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HORN MAPS OF SEMI-PARABOLIC HÉNON MAPS

MATTHIEU ASTORG AND FABRIZIO BIANCHI

Abstract. We prove that horn maps associated to quadratic semi-parabolic fixed
points of Hénon maps, first introduced by Bedford, Smillie, and Ueda, satisfy a weak
form of the Ahlfors island property. As a consequence, two natural definitions of their
Julia set (the non-normality locus of the family of iterates and the closure of the set
of the repelling periodic points) coincide. As another consequence, we also prove that
there exist small perturbations of semi-parabolic Hénon maps for which the Hausdorff
dimension of the forward Julia set J+ is arbitrarily close to 4.

1. Introduction

Following the seminal work of Douady-Hubbard [DH84, DH85a] and Lavaurs [Lav89],
the study of perturbations of maps with a parabolic fixed point, often referred to as
parabolic implosion, has been a major theme in one-variable complex dynamics. A first
consequence of this theory is the discontinuity of the Julia sets at parameters where a
parabolic bifurcation occurs [Dou94]. Further notable applications include the celebrated
result by Shishikura [Shi98] that parabolic maps can be approximated by hyperbolic
maps with arbitrarily large hyperbolic dimension and, as a consequence, the proof that
the boundary of the Mandelbrot set has maximal Hausdorff dimension, see also [DSZ97,
McM00, Tan98, Zin98] for refinements of this result and further consequences and [Shi00,
PV20] for an overview of the theory.

Shishikura’s proof involves the so-called horn maps. These maps describe the limit
behaviour of the return maps of large iterates of the perturbed maps near the parabolic
point. Another important aspect of horn maps (also called Écalle-Voronin invariants)
is that they classify parabolic germs up to analytic conjugacy, i.e., they form a com-
plete invariant for this notion of equivalence [Éca85, Vor81]. Techniques from parabolic
implosion have been extended by Inou and Shishikura [IS06], who introduced the near-
parabolic renormalization, a powerful tool which was used, for instance, to construct
quadratic Julia sets with positive area [BC12], and to make significant steps towards the
settling of the Fatou hyperbolicity conjecture [CS15].

In recent years, techniques of parabolic implosion have started to be developed and
successfully applied also in higher dimensions. In [BSU17], Bedford, Smillie, and Ueda
extended Lavaurs’ results to diffeomorphisms of (C2, 0) with a semi-parabolic fixed point,
that is, with one multiplier equal to 1 and one in the unit disk. In the important particular
case of dissipative Hénon map, the authors introduced a horn map analogous to the
one-dimensional case, which they used to show the discontinuity of various dynamically
meaningful sets at parameters with a semi-parabolic fixed point. In [DL15], Dujardin
and Lyubich adapted and improved the results from [BSU17] to construct homoclinic
tangencies in some regions of the parameter space of complex Hénon maps, as part of

1



2 M. ASTORG AND F. BIANCHI

their characterization of stability and bifurcation in families of such maps. Parabolic
implosion techniques in two complex variables were also used by Buff, Dujardin, Peter,
Raissy, and the first author to give the first example of an endomorphism of P2(C)
with a wandering domain [ABD+16], which solved a long-standing open question in the
domain, see also [ABTP23]. Adaptations of these techniques from Boc Thaler and the
first author have lead to a precise description of the local dynamics near a parabolic point
of a significant class of maps tangent to the identity in C2 [Aba01], in particular solving
a long-standing open question by Abate [Aba05] on the topological classification of such
maps. The first result on the parabolic implosion of a two-dimensional map tangent to
the identity was also established by the second author in [Bia19].

Coming back to the original work by Bedford, Smillie, and Ueda, very little is known
about the dynamics of the horn maps of semi-parabolic Hénon maps; for instance, it
was not even known until now whether they always had periodic cycles (besides the two
"trivial" fixed points 0 and ∞). In this paper, we prove that they satisfy a weak version
of the so-called Ahlfors island property. As a consequence, we can show the density of
the repelling periodic points in their Julia sets, and an analogous of Shishikura’s result
for the forward Julia set J+ of dissipative Hénon maps.

The class of Ahlfors island maps was implicitly present in the work of Epstein [Eps93],
see also [RR12, MR12]. Roughly speaking, given an open set W ⊂ P1, a holomorphic
map f : W → P1 has the N islands property if, given any N Jordan domains with
pairwise disjoint closures, one can find univalent inverse branches of f on at least one
of these Jordan domains, whose image is close to any given point in the boundary of W
(see Definition 2.3 for a precise formulation). A celebrated theorem by Ahlfors [Ahl35]
states that every entire or meromorphic map has the 5 islands property (in this case,
we have W = C and the only boundary point is ∞), see also [Ber98]. This remarkable
result can be used to give a simple proof of the density of repelling cycles in the Julia
set of any transcendental entire or meromorphic map, see for instance [Ber93].

Another class of maps extensively studied by Epstein [Eps93] is the class of finite type
maps, that is, holomorphic maps with finitely many singular values (see Definition 2.2).
Finite type maps with N singular values have the (N + 1) islands property; however,
finite type maps form a much smaller class than Ahlfors island maps. For instance,
Epstein proved that finite type maps have no wandering or Baker domains and admit
only finitely many non-repelling cycles; none of these statements is true in general for
Ahlfors island maps. While horn maps of one-variable rational maps are always finite
type maps [Eps93], it seems unlikely that this holds true for horn maps of dissipative
semi-parabolic Hénon maps in general (indeed, this would be equivalent to proving that
only finitely many stable manifolds have tangencies with a certain entire curve Σ, defined
below).

In this paper, we introduce the following slightly weaker version of the island property.
Observe that in the usual versions, the property below is true for every positive real
number instead of just those smaller than r(z0), see Definition 2.3. On the other hand,
here we can specify which points z0 should be excluded, see Remark 2.4.

Definition 1.1. Let W ⊂ P1 be an open set and h : W → P1 a holomorphic map. We
say that h has the small island property if, for every z0 ∈ C∗, there exists r(z0) > 0
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such that, for every domain U intersecting ∂W , there exists Ω b U ∩ W such that
h : Ω→ D(z0, r(z0)) is a conformal isomorphism.

Let us emphasize that r(z0) does not depend on the choice of U , but only on f and
z0. We will show in Theorem 1.2 that the small island property as in Definition 1.1 is
enough to prove the density of the repelling periodic points in the Julia set.

Let now f be a dissipative Hénon map with a semi-parabolic fixed point p of order
2, see Section 3 for the precise definitions. Let B denote the parabolic basin of the
semi-parabolic point, which is a two-dimensional open set with p on its boundary, and
Σ the parabolic curve, which can thought of as the one-dimensional unstable curve of
p. By [BSU17], there exist two maps φι : B → C (usually called the incoming Fatou
coordinate) and ψo : C → Σ (usually called the outgoing Fatou parametrization) which
semi-conjugate the map f on B and on Σ to the translation by 1 on C, respectively. The
Hénon-Lavaurs map (or transition map) associated to f is the composition L0 := ψo ◦φι.
Observe that L0 commutes with f . By [BSU17], L0 can be seen as a limit of large iterates
of suitable perturbations of f near the semi-parabolic point. We refer to Section 3.4 for
more details on this.

