N

HAL

open science

Numerical Accuracy Improvement of Programs

Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot

» To cite this version:

Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot. Numerical Accuracy Improvement of
Programs: Principles and Experiments. CGO ’16: 14th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, Mar 2016, Barcelona, Spain. hal-04526837

HAL Id: hal-04526837
https://hal.science/hal-04526837
Submitted on 29 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04526837
https://hal.archives-ouvertes.fr

Numerical Accuracy Improvement of Programs: Principles and Experiments

NASRINE DAMOUCHE 1, MATTHIEU MARTEL ! & ALEXANDRE CHAPOUTOT

'University of Perpignan (LABORATOIRE LAMPS), 52 av Paul Alduy, 66860 PERPIGNAN Cedex 9 e

2

VIA

Lm E’ ENSTA

ParislTech

“Paris-Saclay University (U2IS, ENSTA ParisTEcH,), 828 bd des Maréchaux, 91762 Palaiseau cedex France
nasrine.damouche@Quniv-perp.fr, matthieu.martelQuniv-perp.fr, alexandre.chapoutot@ensta-paristech.ir

Problem

In general, the correctness of numerical compu-
tations of programs [4| based on floating-point
arithmetic is not intuitive [1| and developers
hope to compute an accurate result without

guaranty. To solve this problem, we proceed by
R automatic source to source

/\ transformation of programs
a +
/\ to improve their numerical
» < accuracy.

Transforming Ex

For automatic transtormation of single arithmetic
expressions, several techniques have already been
proposed |5, 6]. Among them, the APEG (Ab-
stract Program Expression Graph) introduce a
new intermediary representation that manipulates
in a single data structure a large set of equiva-
lent arithmetic expressions [5]. Basically, APEG
do not duplicate the common parts of the syn-
tactic trees of mathematically equivalent expres-

sions. The APEG corresponding to the expression
e = (a+ a) + bxcis dis-

played hereafter. An expres-

sion is built from an APEG

by selecting one operator in

each dotted box and one ar-

bitrary parsing for each box / \

(e.g. | +(a,a,b) |).

Transforming Cc

The transformation uses an environment o

which maps identifiers to formal expressions, a

black list 5 of identifiers and a target variable u
to be optimized. Programs are assumed to be
given in SSA form and ®-nodes are associated
to conditionals and loops.

Assignments c =1id = ¢
e If the following conditions are satisfied =
remove the assignment from the program
and memorize e|id — €] in J.
— the variables of e do not exist in o,
— v & [and v # v,
e Otherwise, we inline the variables saved
in 0 in the concerned expression e and we
transform the resulting expression.

Sequences c = c1; o
e If ¢; or ¢y is nop = rewrite the other mem-
ber of the sequence,
e Otherwise, rewrite both members of the
sequence.

Conditionals ¢ = ifs e then ¢y else ¢o

o If e is true = rewrite cq,

o If ¢ is false = rewrite co,

o If e is statically unknown = rewrite both
branches of the conditionals,

e If the variables of e have been removed
from the program = re-insert them into
the source code and then rewrite it (the
variables of e are inserted in the black

list (3).

While Loops ¢ = whileg e do ¢
e Rewrite the body of the loop,
e re-inject the variables discarded into the
program and then rewrite it (again the
concerned variables are added to ().

Experiments and Results

To illustrate how we transtorm programs, we have taken an example from robotics. It computes
the position of a two wheeled robot by odometry [3]. Note that s; and s, are the instantaneous
rotation speeds of the left and right wheels, c is the circumference of the wheels and [the length of
its axle. The lett Figure represents the initial program of the odometry while the right one gives the
transtormed code.

=[0.52,0.53]: sl =[0.52,053];theta=t =x=y=0.0.
sr =0.785398163397; ¢ = 12.34; while (t < 100.0) do {
theta=t=x=y=00;inv =01 TMP 6 = (0.1 *(0.5 *(9.691813336318980 - (12.34 * sl))));
while (t < 100.0) do { TMP 23 = ((theta + (((9.691813336318980 - (sl * 12.34))
delta dl = (c * sl): *0.1) * 0.5)) * (theta + (({ 9 691813336318980
de ta:dr = \C* s1) TMP 25 - ((S(lt;: 1tz'14%)M*P061))**(355?);+ TMP 6)) * (thet
— X . _£J5 = {{In€ta _ €la _ €la
oo g do g0 A 00 0

