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Improving End-to-end Sign Language Translation
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Transformer
Zidong Liu, Jiasong Wu, Member, IEEE, Zeyu Shen, Xin Chen, Qianyu Wu, Zhiguo Gui,

Lotfi Senhadji, Senior Member, IEEE, Huazhong Shu, Senior Member, IEEE

Abstract—The aim of end-to-end sign language translation
(SLT) is to interpret continuous sign language (SL) video se-
quences into coherent natural language sentences without any
intermediary annotations, i.e., glosses. However, end-to-end SLT
suffers several intractable issues: (i) the temporal correspondence
constraint loss problem between SL videos and glosses, and (ii)
the weakly supervised sequence labeling problem between long
SL videos and sentences. To address these issues, we propose an
adaptive video representation enhanced Transformer (AVRET),
with three extra modules: adaptive masking (AM), local clip self-
attention (LCSA) and adaptive fusion (AF). Specifically, we utilize
the first AM module to generate a special mask that adaptively
drops out temporally important SL video frame representations
to enhance the SL video features. Then, we pass the masked
video feature to the Transformer encoder consisting of LCSA and
masked self-attention to learn clip-level and continuous video-
level feature information. Finally, the output feature of encoder
is fused with the temporal feature of AM module via the AF
module and use the second AM module to generate more robust
feature representations. Besides, we add weakly supervised loss
terms to constrain these two AM modules. To promote the
Chinese SLT research, we further construct CSL-FocusOn, a
Chinese continuous SLT dataset, and share its collection method.
It involves many common scenarios, and provides SL sentence
annotations and multi-cue images of signers. Our experiments on
the CSL-FocusOn, PHOENIX14T, and CSL-Daily datasets show
that the proposed method achieves the competitive performance
on the end-to-end SLT task without using glosses in training. The
code is available at https://github.com/LzDddd/AVRET.

Index Terms—End-to-end sign language translation, adaptive
masking, local clip self-attention, adaptive fusion, continuous sign
language video dataset, without using glosses.
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Fig. 1. Two ways of sign language translation (SLT). The black dotted pipeline
denotes two-stage SLT based on continuous sign language recognition (CSLR)
and gloss to text (G2T). The black continuous pipeline denotes end-to-end SLT
without glosses.

I. INTRODUCTION

S IGN language (SL) is the main medium of communication
for the deaf. It can convey visual information through

the cooperation of multiple organs (e.g., hands, body, lip
and facial expressions), and has unique characteristics dif-
ferent from spoken language. However, the complex body
movements and linguistic logic make it difficult for normal
people to understand this language, which greatly limits the
social scope of the deaf. Therefore, it can undoubtedly reduce
the communication burden of the deaf in their daily lives if
SL can be automatically translated into natural language. As
shown in Figure 1, SL translation (SLT) can be implemented
not only in end-to-end ways, but also in the way of two-
stage: continuous SL recognition (CSLR) and gloss to text
(G2T). CSLR can recognize continuous SL videos as gloss
sequences, and the G2T can translate the gloss sequences into
SL sentence. Furthermore, it can also generate glosses and SL
sentences simultaneously via CSLR and SLT multi-task joint
learning.

Currently, most of the work in SL research focus on CSLR
[1]–[8] and SLT with glosses [9]–[19], few research works
concentrate on end-to-end SLT without using glosses [20]–
[24]. The main reason is that gloss sequences are consis-
tent with sign gestures in the SL video. It can be used as
the intermediate mapping between SL videos and sentences
to allow CSLR and SLT models to alleviate the syntactic
alignment problem by learning the temporal correspondence
between SL videos and gloss sequences, thus achieving better
SLT performance through multi-task joint learning or two-
stage ways. However, gloss annotations can only be performed

ACCEPTED MANUSCRIPT / CLEAN COPY



2

Mask

Linear

Softmax

Word Embedding

Translation inputs

Masked

Self-Attention

Encoder-Decoder

Attention

Feed Forward

Add&Norm

Add&Norm

Add&Norm

PE

Adaptive Masking 

Module

Temporal

Feature

            ···

Mased

Feature

Sign Embedding

PE

Feed Forward

Add&Norm

Local Clip

Self-Attention

Sign Language Videos

Encoder

Decoder

Masked Embedding

MaskFused

Feature

Adaptive Masking

Module

Adaptive Fusion

Module

Masked

Self-Attention

Add&Norm

Fig. 2. An overview of our AVRET model. The output of bottom adaptive
masking (AM) module consists of mask and temporal feature, where the mask
can drop out the video frame representations and the temporal feature is passed
to the adaptive fusion (AF) module. The AF module can adaptively fuse the
temporal feature of AM module with the output feature of encoder. Then, the
fused feature generated by the AF module is masked by the top AM module
and the masked feature is passed to the decoder. (PE: Positional Encoding)

by SL experts [20]. In contrast, end-to-end SLT can directly
translate continuous SL videos into sentences without using
glosses. And, unlike CSLR which focuses on explicitly align-
ing SL video frames with glosses [5] and enhancing short-term
temporal information [8], end-to-end SLT is not sensitive to
the alignment of SL video frames and words, which mainly
needs to enhance the overall mapping relationship between
SL videos and sentences. So, end-to-end SLT has a wider
range of applications and can be easily transferred to other
SL datasets. However, end-to-end SLT is a very challenging
task due to the following reasons: (i) the frame size of SL
videos is longer than the gloss sequences length and contains
more complex corpus information; (ii) the grammar rules of
natural language sentences are different from SL videos and
gloss sequences; (iii) it is a weakly supervised problem since
continuous SL videos do not have boundary annotations for
SL action transitions. Considering the difficulty of obtaining
gloss annotations and the strong migration of end-to-end SLT
methods, in this paper, we concentrate on the task of end-to-
end SLT, aiming to alleviate the above difficulties and improve
the translation performance of continuous SL videos without
using glosses in training.