By the definition of L0, we immediately see that this map is semi-conjugated to the
map Hf := φι ◦ ψo : (ψo)−1(B) → C. This is the lifted horn map associated to f . As
L0 commutes with f , we see that Hf commutes with the translation by 1 on C. We
can then quotient its action by this translation, and obtain a map from a subset of the
cylinder C∗, containing pointed neighbourhoods of 0 and ∞, to the cylinder itself. By
[BSU17], hf extends to 0 and ∞. The following is our first main result.

Theorem 1.2. Let f be a dissipative semi-parabolic Hénon map as above. The horn map
hf has the small island property as in Definition 1.1.

The following is then a consequence of Theorem 1.2.

Corollary 1.3. Let f be a dissipative semi-parabolic Hénon map as above. The repelling
periodic points of the horn map hf are dense in its Julia set.

The proof of Theorem 1.2 is based on techniques from Pesin theory, which were first
adapted to this context in [BLS93b], and on local equidistribution results towards the
Green currents T+ and T− of the Hénon map f , which follow from the local approch to
these problems developed in [HOV95, Duj04, DS06, DNS08].

As mentioned above, as an application of Theorem 1.2, we will also deduce an analo-
gous of Shishikura’s result for Hénon maps.

Theorem 1.4. Let f be a dissipative semi-parabolic Hénon map as above. Then, there
exists a sequence fn → f of dissipative Hénon maps of the same algebraic degree such
that

dimH J
+(fn)→ 4 as n→∞.

In order to prove Theorem 1.4, we show that every holomorphic map with the small
island property can be suitably modified (i.e., can be multiplied by a suitable constant)
so that it has arbitrarily large (i.e., close to 2) hyperbolic dimension. Assume for the
sake of simplicity that the multiplication is not necessary (this is just a minor technical
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point). We can apply this to the horn map hf , and recall that the Hénon-Lavaurs map
L0 is the limit of suitable large iterates fnεn of perturbations fεn of f . By the conjugacy,
large hyperbolic sets for hf give a large limit set for suitable iterates of L0. As these
large hyperbolic sets persist under the perturbation f 7→ fεn for n sufficiently large, this
leads to hyperbolic limit sets Hn for suitable iterates of fnεn with large (i.e., close to 2)
unstable dimension. As the forward Julia set J+(fε) contains the union of the stables
manifolds of the points of Hn, this leads to the desired result.
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the University of Pisa for the warm welcome and the excellent work conditions.
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Department of Mathematics, University of Pisa, CUP I57G22000700001. Both authors
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2. Island properties and consequences

2.1. Ahlfors island maps and finite type maps.

Definition 2.1. Let X and W be a Riemann surface, with X connected, and f : W → X
a holomorphic map. The singular value set S(f) of f is the smallest subset of X such
that f : W0 \ f−1(S(f)) → X \ S(f) is a covering map for every connected component
W0 of W .

As covering maps are surjective, it follows from the above definition that we have
X \ f(W ) ⊂ S(f).

Definition 2.2. [Eps93] Let W ⊂ P1 be a non-empty open set and f : W → P1 a
holomorphic map. We say that f is a finite type map on P1 if

(1) f is non-constant on every connected component of W ;
(2) f has no removable singularities;
(3) S(f) is finite.

Definition 2.3. [RR12, MR12] Let W ⊂ P1 be a non-empty open set and f : W → P1

a holomorphic map. We say that f has the N islands property if, given any N Jordan
domains D1, . . . , DN ⊂ P1 with pairwise disjoint closures and any open set U intersecting
∂W , there exists 1 ≤ i0 ≤ N and an open set Ω b U ∩W such that f : Ω → Di0 is a
conformal isomorphism. If there exists N ≥ 1 such that f has the N islands property,
we say that f is an Ahlfors island map.

Remark 2.4. In Definition 1.1, z0 must be chosen different from 0 and ∞. Hence, the
small island property as in that definition can be seen as a weaker version of the 3 islands
property above. We could give a more general definition of the small N islands property,
admitting N − 1 exceptions as in the Definition 2.3. The proofs in this section would be
the same. We just define the precise version of the property that we will prove for the
horn maps of semi-parabolic Hénon maps for simplicity.
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Also note that the 1 island property is vacuously satisfied if ∂W = ∅, that is, if
f : P1 → P1 is a rational map. This case is however very special, and our arguments will
often use the fact that ∂W 6= ∅.

2.2. Julia sets. We fix in this section an open set W ⊂ P1 and a holomorphic map
f : W → P1. We give here two natural definitions of the Julia set of f . The first is
related to the notion of non-normality. Since W 6= P1, the definition needs to take into
account orbits leaving the domain W .

Definition 2.5 (Definition of the Julia set as non-normality locus). The Fatou set F (f)
of f is the union of all open sets U ⊂ P1 such that either

(1) fn(U) ⊂W for all n ∈ N, and {fn : U →W} is normal; or
(2) there exists n ∈ N such that fn(U) ⊂ P1 \W , where W denotes the closure of W

in P1.
The set JF (f) is the complement of F (f) in P1.

Observe that according to this definition, we always have ∂W ⊂ JF (f) and P1 \W ⊂
F (f). Given a point in the Fatou set, all its orbit is in the Fatou set; conversely, given a
point in JF (f), all preimages are in JF (f). Moreover, it is clear that repelling periodic
points are always in JF (f). This leads to the second definition, and to the inclusion
JR(f) ⊂ JF (f).

Definition 2.6 (Definition of the Julia set by means of repelling periodic points). The
set JR(f) is the closure of the set of all repelling periodic points of f .

2.3. A consequence of the small island property. We fix again an open setW ⊂ P1

and a holomorphic map f : W → P1. By [Eps93], we have JF (f) = JR(f) if f is an
Ahlfors island map. In this section we show that the small island property as in Definition
1.1 is still enough to ensure this property. For simplicity, we will denote by W∞ the
interior of

⋂
n≥0 f

−n(W ) in the rest of this section.

Lemma 2.7. Assume that either W∞ = ∅ or all connected components of W∞ are
hyperbolic. Then we have JF (f) =

⋃
n≥0 f

−n(∂W ).

Proof. The inclusion
⋃
n≥0 f

−n(∂W ) ⊂ JF (f) is always true by the Definition 2.5 of
JF (f).

Conversely, if W∞ 6= ∅, W∞ is completely invariant and f : W∞ → W∞ is non-
increasing for the hyperbolic metric. Therefore, we have W∞ ⊂ F (f). Clearly, this
inclusion still holds if W∞ = ∅.

Let U be a connected open set intersecting JF (f). By the inclusion proved above, U
cannot be contained inW∞. Therefore, there exists n ∈ N such that fn(U)∩(P1\W ) 6= ∅.
Moreover, we must have fn(U)∩ ∂W 6= ∅, for otherwise we would have fn(U) ⊂ P1 \W .
By definition, this would give U ⊂ F (f), contradicting the assumption U ∩ JF (f) 6= ∅.

