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Abstract

This paper introduces a versatile paradigm for inte-
grating multi-view reflectance (optional) and normal maps
acquired through photometric stereo. Our approach em-
ploys a pixel-wise joint re-parameterization of reflectance
and normal, considering them as a vector of radiances
rendered under simulated, varying illumination. This re-
parameterization enables the seamless integration of re-
flectance and normal maps as input data in neural volume
rendering-based 3D reconstruction while preserving a sin-
gle optimization objective. In contrast, recent multi-view
photometric stereo (MVPS) methods depend on multiple,
potentially conflicting objectives. Despite its apparent sim-
plicity, our proposed approach outperforms state-of-the-art
approaches in MVPS benchmarks across F-score, Chamfer
distance, and mean angular error metrics. Notably, it sig-
nificantly improves the detailed 3D reconstruction of areas
with high curvature or low visibility.

1. Introduction
Automatic 3D reconstruction is pivotal in various fields,
such as archaeological and cultural heritage (virtual recon-
struction), medical imaging (surgical planning), virtual and
augmented reality, games and film production.

Multi-view stereo (MVS) [5], which retrieves the geom-
etry of a scene seen from multiple viewpoints, is the most
famous 3D reconstruction solution. Coupled with neural
volumetric rendering (NVR) techniques [23], it effectively
handles complex structures and self-occlusions. However,
dealing with non-Lambertian scenes remains a challenge
due to the breakdown of the underlying brightness consis-
tency assumption. The problem is also ill-posed in certain
configurations e.g., poorly textured scene [26] or degener-
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Figure 1. One image from DiLiGenT-MV’s Buddha dataset [13],
and 3D reconstruction results from several recent MVPS methods:
[12, 27, 28] and ours. The latter provides the fine details closest to
the ground truth (GT), while being remarkably simpler.

ate viewpoints configurations with limited baselines. More-
over, despite recent efforts in this direction [14], recovering
the thinnest geometric details remains difficult under fixed
illumination. In such a setting, estimating the reflectance of
the scene also remains a challenge.

On the other hand, photometric stereo (PS) [25], which
relies on a collection of images acquired under varying
lighting, excels in the recovery of high-frequency details
under the form of normal maps. It is also the only pho-
tographic technique that can estimate reflectance. And,
with the recent advent of deep learning techniques [8], PS
gained enough maturity to handle non-Lambertian surfaces
and complex illumination. Yet, its reconstruction of geom-
etry’s low frequencies remains suboptimal.
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Given these complementary characteristics, the integra-
tion of MVS and PS seems natural. This integration, known
as multi-view photometric stereo (MVPS), aims to recon-
struct geometry from multiple views and illumination con-
ditions. Recent MVPS solutions jointly solve MVS and PS
within a multi-objective optimization, potentially losing the
thinnest details due to the possible incompatibility of these
objectives – see Fig. 1. In this work, we explore a simpler
route for solving MVPS by decoupling the two problems.

We start with the observation that recent PS techniques
deliver exceptionally high-quality reflectance and normal
maps, which we use as input data. To accurately recon-
struct the surface reflectance and geometry, we need to fuse
these maps, a challenging task within a single-objective op-
timization due to their inhomogeneity. Our method provides
a solution to this problem by combining NVR with a simple
and effective pixel-wise re-parameterization.

In this method, the input reflectance and normal for each
pixel are merged into a vector of radiances simulated un-
der arbitrary, varying illumination. We then adapt an NVR
pipeline to optimize the consistency of these simulations
wrt to the scene reflectance and geometry, modeled as the
zero-level set of a trained signed distance function (SDF).
Coupled with a state-of-the-art PS method such as [8] for
obtaining the input reflectance and normals, this approach
yields an MVPS pipeline reaching an unprecedented level
of fine details, as illustrated in Fig. 1. Besides being the
first to exploit reflectance as a prior, our proposed MVPS
paradigm is extremely versatile, compatible with any exist-
ing or future PS method, whether calibrated or uncalibrated,
deep learning-based, or classic optimization procedures.

The rest of this work is organized as follows. Sect. 2 dis-
cusses state-of-the-art MVPS methods. The proposed 3D
reconstruction from reflectance and normals is detailed in
Sect. 3. Sect. 4 then sketches a proposal for an MVPS algo-
rithm based on this approach. Sect. 5 extensively evaluates
this algorithm, before our conclusions are drawn in Sect. 6.

2. Related work
Classical methods The first paper to deal with MVPS is
by Hernandez et al. [6]. To avoid having to arbitrate the
conflicts between the different normal maps, a 3D mesh is
iteratively deformed, starting from the visual hull until the
images recomputed using the Lambertian model match the
original images, while penalizing the discrepancy between
the PS normals and those of the 3D mesh. No prior knowl-
edge of camera poses or illumination is required. Under the
same assumptions, Park et al. [20, 21] start from a 3D mesh
obtained by SfM (structure-from-motion) and MVS. Simul-
taneous estimation of reflectance, normals and illumination
is achieved by uncalibrated PS, using the normals from the
3D mesh to remove the ambiguity, and estimating the de-
tails of the relief through 2D displacement maps.