To improve the translation quality of SLT, Camgöz et al.
[10] first introduced the Transformer network [25] to SLT and
showed good performance. Since then, many research works
also use the Transformer as the SLT backbone network and
improve it in many aspects, including attention mechanism
[14], [23], gloss-text joint learning [12], [15], [17], [18],
network pre-training [19], [24], and different data inputs (e.g.,

SL video clips [22], multi-cue images [9], [11], [13], [16],
[21]). However, most of the above methods mainly focus on
the improvement of SLT network based on glosses, and only
a few of them [21]–[24] are end-to-end SLT without glosses.
Besides, most methods use a single type of data input, while
ignoring the convergence between different data inputs and the
generalization problem between long sequences due to the loss
of glosses. And, SL emphasizes the cooperation of multiple
semantic organs to convey visual information, traditional data
enhancement methods (e.g., flipping, scaling, random crop-
ping) and multi-cue (e.g., hands, face, body keypoints) images
tend to affect the relative position information and temporal
consistency of SL semantic organs. Therefore, how to make
better use of SL videos and enhance network generalization
is the key to improving end-to-end SLT performance without
glosses. Inspired by this, video representation learning (VRL)
methods [26]–[29], which have extensive research in video
processing, feature and model generalization enhancement, are
a worthwhile direction to explore. These methods not only use
full-size frames to learn the complete visual information, but
also improve the performance on a range of downstream tasks
by enhancing the video feature representation. However, most
of VRL methods require a huge computational resource to
satisfy the data inputs with large batch size. The large frame
size of long SL videos also makes training more difficult.
Therefore, we try to simplify some effective VRL methods
and incorporate them into SLT network in order to improve
the translation effect by enhancing its generalization capability.

In this paper, we propose an adaptive video representation
enhanced Transformer (AVRET) to learn robust continuous SL
video feature representations. The overview of our AVRET is
shown in Figure 2. It is equipped with three extra modules:
adaptive masking (AM), local clip self-attention (LCSA), and
adaptive fusion (AF). To improve the feature robustness of
SL videos, we first introduce an AM module based on the
Generator of VideoMoCo [28], which can provide a special
mask to adaptively drop out the feature representation of video
frames. Specifically, we extract the temporal feature of SL
videos by the BiLSTM [30] of AM module and drop out
the temporally important frame representations based on the
mask generated by this feature to enhance the video feature.
Since the Transformer encoder does not destroy the dimension
of input feature, so the AM module can be equipped not
only before the encoder, but also between the encoder and
decoder. Note that the AM module does not have correspond-
ing annotations for supervised training. In order to solve the
semantic ambiguity problem that may result from increasing
the dropout thresholds of video frame representations, we pass
the temporal feature of AM module to the Transformer decoder
and use it to simulate the Discriminator of VideoMoCo. Then,
we stabilize the dropout effect of AM module by establishing a
weakly supervised loss constraint for its decoding results using
spoken translation sentences as pseudo-labeling. To enhance
the local semantics learning ability of the network for SL
videos, unlike the common video clip partition (CCP) in [5],
[22] and the use of short-term neighboring frames [8], we
add an LCSA to the Transformer encoder. It can split the
continuous video features at the clip-level and then extend
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TABLE I
SUMMARY INFORMATION OF SOME PUBLIC AVAILABLE CONTINUOUS SL VIDEO DATASETS. (’C’ REPRESENTS CONTINUOUS: THE CORPUS IS COMPOSED

OF CONTINUOUS VIDEOS. ’G’ REPRESENTS GLOSS: THE CORPUS IS COMPOSED OF GLOSS-LEVEL ANNOTATIONS. ’T’ REPRESENTS TRANSLATION: THE
CORPUS HAS SL TRANSLATION SENTENCES. VOCAB.: THE VOCABULARY SIZE OF SL TRANSLATION SENTENCES. ’ASL’, ’DGS’ AND ’KSL’

REPRESENT AMERICAN SL, GERMAN SL, AND KOREAN SL, RESPECTIVELY.)

Datasets Language Attribute Statistics SourceC G T Resolution #Vocab. #Videos #Signers
WLASL [6] ASL - - 21,083 119 Web
ASLLVD [33] ASL - - 9,800 6 Lab
MS-ASL [34] ASL - - 25,513 222 Web
How2Sign [35] ASL ✓ ✓ ✓ 1280×720 15,686 35,191 11 Lab
YouTube-ASL [36] ASL ✓ ✓ - 60,000 11,093 >2519 Web
PHOENIX-2014 [37] DGS ✓ ✓ 210×260 - 6,841 9 TV
PHOENIX14T [20] DGS ✓ ✓ ✓ 210×260 2,887 8,257 9 TV
SIGNUM [38] DGS ✓ ✓ 780×580 450 12,150 25 Lab
KSL-Guide-Sentence [39] KSL ✓ ✓ ✓ 1920×1080 319 40,000 20 Lab
VCSL [2] CSL 1280×720 - 125,000 50 Lab
CCSL [3] CSL ✓ ✓ 1280×720 - 25,000 50 Lab
CSL-Daily [12] CSL ✓ ✓ ✓ 1920×1080 2,343 20,654 10 Lab
CSL-FocusOn (ours) CSL ✓ ✓ 224×224 28,325 11,665 6 TV
CSL-FocusOn (subset) CSL ✓ ✓ 224×224 21,058 4,200 6 TV

keyframe features from multiple neighboring clips. Next, inter-
cross attention (ICA) is set for each clip to enhance its local
information. And, the connection between LCSA and masked
self-attention allows the encoder to learn local and global
information of SL videos. Moreover, since both the temporal
feature of the AM module and the output feature of the encoder
can be decoded, and these two features are different in terms of
temporal and spatial learning. Therefore, unlike [8], [29] only
use simple concatenation, we introduce an AF module based
on GRF [31] and AFA [32], which can adaptively fuse the two
features to generate a robust feature representation. Owing to
the more robust feature representation, our method enables the
Transformer to learn more spatio-temporal information, and
thus improving the end-to-end SLT effect without using gloss
annotations in training.

Besides, we note that the most widely used large-scale
continuous SL video datasets are mainly annotated in German
[20], [37], [38] or English [6], [33]–[35], while Chinese
continuous SL video datasets are only CCSL [3] and CSL-
Daily [12]. However, the two datasets were collected with
SL experts. While this collection form can ensure the quality
of data annotations, there are limitations in video content
scenarios and subsequent dataset extension. Therefore, in order
to explore an automated and efficient data collection method
and to promote academic research on Chinese SL (CSL),
we construct a continuous CSL video dataset, namely CSL-
FocusOn, based on a Chinese news program. The automated
data collection method allows us to obtain a large-scale CSL
dataset by manually filtering the final SL video segments
without SL experts, and also facilitates the subsequent dataset
extension. Benefit from the diversity of content in news
programs, CSL-FocusOn can cover many common scenarios
(e.g., daily life, weather, news, medical care) and special
scenarios (e.g. corona virus disease 2019, economy), while

providing SL sentences with large vocabulary size and multi-
cue images of signers. It contributes to the diversity and
completeness of topics in dataset. Besides, video segments can
be divided into different subsets based on the segment duration
to further explore the effect of long SL video translation. We
also compare the experimental results of several end-to-end
SLT methods on the CSL-FocusOn dataset and perform a
detailed analysis.

