr

Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

pygarg: A Python Engine for
Argumentation

Jean-Guy Mailly*
IRIT, Toulouse University, CNRS, INP, UT3, UT1C, Toulouse, France

jean-guy.mailly@irit.fr
* contact author

March 29, 2024

Abstract. Recent advancements in algorithms for abstract argumentation make it possible now
to solve reasoning problems even with argumentation frameworks of large size, as demonstrated
by the results of the various editions of the International Competition on Computational Models
of Argumentation (ICCMA). However, the solvers participating to the competition may be hard to
use for non-expert programmers, especially if they need to incorporate these algorithms in their
own code instead of simply using the command-line interface. In this paper we described pygarg,
a Python implementation of the SAT-based approach used in the argumentation solver CoQuiAAS.
Contrary to CoQuiAAS and most of the participants to the various editions of ICCMA, pygarg is
made to be easy to use even for non-expert programmers. We show how to easily use pygarg in
other Python scripts as a third-party library before experimentally demonstrating that it can be
used in practice to solve large instances.

Keywords: Abstract Argumentation, SAT-based Solver, Python Software.

Technical report No. IRIT/RR–2024–02–FR
(version 1)

https://www.irit.fr/
https://en.univ-toulouse.fr/
mailto:jean-guy.mailly@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

Contents
1 Introduction . 2
2 Background Notions 2
3 Describing pygarg. 4

3.1 Using pygarg as a Command-line Tool 4
3.2 Using pygarg in Another Python Program 5

4 Experimental Evaluation 6
4.1 Experimental Setting 6
4.2 Results . 7

5 Discussion . 8
A Additional Experimental Results 11

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

1

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

1 Introduction
Abstract argumentation [12] provides a simple framework for representing

conflicting pieces of information and deducing which of them can be accepted.
In his seminal paper, Dung shows how it can be used to represent problems such
as non-monotonic reasoning or stable marriage problems. Recent works show
various other applications like fair allocation of resources [21] or explainability
of (black box) classification models [1]. Despite the generally high complexity of
argumentation reasoning [14], recent advancements in SAT-based solving tech-
niques for argumentation [19] have permitted to handle harder instances and
problems, as can be seen from the results of the International Competition on
Computational Models of Argumentation (ICCMA) [16]. However, from a prac-
tical point of view, the solvers participating to the competition may not be easy
to use for non-expert programmers. Indeed, the solvers are made to be used
via their command-line interface, but it may be complicated to use them inside
another piece of software. This may make it difficult for some part of the commu-
nity to actually implement and test their ideas. This is why we propose pygarg,
a Python implementation of the SAT-based algorithms initially proposed in Co-
QuiAAS [19],1 the solver that won the first edition of ICCMA in 2015.2 While
pygarg can be used with a command-line interface inspired by the ICCMA re-
quirements, it is also easy to incorporate it as a third-party library in any Python
script. We chose Python because:

• it is quite simple to learn, and already widely adopted in some fields (e.g.
machine learning),

• we can benefit from the PySAT library [17] to perform the calls to SAT ora-
cles.

So, anyone in need of solving problems for abstract argumentation can use py-
garg for problems such as deciding the (credulous or skeptical) acceptability of
an argument, computing one or all the extensions, or counting the extensions,
for Dung’s semantics [12], the semi-stable [8] and ideal semantics [13].
In Section Section 2, we recall basic notions of abstract argumentation. Sec-

tion Section 3 describes the main elements of the design of pygarg, and how
to use it either as a command-line tool or in one’s own Python script. We show
in Section Section 4 that pygarg outperforms PyArg, the only other easy-to-use
Python implementation of abstract argumentation that is available. Finally, we
draw some conclusions in Section Section 5.

2 Background Notions
We start with a reminder of basic notions of abstract argumentation.

Definition 1. An abstract argumentation framework (AF) [12] is a directed
graph F = ⟨A,R⟩ where A is the (finite) set of arguments and R ⊆ A × A is
the attack relation.