The above proves that, for any open domain U intersecting JF (f), there exists n ∈ N
such that f−n(∂W ) ∩ U 6= ∅. Again by definition, we have f−n(∂W ) ⊂ JF (f). This
shows that

⋃
n≥0 f

−n(∂W ) is indeed dense in JF (f), and concludes the proof. �

Theorem 2.8. Assume that f has the small island property. Then JF (f) = JR(f).
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Proof. Recall that the inclusion JR(f) ⊂ JF (f) always holds by definition. Hence, we
only have to prove the reversed inclusion.

IfW∞ is non-empty and has a non-hyperbolic component, it is isomorphic to P1, C∗, or
C. Then, f is either a rational map, a transcendental self-map of C∗ or a transcendental
entire map. In all these cases, the result is classical. Therefore, we only need to deal
with the case where W∞ is either empty or has a hyperbolic connected component. In
particular, Lemma 2.7 applies.

Fix z0 ∈ JF (f). Since JF (f) has no isolated points, we may assume without loss of
generality that z0 ∈ C∗. By Lemma 2.7, we may also assume that fn(z0) ∈ ∂W for some
n ∈ N. Let D be a small disk centered at z0 small enough so that fn : D → fn(D) is a
branched cover, ramified only possibly at fn(z0). We can also assume that the radius of
D is smaller than the quantity r(z0) as in the Definition 1.1 of the small island property.
It is enough to show that there exists a repelling point in D.

Let Ω b fn(D) be the simply connected domain given by the small island property
applied with U = fn(D). Then, the map fn+1 : fn(D) c Ω→ fn(D) is a branched cover
with at most one critical value fn(z0), which lies outside of Ω, and in particular, it is
polynomial-like. It follows from, e.g., Douady-Hubbard’s Straightening theorem [DH85b]
that fn+1 : Ω→ fn(D) has a repelling periodic point1.

Therefore, D contains a repelling periodic point for f . This proves the inclusion
JF (f) ⊂ JR(f) and completes the proof. �

Remark 2.9. A holomorphic family of maps fλ : Wλ → P1 is natural [EL92, ABF21]
if it is of the form fλ = φλ ◦ f ◦ ψ−1λ , where W ⊂ P1 is an open set, f : W → P1 a
holomorphic map, Wλ := ψλ(W ) and φλ, ψλ : P1 → P1 are homeomorphisms depending
holomorphically on λ ∈ M . It is straightforward to check that if f has the small island
property, then each map fλ in a natural family as above also has the small island property.
In the proof of Theorem 1.4, we will be interested in the case of a family of maps of the
form hλ = λh, where h has the small island property and λ ∈ C∗. It is in particular a
natural family, with φλ(z) := λz and ψλ := Id.

3. Preliminaries on Hénon and horizontal-like maps

We will consider in this section an automorphism f of C2 of the form

(3.1) f(z, w) = (p(z) + aw, z),

where p is a monic polynomial of degree d ≥ 2 and a is some constant in C∗. Any f as
above is usually referred to as a (generalized) Hénon map. Observe that the Jacobian of
f is constant, and equal to |a|. We say that f is dissipative if |a| < 1.

By results of Jung [Jun42] and Friedland-Milnor [FM89], every polynomial automor-
phism f of C2 is conjugated (in the group of polynomial automorphisms) to either an
elementary automorphism, i.e., a map of the form (z, w) 7→ (az + p(w), bw + c) for some
a, b ∈ C∗, c ∈ C, and polynomial p of degree d ≥ 0, or to a Hénon-type map, i.e., a
finite composition of generalized Hénon maps as in (3.1). As the dynamics of elementary
automorphisms is simple to describe, we will just consider in the following maps of the

1Actually, since this polynomial-like map has only one critical value which is escaping, it can also be
proved by elementary means that it has a repelling fixed point, see for instance [Eps93].
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second type. For simplicity, we will just consider Hénon maps, but the picture is the
same when considering finite compositions as above.

3.1. Filtration property and induced horizontal-like map. Let f be as in (3.1).
Friedland and Milnor [FM89] showed that it is possible to decompose C2 in a dynamically
meaningul way, as follows. Let D(0, R) ⊂ C be the disc of center 0 and radius R. Set

DR := D(0, R)2,

V +
R := {(z, w) ∈ C2 : |z| > max(|w|, R)}, and
V −R := {(z, w) ∈ C2 : |w| > max(|z|, R)}.

We also denote by K+ (resp. K−) the set of points whose orbit under f (resp. f−1) is
bounded.

Lemma 3.1. The following assertions hold for every R sufficiently large.
(1) f(V +

R ) ⊂ V +
R and V +

R ∩K+ = ∅;
(2) f(DR ∪ V +

R ) ⊂ DR ∪ V +
R ;

Similar assertions hold replacing f , V +
R , and K+ with f−1, V −R , and K−, respectively.

Although our maps will always be globally defined, in the following we will sometimes
need to work in a semi-local setting, that we now describe. A vertical subset of DR is a
subset of DR whose closure in C2 is disjoint from the vertical boundary ∂D(0, R)×D(0, R)
of DR. Similarly, a horizontal subset of DR is a subset of DR whose closure is disjoint
from the horizontal boundary D(0, R)× ∂D(0, R).

We fix R sufficiently large for Lemma 3.1 to hold. The map f can be seen as a map from
the set DR ∩ f−1(DR) to the set DR ∩ f(DR). In particular, since f−1(DR) b DR ∪ V −
and f(DR) b DR ∪ V +, f is a holomorphic map from a vertical subset of DR to a
horizontal one and it is a so-called horizontal-like map. We refer to [HOV95, Duj04,
DS06, DNS08] for the precise definition and their properties. We will use the notation f̃
for the horizontal-like map associated to f as above, when we will need to emphasize it.

3.2. The Green currents T+ and T−. Let f be a Hénon map. Denote by G± the func-
tions G±(z, w) := limn→∞ d

−n log+ ‖f±1(z, w)‖, where log+(·) = max(0, log(·)). Such
functions, usually called the Green functions of f and f−1 respectively, are well de-
fined (as the convergences are uniform of every compact subset of C2). They are Hölder
continuous and plurisubharmonic [FS92, Hub86]. Hence, the (1, 1)-currents given by
T± := ddcG± are positive closed. They are the Green currents of f and f−1 and they
describe – in a quantified sense – the distribution of the iterate of curves under forward
and backward iteration of f [BS91a, FS92]. Their support is equal to J± := ∂K±, re-
spectively. More precisely, they are the unique positive ddc-closed currents supported on
K±, respectively [DS14]. By [BS91b], the convergence

(3.2) d−n[f−n(M)]→ cMT
+

holds for every locally closed submanifold M ⊂ C2 satisying M ⊂ J+ or M ⊂ X, where
X is algebraic. Here cM is a constant depending on M , and we have cM > 0 if, for
instance, one has T−|M > 0. A similar property holds for T−.
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In the semi-local setting described in Section 3.1, the convergence above can improved.
For a given large R, recall that we denote by f̃ the associated horizontal-like map on
DR. By [Duj04], we can associate to f̃ its Green current T̃+, which is vertical, and the
Green current of f̃−1, T̃−, which is horizontal in DR. By [Duj04, DNS08], we have

(3.3) d−nf̃∗R→ cRT̃
+

for every positive closed vertical current on DR. Here cR > 0 is a constant depending on
R (and it is equal to its vertical mass, see [Duj04, DS06]; when R is smooth, it is equal
to the mass of the restriction of R to any horizontal line in DR). It follows from (3.2)
and (3.3) that T̃± = T±|DR

.