The contributions of this paper can be summarized as
follows:

1) We propose a simple and effective adaptive video rep-
resentation enhanced Transformer (AVRET) to alleviate
the weakly supervised problem of end-to-end SLT and
improve the translation performance. Three extra modules
in AVRET can be freely added into the Transformer-
based network.

2) We design and share a collection method of CSL video
dataset, and use it to construct the first news corpus-based
CSL video dataset, namely CSL-FocusOn. It contains rich
corpus contents and is easier to extend.

3) Our method is validated on the CSL-FocusOn, CSL-
Daily and the benchmark dataset RWTH-PHOENIX-
Weather 2014T [20] (PHOENIX14T), which achieves the
competitive accuracy performance on the end-to-end SLT
task without using glosses in training.

The rest of this paper is organized as follows. In Section
II, we review some public available SL datasets and related
works on SLT and VRL. In Section III, we present the model
architecture of AVRET and the process of CSL-FocusOn
data collection and annotation. In Section IV, we provide
implementation details and ablation analysis of the model,
and finally present the experimental results and compared
them with several models on the same task. In Section V,
we conclude this paper.
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II. RELATED WORK

A. Sign Language Dataset

A summary information of some publicly video-based SL
datasets is shown in Table I. Some of these datasets [2], [6],
[33], [34] are composed of word-level videos, which can only
be used on isolated SLR task. This task can be considered as a
SL classification problem, which aims to recognize an individ-
ual SL word from short video. To further implement the CSLR
and SLT tasks, some datasets [3], [12], [20], [35], [36], [38],
[39] provide continuous gloss and translation annotations.
Among them, PHOENIX14T [20] is the benchmark dataset
for both CSLR and SLT because it contains high-quality gloss
and translation annotations, and its corpus content is more
realistic and close to the real life compared to other datasets
since it is collected from weather forecast TV programs. In
contrast, while both the CSL-Daily [12] and How2Sign [35]
datasets can provide high-quality translation annotations, they
are produced by the laboratory with limited corpus content
and the collection form is not easy. Besides, most of the
publicly available datasets currently maintain a thousand-level
vocabulary for both gloss and translation annotations, and only
How2Sign and YouTube-ASL [36] have a vocabulary size
of 16k and 60k, respectively. Although low vocabulary size
can reduce the difficulty of SLT, it also limits the content
of single sentence. Therefore, as a contribution to the CSL
study, our CSL-FocusOn was collected from a Chinese news
program. It ensures the richness of corpus content while
increasing the vocabulary size of translation annotations to
20k. To keep the frame size of video sequences on the CSL-
FocusOn close to the average frame size of PHOENIX14T,
we make a subset based on the original dataset by filtering
videos with the duration of less than 35 seconds and used it
for the subsequent end-to-end SLT studies. Some information
about CSL-FocusOn and its subset are also shown in Table I.

B. Sign Language Translation

Early research works on SLT mainly used RNN-based atten-
tion network architectures [20], [21]. Since the introduction of
BiLSTM [30], researchers gradually applied it to SLT [9], [13]
because it can well solve the long-term dependency problem
of RNN model and further enhance the context learning ca-
pability. With the public and wide application of Transformer
[25] in natural language processing (NLP), the Transformer
network, which relies entirely on attention mechanisms and
feed-forward layers, greatly improves the quality and effi-
ciency of various sequence translation tasks. And, more and
more research works also apply and improve it to computer
vision (CV) tasks and show excellent performance, such as
video captioning [29], image captioning [32], oriented object
detection in remote sensing imagery [40], online anomaly
detection [41], and so on. Therefore, Camgöz et al. [10] first
applied the Transformer network to SLT, and achieved a good
translation results while verifying the effectiveness of jointly
learning. In recent research work, Xie et al. [14] proposed
a PiSLTRc model, which improves the Transformer network
by content-aware and position-aware temporal convolution
and disentangled relative position encoding. Yin et al. [15]

proposed a boundary predictor from the perspective of simul-
taneous SLT with low latency to simulate the correspondence
between SL videos and vocabulary. Zhou et al. [13] proposed
a spatio-temporal multi-cue network (STMC-T), aiming to
perform video-based SLT by using multi-cue images. Chen
et al. [19] performed pre-training on multiple datasets using
multi-modality transfer learning (MMTLB). Kan et al. [16]
represented the semantic organs of SL with a hierarchical
spatio-temporal graph neural network (HST-GNN), and use
it to learn the semantic information of SL. Fu et al. [17] built
a token-level contrastive framework for SLT (ConSLT). Zhou
et al. [12] incorporated massive spokens text into SLT training
via parallel data and sign back-translation (SignBT) method.

In terms of end-to-end SLT without glosses, Li et al. [22]
proposed a TSPNet and set a fixed clip frame size that allows it
to learn discriminative SL video features by using the semantic
hierarchy between video clips. Yin et al. [23] proposed a
gloss attention GASLT, which allows the attention to focus
on the video clips that have the same local semantics and
helps the model understand SL videos via knowledge transfer.
GFSLT-VLP [24] combines contrastive language-image pre-
training (CLIP) with masked self-supervised learning to pre-
train model, and transfer the prior knowledge from pre-trained
model into SLT framework, thus improving the SLT effect.

However, the performance improvement of SLT methods
relies mostly on glosses or model pre-training. When it is
not involved in training, the generalization and translation
performance of network is limited to be improved due to the
loss of correspondence gloss constraint and prior knowledge.
Moreover, the above methods mainly use all video frames
and a single data input method, but rarely involve the study
of special frame selection and data enhancement methods. In
contrast, we integrate and simplify VRL methods to improve
the translation performance by enhancing feature robustness
and model generalization. To investigate how different data
inputs can be used on SLT, we note that Yan et al. [29] designs
a global-local framework (GLR) on the video captioning task
that can encode video clips at different ranges to improve
linguistic expression. Since SLT also belongs to the video
captioning task, we combine their research idea with SL
characteristics and migrate it to our method. Therefore, we add
a clip-level feature learning module LCSA to the Transformer
encoder and endow the encoder with the learning ability of
local and global video information.

