
HAL Id: hal-04526837
https://hal.science/hal-04526837

Submitted on 29 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Accuracy Improvement of Programs
Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot

To cite this version:
Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot. Numerical Accuracy Improvement of
Programs: Principles and Experiments. CGO ’16: 14th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, Mar 2016, Barcelona, Spain. �hal-04526837�

https://hal.science/hal-04526837
https://hal.archives-ouvertes.fr

D

r

a

f

t

Numerial Auray Improvement of Programs: Priniples and Experiments

Nasrine Damouhe

1

, Matthieu Martel

1 & Alexandre Chapoutot

2

1
University of Perpignan (Laboratoire LAMPS), 52 av Paul Alduy, 66860 PERPIGNAN Cedex 9

2
Paris-Salay University (U2IS, ENSTA ParisTeh,), 828 bd des Maréhaux, 91762 Palaiseau edex Frane

nasrine.damouhe�univ-perp.fr, matthieu.martel�univ-perp.fr, alexandre.hapoutot�ensta-paristeh.fr

Problem

In general, the orretness of numerial ompu-

tations of programs [4℄ based on �oating-point

arithmeti is not intuitive [1℄ and developers

hope to ompute an aurate result without

guaranty. To solve this problem, we proeed by

+

+

a b

c ≠

+

+a

b c

automati soure to soure

transformation of programs

to improve their numerial

auray.

Transforming Expressions

For automati transformation of single arithmeti

expressions, several tehniques have already been

proposed [5, 6℄. Among them, the APEG (Ab-

strat Program Expression Graph) introdue a

new intermediary representation that manipulates

in a single data struture a large set of equiva-

lent arithmeti expressions [5℄. Basially, APEG

do not dupliate the ommon parts of the syn-

tati trees of mathematially equivalent expres-

sions. The APEG orresponding to the expression

e = (a + a) + b ∗ c is dis-

played hereafter. An expres-

sion is built from an APEG

by seleting one operator in

eah dotted box and one ar-

bitrary parsing for eah box

(e.g. +(a,a,b)).

2 a

×

+

b

□

×

+

c
b c

×

a a

+×

× +

+(a,a,b)

x

c

Transforming Commands

The transformation uses an environment δ

whih maps identi�ers to formal expressions, a

blak list β of identi�ers and a target variable µ

to be optimized. Programs are assumed to be

given in SSA form and Φ-nodes are assoiated

to onditionals and loops.

Assignments c ≡ id = e
• If the following onditions are satis�ed ⇒

remove the assignment from the program

and memorize e[id 7→ e] in δ.
� the variables of e do not exist in δ,
� v 6∈ β and v 6= ν,

• Otherwise, we inline the variables saved

in δ in the onerned expression e and we

transform the resulting expression.

Sequenes c ≡ c1; c2
• If c1 or c2 is nop ⇒ rewrite the other mem-

ber of the sequene,

• Otherwise, rewrite both members of the

sequene.

Conditionals c ≡ ifΦ e then c1 else c2
• If e is true ⇒ rewrite c1,
• If e is false ⇒ rewrite c2,
• If e is statially unknown ⇒ rewrite both

branhes of the onditionals,

• If the variables of e have been removed

from the program ⇒ re-insert them into

the soure ode and then rewrite it (the

variables of e are inserted in the blak

list β).

While Loops c ≡ whileΦ e do c
• Rewrite the body of the loop,

• re-injet the variables disarded into the

program and then rewrite it (again the

onerned variables are added to β).

Experiments and Results

To illustrate how we transform programs, we have taken an example from robotis. It omputes

the position of a two wheeled robot by odometry [3℄. Note that sl and sr are the instantaneous

rotation speeds of the left and right wheels, c is the irumferene of the wheels and l the length of

its axle. The left Figure represents the initial program of the odometry while the right one gives the

transformed ode.

while (t < 100.0) do {

 delta_dl = (c * sl);

 delta_dr = (c * sr);

 delta_d = ((delta_dl + delta_dr) * 0.5);

 delta_theta = ((delta_dr - delta_dl) * inv_l);

 arg = (theta + (delta_theta * 0.5));

 cos = (1.0 - ((arg * arg) * 0.5))

+ ((((arg * arg)* arg)* arg) / 24.0);

 x = (x + (delta_d * cos));

 sin = (arg - (((arg * arg)* arg)/6.0))