3.3. The equilibrium measure and Pesin boxes. As the Green functions G± are
continuous, the intersection µ := T+ ∧ T− is a well-defined probability measure, and is
the unique measure of maximal entropy of f [BLS93b, Sib99]. It satisfies remarkable
ergodic properties [BLS93b, BLS93a, Din05, BD24]. We recall here those that we will
need in the sequel. We denote by λ+ and λ− the two Lyapunov exponents of µ. Recall
[BS98] that we have λ+ > 0 and λ− < 0, hence µ is hyperbolic in the sense of Pesin
theory.

By Oseledec’s ergodic theorem, there exist a full measure subset R of the support of
µ and two measurable distributions of 1-dimensional subspaces Es, Eu : R → TC2 with
Es(x), Eu(x) ∈ TxC2 with the property that for every x ∈ R, we have Es(x) 6= Eu(x),
Df(Es/u(x)) = Es/u(f(x)) and

lim
n→∞

‖Dfn(v)‖ = λ+ ∀v /∈ Es(x) and lim
n→∞

‖Df−n(v)‖ = λ− ∀v /∈ Eu(x).

The angle between Es and Eu along an orbit is also controlled.
Given r > 0 and x ∈ R, we denote by Bs

r(x) and Bu
r (x) the 1-dimensional affine

discs in C2 centred at x, of radius r, and whose tangent at x is given by Es(x) and
Eu(x), respectively. By Pesin theory, for every x there is an r(x) such that the stable
and unstable manifolds W s(x) and W u(x) of x are locally graphs over Bs

r(x) and Bu
r (x),

respectively. We denote by W s
r (x) and W u

r (x) these local stable and unstable manifolds,
respectively.

Fix r > 0 and denote by Rr the set of points x ∈ R such that r(x) ≥ r 2. Let F
be a compact subset of Rr, and assume that the diameter of F is � r. We denote by
W s
r (F ) and W u

r (F ) the union of the sets W s
r (x) and W u

r (x) for x ∈ F . We call the set
P := W s

r (F ) ∩W u
r (F ) the Pesin box [Pes77] generated by F . By [BLS93b] (see also

[Duj04]), there exist a compact set P s which is homeomorphic to W u
r (x)∩W s

r (F ) for all
x ∈ F and a compact set P u which is homeomorphic to W s

r (x) ∩W u
r (F ) for all x ∈ F .

Then, P is homeomorphic to P s×P u. Moreover, there exists a neighbourhoodN = N(P )
of P , biholomorphic to a bidisk, such that (the image of) every W s

N (x) := W s
r (x) ∩ N

(resp. W u
N (x) := W u

r (x)∩N) is a vertical (resp. horizontal) graph, and for every x, y ∈ P
the unique intersection point between W s

N (x) and W u
N (x) is in P .

It follows from Pesin theory [Pes77] that, up to a negligible set, the support of µ can
be covered by means of just countably many Pesin boxes.

2Further conditions should be imposed on Rr, see [BLS93b, (4.2), (4.3), and (4.4)]. Since we will not
need them and they are always true up to a zero-measure subset, we will not focus on this issue here.
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3.4. Semi-parabolic dynamics and horn maps. Let us assume from now on that a
Hénon map f has a semi-parabolic point of order 2 at the origin O of C2. A description of
the local dynamics of f near the semi-parabolic point is given in [Ued86, Ued91, BSU17].
Following [BSU17], we recall here the definitions and results that we will need in the
sequel. We refer to [Lav89, Shi00] for the earlier one-dimensional counterparts of these
definitions and results.

Up to suitable changes of coordinates, we can assume that the local form of f near O
is given by

f(z, w) = (z + z2 +O(z3), bw +O(zw))

for some 0 < |b| < 1 (a more precise development is given in [DL15], but we will not
need it here).

We denote by B the parabolic basin of O, i.e., the open set of points x such that
fn(x) → O as n → ∞. Observe that, as f is invertible, B is connected. There exists
a holomorphic submersion φι : B → C, called the (one dimensional) incoming Fatou
coordinate, that semi-conjugates the dynamics of f on B to a translation by 1 on C; i.e.,
we have

(3.4) φι(f(x)) = φι(x) + 1 ∀x ∈ B.

There also exists a second (open) holomorphic map φ2 : B → C such that the map
Φ = (φι, φ2) : B → C2 is a biholomorphism which satisfies Φ(f(x)) = Φ(x) + (1, 0) for
every x ∈ B. Given any p ∈ B, the fiber {q ∈ B : φι(p) = φι(q)} is called the strongly
stable manifold of p, denoted by W ss(p). It is an injectively immersed entire curve in
C2, and it is characterized by the following property:

q ∈W ss(p)⇐⇒ lim
n→∞

1

n
log d(fn(p), fn(q)) = log |b|.

Let us now consider the set of points converging to O under the iteration of f−1.
This set is an f -invariant complex curve Σ ⊂ C2, with O on its boundary. The Fatou
parametrization of Σ is a holomorphic map φo : C→ C2 satisfying

(3.5) f(ψo(y)) = ψo(y + 1) ∀y ∈ C.

Definition 3.2. The map L0 := ψo ◦φι : B∩Σ→ Σ is the Hénon-Lavaurs, or transition
map of f (associated to the semi-parabolic point O). The map Hf := φι ◦ψo : (ψo)−1(B∩
Σ)→ C is the lifted horn map of f (associated to the semi-parabolic point O).

The following properties of Hf directly follow from its definition and the local descrip-
tion of B and Σ, see [BSU17, DL15]. The last item is a key point in the characterization
of bifurcations in [DL15] by means of homoclinic tangencies.

Proposition 3.3. The following properties hold.
(1) The domain ψo(B ∩ Σ) contains the set {|=z| > R} for every R large enough.
(2) For every z ∈ (ψo)−1(B) and every w ∈ C, we have Hf (z) = w if and only if

ψo(z) lies in the intersection of Σ and the strongly stable manifold {(x, y) ∈ B :
φι(x, y) = w}.

(3) Given z ∈ C, we have H ′f (z) = 0 if and only if the strongly stable manifold
{(x, y) ∈ B : φι(x, y) = w} is tangent to Σ at ψo(x).
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The maps L0 and Hf are conjugated to each other, so their dynamics are very similar.
In particular, one can use the map Hf : C→ C as a model for the map L0, whose domain
and image are in C2. It follows from (3.4) and (3.5) that we have

f ◦ L0 = L0 ◦ f and Hf ◦ τ1 = τ1 ◦Hf ,

where we denote by τ1 the translation by 1 in C. In particular, Hf induces a map hf on
(a subset of) the cylinder C obtained by taking the quotient of C by the Z-action of τ1.
By Proposition 3.3 (1), the domain of hf contains the two extremities of C. By [BSU17],
hf extends to such extremities, that we can identify with 0 and ∞ in P1. In particular,
we can see hf as a map from an open subset of P1 (containing two neighbourhoods of 0
and ∞) to P1.