C. Video Representation Learning

Video representation learning (VRL) methods are mainly
based on unsupervised learning to focus on the temporal
properties between continuous video frames. Pan et al. [28]
proposed a VideoMoCo which can adaptively drop out several
temporally important frames from the original video sequence
through a Generator (G), and pass the video of dropped
frames together with the full frame video to the Discriminator
(D) to learn similar feature representations. Huang et al.
[42] explored temporal context information by sampling rate
order prediction. Jenni et al. [43] analysed and evaluated four
different video temporal transformation methods, including
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speed, random, periodic and warp. Tao et al. [44] proposed
an inter-intra contrastive framework based on self-supervised
contrastive learning, which can force the model to learn better
more discriminative temporal information by setting intra-
positive and intra-negative clip samples within the same video
and negative clip samples on different videos. Moreover, some
multi-modal based learning methods can also learn more video
information by introducing multi-modal data (e.g., optical flow
[45], audio [46] and text [47]). In the specific applications of
VRL, Yan et al. [29] proposed a GLR framework for video
captioning, which can encode video representations at differ-
ent ranges (e.g., long-range, short-range, and local-keyframe)
to improve linguistic expression. Considering the SL visual
characteristics and the complexity of original VRL methods,
we simplify some methods from VideoMoCo and GLR. Unlike
VideoMoCo, we let the model adaptively generate a mask
to drop out frame feature representations instead of video
frames. And, we use the Transformer decoder to simulate the
D in VideoMoCo. Furthermore, unlike GLR extracts video
representations from three ranges and fuses them via con-
catenation, we split the original video into multiple clips and
combine the short-range clips with local-keyframe to increase
the neighbor information. And, we can obtain more robust
feature representations by additional LCSA and AF module.

III. METHOD

A. Sign Language Transformer and Model Overview

SL Transformer is mainly applied to sequence-to-sequence
SLT tasks, and the whole network consists of an encoder-
decoder architecture. The encoder can map the SL video se-
quences (x1, ..., xn) with n frames into a continuous sequence
feature representation V ∈ Rn×dm , where dm denotes the
feature dimension. After obtaining V , the decoder is able to
generate a sentence sequence S = {ωu}Uu=1 with conditional
probability p(S|V) by consuming previously generated words
each time in an auto-regressive manner. The most important
part of SL Transformer is the stackable masked self-attention
(MSA). The standard MSA can be formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dm

)V, (1)

headi = Attention(QWQ
i ,KWK

i , V WV
i ), (2)

MSA(Q,K, V ) = Concat(head1, ..., headh)W, (3)

where query Q, key K, and value V ∈ Rn×dm represent the
input matrices of single-head attention headi, i = (1, 2, ..., h).
WQ

i ,WK
i ,WV

i ∈ Rdm× dm
h , and W ∈ Rdm×dm represents

projection parameter matrices. Concat(·) is the function that
concatenates h single-head attentions into MSA.

Since our work aims to improve the Transformer network
by adding extra modules in order to generate more robust
representations of SL videos, we omit the detailed description
of the Transformer network and refer to [10], [25] for more
specific information.

As shown in Figure 2, our model consists of three extra
modules, including adaptive masking (AM) module, local clip
self-attention (LCSA), adaptive fusion (AF) module. Firstly,

Sign

Embedding
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Embedding

Video seqs: x

         Loss flow         
         Data flow
         Temporal feature flow
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         Normal frame feature
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Adaptive Masking
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n
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Adaptive Masking
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Fig. 3. The architecture of adaptive masking (AM) module. Fse, Fbm,
Fmk , Fen, Fft, and Fde ∈ Rn×dm denote sign embedding, temporal
feature, masked embedding, encoder output feature, adaptive fusion feature,
and decoder input feature, respectively. Three loss terms are adopted during
training: the translation loss LTrans (black dotted flow) enhances the
synchronization effect between translated and predicted sentences, and the
AM loss LAM′ (blue dotted flow) and LAM′′ (orange dotted flow) can
optimize the dropout effect.

given a SL video sequence (x1, ..., xn) with n frames, each
frame is concatenated to a continuous video feature after
extracting spatial representation by sign embedding. Then, the
AM module equipped with BiLSTM is used to capture the
temporal information of the video feature, and the generated
temporal feature and mask are passed into the AF module and
Transformer encoder, respectively. And, the encoder equipped
with LCSA and MSA can learn local and global information
simultaneously. Next, the spatial feature of encoder and the
temporal feature of AM module are adaptively fused by
the AF module, and the fused feature will masked by the
second AM module. Finally, the masked feature and sentence
sequences are used for sequence learning and inference by the
Transformer decoder to generate the SL sentence.

B. Adaptive Masking

As shown in Figure 3, the SL video features Fse ∈ Rn×dm

extracted by sign embedding need to be processed by the
adaptive masking (AM) module before being passed to the
encoder. The purpose is to generate a continuous temporal
feature Fbm ∈ Rn×dm while generating a special mask for Fse
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to drop out the frame feature representations. In this section,
we first introduce the temporal feature extraction layer of
the AM module and then elaborate the details of acquiring
important frame sequences based on the temporal feature,
which can adaptively drop out temporally important frame
feature representations.

Since VideoMoCo requires two different convolutional neu-
ral networks (CNN) for two-stage feature extraction, if we
introduce it to the Transformer model, it will greatly increase
model parameters. Therefore, we replace the sign embedding
layer with the pre-trained SL video feature representation
Fse. For the temporal feature extraction layer, we note that
BiLSTM has been effective in learning temporal semantic
information and long-term dependencies of video sequences,
and the continuous temporal feature extracted by it do not
affect the feature dimension of original input. Therefore, the
index numbers of masked video frames can be obtained from
the probability distribution generated by it. Specifically, we
first use the BiLSTM to generate continuous temporal feature
for sign embedding. To generate the corresponding probability
distribution for each video frame representation, the dimension
of temporal feature needs to be mapped to one-dimension by
a linear layer:

fl = linear(BiLSTM(Fse)), (4)

where fl ∈ Rn×1 denotes the output feature of linear mapping.
Then, we use the softmax function to obtain the probability
distribution dl ∈ Rn:

dl = softmax(fl). (5)

Finally, the original mask is updated according to the index
numbers where the top k largest values in dl so that k
frame representations can be dropped to generate the mask
embedding Fmk ∈ Rn×dm :

Ik = topk(dl, k), (6)

Fmk = mask(Ik, Fse), (7)

where topk(input, k) is used to compute the top k largest
values of the input matrix and the corresponding index num-
bers. Ik ∈ Rk denotes a tensor containing k index numbers.
mask(index, input) denotes the mask of SL video inputs.
Except that the value of k needs to be set manually in advance,
the updated mask can be adjusted adaptively during training
to make it reach a relatively stable state.