Dung does not assume the finiteness of the set of arguments, however it is
1Notice that most of these SAT-based techniques are also incorporated in Crustabri, which won

several tracks at ICCMA 2023. See https://github.com/crillab/crustabri.
2http://argumentationcompetition.org/2015/index.html

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

2

https://github.com/crillab/crustabri
http://argumentationcompetition.org/2015/index.html
https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

the case for our implementation. Notice that the set of argument can be empty.
We say that a ∈ A (respectively S ⊆ A) attacks b ∈ A when (a, b) ∈ R (respec-

tively some a ∈ S attacks b). Then, a set of arguments S defends an argument a
if S attacks all the arguments attacking a.
Classical reasoning with AFs is based on the notion of extensions, i.e. sets

of arguments collectivelly acceptable. Such an extension must usually satisfy
two basic properties: S ⊆ A is conflict-free if ∀a, b ∈ S, (a, b) ̸∈ R; and S ⊆ A is
self-defending if S defends all its elements. We call a set satisfying both these
properties admissible. We write cf(F) and ad(F) for the sets of conflict-free and
admissible sets of an AF F . Then, classical Dung’s semantics [12] are defined as
follows.

Definition 2. Let F = ⟨A,R⟩ be an AF. Then, the set S ⊆ A is:

• a complete extension if S ∈ ad(F) and S contains all the arguments that it
defends;

• a preferred extension if S is a ⊆-maximal admissible set;

• a stable extension if S ∈ cf(F) and S attacks all the arguments in A \ S;

• a grounded extension if S is a ⊆-minimal complete extension.

We use co(F), pr(F), st(F) and gr(F) for these sets of extensions. It is well-
known [12] that |gr(F)| = 1 for any AF, that st(F) ⊆ pr(F), and preferred exten-
sions also correspond to ⊆-maximal complete extensions. Finally, from all the
semantics studied in this paper, only the stable semantics may collapse, i.e. for
any σ ̸= st, σ(F) ̸= ∅ for any AF. From the preferred semantics, one can define a
“more skeptical” semantics as follows.

Definition 3. Let F = ⟨A,R⟩ be an AF. Then, the set S ⊆ A is an ideal extension
[13] if it is a ⊆-maximal admissible set among the sets of arguments included in
the intersection of all the preferred extensions.

We write id(F) the set of ideal extensions of an AF. Similarly to the grounded
semantics, the ideal extension is unique for any AF.
Finally, we also focus on one last semantics, which is based on the notion of

range. Given an AF F = ⟨A,R⟩ and a ∈ A, we write a+ = {b ∈ A | (a, b) ∈ R} the
set of arguments attacked by a. We generalize it to sets, with S+ =

⋃
a∈S a+ for

the set of arguments attacked by S. The range of S is S⊕ = S ∪ S+, i.e. the set of
arguments which are either members of S or attacked by S.

Definition 4. Let F = ⟨A,R⟩ be an AF. Then, the set S ⊆ A is a semi-stable
extension [8] if S ∈ co(F) and the range of S is ⊆-maximal among the ranges of
all complete extensions of F .

We write sst(F) for the semi-stable extensions. Notice that all stable exten-
sions are semi-stable extensions, and if st(F) ̸= ∅ then both semantics coincide,
but sst(F) ̸= ∅ even when there is no stable extension.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

3

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

Example 1. Let F = ⟨A,R⟩ be the AF shown in Figure 1. Its complete extensions
are co(F) = {{a1, a4, a6}, {a1, a3}, {a1}}. Among them, the preferred extensions are
pr(F) = {{a1, a4, a6}, {a1, a3}} (the ⊆-maximal ones), and the grounded extension
is gr(F) = {{a1}} (the ⊆-minimal one). Among the preferred extensions, there
is only one stable extension st(F) = {{a1, a4, a6}}, which is also the unique semi-
stable extension in this case. Finally, since the intersection of the preferred
extensions is {a1}, we deduce that the ideal extension is id(F) = {{a1}}.

a1 a2 a3 a4 a5

a6

a7

Figure 1: An example of AF F

It is known that reasoning with these semantics is generally hard, with com-
plexity up to the second level of the polynomial hierarchy, depending on the
semantics and the exact decision problem [14]. However, various implemen-
tations based on SAT solvers have been proposed for reasoning with abstract
argumentation, mainly based on the logical encoding by Besnard and Doutre
[3]. Describing in details these algorithms is out of the scope of this paper, but
we refer the interested reader to [19], since our work is essentially a Python
implementation of the SAT-based approach from CoQuiAAS.

3 Describing pygarg

pygarg3 is an open-source software,4 implemented in Python, relying on PySAT
[17] for performing calls to SAT solvers. In this section, we describe how pygarg
can be used, either as a command-line tool, or as a library integrated to another
Python code.