Definition 3.4. The map hf is the horn map of f (associated to the semi-parabolic point
O).

The maps L0, Hf , and hf are deeply related to the so-called (semi-)parabolic implosion
phenomenon for the perturbations of the map f , see [BSU17] and [Lav89, Shi00] for their
counterparts in one-dimensional parabolic dynamics. While we will not need results in
this direction in the proof of Theorem 1.2, we recall here what we will need in the proof
of Theorem 1.4.

Observe that the map L0 is actually defined on B. For every α ∈ C, define the
Hénon-Lavaurs maps of phase α Lα : B → C2 as

Lα := ψo ◦ τα ◦ φι,

where τα denotes the translation by α ∈ C in C. Observe that the image of Lα is
contained in Σ, and that the definition of L0 is coherent with its previous definition
above.

For small ε, we consider holomorphic perturbations fε of f of the form

fε(z, w) = (z + z2 + ε2 +O(z2), bεw +O(zw)),

where in particular bε depends holomorphically in ε. Following [BSU17], we say that a
sequence (nj , εj) ⊂ (N,R+)N is an α-sequence if εj → 0 and nj − π/εj → α. Observe
that this condition implies that nj → ∞, and prescribes that the convergence εj → 0
happens tangentially to the positive real axis.

Theorem 3.5 (Bedford-Smillie-Ueda [BSU17]). Let (nj , εj) be an α-sequence. Then,

f
nj
εj → Lα

locally uniformly in B.

4. Proof of Theorem 1.2

We continue to use the notation of the previous sections. Let R > 0 be large enough so
that the filtration property in Section 3.1 holds for f and R. We will only be concerned
with the dynamics of f inside DR, where we recall that f can be seen as an invertible
horizontal-like map. Fix z0 ∈ C and denote by S(z0) a connected component of DR ∩
{φι(x, y) = z0}. We also let D be a small disk in Σ intersecting the boundary of B. As we
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will see, the proof of Theorem 1.2 will essentially consist in finding suitable intersections
between preimages of S(z0) and images of D.

In order to find such intersections, let us fix an arbitrary Pesin box P for µ, see Section
3.3. Recall that we denote by N a given neighbourhood of P , where the stable/unstable
manifolds associated to P can be thought as vertical/horizontal, see Section 3.3.

We first consider the preimages of S(z0). Here is where the semi-local setting of
horizontal-like maps will turn out to be useful, as S(z0) does not a priori satisfy the
conditions for the convergence 3.2.

Lemma 4.1. We have d−n(fn)∗[S(z0)]→ T+ on DR.

Proof. Observe that, up to choosing R > 0 large enough, we have S(z0) ⊂ K+, which
implies that S(z0) ∩ V +

R = ∅. Hence, S(z0) is a vertical analytic set in DR. Moreover,
we have [S(z0)] ∧ [L] = 1 for every horizontal line L in DR. The assertion is then a
consequence of (3.3). �

Lemma 4.2. For µ-a.e. x1 ∈ P , there exists n1 ∈ N such that f−n1(S(z0)) intersects
W u(x1) transversally at some y1 ∈ P .

Proof. In the case where S(z0) is replaced by a disc ∆ in the stable manifold of a saddle
point, the assertion follows from [BLS93b, Lemma 9.1]. Since the proof only uses that
∆ satisfies d−n[f−n∆]→ T+, the same proof applies here thanks to Lemma 4.1. �

For any r > 0, let S(r) denote the connected component of {(x, y) ∈ DR : φι(x, y) ∈
D(z0, r)} which contains S(z0). For any z ∈ D(z0, r), we let S(z) denote the connected
component of {φι(x, y) = z} contained in S(r).

By Lemma 4.2, there exist n1 ∈ N and x1 ∈ P such that f−n1(S(z0)) intersects
transversally W u

N (x1) in P . By the description of the Pesin boxes in Section 3.3 and
continuity, we get the following result.

Lemma 4.3. For every z0 ∈ C there exists r(z0) > 0 such that
(1) the connected component U of S(r(z0)) ∩W u

N (x1) containing y1 is simply con-
nected and relatively compact in N ; and

(2) for all z ∈ D(z0, r(z0)), f−n1(S(z)) intersects W u
N (x1) transversally at a point in

U .

We now prove a result analogous to Lemma 4.2 for a disk in Σ intersecting the boundary
of B. We first need the following analogous of Lemma 4.1.

Lemma 4.4. Let D ⊂ Σ be a small disk which intersects ∂B. Then
(1) T+

|D > 0, and
(2) d−n(fn)∗[D]→ cDT

−, for some positive constant cD.

Proof. By assumption, there exists x ∈ ∂B ∩D, so that G+(x) = 0. Let us prove that
there exists x1 ∈ D such that G+(x1) > 0. Assume, by contradiction, that G+ ≡ 0 on
D. Then, we have D ⊂ K+ ∩ K−. In particular, we have fn(D) ⊂ DR for all n ∈ N.
Therefore, {fn : D → C2} is a normal family. As there is an open subset of D contained
in B, any limit of any subsequence fnk

|D must be constantly equal to the semi-parabolic
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point. This implies that D ⊂ B and gives a contradiction with the assumption that
D ∩ ∂B 6= ∅.

Therefore, G+ : D → R is not constantly equal to 0. On the other hand, it is a
non-constant subharmonic function on D which admits a local minimum at x ∈ D. It
follows by the maximum principle that G+ cannot be harmonic on D, which means that
ddcG+ > 0 on D. This proves the first assertion.

By assumption, we have D ⊂ Σ ⊂ J−. Applying (3.2) (with f−1 instead of f), by the
first item we have d−n(fn)∗[D]→ cDT

−, for some cD > 0. The assertion follows. �

Lemma 4.5. For µ-a.e. x2 ∈ P , there exists n2 ∈ N such that fn2(D) intersects transver-
sally W s

N (x2) at some y2 in N .

Proof. As in Lemma 4.2, thanks to Lemma 4.4 the proof is the same as that of [BLS93b,
Lemma 9.1]. �

The following lemma gives the desired tranverse intersections between preimages of
disks in stable manifolds in B and images of disks in Σ intersecting the boundary of B.

Lemma 4.6. There are two sequences of integers Nj ,Mj → +∞ such that the following
properties hold.

(1) f−Nj (U) ⊂ N for all j;
(2) diam(f−Nj (U))→ 0 as j → +∞;
(3) for all z ∈ D(z0, r(z0)), the connected component of f−n1−Nj (S(z))∩N intersect-

ing f−Nj (U) is a vertical graph in N ;
(4) fMj (y2) ∈ N for all j;
(5) the connected component of fn2+Mj (D) ∩ N containing fMj (y2) is a horizontal

graph in N .

In particular, for all z ∈ D(z0, r(z0)), f−n1−Nj (S(z)) intersects fn2+Mj (D) transversally
at a point in N .

Proof. We fix points x1, x2 and integers n1, n2 as in Lemmas 4.2 and 4.5.
By Poincaré’s recurrence theorem, there exists Nj → ∞ such that f−Nj (x1) ∈ P .