Furthermore, there are also research works [9], [13] using
BiLSTM as the backbone network for decoding and inference
of SLT. Therefore, the temporal feature generated by BiLSTM
is decodable. So we add a normalization layer after the
BiLSTM layer and use its output as the input of AF module
and decoder. This process can be formulated as:

Fbm = LayerNorm(BiLSTM(Fse)), (8)

where Fbm ∈ Rn×dm denote the temporal feature of BiLSTM.
Note that the output feature of Transformer encoder also

does not destroy the feature dimension of the original input.
Therefore, the AM module can be equipped between the
encoder and the decoder to drop out some frame feature
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Fig. 4. The architecture of our local clip self-attention (LCSA) module. The
mask embedding V is split into N clip features by clip partition. Each clip
feature X contains S frames and passes into inter-cross attention module to
generate a local clip enhanced feature via the feature split and dimensional
transformation (FSDT) mechanism. Finally, all clip features are restored to
continuous feature for subsequent global learning via the clip reverse &
concatenate function.

representations before the feature is passed to the decoder.

C. Local Clip Self-Attention

As shown in Figure 4, we introduce a local clip self-
attention (LCSA) to learn local semantic information, aiming
to enhance the SL video features at clip-level. In this section,
we first introduce a clip partition (CP) method, which can
split the original continuous video feature into multiple clips.
Then, we elaborate the details of inter-cross attention (ICA),
which enables local sparse feature interactions within each
clip to learn the interrelationships between frames. Finally,
the connection of LCSA with MSA allows the model to
benefit from local and global information to obtain more
discriminative feature representations.

Splitting a complete video into multiple clips via non-
overlapping sliding window as data input is very common in
many studies [5], [8], [22], [29]. However, it is difficult to
find a suitable window size for splitting video clips. This is
mainly due to the fact that a single SL video usually contains
multiple complex sign gestures and the frame size in a single
clip needs to be set according to SL characteristics. Besides,
the end-to-end SLT emphasizes overall semantic information
and too sparse clips will destroy the semantic coherence.
Therefore, in this work, our CP method differs from the
common CP (CCP) [5], [8], [22] and GLR [29] in that we
fuse several keyframes from neighbor clips with the last frame
of short-range clips and replace long-range clips with original
continuous video. Specifically, given the video representation
Fmk from sign embedding, we split it into N clips with
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Fig. 5. An overview of CSL-FocusOn data collection and annotation. (a)
Detailed video segmentation process. (b) The key process of dataset collection.

sliding window size w and stride size s. Then, we extend m
keyframe feature representations for each clip. The first and
last clips are extended backward and forward, respectively, and
the extension frame size is m and the stride size is t. The clips
in the middle are extended to both sides with extension frame
size m/2 and stride size t. So, the frame size of each clip is
S = w, which contains m extended frames. By supplementing
each clip with sparse keyframes from neighbor clips, it not
only increases neighbor information, but also alleviates the
semantic ambiguity problems caused by inappropriate clip size
and boundary.

The standard MSA allows spatial mixing of entire spatial
locations of the input sequence to learn global contextual in-
formation. However, there is a lack of information interaction
between sequence features. To solve this issue, we introduce
an ICA based on MSA to split the full-size feature into
two sparse-size features by simply decomposing the feature
axis, and then generates an information-interactive enhanced
feature after dimensional transformation and concatenation.
As shown in Figure 4, ICA is composed of feature split
and dimensional transformation (FSDT) mechanism and MSA.
Specifically, we consider the last dimension dm of each clip
feature X ∈ RS×dm as the feature axis, where S denotes
the clip frame size. Next, we split X into X ′ ∈ RS×P and
X ′′ ∈ RS×H on the feature axis dm, and then the dimension of
X ′′ is decomposed to X ′′ ∈ RS×D×H

D on the feature axis H ,
where dm = (P +H), D = S. D denotes sparse feature size.
Then, the dimension of X ′′ is transformed to X ′′ ∈ RD×H

D S .
Finally, we use the concatenation function for X ′ and X ′′ to
get the final XFSDT ∈ RS×dm , where dm = (P + H

DS). The
FSDT process from X to XFSDT can be formulated as:

X (S, dm) → X ′(S, P ) & X ′′(S,H), (9)

X ′′(S,H) → X ′′(S,D,
H

D
) → X ′′(D,

H

D
× S), (10)

XFSDT (S, P +
H

D
× S) = Concat(X ′,X ′′), (11)

XFSDT (S, dm) = XFSDT (S, P +
H

D
× S). (12)

Next, we pass the transformed clip feature X ′′ into the MSA.

By applying ICA to each clip, we implement local feature
enhancement within each clip.

Furthermore, after reversing and concatenating the clip
features, we further combine LCSA and MSA to form the
Transformer encoder in order to learn local and global infor-
mation. The whole process can be formulated as:

Fen = MSA(CRC(LCSA(CP (PE(Fmk))))), (13)

where CRC(·) denotes clip reverse and concatenate function,
and Fen ∈ Rn×dm denotes the encoder output feature.

D. Adaptive Fusion

To make the model learn the temporal semantic information
and long-term dependencies of SL video sequences, Yin et
al. [9] combined the BiLSTM with Transformer to achieve
better translation results. However, using some simple methods
for these two networks, such as network connection, feature
concatenation [29], matrix-vector addition [8], etc., does not
lead to better SLT improvements without using glosses in
training. Furthermore, considering that both the temporal fea-
ture of AM module and the output feature of encoder can
be decoded, and that the two features are different in terms
of temporal and spatial learning. Therefore, for the model to
better learn the knowledge of temporal and spatial information
simultaneously, a novel idea is to let the model measuring the
important feature information of both networks by itself and
fuse them together. So, we introduce an adaptive fusion (AF)
module based on GRF [31] and AFA [32]. Considering the
gate mechanism, computational complexity and extensibility
of GRF, we simplify its memory mechanism and modify it to
suit the needs of spatio-temporal feature fusion.