3.1 Using pygarg as a Command-line Tool

The source code of pygarg is based on five Python files:

• __main__.py (in the main package) provides the command-line interface of
the software,

• in the dung package,

– apx_parser.py provides tools for parsing an APX file [15] (as used no-
tably in the first four editions of ICCMA in 2015, 2017, 2019 and 2021)
into an argumentation framework usable by the solvers,

– dimacs_parser.py provides tools for parsing a Dimacs file [18] (as used
in the fifth edition of ICCMA in 2023) into an argumentation framework
usable by the solvers,

– encoding.py provides the tools used to translate argumentation prob-
lems into SAT solving,

3pygarg is available online: https://github.com/jgmailly/pygarg.
4Released under the GNU Lesser General Public License version 3.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

4

https://github.com/jgmailly/pygarg
https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

– solver.py provides the functions for solving argumentation reasoning
tasks.

Using the __main__.py file, one can use a command-line interface reminis-
cent of the ICCMA requirements, which is described in details in the README file
of the software. In summary, one can use the command-line options:

• -p PROBLEM to define the problem to be solved, with PROBLEM being XX-YY
where XX is one of DC, DS, SE, EE, CE (for credulous acceptability, skepti-
cal acceptability, computing some extension, enumerating extensions and
counting extensions) and YY must be one of CF, AD, ST, CO, PR, GR, ID, SST
corresponding to σ ∈ {cf ,ad, st, co,pr,gr, id, sst},

• -fo FORMAT to define the format of the input file describing an AF, which
must be equal to apx or dimacs,

• -f FILENAME to specify the path to the input file,

• -a ARGNAME to specify the name of the argument to be checked (for DC and
DS problems).

The output of these commands follows the requirements of ICCMA 2023. This
means that (when possible), an extension is provided as a witness for the (non-
)acceptability of an argument, in a line starting with w. The same syntax is used
for providing one (or each) extension of the AF. For instance, if test.apx corre-
sponds to the AF from Figure 1, we obtain the result presented at Figure 2.

$ python3 main.py -p EE-CO -fo apx -f test.apx
w a1
w a1 a4 a6
w a1 a3

Figure 2: Enumerating extensions with pygarg on the command-line

In case there is an empty extension, a line with only w will be printed.

3.2 Using pygarg in Another Python Program

Now we focus on how to use pygarg in one’s own Python code. The data
structures used to represent an AF are simply a list of strings (representing the
arguments names), and a list of lists of strings (representing the attacks). For
instance, the AF from Figure 1 corresponds to the following structure:
args = ["a1" , "a2" , "a3" , "a4" , "a5" , "a6" , "a7"]
atts = [["a1" , "a2"] , ["a2" , "a3"] , ["a3" , "a4"] , ["a4" , "a3"] ,

["a4" , "a5"] , ["a5" , "a6"] , ["a6" , "a7"] , ["a7" , "a5"]]

Instead of manually constructing the list of arguments and attacks, one can
use the parse(filename) function provided in both apx_parser.py and dimacs_parser.py.
For instance,
import apx_parser

args , atts = apx_parser . parse(" test .apx")

Then, one needs to focus on some functions provided in the file solver.py:

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

5

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

• credulous_acceptability(args, atts, argname, sem) determines whether
the argument argname is credulously accepted under the semantics sem,

• skeptical_acceptability(args, atts, argname, sem) determines whether
the argument argname is skeptically accepted under the semantics sem,

• compute_some_extension(args, atts, sem) computes one sem-extension,

• extension_enumeration(args, atts, sem) enumerates all the sem-extensions,

• extension_counting(args, atts, sem) counts the number of sem-extensions.

In these functions, the sem argument must be a string describing the seman-
tics, using the same conventions as the command-line interface (for instance,
the complete semantics is described by "CO").

Example 2. Continuing the previous example, Figure 3 shows how we enumer-
ate the extensions of the AF fromFigure 1, for the semantics σ ∈ {co,pr,gr, st, sst, id}.
Running this script outputs:

CO-extensions: [[’a1’], [’a1’, ’a4’, ’a6’], [’a1’, ’a3’]]
PR-extensions: [[’a1’, ’a4’, ’a6’], [’a1’, ’a3’]]
GR-extensions: [[’a1’]]
ST-extensions: [[’a1’, ’a4’, ’a6’]]
SST-extensions: [[’a1’, ’a4’, ’a6’]]
ID-extensions: [[’a1’]]

import solvers
import apx_parser

args , atts = apx_parser . parse(" test .apx")

for sem in ["CO" , "PR" , "GR" , "ST" , "SST" , "ID"] :
print (f "{sem}−extensions :␣" , end=’ ’)
print (solvers . extension_enumeration(args , atts , sem))

Figure 3: Enumerating extensions with pygarg imported in one’s own code

4 Experimental Evaluation
In this section, we show that pygarg exhibits interesting runtimes in spite

of its simple design. In particular, we compare it with PyArg [6, 22], the only
implementation of argumentation reasoning (as far as we know) with a similar
purpose of being easy to use instead of focusing on competition.