TMP 26 = (theta + TMP 6) :
= ((0.5* (((1.0 - (TMP 23*0.5)) + ((TMP 25 * TMP 26)
[24.0)) % ((12.34 % sl) + 9.691813336318980))) + X):

arg = (theta + (delta theta * 0.5));
cos = (1.0 - ((arg *arg) * 0.5))

+(({(arg * arg)* arg)* arg) / 24.0); TMP 27 = ((TMP 26 * TMP 26) * (theta
X = (x + (delta_d * cos)); +(((9.691813336318980 - (5] * 12.34)) * 0.1) * 0.5)))
sin = (arg - (((arg * arg)* arg)/6.0)) TMP_29 = (((TMP_26 * TMP_26) * TMP_26) * (theta

+ (((((arg * arg)* arg)* arg)* arg)/120.0), + (((9.691813336318980 - (sl * 12.34)) *0.1) * 0.5)));
y = (y + (delta_d * sin)); y = (((9.691813336318980 + (12.34 *sl)) * (((TMP 26
theta = (theta + delta theta); - (TMP 27/ 6.0)) + ((TMP 29 * TMP 26) / 120.0)) * 0.5)) + y);
t=(t+0.1)} theta = (theta + (0.1 * (9.691813336318980 - (12.34 *sl)))):

t=t+0.1;}
Listing of the initial Odometry program. Listing of the transformed Odometry program.

For the demonstration of its efliciency, we evaluate through our tool a set of programs in the domains
of robotics, avionics, mathematics, etc. The experimental results show the efficiency of our approach
to optimize the numerical accuracy. We compare the initial and the new error of each of programs
(see Figure (a)). We have also demonstrated [2| that improving the numerical accuracy accelerates
the convergence time of numerical iterative algorithms (see Figure (b)). Finally, we have compared
initial codes working in double precision with optimized codes in simple precision (see figure (c)).

Percentage of Improvement of the Numerical Accuracy of Programs. Execution Time Measurements of Numerical Iterative Methods. S Q0= AL UD: DNl SINQIE. PIEGs: =——
0.001 | a=1.9, b=2.1, n=100, original, double prec. —«— |

a=1.9, b=2.1, n=100, optimized, single prec. —%—

¥

25 ® Numerical Accuracy 100 W Execution Time

)

90
80
70
60
50
40
30
20
10

nt (%

20
15 -0.001 %

10

cy Improvement (%)

+ :} f \ '|v i 3 3 ¥ ¥
Wor . ' W1 *
-0.002 A, & o A U Ly)
¥ Y o Ry * ¥ *

5

Accura

Execution Time Improveme

-0.003 | , ;.L fy' ﬂ*#
0 #\ |
PID Odometry RK2 RK4 Lead-Lag Trapezoid Jacobi Newton Eigenvalue Gram-Schmidt

Codes Codes -0.004

(a)

Conclusion and Perspectives

e Improve numerical accuracy of programs by up to 20%,

Number of
A Iterations

e Accelerate convergence of numerical iterative methods up to 15%, Mdl
@\166\660\1@@“‘06
e Transformed programs in single precision are close to source pro- © \6&\@@“‘ o
grams with double precision. 16&0@‘“?1&‘”?(
e Extend this work to deal with other or more complicated struc- ot
tures of programs such that functions and arrays. pEltes

. . Initial Double Precision Simpson's Method
e Validate that programs transformed by our tool are equivalent N p

Optimized Single Precision Simpson's Method
to the original programs using the Coq proof assistant.
e Optimize the numerical accuracy ot parallel programs.

Precision

References

1| ANSI/IEEE. IEEFE Standard for Binary Floating-point Arithmetic, std 754-2008 edition, 2008.

2| N. Damouche, M. Martel, and A. Chapoutot. Impact of accuracy optimization on the convergence of numerical
iterative methods. In Moreno Falaschi, editor, LOPSTR’15, volume LNCS 9527 of LNCS. Springer, 2015.

|3] N. Damouche, M. Martel, and A. Chapoutot. Intra-procedural optimization of the numerical accuracy of programs.
In M.Ntnez and M. Giidemann, editors, FMICS’15, volume 9128 of LNCS, pages 31-46. Springer, 2015.

4| E. Darulova and V. Kuncak. Sound compilation of reals. In POPL, 2014.

5| A.lIoualalen and M. Martel. A new abstract domain for the representation of mathematically equivalent expressions.
In SAS’12, volume 7460 of LNCS, pages 75-93. Springer, 2012.

6] J. R. Wilcox P. Panchekha, A. Sanchez-Stern and Z. Tatlock. Automatically improving accuracy for floating point
expressions. In PLDI, 2015.