As shown in Figure 3, we first pass the Fmk generated by
the AM module to the encoder and generate the enhanced
spatio-temporal features Fen through its LCSA and MSA
mechanism. Then, Fen is passed into the AF module for adap-
tive fusion together with the temporal feature Fbm. Moreover,
unlike the adaptive gate in [32], we generate corresponding
adaptive weights λ1, λ2 for each feature to enhance its impor-
tant information. The whole process can be formulated as:

λ1, λ2 = σ(FenWen + FbmWbm), (14)

Faf = λ1 ⊙ Fen + λ2 ⊙ Fbm, (15)

where Wen,Wbm ∈ Rdm×2 are learnable parameters. ⊙ and
σ denote the element-wise multiplication and the sigmoid
function, respectively. The λ1, λ2 ∈ [0, 1] weight the ex-
pected importance of Fen and Fbm for each frame feature
representation, respectively. And Faf ∈ Rn×dm denotes the
output feature of AF module. Finally, to further learn the
important knowledge in Fbm and Fen, we perform a matrix-
vector addition with the Faf and add a normalization layer,
and then pass it to the second AM module AM ′′ and using its
masked feature Fde ∈ Rn×dm as the input data of Transformer
Decoder:

Fft = LayerNorm(Fen ⊕ Fbm ⊕ Faf ), (16)

Fde = AM ′′(Fft), (17)
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where ⊕ denotes the matrix-vector addition. Fft denotes the
fused feature by AF module.

E. Inference and Joint Loss Design

Given a sentence S = {ωu}Uu=1 that is a sequence of U
words ωu, its word embedding after positional encoding can
be formulated as:

ω̂u = WE(ωu) + PE(u), (18)

where WE(·) denotes the word embedding layer. ω̂u ∈
RU×dm denotes the embedded representation for the word
ωu ∈ R1×U with positional encoding. The Transformer-
based SLT model is an auto-regressive encoder-decoder model.
Before decoding, we first add the special sentence-initial
token, “< bos >”, to the target SL sentence S. Then, we pass
the Y = {ω̂u}Uu=1 into the masked self-attention layer in the
decoder. The Transformer decoder learns to generate one word
at a step during inference by consuming previously generated
words each time in an auto-regressive manner, until it gener-
ates a special sentence-final token, “< eos >”. In inference,
the original sentence level conditional probability p(S|V) will
be decomposed into ordered word level conditional probability.
It can be formulated as:

hu = Decoder(ω̂u−1|ω̂1:u−2, Fde), (19)

p(S|V) =
U∏

u=1

p(ωu|hu), (20)

which are used to calculate the cross-entropy loss as:

L = 1−
U∏

u=1

M∑
m=1

p(ω̂m
u )p(ωm

u |hu), (21)

where p(ω̂m
u ) denotes the ground truth probability of word wm

u

at decoding step u and M is the target sentence vocabulary
size [10]. Therefore, the translation loss at training can be
calculated by Equation 21 and represented as LTrans.

Since the AM module does not have corresponding mask
annotations for supervised training, there is a risk of unstable
dropout effect when increasing the dropout threshold of video
frame representations, which may cause the greater semantic
ambiguity problem. Therefore, we add a weakly supervised
loss term LAM to the AM module via Equation 21. The
basic principle is that we consider the temporal feature of AM
module as a decodable feature representation and pass it to
the Transformer decoder for decoding. We use the decoder to
simulate the Discriminator of VideoMoCo. Note that although
both LAM and LTrans use the same decoder, LAM is only
used for weakly supervised training of the AM module and is
not involved in the inference of target sentences. Besides, since
we add two AM modules to network, we need to set two loss
terms for them, i.e., LAM ′ and LAM ′′ . LAM ′ denotes the loss
term of the AM module placed before the encoder and LAM ′′

denotes the loss term of the AM module placed between the
encoder and decoder.

Like [10], we train AVRET by minimizing the joint loss
term LT , which is a weighted sum of the translation loss

Fig. 6. The right image is the example of original video frame. The signer
is shown in the bottom left of the original video frame and the image on the
left is the result of resizing it to 224×224.

LTrans and the AM loss LAM ′ and LAM ′′ as:

LT = λTransLTrans + λAM ′LAM ′ + λAM ′′LAM ′′ , (22)

where λTrans is a constant hyper-parameter and both λAM ′

and λAM ′′ are hyper-parameters used to measure the impor-
tance of their corresponding loss term during training.

In summary, based on the SL video features enhanced
method of the AM and LCSA module and the robust feature
fusion method of AF module, we finally build the adaptive
video representation enhanced Transformer.

F. The Proposed CSL-FocusOn Dataset

FocusOn news program contains a large amount of different
corpus content and has very rich SL resources. However, it is
difficult to split complete SL video segments due to the lack
of fine-grained segment-caption alignment and corresponding
timestamps. Therefore, in order to reduce the alignment error
between SL video segments and sentences, we explore an
automated data collection method and construct a news corpus-
based continuous SL video dataset CSL-FocusOn. In this
section, we will introduce the detailed collection process of
CSL-FocusOn.

1) Data Collection and Annotation: As shown in Figure
5-(b), we share the key processes of automatic data collection
and annotation. As shown in Figure 6, the rectangle position
of the signer (bottom left) is fixed in the original video. We
first crop the signer from the original video according to the
predefined rectangle coordinates and resize it to 224×224.
Then, the cropped SL video is separated from its audio. After
that, we split the audio by using the voice pause points of
audio host as the splitting points, and then convert audio
splitting points to the video segmentation points to initially
split video segments. As shown in Figure 5-(a), we design a
video segmentation method to further reduce the splitting and
alignment errors. Firstly, we use the face recognition model
[50] to determine whether there is a signer in the segments so
as to remove useless segments, and then use OpenPose [51] to
locate the start and end frame positions according to the arms
keypoint coordinates rule of the start and end sign gestures so
as to remove redundant frames. Finally, the video segments
are adjusted into video sets, while the audio segments are
converted into spoken annotation sets by using the audio-to-
text tool of the iFLYTEK open platform. The corpus covers
4,200 videos with a total duration of 23.11 hours, 6 different
signers and contains 21,058 different words in SL sentences.
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TABLE II
DETAILED AVRET FRAMEWORK AND FEATURE SIZES OF EACH KEY

MODULE.B,n, U,M DENOTES BATCH SIZE, MAX FRAME SIZE IN THE
BATCH, MAX WORD NUMBER IN THE BATCH, AND WORD NUMBER OF

TARGET SENTENCE, RESPECTIVELY.