4.1 Experimental Setting

For these experiments, we consider instances generated following standard
graph generation models, namely the Erdös-Rényi model (ER) which generates

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

6

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

graphs by randomly selecting attacks between arguments (with a given proba-
bility); the Barabási-Albert model (BA) which provides scale-free networks, i.e. a
structure in which some nodes have a large number of connections, but in which
nearly all nodes are connected to only a few other nodes; and the Watts-Strogatz
model (WS) which produces small-world network, i.e. graphs with short average
path lengths. These models are widely used in abstract argumentation studies,
see e.g. [16]. The graphs have been generated thanks to the AFBenchGen2
generator [10]. In total, we have generated 9460 AFs almost evenly distributed
between the three models (3000 AFs for the WS model and 3230 AFs for the
ER and BA model). For each model, the number of arguments varies among
Arg = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.5 The parameters used to generate graphs
are as follows: for ER, 19 instances for each (nbArg, pAtt) in Arg×{0.15, 0.2, . . . , 0.95};
for BA, 17 instances for each (nbArg, pCyc) in Arg × {0, 0.05, 0.1, . . . , 0.9}; for WS, 5
instances for each (nbArg, pCyc, β, K) in Arg × {0.25, 0.5, 0.75} × {0, 0.25, 0.5, 0.75, 1}
× {k ∈ 2N s.t. 2 ≤ k ≤ nbArg − 1}. The meaning of the parameters is described in
[10]. In the following, we collectively refer to the group of AFs generated using
the Erdös-Rényi model (resp. Barabási-Albert model and Watts-Strogatz model)
as rER (resp. rBA and rWS).
All the experiments were made on a machine using an Apple M1 chip, under

macOS Sonoma 14.0, with 8GB of RAM. For each pair (AF, semantics), a timeout
of 10 minutes was set. The instances used in the experiments are available in
the GitHub repository of the software.

4.2 Results

Now let us describe the results of our evaluation. In the following, we present
information about the runtime for solving the enumeration task on the seman-
tics σ ∈ {co,pr, st,gr, sst, id}. Enumeration has been chosen to demonstrate the
capabilities of pygarg since it provides a worst-case evaluation for all the other
problems, which can be easily solved if one already knows the set of extensions
(but they would actually be solved much faster in most cases with our implemen-
tation).
In Table 4, we describe our results for the complete semantics (other seman-

tics are presented in Appendix A), where the left part corresponds to our imple-
mentation pygarg, and the right part to the existing tool PyArg. We present the
average runtime and the number of timeouts (between parenthesis) depending
on the number of arguments (in rows, {10, . . . , 100}) in the AFs, for each group
of instances (in columns, rER, rBA and rWS). Our goal is to push both pygarg
and PyArg to their limits, and to exhibit the difference between both. For this
reason, we made the choice to cut the experiments earlier for rBA instances,
which are surprisingly harder to solve than other groups. More precisely, with
the rBA group, we focus on AFs of size {10, . . . , 50} for pygarg and {10, 20, 30} for
PyArg. Also, for PyArg, we only go up to 60 arguments for rER and rWS. For larger
instances, most runs reach the time limit without providing a solution.
The difference of performance between both approaches is obvious, since py-

garg solves much more instances, and much faster than PyArg, for all the groups
of instances and all sizes. We notice that enumerating the complete extensions,
as presented here, is in practice harder on the instances rBAthan enumerating
other kinds of extensions (see Appendix A). This is probably explained by the
high number of complete extensions for this type of graphs. The clear difference
between pygarg and PyArg is the same for all the other semantics except gr,

5However, as explained later, for some cases we have restricted the number of arguments to
smaller values.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

7

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

nbArg rER rBA rWS
10 0.2 (0) 0.2 (0) 0.3 (0)
20 0.6 (0) 1.2 (0) 0.6 (0)
30 1.5 (0) 27.4 (0) 1.4 (0)
40 3.1 (0) 998.1 (0) 2.9 (0)
50 5.6 (0) 8076.5 (12) 5.1 (0)
60 8.8 (0) – 8.3 (0)
70 13.2 (0) – 12.3 (0)
80 20.0 (0) – 18.3 (0)
90 27.8 (0) – 25.5 (0)
100 41.5 (0) – 35.3 (0)