MVPS is solved for the first time with a SDF representa-
tion of the surface by Logothetis et al. [15]. Therein, illumi-
nation is represented as near point light sources which are
assumed calibrated, as well as the camera poses. Thanks to
a voxel-based implementation, the surface details are better
rendered than with the method of Park et al. [21].

Li et al [13] refine a 3D mesh obtained by propagating
the SfM points according to [18], and estimate the BRDF
using a calibrated setup. The creation of the public dataset
“DiLiGenT-MV” validates numerically the improved re-
sults, in comparison with those of [21].

Deep learning-based methods Kaya et al. [11] pro-
posed a solution to MVPS based on neural radiance fields
(NeRFs) [17]. For each viewpoint, a normal map is ob-
tained using a pre-trained PS network, before a NeRF is
adapted to account for input surface normals from PS in the
color function. The recovered geometry yet remains per-
fectible, according to [10]. Therein, the authors propose
learning an SDF function whose zero level set best explains
pixel depth and normal maps obtained by a pre-trained
MVS [22] or PS network [7], respectively. To manage con-
flicting objectives in the proposed multi-objective optimiza-
tion and get the best out of MVS and PS predictions, both
networks are modified to output uncertainty measures on
depth and normal predictions. The SDF optimization is then
carried out while accounting for the inferred uncertainties.

PS-NeRF [27] solves MVPS by jointly estimating the ge-
ometry, material and illumination. To this end, the authors
propose to regularize the gradient of a UNISURF [19] us-
ing the normal maps from PS, while relying on multi-layer
perceptrons (MLPs) to explicitly model surface normals,
BRDF, illumination, and visibility. These MLPs are op-
timized based on a shadow-aware differentiable rendering
layer. A similar track is followed in [2], where NeRFs are
combined with a physically-based differentiable renderer.

Such NeRF-based approaches provide undeniably better
3D reconstructions than classical methods, yet they remain
computationally intensive. Recently, Zhao et al. [28] pro-
posed a fast deep learning-based solution to MVPS. Ag-
gregated shading patterns are matched across viewpoints so
that to predict pixel depths and normal maps.

In [12], the authors proposed to complement [10] by
adding a NVR loss term in order to benefit from the reli-
ability of NVR in reconstructing objects with diverse ma-
terial types. However, this results in a multi-objective opti-
mization comprising three loss terms (besides the Eikonal
term). However, similar to [10], the uncertainty-based
hyper-parameter tuning does not completely eliminate con-
flicting objectives, which may induce a loss of fine-scale
details. In contrast, we propose a single objective opti-
mization based on an ad hoc re-parametrization which leads
to the seamless integration of PS results in standard NVR
pipelines. This is detailed in the next paragraph.
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Figure 2. Overview of the proposed MVPS pipeline. The reflectance and normal maps provided for each view by PS are fused, by
combining volume rendering with a pixel-wise re-parameterization of the inputs using physically-based rendering.

3. Proposed approach

Our aim is to infer a surface whose geometric and photo-
metric properties are consistent with the per-view PS re-
sults. To do so, we resort to a volume rendering framework
coupled with a re-parameterization of the inputs, as illus-
trated in Fig. 2 and detailed in the rest of this section.

3.1. Overview

Input data From the N image sets captured under fixed
viewpoint and varying illumination, PS provides N re-
flectance and normal maps, out of which we extract a batch
of m posed reflectance and normal values {rk ∈ R,nk ∈
S2}k=1...m. Here, the normal vectors are expressed in
world coordinates using the known camera poses. The in-
put reflectance is without loss of generality represented by
a scalar (albedo). Let us emphasize that this assumption
does not imply that the observed scene must be Lambertian,
but rather that we use only the diffuse component of the
estimated reflectance. Using other reflectance components
(specularity, roughness, etc.), if available, would represent a
straightforward extension to more evolved physically-based
rendering (PBR) models. Yet, we leave such an extension
to perspective for now, since there are few PS methods reli-
ably providing such data. Also, if the PS method provides
no reflectance, one can set rk ≡ 1 and use the proposed
framework for multi-view normal integration.

Surface parameterization Our aim is to infer a 3D
model of a scene, which consists of both a geometric map
f : R3 → R and a photometric one ρ : R3 → R.
Therein, f associates a 3D point with its signed distance
to the surface, which is thus given by the zero level set of f :
S = {x ∈ R3 | f(x) = 0}. Regarding ρ, it encodes the re-
flectance associated with a 3D point. For input consistency,
ρ is considered as a scalar function (albedo), though more
advanced PBR models could again be incorporated.

Objective function Our method builds upon a re-
parameterization v : S2 × R → Rn which combines a
surface normal nk ∈ S2 and a reflectance value rk ∈ R
into a vector v(nk, rk) ∈ Rn of n radiance values that
are simulated by physically-based rendering, using an ar-
bitrary image formation model under varying illumination.
Given this re-parameterization, the 3D reconstruction prob-
lem amounts to minimizing the difference between a batch
of m intensity vectors simulated either from the input data
or from volume rendering with the same PBR model, along
with a regularization on the SDF:

min
f,ρ

m∑
k=1

∥v(nk, rk)− ṽk(f, ρ)∥1 + λLreg(f). (1)

Here, {(nk, rk)}k=1...m stands for the batch of input re-
flectance and normal values, v(nk, rk) for the k-th in-
tensity vector simulated from the input data, ṽk(f, ρ) for
the corresponding one simulated by volume rendering, and
λ > 0 is a tunable hyper-parameter for balancing the data
fidelity with the regularizer Lreg. The actual optimization
can then be carried out seamlessly by resorting to a vol-
ume rendering-based 3D reconstruction pipeline such as
NeuS [23], given that both ṽk(f, ρ) and v(nk, rk) cor-
respond to pixel intensities. Let us now detail how we
simulate the latter intensities v(nk, rk) from the input re-
flectance and normal data.