Since U ⊂ W u
N (x1), we have f−Nj (U) ⊂ N . Up to extracting a subsequence, we may

assume that limj→+∞ f
−Nj (x1)→ x̂1 ∈ P , and that we have f−Nj

|U → x̂1 uniformly. This
proves (1) and (2).

Let Aj denote the connected component of f−Nj−n1(S(r(z0))) ∩ N containing U ; by
definition, Aj is a union of pieces of strongly stable manifolds {φι = z − n1 −Nj}. Let
S̃ be one such piece. By the inclination lemma, each S̃ converges in the C1 topology to
W s
N (x̂1), which by Pesin theory (see the discussion in Section 3.3) is a horizontal graph

in N . This proves (3).
On the other hand, by a symmetric argument, there exists Mj → +∞ such that

fMj (x2) ∈ P , and fMj (x2) → x̂2 ∈ P . Since fn2(D) intersects W s(x2) transversally
in P , the inclination lemma implies that the connected component of fMj+n2(D) ∩ N
containing fMj (y2) converges in the C1 topology to W u

N (x̂2), which is a horizontal graph
in N . This proves (4) and (5). �
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End of the proof of Theorem 1.2. Set W := (ψo)−1(B). By the definition of hf and Hf ,
and in particular by the fact that Hf commutes with the translation τ1, it is enough to
prove the following property.

(?) for every z0 ∈ C there exists r(z0) > 0 such that for any open set W̃ intersecting
∂W there exist n ∈ Z and V bW ∩ (W̃ + n) such that Hf : V → D(z0, r(z0)) is
a conformal isomorphism.

Fix z0 ∈ C and, without loss of generality, let W̃ be an open ball intersecting ∂W . Set
D := ψo(W̃ ) ⊂ Σ, and observe that D satisfies the assumption of Lemma 4.4. Let also
r(z0) and U be as in Lemma 4.3, n1, n2 be as in Lemmas 4.2 and 4.5, and let the sequences
{Nj}, {Mj} be as in Lemma 4.6. By Lemma 4.6, for every z ∈ D(z0, r(z0)) and every j,
the set f−n1−Nj−n2−Mj (S(z)) intersects D transversally at a point in f−n2−Mj (U). By
the second item in Lemma 4.6, we can fix j0 such that the diameter of f−n1−Nj (U) is much
smaller than the diameter of N . For convenience, we also set ñ := n1 +n2 +Nj0 +Mj0 .

Set V := ñ + (ψo)−1(f−n2−Mj0
−Nj0 (U)) ⊂ (ψo)−1(D) = ñ + W̃ . By the choice of j0

and Lemma 4.6 (4), we have V b ñ+ W̃ . For every v ∈ V , let u = u(v) be the point in
U given by u = fn2+Mj0

+Nj0 (ψo(v − ñ)). The map v 7→ u(v) is a biholomorphism from
V to U . Recall also that, by construction, the map φι ◦fn1 is a biholomorphism between
U and D(z0, r(z0)). Hence, the map H̃(·) := φι ◦ f ñ ◦ψo(·− ñ) is a biholomorphism from
V b ñ + W̃ to D(z0, r(z0)). Recalling that f ◦ ψo(·) = ψo(· + 1), we see that H̃ = Hf .
Hence, Hf is a biholomorphism from ñ + V b ñ + W̃ to D(z, r(z0)). This proves (?),
and the assertion follows. �

Remark 4.7. Observe that our proof of Theorem 1.2 does not really need that f is a
globally defined Hénon map, but it is enough that it is an invertible horizontal-like map.
In particular, the map f does not need to be algebraic.

5. Almost maximal dimension for J+ and Theorem 1.4

5.1. Preliminaries and McMullen’s result. In order to prove Theorem 1.4, the idea
will be to first construct a hyperbolic (repelling) set of large Hausdorff dimension for
some horn map, and then to transfer it to some suitable perturbations of the initial
semi-parabolic Hénon map. While we could follow more closely Shishikura’s arguments
[Shi98], we will use a result by McMullen [McM00], see Theorem 5.4 below, to prove that
there are small quasiconformal copies of the Mandelbrot set in the parameter space of
horn maps. This will allow us to bypass a part of the proof. In this preliminary section,
we recall some terminology and McMullen’s result.

Definition 5.1. Let W ⊂ P1 be an open set and f : W → P1 a holomorphic map. We
say that z ∈ P1 is unramified (for f) if the closure of the set {x ∈ W : ∃n ∈ N, fn(x) =
z and (fn)′(x) 6= 0} is dense in JF (f).

For rational maps, some points may be completely ramified. For instance, it may
happen that every preimage of some point is a critical point. However, we will see in
Lemma 5.8 that this is not possible for maps with the small island property.
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Definition 5.2. Let M be a complex manifold and (fλ)λ∈M : W → P1 a holomorphic
family of holomorphic maps. We say that the family (fλ)λ∈M has a local Misiurewicz
bifurcation of degree d ≥ 2 at λ0 ∈M if:

(1) there exists a marked critical point cλ of fλ and n ∈ N such that xλ0 := fnλ0(cλ0)
is a repelling periodic point;

(2) the map λ 7→ fnλ (cλ) is not constantly equal to xλ in a neighborhood of λ0;
(3) cλ0 is unramified;
(4) the local degree of fnλ at cλ is constantly equal to d in a neighborhood of λ0.

Recall that a critical point cλ is marked if it can be followed holomorphically as a
function λ 7→ cλ = c(λ) of the parameter λ. Such a critical point is active at λ0 if the
sequence fnλ (cλ) is not normal on any neighbourhood of λ0. As in [McM00], we remark
that the subtle point in the above definition is the fourth request.

We can now recall the main technical results in [McM00]. We will not use the following
proposition, but we quote it since proving a version of it in our context will be a main
point of our construction.

Proposition 5.3. Let M be a complex manifold and (fλ)λ∈M : P1 → P1 a holomorphic
family of rational maps. Assume that a marked critical point cλ is active and unramified
at λ0. Then, there exists two sequences M 3 λn → λ0 and N 3 mn → ∞ such that, for
every n ∈ N, the family fmn has a local Misiurewicz bifurcation at λn.

We denote by Md the degree d Mandelbrot set, i.e., the connectedness locus of the
family zd + c, for c ∈ C.

The theorem below was proved by McMullen in the context of holomorphic families
of rational maps. However, the arguments are purely local (indeed, the proof consists in
finding suitable polynomial-like restrictions of the maps fλ) and the proof carries through
verbatim in our more general setting.

Theorem 5.4 (McMullen [McM00]). If a holomorphic family (fλ)λ∈M : W → P1 has a
local Misiurewicz bifurcation of degree d at some parameter λ0, then there is a sequence
of embeddings φn : Md → M such that for every c ∈ Md, we have λn := φn(c) → λ0
and, for every n ∈ N, fλn has a polynomial-like restriction which is hybrid-equivalent to
zd + c. Moreover, the quasiconformal distortion of these copies tends to 0 as n→ +∞.

In practice, McMullen’s results give that, whenever – in a family of rational maps –
a bifurcation occurs, one can create local Misiurewicz bifurcations, and thanks to them,
by means of a renormalization process, a large set of bifurcation parameters. As a
consequence, by [Shi98], one can then find maps with large hyperbolic dimension close
to any bifurcation parameter. In the next section, we will adapt the above ideas in the
setting of maps with the small island property.