Module Output Size
SL Video Inputs B × n× 224× 224× 3

En-b0 [48] + VMC [28] B × n× 1024
CNN-LSTM-HMMs [4] B × n× 1024

S3D [49] B × n/4× 1024

Conv1D-BN1D-ReLU -
MaxPooling1D -

Conv1D-BN1D-ReLU -
Linear B × n× 512

Adaptive Masking (AM’) B × n× 512
Transformer-Encoder-LCSA B × n× 512
Transformer-Encoder-MSA B × n× 512

Adaptive Fusion B × n× 512
Adaptive Masking (AM”) B × n× 512

Translation Inputs B × U
Word Embedding B × U × 512

Transformer-Decoder-MSA B × U × 512
Encoder-Decoder-MSA B × U × 512

Fully Connection B × U ×M

The SL sentence annotations have been automatically tran-
scribed and manually verified. Furthermore, we also generate
corresponding multi-view images (e.g., hands, face, and body
keypoints) from the original videos via OpenPose.

2) Privacy Considerations: Since the CSL-FocusOn dataset
was collected from a public news program, we cannot make it
public without obtaining permission, considering the content
of corpus and the privacy issues of signers. We can share
some information such as video download websites, automatic
dataset collection method, etc. Therefore, this dataset is mainly
used to perform academic research and to evaluate the effec-
tiveness of our method.

IV. EXPERIMENT

A. Dataset and Metrics

1) Datasets: We evaluate our method on three datasets,
including CSL-FocusOn, PHOENIX14T [20] and CSL-Daily
[12]. These datasets all contain annotations of SL translation
sentences.

PHOENIX14T is a large vocabulary and continuous German
SL corpus, which is the primary benchmark for CSLR and
SLT in recent years. It is collected from a German weather
forecast broadcast PHOENIX, with 9 different signers. The
corpus contains 8257 sample pairs, of which the train set,
development set, and test set containing 7096, 519, and
642 samples, respectively. The gloss annotations have 1066
different sign glosses and the vocabulary size is 2887 for
German translation sentences.

CSL-Daily is a new large-scale Chinese SL corpus that
covers a wide range of scenarios, including daily life, medical
care, weather, and so on. The corpus content is mainly

collected from some Chinese SL textbooks, test materials and
Chinese corpora [12]. It contains 2000 sign glosses, 2343
vocabulary size, and 20654 sample pairs, of which the train
set, development set, and test set containing 18401, 1077, and
1176 samples, respectively.

2) Metrics: To measure the SLT performance of our
method, we adopt the BLEU [52] (n-grams ranging from 1
to 4) and ROUGE [53] scores, which are commonly used in
machine translation and SLT. Considering BLEU-4 can better
measure the integrity of generated sentences, we use it as the
performance metric in ablation study.

3) Task Details: In this paper, we mainly concentrate on the
end-to-end SLT without using glosses in training. Note that we
do not pre-train the AVRET network on the CSLR task or other
datasets to pre-train SL video features. We use pre-trained
visual features instead of sign embedding for subsequent SLT
task. For fair comparison with baseline models SLTT-S2T
[10] and BN-TIN-Transf [12], we use CNN-LSTM-HMMs
[4] and S3D [49] to extract gloss-based SL video features
on PHOENIX14T and CSL-Daily, respectively. To evaluate
the SLT effect of gloss-free features, the gloss-free features
of all experimental datasets are extracted by Efficientnet-b0
[48] and VideoMoCo [28] (En-b0+VMC). Specifically, we use
Efficientnet-b0 instead of the Encoder in VideoMoCo and pre-
train the Discriminator by VideoMoCo framework. Then, the
Efficientnet-b0 fine-tuned by [24] is used to extract SL video
features. Table II shows the output feature size of different
feature extraction networks.

B. Implementation Details

1) Network Details: Table II shows the detailed AVRET
framework and feature sizes of each key module. We used
different networks to extract SL video features. The tem-
poral conv blocks that replace sign embedding follow [12]
when using S3D, which consist of two Conv1D-BN1D-ReLU-
MaxPooling1D layers with 1 stride size and 3 kernel size, and
the output size is (B × n/4 × 512) [19]. The Transformer
encoder and decoder both have 512 hidden sizes, 2048 feed
forward sizes, 8 heads, 3 layers, and 0.1 dropout rate. For the
LCSA module, the clip sliding window size w is 16, stride
size s is 3, extension frame size m is 4, extension stride size
t is 13. (S, P,H,D) is set to (16, 128, 384, 24) and dm is
512. For the AM module, we set the value ranging of frame
dropout threshold {k′, k′′} from 0 to 10. The hidden state size
of BiLSTM in AM module is 512. All module components of
the network are implemented in PyTorch.

2) Training: In all experiments, we set the batch size to
32 and set adamW [54] optimizer with an initial learning
rate of 10−3(β1 = 0.9, β2 = 0.998) and a weight decay of
10−3 [10]. We employ the plateau learning rate scheduling
to decrease the learning rate, where the decrease factor is 0.7
and the minimum learning rate is 10−7 [10]. Besides, our two
AM modules in AVRET are only used during training. For
the model pre-training, we perform respective visual-language
pre-training (VLP) [24] tasks on our AVRET network on the
training sets of three SL datasets. And inspired by VLP, we
also conduct visual mask pre-training (VMP) tasks, aiming to
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TABLE III
EVALUATION OF DIFFERENT VIDEO FRAME REPRESENTATIONS DROPOUT

METHODS ON PHOENIX14T AND CSL-FOCUSON. ’AM’ DENOTES
ADAPTIVE MASKING, AND ’RD’ DENOTES RANDOM DROPOUT.

Method PHOENIX14T CSL-FocusOn
AM {k′, k′′} Dev Test Dev Test

{0, 0} 22.64 22.95 6.68 7.06
{0, 2} 23.24 23.06 7.43 7.25
{0, 4} 23.51 23.20 7.84 7.53
{0, 6} 22.14 22.42 8.14 7.81
{0, 10} 20.54 20.82 6.11 5.82
{2, 0} 23.18 23.55 7.71 7.18
{2, 2} 23.81 24.22 7.94 7.51
{2, 4} 24.31 24.84 8.24 8.02
{2, 6} 22.73 22.98 8.81 8.37
{4, 0} 23.22 23.65 7.26 7.49
{4, 2} 23.41 23.12 7.65 7.12
{4, 4} 21.18 21.57 6.55 6.17

RD {r′, r′′} Dev Test Dev Test
{0, 4} 22.34 22.62 6.77 6.93
{2, 0} 22.01 21.85 7.51 7.27
{2, 4} 22.58 22.81 6.34 6.02
{4, 2} 23.31 22.75 6.03 5.88

perform pre-trained SLT tasks by using randomly masked SL
videos as input to AVRET. The mask frame size is set to 5.
Note that we only perform model pre-training when using the
gloss-free features of the three SL datasets to compare with
the gloss-free end-to-end SLT methods. All SLT experiments
are run on RTX 3090 GPU.