3.2. Reflectance and normal re-parameterization

The input reflectance {rk ∈ R}k and normals {nk ∈ S2}k
values constitute inhomogeneous quantities: the former are
photometric scalars, and the latter geometric vectors lying
on the three-dimensional unit sphere. Direct optimization
of their consistency with the scene normal ∇f

∥∇f∥ and albedo
ρ would lead to multiple objectives balanced by hyper-
parameters.
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Instead, we propose to jointly re-parameterize the re-
flectance and normal data into a set of vectors {v(nk, rk) ∈
Rn}k of homogeneous quantities, namely radiance val-
ues simulated using a PBR model under varying illu-
mination. In order to enforce the bijectivity of this
re-parameterization, we choose as PBR model the lin-
ear Lambertian one, under pixel-wise varying illumina-
tion represented by n = 3 arbitrary illumination vectors
lk,1, lk,2, lk,3 ∈ R3:

v(nk, rk) = rk[n
⊤
k lk,1,n

⊤
k lk,2,n

⊤
k lk,3]

⊤ (2)
= rkLk nk,

with Lk = [lk,1, lk,2, lk,3]
⊤ the arbitrary per-pixel illumina-

tion matrix.
For the re-reparameterization to be bijective, the re-

flectance rk must be non-null (a basic assumption in pho-
tographic 3D vision), and Lk must be non-singular i.e., the
lighting directions must be chosen linearly independent.
Then, the original reflectance and normal can be retrieved
from the simulated intensities by rk = ∥L−1

k v(nk, rk)∥ and

nk =
L−1
k v(nk,rk)

∥L−1
k v(nk,rk)∥

. Considering n > 3 illumination vec-
tors and resorting to the pseudo-inverse operator might in-
duce more robustness but at the price of losing bijectivity
and thus not entirely relying on the PS inputs. We leave
this as a possible future work, which might be particularly
interesting when the PS inputs are uncertain, or when con-
sidering more evolved PBR models involving additional re-
flectance clues such as roughness, anisotropy or specularity.

In practice, the choice of each arbitrary triplet of light
directions lk,1, lk,2, lk,3 can be made to minimize the uncer-
tainty on the normal estimate. To this end, the illumination
triplet proposed in [4] can be considered. Therein, the au-
thors show that the optimal configuration for three images
is vectors that are equally spaced in tilt by 120 degrees, with
a constant slant of 54.74 degrees (wrt to nk).

Let us remark that with the above linear model, it is
possible to simulate negative radiance values, when one
of the dot products between the normal and the lighting
vectors is negative, which corresponds to self-shadowing.
While negative radiance values are obviously non physi-
cally plausible, this is not a problem for the proposed re-
parameterization, as long as it remains consistent with the
NVR strategy, which we are now going to detail.

3.3. Volume rendering-based 3D reconstruction

We now turn our attention to deriving the volume rendering
function ṽk arising in Eq. (1). The role of this function is
to simulate, from the scene geometry f and albedo ρ, an
intensity vector ṽk which will be compared with the vec-
tor vk that is simulated from the inputs as described in the
previous paragraph.

Our solution largely takes inspiration from the NeuS
method [23], that was initially proposed as a solution to the
single-light multi-view 3D surface reconstruction problem.
Therein, the rendering function follows a volume render-
ing scheme which accumulates the colors along the ray cor-
responding to the k-th pixel. Denoting by ok ∈ R3 the
camera center for this observation, and by dk the corre-
sponding viewing direction, this ray is written {xk(t) =
ok + tdk | t ≥ 0}. By extending the NeuS volume renderer
to the multi-illumination scenario, each coefficient ṽk,l of
ṽk is then given, ∀l ∈ {1, 2, 3}, by:

ṽk,l =

∫ tf

tn

w(t, f(xk(t))) cl(xk(t)) dt, (3)

where tn, tf stand for the range bounds over which the col-
ors are accumulated. The weight function w is constructed
from the SDF f in order to ensure that it is both occlusion-
aware and locally maximal on the zero level set, see [23]
for details. As for the functions cl : R3 → R, they represent
the scene’s apparent color. In the original NeuS framework,
this color depends not only on the 3D locations, but also on
the viewing direction dk, and it is directly optimized along
with the SDF f . Our case, where the albedo is optimized in
lieu of the apparent color, and the illumination varies with
the data index k and the illumination index l, is however
slightly different.