(a) pygarg

nbArg rER rBA rWS
10 1.1 (0) 4.9 (0) 1.1 (0)
20 37.6 (0) 4197.3 (0) 23.9 (0)
30 687.3 (0) 403537.6 (177) 345.6 (0)
40 12247.4 (0) – 4395.3 (0)
50 23171.6 (21) – 28514.1 (0)
60 34393.2 (38) – 31452.3 (45)
70 – – –
80 – – –
90 – – –
100 – – –

(b) PyArg [6, 22]

Figure 4: Average runtime (in ms) depending on the number of arguments, for
each set of instances in rER, rBA and rWS, for σ = co. The numbers between
parenthesis are the number of instances unsolved within the time limit.

where both approaches give similar results.

5 Discussion
As far as we know, only one implementation of argumentation reasoning tasks

has been done with the same idea of being easy to use for non-expert program-
mers, namely PyArg [6, 22], that we used in the experimental evaluation. How-
ever, as seen previously, the focus of PyArg is not on efficient algorithms, but
rather on its graphical interface6 and various other advanced features like com-
puting explanations of acceptability or structured argumentation, which are not
included in the current version of pygarg. For this reason, the algorithms in-
cluded in this platform are more “naive” (for instance they are not based on
SAT solving techniques), and thus they do not scale up as well as SAT-based
algorithms. This is not a major problem for the purpose of PyArg, which is visu-
alisation (and one can assume that users interested in visualising graphs do not
use large graphs with dozens or hundreds of arguments).
The other implementations that we know are those participating to ICCMA

competitions which are optimized for efficient runtime performances, but may
be harder to use for non-expert programmers (especially if one needs to use
them in one’s own code instead of simply relying on a command-line interface).
So, in our short experimental evaluation, we show that pygarg takes best

of both worlds: an easy-to-use Python interface that even non-programmers
can learn to use, and efficient SAT-based algorithms with good runtime perfor-
mances.
For future work, we envision various possible directions. A first one would

be to replace “naive” SAT-based algorithms by more efficient ones when pos-
sible (for instance, the current implementation of skeptical acceptability un-
der the preferred semantics and reasoning with the ideal semantics is based
on the enumeration of preferred extensions, but it could benefit from the tech-
niques proposed by [24]). We are also interested in implementing algorithms
for other semantics (like the stage semantics [25], or the more challenging se-
mantics based on weak admissibility [2]). Still in line with recent ICCMA com-
petitions, we would like to incorporate techniques for dynamic re-computation
of extensions when an AF evolves [4], or approximation algorithms (in the spirit
of [11]). Other problems related to extension-based extensions could be added,

6See https://pyarg.npai.science.uu.nl.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

8

https://pyarg.npai.science.uu.nl
https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

like counting the number of extensions (not) containing a given argument. The
labelling-based [7] counterpart of the problems already implemented could also
be added. Finally, more long term projects include the integration of gradual
and ranking-based semantics [5], as well as more general abstract argumenta-
tion frameworks like Bipolar AFs [9], Strength-based AFs [23] or Incomplete AFs
[20].

References
[1] Leila Amgoud. Non-monotonic explanation functions. In Proceedings of

the 16th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, ECSQARU 2021, volume 12897 of Lecture
Notes in Computer Science, pages 19–31. Springer, 2021.

[2] Ringo Baumann, Gerhard Brewka, and Markus Ulbricht. Shedding new
light on the foundations of abstract argumentation: Modularization and
weak admissibility. Artif. Intell., 310:103742, 2022.

[3] Philippe Besnard and Sylvie Doutre. Checking the acceptability of a set of
arguments. In 10th International Workshop on Non-Monotonic Reasoning
(NMR 2004), pages 59–64, 2004.

[4] Stefano Bistarelli, Lars Kotthoff, Francesco Santini, and Carlo Taticchi.
Containerisation and dynamic frameworks in iccma’19. In Proceedings of
the Second International Workshop on Systems and Algorithms for Formal
Argumentation (SAFA 2018) co-located with the 7th International Confer-
ence on Computational Models of Argument (COMMA 2018), volume 2171
of CEUR Workshop Proceedings, pages 4–9. CEUR-WS.org, 2018.

[5] Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, and Nicolas Maudet.
A comparative study of ranking-based semantics for abstract argumenta-
tion. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, pages 914–920. AAAI Press, 2016.