5.2. Large hyperbolic sets from the small island property. In this section, we
fix an open set W ⊂ P1 and a holomorphic map h : W → P1 satisfying the small island
property. We also assume that ∂W 6= ∅ and that h has at least one critical point (both
of these properties hold for horn maps of dissipative semi-parabolic Hénon maps; in
particular, the existence of a critical point was proved in [DL15]). For every λ ∈ C∗, we
denote hλ := λh. The following is the main result of this section.
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Proposition 5.5. For every ε > 0 there exists N ∈ N, λ1 ∈ C∗, simply connected
domains U,U1, . . . , UN ⊂W ∩ C∗, and integers m1, . . . ,mN such that:

(1) for all 1 ≤ i < j ≤ N , we have Ui, Uj b U and Ui ∩ Uj = ∅;
(2) for all 1 ≤ i ≤ N , the map hmi

λ1
: Ui → U is a conformal isomorphism;

(3) if c := max1≤i≤N supz∈Ui
|(hmi

λ1
)′(z)|, then

2− ε ≤ logN

log c
.

In particular, it follows from the Bowen formula [Bow08] that the limit set of the
Conformal Iterated Function System (CIFS) given by the holomorphic maps h−mi

λ1
:

U → Ui as in the above statement has Hausdorff dimension at least 2− ε.
We begin with the following preliminary result, which we will use to replace the non-

normality of the critical orbit near a bifurcation parameter in a family of rational maps.

Lemma 5.6 (Shooting Lemma). Let (hλ)λ∈C∗ be the holomorphic family defined by
hλ = λh for every λ ∈ C∗. Fix λ0 ∈ C∗ and let γ1, γ2 be two holomorphic maps defined
in a neighborhood of λ0 and such that hnλ0 ◦ γ1(λ0) ∈ ∂W for some n ∈ N. Then there
exists λ′ arbitrarily close to λ0 such that

hn+1
λ′ (γ1(λ

′)) = γ2(λ
′).

In the proof of Lemma 5.6 we will need the following consequence of the argument
principle.

Lemma 5.7. Let V be a Jordan domain, and let f, g be holomorphic functions in a
neighborhood of V . Suppose that g(V ) ⊂ f(V ) and g(∂V ) ∩ f(∂V ) = ∅. Then there
exists λ ∈ V such that f(λ) = g(λ).

Proof of Proposition 5.6. For every λ ∈ C∗, set G(λ) := hnλ(γ1(λ)) and g(λ) := λ−1γ2(λ).
Then, the equation hn+1

λ (γ1(λ)) = γ2(λ) may be rewritten as

hλ ◦G(λ) = g(λ).

We will apply Lemma 5.7 to the functions f(λ) := hλ ◦G(λ) and g(λ).
Let D be a disk centered at g(λ0) small enough for the small island property of h to

apply (i.e., whose radius is smaller than r(g(λ0))). Fix also an ε > 0 very small compared
to the diameter of D, and also small enough so that G : D(λ0, ε) → G(D(λ0, ε)) is a
branched cover without critical points besides possibly λ0. By assumption, G(D(λ0, ε))
intersects ∂W .

By the small island property of h (which implies the small island property of hλ for
every λ ∈ C∗, see Remark 2.9), there exists U b G(D(λ0, ε)) such that fλ0(U) = D.
Let V denote a connected component of G−1(U) inside D(λ0, δ). By the choice of ε,
V is a Jordan domain. By construction, we have f ◦ G(U) = D. On the other hand,
g(U) is contained in the disk D(g(λ0), Cε

1/d), where d is the local degree of G at λ0
and C is a positive constant independent of ε. Therefore, for ε small enough, we have
g(U) b f ◦ G(U) and g(∂U) ∩ f ◦ G(∂U) = ∅. It follows from Lemma 5.7 that there
exists λ′ ∈ U such that f ◦G(λ′) = g(λ′). The proof is complete. �

Proposition 5.3 has an assumption on the non-ramification of the critical point. In our
setting, we will be able to get rid of that assumption thanks to the following lemma.
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Lemma 5.8. Every z ∈ C∗ is unramified for h.

Proof. Fix z ∈ C∗ and let U bW be an open set intersecting JF (h). Define

B−(z) := {x ∈W : ∃n ∈ N, hn(x) = z and (hn)′(x) 6= 0}.
It is enough to show that U ∩B−(z) 6= ∅.

As U ∩ JF (h) 6= ∅, by Montel’s lemma there exists n ∈ N∗ such that hn(U)∩ ∂W 6= ∅.
We choose the smallest such n. The map hn : U → hn(U) has only finitely many
critical points. On the other hand, by the small island property, there are infinitely
many y ∈ hn(U) such that h(y) = z and h′(y) 6= 0. In particular, we can find one such
y such that there exists x ∈ U with hn(x) = y and (hn)′(x) 6= 0. As such x belongs to
U ∩B−(z), this concludes the proof. �

We can now prove the following version of Proposition 5.3.

Proposition 5.9. Let W ⊂ P1 be an open set with ∂W 6= ∅ and h : W → P1 a holomor-
phic map satisfying the small island property and with at least one critical point. There
exists λ0 ∈ C∗ such that the family (hλ := λh)λ∈C∗ has a local Misiurewicz bifurcation at
λ0.

Proof. Take λ0 ∈ C∗. We allow ourselves to modify λ0 in what follows. We let γ1(λ)
be the motion of a critical point near λ0, and γ2(λ) the motion of a repelling periodic
cycle (which exists by Theorem 1.2 and the implicit function theorem). Observe that,
as the maps hλ have the form hλ = λh, the map γ1 is in fact constant; we will therefore
simply write γ1 instead of γ1(λ). As we are allowed to modify λ0, we can also assume
that λ0h(γ1) ∈ ∂W . Hence, we are in the assumptions of Lemma 5.6. That lemma shows
that, up to slighly modifying λ0, we have a Misiurewicz relation at λ0. As in [McM00],
since we are allowed to slightly perturb the starting parameter (and the critical point
is automatically unramified by Lemma 5.8), the first three conditions in Definition 5.2
can be achieved from the above construction. Hence, we only have to show that (up to
a further small perturbation) we can get the fourth condition in Definition 5.2. Let us
recall that, as in [McM00], this property may fail if the local degree of the critical point
at λ0 is larger than at nearby parameters λ′ 6= λ0.