As a major difference with this prototypical NVR-based
3D reconstruction method, we optimize the SDF f and the
surface albedo i.e., the scene’s intrinsic color ρ rather than
its apparent color cl. The dependency upon the viewing di-
rection must thus be removed, in order to ensure consistency
with the Lambertian model used for simulating the inputs.
More importantly, contrarily to NeuS where the illumina-
tion is fixed, each input data vk,l := rkn

⊤
k lk,l is simulated

under a different, arbitrary illumination lk,l. For the NVR to
produce simulations ṽk,l matching this input set of intensi-
ties, it is necessary to explicitly write the dependency of the
apparent color cl upon the scene’s geometry f , reflectance
ρ and illumination lk,l. Our volume renderer is then still
given by Eq. (3), but the color of each 3D point must be
replaced by:

cl(xk(t)) = ρ(xk(t))∇f(xk(t))
⊤lk,l, (4)

where the illumination vectors lk,l are the same as those in
Eq. (2).

Let us remark that the scalar product above corresponds,
up to a normalization by ∥∇f(xk(t))∥, to the shading. Yet,
we do not need to apply this normalization, because the reg-
ularization term Lreg(f) in (1) will take care of ensuring the
unit length of ∇f . Indeed, as in the original NeuS frame-
work, the SDF is regularized using an eikonal term:

Lreg(f) =

∑m
k=1

∫ tf
tn
(∥∇f(xk(t))∥2 − 1)2 dt

m (tf − tn)
. (5)

4



Similarly to the original NeuS, an additional regularization
based on object masks can also be utilized for supervision,
if such masks are provided.

Plugging (4) into (3) yields the definition of our volume
renderer accounting for the varying, arbitrary illumination
vectors lk,l. Next, plugging (2), (3) and (5) into (1), we ob-
tain our objective function, which ensures the consistency
between the simulations obtained from the input, and those
obtained by volume rendering. It should be emphasized
that, besides the eikonal regularization – which is standard
and only serves to ensure the unit-length constraint of the
normal, our strategy leads to a single objective optimization
formulation for NVR-based 3D surface reconstruction from
reflectance and normal data.

The discretization of the variational problem (1) is then
achieved exactly as in the original NeuS work [23]. It is
based on representing f and ρ by MLPs and hierarchically
sampling points along the rays.

4. Application to MVPS
We present a standalone MVPS pipeline that is built on top
of the proposed reflectance and normal-based 3D recon-
struction method. Our MVPS pipeline includes the follow-
ing steps:
1. Compute the reflectance and normals maps for each

viewpoint through PS;
2. Select a batch of the most reliable inputs {rk} and {nk};
3. Scale the reflectance values {rk} across the entire image

collection;
4. Simulate the radiance values following Eq. (2), using a

pixel-wise optimal lighting triplet Lk;
5. Optimize the loss in Eq. (1) over the SDF f and

albedo ρ;
6. Reconstruct the surface from the SDF.

Step 1: PS-based reflectance and normal estimation
Any PS method is suitable for obtaining the inputs for each
viewpoint. However, not all PS methods actually provide
reflectance clues, and not all of them can simultaneously
handle non-Lambertian surfaces and unknown, complex il-
lumination. CNN-PS [7], for instance, provides only nor-
mals, and for calibrated illumination. For these reasons,
we base our MVPS pipeline on the recent transformers-
based method SDM-UniPS [8], which exhibits remarkable
performance in recovering intricate surface normal maps
even when images are captured under unknown, spatially-
varying lighting conditions in uncontrolled environments.
As advised by the author of [8], when the number of images
is too large for the method to be applied, one can simply
take the median of the results over sufficiently many Ntrials
random trials, each trial involving the random selection of a
few number of images.

Step 2: Uncertainty evaluation To prevent poorly esti-
mated normals from corrupting 3D reconstruction, we dis-
card the less reliable ones. To this end, we use as uncer-
tainty measure the average absolute angular deviation of the
normals computed over the Ntrials random trials in Step 1.
Pixels associated with an uncertainty measure higher than a
threshold (τ = 15◦ in our experiments) are excluded from
the optimization. Advanced uncertainty metrics, as pro-
posed by Kaya et al. [10], could further refine this process.

Step 3: Reflectance maps scaling The individual re-
flectance maps computed by PS need to be appropriately
scaled. This is because in an uncalibrated setting, the re-
flectance estimate is relative to both the camera’s response,
and the incident lighting intensity. Consequently, each re-
flectance map is estimated only up to a scale factor. To es-
timate this scale factor, the complete pipeline is first run
without using the reflectance maps. This provides pairs
of homologous points that are subsequently used to scale
the reflectance maps. Concretely, given a pair of neigh-
boring viewpoints, the ratios of corresponding reflectance
values between the two viewpoints are stored, and their me-
dian is used to adjust each reflectance map’s scale factor.
This operation is repeated across the entire viewpoint col-
lection. Note that, if the camera’s response and the illumi-
nation were known i.e., a calibrated PS method was used
in Step 1, then the reflectance would be determined without
scale ambiguity and this step could be skipped.

Step 4: Radiance simulation To simulate the radiance
values, we choose as lighting triplet the one which is op-
timal, relative to the normal nk [4]. The actual formula is
provided in the supplementary material.