[6] AnneMarie Borg and Daphne Odekerken. Pyarg for solving and explaining
argumentation in python: Demonstration. In Computational Models of Ar-
gument - Proceedings of COMMA 2022, volume 353 of Frontiers in Artificial
Intelligence and Applications, pages 349–350. IOS Press, 2022.

[7] Martin Caminada. On the issue of reinstatement in argumentation. In Pro-
ceedings of the 10th European Conference on Logics in Artificial Intelli-
gence, JELIA 2006, volume 4160 of Lecture Notes in Computer Science,
pages 111–123. Springer, 2006.

[8] Martin W. A. Caminada, Walter Alexandre Carnielli, and Paul E. Dunne.
Semi-stable semantics. J. Log. Comput., 22(5):1207–1254, 2012.

[9] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argu-
mentation graphs: Towards a better understanding. Int. J. Approx. Reason.,
54(7):876–899, 2013.

[10] Federico Cerutti, Massimiliano Giacomin, and Mauro Vallati. Generating
structured argumentation frameworks: AFBenchGen2. In Computational
Models of Argument - Proceedings of COMMA 2016, volume 287 of Fron-
tiers in Artificial Intelligence and Applications, pages 467–468. IOS Press,
2016.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

9

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

[11] Jérôme Delobelle, Jean-Guy Mailly, and Julien Rossit. Revisiting approxi-
mate reasoning based on grounded semantics. In Seventeenth European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU 2023), 2023.

[12] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–358, 1995.

[13] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal
sceptical argumentation. Artif. Intell., 171(10-15):642–674, 2007.

[14] Wolfgang Dvorák and Paul E. Dunne. Computational problems in formal ar-
gumentation and their complexity. In Handbook of Formal Argumentation,
pages 631–688. College Publications, 2018.

[15] Uwe Egly, Sarah Alice Gaggl, and StefanWoltran. ASPARTIX: implementing
argumentation frameworks using answer-set programming. In Proceed-
ings of the 24th International Conference on Logic Programming, ICLP
2008, volume 5366 of Lecture Notes in Computer Science, pages 734–738.
Springer, 2008.

[16] Sarah Alice Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan
Woltran. Design and results of the second international competition on
computational models of argumentation. Artif. Intell., 279, 2020.

[17] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A
Python toolkit for prototyping with SAT oracles. In SAT, pages 428–437,
2018.

[18] Matti Järvisalo, Tuomo Lehtonen, and Andreas Niskanen. Design of ICCMA
2023, 5th international competition on computational models of argumen-
tation: A preliminary report (invited paper). In Proceedings of the First In-
ternational Workshop on Argumentation and Applications (Arg&App 2023)
co-located with 20th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2023), volume 3472 of CEURWorkshop
Proceedings, pages 4–10. CEUR-WS.org, 2023.

[19] Jean-Marie Lagniez, Emmanuel Lonca, and Jean-Guy Mailly. Coquiaas: A
constraint-based quick abstract argumentation solver. In 27th IEEE Inter-
national Conference on Tools with Artificial Intelligence, ICTAI 2015, pages
928–935. IEEE Computer Society, 2015.

[20] Jean-Guy Mailly. Yes, no, maybe, I don’t know: Complexity and application
of abstract argumentation with incomplete knowledge. Argument Comput.,
13(3):291–324, 2022.

[21] Jean-Guy Mailly. Abstract argumentation applied to fair resources alloca-
tion: A preliminary study. In Proceedings of the First International Work-
shop on Argumentation and Applications (Arg&App 2023) co-located with
20th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2023), volume 3472 of CEUR Workshop Proceedings,
pages 85–91. CEUR-WS.org, 2023.

[22] Daphne Odekerken, Annemarie Borg, and Matti Berthold. Accessible algo-
rithms for applied argumentation. In Proceedings of the First International
Workshop on Argumentation and Applications (Arg&App 2023) co-located
with 20th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 2023), volume 3472 of CEUR Workshop Proceed-
ings, pages 92–98. CEUR-WS.org, 2023.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

10

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

[23] Julien Rossit, Jean-Guy Mailly, Yannis Dimopoulos, and Pavlos Moraitis.
United we stand: Accruals in strength-based argumentation. Argument
Comput., 12(1):87–113, 2021.

[24] Matthias Thimm, Federico Cerutti, and Mauro Vallati. Skeptical reasoning
with preferred semantics in abstract argumentationwithout computing pre-
ferred extensions. In Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI 2021, pages 2069–2075. ijcai.org,
2021.