We assume for simplicity that the integer n in Definition 5.2 is equal to 1. Following
[McM00], we denote by aλ the holomorphic motion of the repelling point giving the
Misiurewicz relation at λ0. We denote by U a small linearization domain for aλ, for all λ
in given small neighbourhood of λ0. We will always work with λ in this neighbourhood.
We can also assume that the local degree of cλ is constant outside of λ0. We let bλ be the
motion of a second repelling point, which stays in U for all λ in consideration. By the
small island property, there exist preimages of bλ accumulating on aλ. We denote by b′λ
one of these preimages. Applying again Lemma 5.6, we can find λ′ close to λ0 such that
f(cλ′) = b′λ′ . The local degree of f is constant near λ′, and since there are no critical
points in U , we see that the same is true for the iterate of f mapping cλ′ to b′λ′ . The
proof is complete. �

Proof of Proposition 5.5. Fix ε > 0 and let d ≥ 2 be the local degree at a given critical
point of h. For any c ∈ C, denote gc(z) := zd + c. By [Shi98], there exists c ∈ Md,
N ∈ N, simply connected domains V, V1, . . . , VN ⊂ C, and integers m1, . . . ,mN such
that:
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(1) for all 1 ≤ i < j ≤ N , we have Vi, Vj b V and Vi ∩ Vj = ∅;
(2) for all 1 ≤ i ≤ N , gmi

c : Vi → V is a conformal isomorphism;
(3) if A := max1≤i≤N supz∈Vi |(g

mi
c )′(z)|, then

2− ε

2
≤ logN

logA
.

By Proposition 5.9, there exists a local Misiurewicz bifurcation of degree d ≥ 2 at
some λ0 ∈ C∗ in the family (hλ := λh)λ∈C∗ . By Theorem 5.4, there exists a sequence
λn ∈ C∗ and, for every n, a Kn-quasiconformal homeomorphisms φn : V → φn(V ) with
Kn → 1 as n→∞ which conjugates gc to a polynomial-like restriction of hλn . Then, for
n large enough, the open sets U := φn(V ) and Ui := φn(Vi) satisfy the conditions in the
statement. �

5.3. Proof of Theorem 1.4. By Theorem 1.2, we can apply Proposition 5.5 to the
horn map hf associated to the semi-parabolic fixed point of f as in Definition 3.4. The
following proposition is a rewriting of that statement in terms of the Hénon-Lavaurs
maps Lα. Observe that the multiplicative constant in Proposition 5.5 translates to the
phase α in the statement below.

Proposition 5.10. For every ε > 0 there exists α ∈ C, disjoint open sets U,U1, . . . , UN ⊂
Σ, and integers m1, . . . ,mN such that

(1) for every 1 ≤ i < j ≤ N , we have Ui, Uj b U (in the topology induced by Σ) and
Ui ∩ Uj = ∅;

(2) for every 1 ≤ i ≤ N , the map Lmi
α : Ui → U is a conformal isomorphism;

(3) if c := max1≤i≤N supz∈Ui
|(Lmi

α )′(z)|, then

(5.1) 2− ε ≤ logN

log c
.

In the proposition above, up to taking preimages, we may assume that U and all the
Ui’s have small diameter, and that they are transverse to the strong stable foliation in B.
In particular, we may choose a small open set V ⊂ C2 with V ∩Σ = U and a coordinate
system (x, y) ∈ D2 for V in which U = D × {0} and the strongly stable foliation is the
vertical foliation given by x = c, for c ∈ D. We allow ourselves to reduce the size of V
(in the transversal direction to Σ) in the following, as well as U and the Ui’s. We only
work on V (resp. D2) in the following. By a slight abuse of notation, we will still denote
by Ui×{0} the images of the Ui in the chart (x, y). Moreover, given two vertical subsets
A,B ⊂ D × D, we will write A b B whenever A ∩ {y = y0} b B ∩ {y = y0} for every
y0 ∈ D. For every 1 ≤ i ≤ N , we also denote Vi := Ui × D and by Li the reading of Lmi

α

in the coordinates (x, y) ∈ D2. We also denote by L the holomorphic map on ∪Vi which
is equal to Li on Vi. Observe that, in particular, with the above notations we have

(5.2) L−1i (Vj) b Vi for all i, j and L−1(∪Vi) b ∪Vi.

By Theorem 3.5, given an α-sequence (εj , nj), we have fnj
εj → Lα locally uniformly in

B. For simplicity of notation, we will fix an α-sequence of the form (εn, n), so that the
convergence takes the form

(5.3) fnεn → Lα.
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For every n and i, we denote by gn,i the reading in the coordinates (x, y) ∈ D2 of the
restriction of fnmi

εn to Vi. We also denote by gn the holomorphic map which is equal to
gni on Vi. Then, in the coordinates (x, y), for every n sufficiently large, gn can be seen as
a horizontal-like map [DNS08] from a vertical subset to a horizontal subset of D×D. Up
to slightly reducing the Ui and V , this vertical subset is actually a subset of ∪Vi. The
horizontal subset consists of N small horizontal sets, contained in a small neighbourhood
of U = {0} × D.

It follows from (5.2) and (5.3) that, for every n sufficiently large and up to slightly
reducing the Ui’s, we have

(5.4) g−1n,i (Vj) b Vi for all i, j and g−1n (∪Vi) b ∪Vi.

Let us denote byK+
n the set of points in D2 whose orbit under gn never leaves D2 (which

corresponds to point never leaving V under appropriate iterates of fnεn). It follows from
(5.4) that, for all n sufficiently large, K+

n is a collection of vertical graphs in D×D, which
are stable manifolds in D2. Similarly, we can also consider the horizontal set K−n which is
a union of unstable manifolds in D2. The intersection Cn := K+

n ∩K−n is a Cantor set, on
which the action of fnεn is uniformly hyperbolic. We denote by µn the measure of maximal
entropy logN on Cn. This measure admits two Lyapunov exponents χ−n < 0 < χ+

n . The
exponent χ+

n can be estimated by means of the transversal contraction of the vertical
sets Vi under the inverse iteration of gn. In particular, we deduce the following upper
bound from (5.3) and the definition of c in Proposition 5.10:

Lemma 5.11. Fix δ > 1 and let c be as in Proposition 5.10. Then, for all n ∈ N large
enough, we have

χ+
n < δ log c.

Let W u(p) denote a generic unstable manifold of some p ∈ Cn, and let νn denote
the conditional measure of µn on W u(p). It follows from [LY85] that the Hausdorff
dimension of νn is equal to (logN)/χ+

n . As a consequence, we deduce from Lemma 5.11
that, for every δ > 1, the Hausdorff dimension of νn is larger than δ−1 logN/c for every
n sufficiently large.

Recall that through every p ∈ Cn there is a stable manifold W s(p) which is a vertical
graph in D×D and an unstable manifold W u(p) which is a horizontal graph in D×D; in
particular, W s(p) intersects every horizontal graph at exactly one point. In particular,
for every y0 ∈ D there is a well-defined holonomy map φy0 : supp νn → D, associated to
the stable foliation of gn in D2, between the transversals W u(p) and the horizontal disk
{y = y0}. By [Lyu99] (see also [LP21]), the map φy0 is Lipschitz continuous. It follows
that K+

n =
⋃
y∈D φy(supp νn) has Hausdorff dimension at least 2 + δ−1(2 − ε). By the

relation (5.1) between N and c, this implies that we have

dimH(K+
n ) ≥ 2 + δ−1(2− ε)

for every n sufficiently large. Up to taking δ sufficiently close to 1 and n sufficiently
large, we deduce the lower bound dimH(K+

n ) ≥ 4 − 2ε. As the local coordinates (x, y)
are conformal and the image of K+

n is contained in J+(fnεn) = J+(fεn), this concludes
the proof of Theorem 1.4.
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