Step 5: Optimization The actual optimization of the loss
function is carried out using a straightforward adaptation
of the NeuS architecture [23], where viewing direction was
removed from the network’s input to turn radiance into
albedo. In all our experiments, we let the optimization run
for a total of 300k iterations, with a batch size of 512 pix-
els. To ensure that the networks have a better understanding
of our MVPS data, we decided to train each iteration not
only on a random view, but also on all rendered images of
this view under varying illumination. The backward oper-
ation is then applied only after the loss is computed on all
pixels for all the illumination conditions. In terms of com-
putation time, our approach is comparable with the original
NeuS framework, requiring in our tests from 8 to 16 hours
on a standard GPU for the 3D reconstruction of each dataset
from DiLiGenT-MV [13].

Step 6: Surface reconstruction Once the SDF is esti-
mated, we extract its zero level set using the marching cube
algorithm [16].
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5. Experimental results
5.1. Experimental setup

Evaluation datasets We used the DiLiGenT-MV bench-
mark dataset [13] to perform all our experiments, statistical
evaluations, and ablations. It includes five real-world ob-
jects with complex reflectance properties and surface pro-
files, making it an ideal choice for the proposed method
evaluation. Each object is imaged from 20 calibrated
viewpoints using the classical turntable MVPS acquisition
setup [6]. For each view, 96 images are acquired under
different illuminations. Given the large volume of images,
which is impractical for transformers-based methods, our
implementation of Step 1 (PS) employs SDM-UniPS [8]
with only 10 input images. To this end, we computed each
rk and nk as the medians of the computed reflectances and
normals over Ntrials = 100 random trials, each trial involv-
ing the random selection of 10 images from the 96 available.

Evaluation scores We performed our quantitative evalua-
tions using F-score and Chamfer distance (CD), to measure
the accuracy of the reconstructed vertices. We also mea-
sured the mean angular error (MAE) of the imaged meshes,
to evaluate the accuracy of the reconstructed normals wrt
the ground truth normals provided in DiLiGenT-MV. We
report both the results averaged over all mesh vertices, and
those on vertices clustered in two particularly interesting
classes, namely high curvature and low visibility areas, as
illustrated in Fig. 3.

Figure 3. High curvature (left) and low visibility (right) areas, on
the Buddha and Reading datasets.

To identify the high curvature areas, we used the library
VCGLib [1] and the 3D mesh processing software system
Meshlab [3], taking the absolute value of the curvature to
merge the convex and concave zones and retaining the ver-
tices whose curvature is higher than 1.6. To segment the
low visibility areas, we summed the boolean visibility of
each vertex in each view. Low visibility then corresponds
to vertices visible in less than 5 viewpoints, among the 20
ones of DiLiGenT-MV.

5.2. Baseline comparisons

We first provide in Fig. 4 a qualitative comparison of our re-
sults on four objects, and compare them with the three most
recent methods from the literature, namely PS-NERF [27],
Kaya23 [12] and MVPSNet [28]. In comparison with these
state-of-the-art deep learning-based methods, the recovered
geometry is overall more satisfactory.

This is confirmed quantitatively when evaluating Cham-
fer distances and MAE, provided in Tables 1 and 2. Therein,
beside the aforementioned methods we also report the re-
sults from the Kaya22 method [10] and those from the non
deep learning-based ones Park16 [21] and Li19 [13] (which
is not fully automatic). From the tables, it can be seen
that our method outperforms other fully automated stan-
dalone ones, and is competitive with the semi-automated
one. On average, our method reports a Chamfer distance
which is 17.4% better than the second best score, obtained
by MVPSNet [28]. Regarding MAE, our score is similar
to Kaya23 [12] with a small average difference of 0.2 de-
gree. The superiority of our approach can also be observed
by considering the F-scores, which are reported in Fig. 5.

Chamfer distance ↓
Methods Bear Budd. Cow Pot2 Read. Aver.
Park16 0.92 0.39 0.34 0.94 0.53 0.62
Li19 † 0.22 0.28 0.11 0.23 0.27 0.22
Kaya22 0.39 0.4 0.3 0.4 0.35 0.37
PS-NeRF 0.32 0.28 0.24 0.24 0.33 0.28
Kaya23 0.33 0.21 0.22 0.37 0.28 0.28
MVPSNet 0.28 0.3 0.25 0.27 0.25 0.27
Ours 0.22 0.22 0.25 0.16 0.27 0.23

Table 1. Chamfer distance (lower is better) averaged overall all
vertices. Best results. Second best. Since † requires manual
efforts, it is not ranked.

Normal MAE ↓
Methods Bear Budd. Cow Pot2 Read. Aver.
Park16 9.64 12.6 8.23 11.1 9.01 10.1
Li19 † 3.85 11.0 2.82 5.88 6.30 5.97
Kaya22 4.89 12.5 4.44 8.68 6.52 7.41
PS-NeRF 5.48 11.7 5.46 7.65 9.13 7.88
Kaya23 3.24 8.12 3.04 5.63 5.66 5.14
MVPSNet 5.26 14.1 6.28 6.69 8.58 8.18
SDM-UniPS* 4.79 9.60 5.46 5.56 10.1 7.12
Ours 2.70 8.17 3.61 4.11 6.18 4.95

Table 2. Normal MAE (lower is better) averaged over all views.
For reference, the mono-view PS results from SDM-UniPS [8] (*)
are also provided, although it does not provide a full 3D recon-
struction and thus its Chamfer distance cannot be evaluated.
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Figure 4. Reconstructed 3D mesh and corresponding angular error of four objects from the DiLiGenT-MV benchmark.
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Figure 5. F-score (higher is better) as a function of the distance
error threshold, in comparison with other state-of-the-art methods
(a), and disabling individual components of our method (b).