[25] Bart Verheij. Two approaches to dialectical argumentation: admissible sets
and argumentation stages. In Proceedings of the Eighth Dutch Conference
on Artificial Intelligence (NAIC’96), pages 357–368, 1996.

A Additional Experimental Results

nbArg rER rBA rWS
10 0.1 (0) 0.1 (0) 0.1 (0)
20 0.3 (0) 0.2 (0) 0.3 (0)
30 0.6 (0) 0.5 (0) 0.6 (0)
40 1.3 (0) 2.2 (0) 1.2 (0)
50 2.4 (0) 18.1 (0) 2.2 (0)
60 3.9 (0) – 3.6 (0)
70 5.7 (0) – 5.3 (0)
80 8.8 (0) – 7.9 (0)
90 12.3 (0) – 11.0 (0)
100 18.0 (0) – 15.3 (0)

(a) pygarg

nbArg rER rBA rWS
10 0.8 (0) 2.5 (0) 0.8 (0)
20 35.6 (0) 1369.8 (0) 23.0 (0)
30 681.9 (0) 350685.4 (56) 345.6 (0)
40 12337.3 – 14.897.8 (0)
50 23362.9 (21) – 28757.6 (2)
60 34108.7 (39) – 32084.8 (45)
70 – – –
80 – – –
90 – – –
100 – – –

(b) PyArg [6, 22]

Figure 5: Average runtime (in ms) depending on the number of arguments, for
each set of instances in rER, rBA and rWS, for σ = st. The numbers between
parenthesis are the number of instances unsolved within the time limit.

nbArg rER rBA rWS
10 0.3 (0) 0.4 (0) 0.3 (0)
20 0.8 (0) 0.9 (0) 0.8 (0)
30 1.9 (0) 2.7 (0) 1.9 (0)
40 3.5 (0) 12.0 (0) 3.4 (0)
50 6.2 (0) 79.5 (0) 5.6 (0)
60 9.5 (0) – 8.9 (0)
70 14.0 (0) – 13.1 (0)
80 21.1 (0) – 19.2 (0)
90 28.9 (0) – 26.7 (0)
100 42.2 (0) – 37.0 (0)

(a) pygarg

nbArg rER rBA rWS
10 0.9 (0) 3.1 (0) 0.9 (0)
20 36.2 (0) 4251.8 (0) 23.1 (0)
30 683.0 (0) 379223.3 (85) 344.5 (0)
40 12284.9 (0) – 4060.6 (0)
50 23251.3 (21) – 28652.3 (0)
60 34199.1 (38) – 31497.1 (45)
70 – – –
80 – – –
90 – – –
100 – – –

(b) PyArg [6, 22]

Figure 6: Average runtime (in ms) depending on the number of arguments, for
each set of instances in rER, rBA and rWS for σ = pr. The numbers between
parenthesis are the number of instances unsolved within the time limit.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

11

https://www.irit.fr
mailto:contact@irit.fr

J.-G. Mailly pygarg: A Python Engine for Argumentation

nbArg rER rBA rWS
10 0.1 (0) 0.1 (0) 0.1 (0)
20 0.7 (0) 0.7 (0) 0.6 (0)
30 1.9 (0) 2.5 (0) 1.6 (0)
40 3.5 (0) 6.4 (0) 3.4 (0)
50 5.9 (0) 13.8 (0) 2.5 (0)
60 4.9 (0) – 2.0 (0)
70 5.1 (0) – 1.6 (0)
80 5.8 (0) – 2.4 (0)
90 5.4 (0) – 3.3 (0)
100 5.0 (0) – 4.5 (0)

(a) pygarg

nbArg rER rBA rWS
10 0.1 (0) 0.1 (0) 0.1 (0)
20 0.4 (0) 0.2 (0) 0.4 (0)
30 1.2 (0) 0.6 (0) 1.1 (0)
40 2.6 (0) – 2.5 (0)
50 4.9 (0) – 4.5 (0)
60 8.2 (0) – 7.6 (0)
70 – – –
80 – – –
90 – – –
100 – – –

(b) PyArg [6, 22]

Figure 7: Average runtime (in ms) depending on the number of arguments, for
each set of instances in rER, rBA and rWS for σ = gr. The numbers between
parenthesis are the number of instances unsolved within the time limit.