 + (((((arg * arg)* arg)* arg)* arg)/120.0);

 y = (y + (delta_d * sin));

 theta = (theta + delta_theta);

 t = (t + 0.1);}

while (t < 100.0) do {

 TMP_6 = (0.1 * (0.5 * (9.691813336318980 - (12.34 * sl))));

 TMP_23 = ((theta + (((9.691813336318980 - (sl * 12.34))

 * 0.1) * 0.5)) * (theta + (((9. 691813336318980

- (sl * 12.34)) * 0.1) * 0.5)));

 TMP_25 = ((theta + TMP_6) * (theta + TMP_6)) * (theta

+ (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5));

 TMP_26 = (theta + TMP_6) ;

 x = ((0.5 * (((1.0 - (TMP_23 * 0.5)) + ((TMP_25 * TMP_26)

/ 24.0)) * ((12.34 * sl) + 9.691813336318980))) + x);

 TMP_27 = ((TMP_26 * TMP_26) * (theta

+ (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5)));

 TMP_29 = (((TMP_26 * TMP_26) * TMP_26) * (theta

 + (((9.691813336318980 - (sl * 12.34)) * 0.1) * 0.5)));

 y = (((9.691813336318980 + (12.34 * sl)) * (((TMP_26

 - (TMP_27 / 6.0)) + ((TMP_29 * TMP_26) / 120.0)) * 0.5)) + y);

 theta = (theta + (0.1 * (9.691813336318980 - (12.34 * sl))));

 t = t + 0.1;}

Listing of the initial Odometry program.

sl = [0.52,0.53];

sr = 0.785398163397; c = 12.34;

theta = t = x = y = 0.0 ;

sl = [0.52,0.53]; theta = t = x = y = 0.0 ;

inv_l =0.1 ;

Listing of the transformed Odometry program.

For the demonstration of its e�ieny, we evaluate through our tool a set of programs in the domains

of robotis, avionis, mathematis, et. The experimental results show the e�ieny of our approah

to optimize the numerial auray. We ompare the initial and the new error of eah of programs

(see Figure (a)). We have also demonstrated [2℄ that improving the numerial auray aelerates

the onvergene time of numerial iterative algorithms (see Figure (b)). Finally, we have ompared

initial odes working in double preision with optimized odes in simple preision (see �gure ()).

(a) (b) ()

Conlusion and Perspetives

• Improve numerial auray of programs by up to 20%,

• Aelerate onvergene of numerial iterative methods up to 15%,

• Transformed programs in single preision are lose to soure pro-

grams with double preision.

• Extend this work to deal with other or more ompliated stru-

tures of programs suh that funtions and arrays.

• Validate that programs transformed by our tool are equivalent

to the original programs using the Coq proof assistant.

• Optimize the numerial auray of parallel programs.

Numerical

Accuracy

Number of

Iterations

Precision

21 %

15%

Initia
l O

dometry
 Program

Optim
ize

d Odometry
 Program

Initia
l Ja

co
bi's

 M
eth

od

Optim
ize

d Ja
cobi's

 M
eth

od

Optimized Single Precision Simpson's Method

Initial Double Precision Simpson's Method

Referenes

[1℄ ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmeti, std 754-2008 edition, 2008.

[2℄ N. Damouhe, M. Martel, and A. Chapoutot. Impat of auray optimization on the onvergene of numerial

iterative methods. In Moreno Falashi, editor, LOPSTR'15, volume LNCS 9527 of LNCS. Springer, 2015.

[3℄ N. Damouhe, M. Martel, and A. Chapoutot. Intra-proedural optimization of the numerial auray of programs.

In M.Núñez and M. Güdemann, editors, FMICS'15, volume 9128 of LNCS, pages 31�46. Springer, 2015.

[4℄ E. Darulova and V. Kunak. Sound ompilation of reals. In POPL, 2014.

[5℄ A. Ioualalen and M.Martel. A new abstrat domain for the representation of mathematially equivalent expressions.

In SAS'12, volume 7460 of LNCS, pages 75�93. Springer, 2012.

[6℄ J. R. Wilox P. Panhekha, A. Sanhez-Stern and Z. Tatlok. Automatially improving auray for �oating point

expressions. In PLDI, 2015.

1