5.3. High curvature and low visibility areas

To highlight the level of details in the 3D reconstructions,
Figs. 1 and 10 provide other qualitative comparisons fo-
cusing on one small part of each object. Ours is the only
method achieving a high fidelity reconstruction on the ear,
the knot and the navel of Buddha, and on the spout of Pot2.
To quantify this gain, we also report in Table 3 the average
CD and MAE over all datasets, yet taking into account only
the high curvature and low visibility areas. It is worth notic-
ing that the CD error of PS-NeRF and MVPSNet on high
curvature areas increases by 36% and 96%, respectively, in
comparison with that averaged over the entire set of ver-
tices. Ours, on the contrary, increases by 4% only. Sim-
ilarly, on low visibility areas their error increases by 78%
and 81%, and Kaya23 by 46%, while ours increases only

by 13%.

All High curv. Low vis.
% Vertices 100% 8.27% 8.70%
Scores CD MAE CD MAE CD MAE
Park16 0.62 10.1 0.88 29.0 0.68 29.6
Li19 † 0.22 5.97 0.51 26.2 0.67 33.3
Kaya22 0.37 7.41 0.45 28.0 0.54 31.7
PS-NeRF 0.28 7.88 0.38 25.8 0.5 24.0
Kaya23 0.28 5.14 0.29 23.6 0.41 20.7
MVPSNet 0.27 8.18 0.53 23.9 0.49 28.9
Ours 0.23 4.95 0.24 23.1 0.26 17.8

Table 3. Chamfer distance and normal MAE (lower is better) on
high curvature and low visibility areas.

5.4. Ablation study

Lastly, we conducted an ablation study, to quantify the im-
pact of some parts of our pipeline. More precisely, we
quantify in Fig. 5b and Table 4 the impact of providing PS-
estimated reflectance maps, in comparison with providing
only normals (“W/o reflectance”). We also evaluate that of
the pixel-wise optimal lighting triplet, in comparison with
using the same arbitrary one for all pixels in one view (“W/o
optimal lighting”). Lastly, we evaluate the impact of dis-
carding the less reliable inputs, in comparison with using
all of them (“W/o uncertainty”). The feature that influences
most the accuracy of the 3D reconstruction is the use of re-
flectance. The other two features also positively impact the
reconstruction, but to a lesser extent.
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Figure 6. Qualitative comparison between our results and state-of-the-art ones, on parts of the meshes representing fine details.

Chamfer distance ↓
Methods Bear Budd. Cow Pot2 Read. Aver.
W/o reflect. 0.23 0.22 0.39 0.16 0.31 0.26
W/o opt. l. 0.32 0.22 0.20 0.19 0.27 0.24
W/o uncert. 0.22 0.22 0.27 0.16 0.27 0.23
Ours 0.22 0.22 0.25 0.16 0.27 0.23

Table 4. Chamfer distance (lower is better) averaged overall all
vertices, while disabling individual features of the pipeline (re-
flectance estimation, optimal lighting, and uncertainty evaluation).

5.5. Limitations

Our approach heavily relies on the quality of the PS normal
maps. In our experiments, we used SDM-UniPS [8], which
generally yields high quality results. Yet, it occasionally
yields corrupted normals, leading to inconsistencies across
viewpoints that may result in errors in the reconstruction
(cf. supplementary material). This could be handled in the
future by replacing the PS method by a more robust one. A
second limitation, similar to PS-NeRF, is the computation
time, which falls within the range of 8 to 16 hours for one
object in DiLiGenT-MV. Fortunately, NeuS2 [24], a signif-
icantly faster version of NeuS, will allow us to reduce the
computation time to around ten minutes.

6. Conclusion
We have introduced a neural volumetric rendering method
for 3D surface reconstruction based on reflectance and nor-
mal maps, and applied it to multi-view photometric stereo.
The proposed method relies on a joint re-parameterization
of reflectance and normal as a vector of radiances rendered
under simulated, varying illumination. It involves a single
objective optimization, and it is highly flexible since any ex-
isting or future PS method can be used for constructing the
input reflectance and normal maps. Coupled with a state-
of-the-art uncalibrated PS method, our method reaches un-
precedented results on the public dataset DiLiGenT-MV in
terms of F-score, Chamfer distance and mean angular er-
ror metrics. Notably, it provides exceptionally high quality
results in areas with high curvature or low visibility. Its
main limitation for now is its computational cost, which we
plan to reduce by adapting recent developments within the
NeuS2 framework [24]. Using reflectance uncertainty in ad-
dition to that of normal maps offers room for improvement.

Acknowledgements. This work was supported by
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project, the IMG project (ANR-20-CE38-0007), the OR-X
and associated funding by the University of Zurich and
University Hospital Balgrist.
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Appendix

This supplementary material provides technicalities and
detailed analysis of the experiments. We provide the reader
with explicit formulations of the evaluation metrics in Sec-
tion A. We then share additional implementation details in
Section B. In Section C, we present additional quantitative
and qualitative results. In Section D, we illustrate some lim-
itations of our method.