nbArg rER rBA rWS
10 0.4 (0) 0.3 (0) 0.4 (0)
20 1.0 (0) 0.6 (0) 1.0 (0)
30 2.3 (0) 1.3 (0) 2.3 (0)
40 4.3 (0) 4.1 (0) 4.1 (0)
50 7.6 (0) 24.3 (0) 6.8 (0)
60 11.5 (0) – 10.7 (0)
70 16.9 (0) – 15.8 (0)
80 25.0 (0) – 23.1 (0)
90 35.0 (0) – 32.1 (0)
100 51.6 (0) – 44.7 (0)

(a) pygarg

nbArg rER rBA rWS
10 1.4 (0) 8.7 (0) 2.0 (0)
20 54.4 (0) 10355.4 (2) 33.7 (0)
30 966.8 (0) 676577.2 (305) 447.8 (0)
40 15413.8 (0) – 10165.8 (0)
50 26728.1 (21) – 36941.1 (0)
60 34108.7 (39) – 31513.9 (45)
70 – – –
80 – – –
90 – – –
100 – – –

(b) PyArg [6, 22]

Figure 8: Average runtime (in ms) depending on the number of arguments, for
each set of instances in rER, rBA and rWS for σ = sst. The numbers between
parenthesis are the number of instances unsolved within the time limit.

nbArg rER rBA rWS
10 0.5 (0) 0.6 (0) 0.8 (0)
20 1.6 (0) 1.3 (0) 1.6 (0)
30 3.5 (0) 3.4 (0) 3.4 (0)
40 6.7 (0) 13.1 (0) 6.3 (0)
50 12.0 (0) 81.3 (0) 10.8 (0)
60 18.3 (0) – 17.1 (0)
70 27.0 (0) – 25.3 (0)
80 39.8 (0) – 37.0 (0)
90 54.6 (0) – 51.0 (0)
100 78.4 (0) – 68.8 (0)

(a) pygarg

nbArg rER rBA rWS
10 0.9 (0) 3.4 (0) 0.9 (0)
20 36.2 (0) 5091.4 (0) 23.165 (0)
30 683.7 (0) 480742.0 (234) 344.4 (0)
40 12299.6 (0) – 3782.1 (0)
50 23287.5 (21) – 28593.5 (0)
60 34260.7 (38) – 31372.3 (45)
70 – – –
80 – – –
90 – – –
100 – – –

(b) PyArg [6, 22]

Figure 9: Average runtime (in ms) depending on the number of arguments, for
each set of instances in rER, rBA and rWS for σ = id. The numbers between
parenthesis are the number of instances unsolved within the time limit.

Technical report No. IRIT/RR–2024–02–FR

https://www.irit.fr - contact@irit.fr

12

https://www.irit.fr
mailto:contact@irit.fr

Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

ASR – Architecture, Systems and Networks
RMESS – Networks, Mobile, Embedded, Wireless, Sattelites

SEPIA – Operating systems, distributed systems, from Middleware to Architecture
SIERA – Service IntEgration and netwoRk Administration

T2RS – Real-Time in networks and systems
TRACES – Trace stands for research groups in architecture and compilation for embedded systems

CISO – HPC, Simulation, Optimization
APO – Parallel Algorithms and Optimisation

REVA – Real Expression Artificial Life

FSL – Reliability Systems and Software
ACADIE – Assistance for certification of distributed and embedded applications

ARGOS – Advancing Rigorous Software and System Engineering
ICS – Interactive Critical Systems

SM@RT – Smart Modeling for softw@re Research and Technology

GD – Data Management
IRIS – Information Retrieval and Information Synthesis

PYRAMIDE – Dynamic Query Optimization in large-scale distributed environments
SIG – Generalized information systems

IA – Artificial Intelligence
ADRIA – Argumentation, Decision, Reasoning, Uncertainty and Learning methods

LILaC – Logic, Interaction, Language and Computation
MELODI – Methods and Engineering of Language, Ontology and Discourse

ICI – Interaction, Collective Intelligence
ELIPSE – Human computer interaction

SMAC – Cooperative multi-agents systems
TALENT – Teaching And Learning Enhanced by Technologies

SI – Signals and Images
MINDS – coMputational Imaging anD viSion

SAMoVA – Structuration, Analysis, Modeling of Video and Audio documents
SC – Signal and Communications

STORM – Structural Models and Tools in Computer Graphics
TCI – Images processing and understanding

	Introduction
	Background Notions
	Describing pygarg
	Using pygarg as a Command-line Tool
	Using pygarg in Another Python Program

	Experimental Evaluation
	Experimental Setting
	Results

	Discussion
	Additional Experimental Results