A. Evaluation
Metrics. All quantitative evaluations were carried out us-
ing Chamfer distance, F-score and mean angular error
(MAE) between the reconstructed mesh P and the ground
truth one G. For a reconstructed point x̂ ∈ P , its distance to
the ground truth is defined as follows:

dx̂→G = min
x∈G

∥x̂− x∥, (6)

and vice versa for a ground truth point x ∈ G and its dis-
tance to the reconstructed mesh.

The distance measures are accumulated over the entire
meshes to define the Chamfer distance

CD =
1

2

(
1

|P|
∑
x̂∈P

dx̂→G +
1

|G|
∑
x∈G

dx→P

)
(7)

and the F-score

F (ϵ) =
2P (ϵ)R(ϵ)

P (ϵ) +R(ϵ)
, (8)

where
P (ϵ) =

1

|P|
∑
x̂∈P

[dx̂→G < ϵ] (9)

and
R(ϵ) =

1

|G|
∑
x∈G

[dx→P < ϵ] (10)

are precision and recall measures, respectively, [.] is the
Iverson bracket and ϵ is the distance threshold.

The mesh segmentations into low visibility and high cur-
vature areas are performed on the ground truth meshes. Be-
cause the geometry of the reconstruction differs from that of
the ground truth, the segmentation procedure yields differ-
ent areas when applied to the reconstruction. For this rea-
son, the reported results for low visibility and high curva-
ture areas only consider the Chamfer distance term indicat-
ing the average distances between the ground truth vertices
and their nearest neighbors in the reconstructed mesh.

For the MAE computation, the reconstructed and ground
truth meshes are projected onto image planes and the nor-
mals are computed at each pixel. The MAE over all the

pixels M is written as

MAE =
1

|M |
∑
k∈M

cos−1(n̂⊤
k nk). (11)

DiLiGenT-MV dataset. All the state-of-the-art methods
were evaluated from the meshes that were kindly provided
by their authors. For all evaluated meshes, we eliminated
all internal vertices. Then, a mesh upsampling for both
estimated and ground truth meshes was then performed in
order to achieve a point density of 0.1 mm. The compu-
tations of Chamfer distance and F-score were specifically
conducted for distances under 5 mm in order to mitigate
the impact of outliers (inspired by the DTU evaluation [9]).
We observed a few defects in the ground truth meshes from
the DiLiGenT-MV dataset in concave areas. Notably, such
imperfections are well visible at the back of Bear’s head
(Fig. 7) and the spout’s inner area of Pot2 (Fig. 8). Although
these areas represent a small amount of vertices, they were
discarded in all evaluations so as to avoid penalizing meth-
ods which faithfully reconstruct them.

(a) (b)

Figure 7. Rear view of the 3D heatmaps representing errors for the
Bear dataset in terms of Chamfer distance. (a) The ground truth
from DiLiGenT-MV lacks any vertices in the rectangular aperture.
For that reason, any method which faithfully reconstructs this area
is penalized (area shown in red). This area is thus discarded in all
evaluations, providing heatmaps such as (b).

Manual efforts in [13]. Li19 [13] is mentioned as requir-
ing manual efforts. Indeed, the authors manually establish
point correspondences in textureless areas. See [13] for de-
tails.

B. Implementation details
We recall that to simulate the radiance values in Step 4 de-
scribed in Section 4 of the main paper, we choose as lighting
triplet the one which is optimal, relatively to the normal nk.
Following [4], this optimal triplet is equally spaced in tilt
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(a) (b)

Figure 8. Cross-section of Pot2’s spout delivered by (a) the ground
truth of the DiLiGenT-MV dataset and (b) our reconstruction
method. Our method shows a deeper reconstruction of the internal
wall of the spout. This area is thus discarded in all evaluations to
avoid penalizing methods that faithfully reconstructs it.

120 degrees apart with a slant angle of 54.74 degrees. Con-
cretely, the expression of Lk as a function of nk is written:

Lk = RkLcanonic (12)

where Rk = U with [U,Σ,U] = SVD(nkn
⊤
k ) and

Lcanonic =

sin(ϕ) sin(ϕ) cos(θ) sin(ϕ) cos(2θ)
0 sin(ϕ) sin(θ) sin(ϕ) sin(2θ)

cos(ϕ) cos(ϕ) cos(ϕ)


(13)

with θ = 120π
180 and ϕ = 54.74π

180 .

C. Additional Results

In this section, we extend the experiments of the main pa-
per by providing further statistical analysis and qualitative
comparisons.

Comparison with mono-illumination NeuS. We pro-
pose an additional comparison of our method against the
multi-view mono-illumination 3D reconstruction method
NeuS [23]. While NeuS is not directly applicable in multi-
view multi-light acquisition settings in theory, it may be-
come feasible under certain conditions. This feasibility
hinges on factors such as the number, spatial distribu-
tion and types of lighting conditions, and the object mate-
rial properties. One can leverage a heuristic method, ini-
tially proposed in [13] and later employed for obtaining
pixel depths using MVS in [10, 12]. This heuristic in-
volves approximating input images captured under mono-
illumination for each viewpoint by taking the median of
pixel intensities obtained under varying illumination. See,
e.g., [13] for detailed information.

A qualitative comparison between the results of mono-
illumination NeuS using this heuristic and the ones from
our method is provided in Fig. 9. As can be seen, our pro-
posed approach provides a much finer level of details. In

particular, mono-illumination NeuS requires a high num-
ber of viewpoints, with a drastic decline in the reconstruc-
tion quality when using 5 viewpoints. On the contrary, our
method shows stable results, only losing some fine details
over concave areas. Moreover, even with all viewpoints
used, mono-illumination NeuS fails in reliably reconstruct-
ing the low visibility and high curvature areas. In addition to
Fig. 9 (right), this can be observed in the quantitative eval-
uation provided in Table 5, where mono-illumination NeuS
shows a reconstruction error 62% higher than ours on low
visibility areas and 46% higher than ours on high curvature
areas.

Photometric stereo method. Our method can be em-
ployed with any PS method. To illustrate this flexibility, we
evaluate the reconstruction accuracy on the Buddha dataset
while taking as input the normal maps from CNN-PS [7],
used in Kaya22-23 [10, 12], and SDPS-Net [? ], used in
PS-NeRF [27], in addition to the one obtained using normal
maps from SDM-UniPS [8] reported in the main paper. The
results are reported in Table 6. As expected, we observe
that the choice of a particular PS technique influences the
final outcome, yet our framework consistently improves the
results in comparison with previous works, including those
based on multi-objective optimizations [10, 12].

Ablation. We complete our ablation study with qualita-
tive results on the ear and the knot of Buddha shown in
Fig. 10.

W/o reflect. W/o opt. light. Ours GT

K
no

t
E

ar

Figure 10. Qualitative comparison on the knot and the ear of Bud-
dha between our results and those without the use of reflectance
and optimal lighting, disabled individually. Our method exhibits
better results in both cases.

Additional benchmarking. We provide in Fig. 13 a qual-
itative comparison of the angular error maps on the five
objects of DiLiGenT-MV, for our method and state-of-the-
art ones, namely Park16 [20], Li19 [13], Kaya22 [11], PS-
NeRF [27], Kaya23 [12], MVPSNet [28] and also SDM-
UniPS [8] although it does not provide a full 3D recon-
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Figure 9. Qualitative comparison of Buddha and Reading between mono-illumination NeuS and our method, for different number of input
viewpoints.

Chamfer distance (visibility 1-5) ↓ Chamfer distance (high curvature) ↓
Methods Bear Buddha Cow Pot2 Reading Average Bear Buddha Cow Pot2 Reading Average
Park16 1.07 0.75 0.41 0.47 0.7 0.68 1.64 0.58 0.98 0.56 0.65 0.88
Li19† 0.63 1.03 0.37 0.54 0.81 0.67 0.59 0.65 0.38 0.34 0.57 0.51
NeuS 0.58 0.52 0.17 0.32 0.54 0.42 0.28 0.46 0.21 0.39 0.38 0.35
Kaya22 0.48 0.51 0.32 0.5 0.7 0.5 0.33 0.43 0.31 0.41 0.45 0.38
PS-NeRF 0.48 0.62 0.3 0.66 0.64 0.54 0.42 0.5 0.42 0.44 0.44 0.45
Kaya23 0.46 0.35 0.39 0.42 0.44 0.41 0.33 0.29 0.19 0.3 0.33 0.29
MVPSNet 0.43 0.68 0.27 0.49 0.57 0.49 0.56 0.58 0.52 0.47 0.54 0.53
Ours 0.23 0.27 0.19 0.19 0.43 0.26 0.22 0.23 0.26 0.23 0.25 0.24

Table 5. Chamfer distance on (a) low visibility and (b) high curvature areas. Best results. Second best results.

11



CNN-PS SDPS-Net SDM-UniPS
Buddha Kaya23 Ours PS-NeRF Ours Ours
H. curv. 0.35 0.29 0.51 0.31 0.26
Low curv. 0.24 0.22 0.33 0.25 0.23
All 0.25 0.22 0.34 0.25 0.23

Table 6. Results of our method with different input normals,
namely CNN-PS (used in Kaya22-23), SDPS-Net (used in PS-
NeRF) and SDM-UniPS. High curvature corresponds to the results
averaged over all the vertices whose absolute curvature is higher
than 3.3. Our method shows to perform best irrespective of the PS
method being used.

struction. The recovered geometry shows to be overall
more accurate with our method. Interestingly, our recov-
ered normals overcome the PS ones, especially in concave
areas where inter-reflections bias the single-viewpoint re-
construction. Lastly, we provide further quantitative com-
parisons, namely precision and recall in Fig. 11, and MAE
on low visibility and high curvature areas in Table 7. Our
proposed approach consistently yields the most accurate re-
constructions.
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Figure 11. (a) Precision (higher is better) and (b) recall (higher is
better) as functions of the distance error threshold, in comparison
with other state-of-the-art methods.

D. Limitations

The reconstructions obtained through the proposed method
yet exhibit a few poorly reconstructed areas, as illustrated
in Fig. 12, particularly for Reading’s neck and Bear’s right
ear. The suboptimal reconstruction of Reading’s neck can
be attributed, in part, to inacurracies of the normal estimates
from SDM-UniPS. However, the underlying causes of these
discrepancies have yet to be systematically identified.
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