3) Decoding: In our experiments, we apply the greedy
search to decode SL sentences during the training and valida-
tion. For the inference step, we use the beam search strategy
and the length penalty [55] to decode the test set.

C. Ablation Study

To evaluate the effectiveness of our method, the end-to-
end SLT experiments in this subsection are conducted on
PHOENIX14T and CSL-FocusOn, using the evaluation metric
of BLEU-4. Except for Section IV-C6, the experimental results
of PHOENIX14T and CSL-FocusOn in ablation analysis are
obtained based on gloss-based and gloss-free features, respec-
tively, and are not pre-train the network by VMP and VLP.

1) Analysis of Adaptive Masking: In Table III, we anal-
yse the effectiveness of different video frame representations
dropout methods on PHOENIX14T and CSL-FocusOn, includ-
ing two AM modules in AVRET and random dropout. The
experiment variable is the AM dropout threshold {k′, k′′} and
the random dropout threshold {r′, r′′}, where k′ and r′ denote
the dropout threshold before feature is passed to the encoder,
k′′ and r′′ denote the dropout threshold before feature is passed
to the decoder. In terms of the range of {k′, k′′}, we set it
from 0 to 10 depending on the average frame size contained
in all videos on both datasets, where 0 means that the AM
module is not used. We can see that the BLEU-4 score of

TABLE IV
EVALUATION OF DIFFERENT ATTENTION MODULE IN AVRET ENCODER

ON PHOENIX14T AND CSL-FOCUSON. ’MSA’ DENOTES MASKED
SELF-ATTENTION, ’ICA’ DENOTES INTER-CROSS ATTENTION, ’CP’

DENOTES OUR CLIP PARTITION, ’CCP’ DENOTES COMMON CLIP
PARTITION, AND ’LCSA’ DENOTES LOCAL CLIP SELF-ATTENTION.

Attention in Encoder PHOENIX14T CSL-FocusOn
Dev Test Dev Test

w/ MSA 22.41 22.83 6.91 7.18
MSA w/ ICA 21.63 22.14 6.16 5.70
CCP+MSA 22.72 23.15 7.14 6.58
CP+MSA 23.11 23.65 7.42 6.94
CP+LCSA 23.54 24.17 7.94 7.45

CP+MSA+MSA 23.74 24.32 8.26 7.73
CP+LCSA+MSA 24.31 24.84 8.81 8.37

TABLE V
EVALUATION OF DIFFERENT FEATURE FUSION METHOD FOR ADAPTIVE

FUSION MODULE ON PHOENIX14T AND CSL-FOCUSON. (F∗ DENOTES
THE DIFFERENT FEATURES TO BE FUSED. ’C’ REPRESENTS

CONCATENATION(·): SIMPLE FEATURE CONCATENATION OPERATION.)

Fusion method PHOENIX14T CSL-FocusOn
Dev Test Dev Test

w/ Fen 21.64 22.36 6.58 6.13
w/ Faf 22.87 23.26 7.15 6.70

Fen + Fbm 23.54 23.91 8.17 7.33
Fen + Fbm + Faf 24.31 24.84 8.81 8.37

C(Fen, Fbm) 23.21 22.88 7.88 7.31
C(Fen, Fbm, Faf ) 23.75 24.20 8.32 7.82

GRF [31] 23.94 24.58 8.51 8.07

PHOENIX14T maintains an increasing trend when the value
of {k′, k′′} increases from 0 to 4 and achieves the best SLT
results at {2, 4}. However, when we further increase the value
of k′, the BLEU-4 score starts to decrease significantly. And
when {k′, k′′} is set to{0, 10} and {4, 4}, the SLT effect
is poor and is directly weaker than {0, 0}. The experimental
results show that both AM modules are crucial to the choice
of the dropout threshold. A suitable value of {k′, k′′} can
effectively improve the performance of SLT, while too large
value can drop out too many important information, which can
seriously affect the final SLT effect.

Moreover, we also conduct the evaluation of AM modules
on CSL-FocusOn. From the experimental results, the trend of
the value of {k′, k′′} on SLT is consistent with PHOENIX14T.
However, CSL-FocusOn achieves the highest BLEU-4 score at
{2, 6}. We also find that the best {k′, k′′} on CSL-Daily is
{2, 2}. Our analysis of these datasets shows that the reason
for this phenomenon may be related to the frame size of
different datasets. On the one hand, the average frame size for
a single video of CSL-FocusOn is higher than PHOENIX14T
and CSL-Daily. On the other hand, CSL-FocusOn have 30
frames per second and one sign gesture usually contains 15
to 20 frames, while PHOENIX14T stays at 12 to 16 frames
and CSL-Daily stays at 6 to 12 frames. It also indicates that
dropout thresholds are affected by average frames size and
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TABLE VI
EVALUATION OF DIFFERENT LOSS WEIGHT OF LOSS FUNCTION ON

PHOENIX14T AND CSL-FOCUSON.

Loss Weight PHOENIX14T CSL-FocusOn
λAM ′ λAM ′′ λTrans Dev Test Dev Test

0 0 1.0 22.64 22.95 6.68 7.06
1.0 1.0 1.0 23.85 24.01 8.47 7.84
1.0 2.0 1.0 24.07 24.54 8.64 8.13
1.0 3.0 1.0 23.34 23.92 7.96 7.32
2.0 1.0 1.0 24.31 24.84 8.81 8.37
2.0 2.0 1.0 23.65 24.18 8.53 8.11
2.0 3.0 1.0 24.03 23.61 8.31 7.82
3.0 1.0 1.0 23.28 23.44 8.04 7.62
3.0 2.0 1.0 22.81 23.04 7.21 7.45
3.0 3.0 1.0 22.63 23.14 7.54 7.22
5.0 1.0 1.0 22.76 22.91 7.72 7.51
10.0 2.0 1.0 22.14 21.85 7.03 7.14
2.0 1.0 3.0 22.82 23.17 8.10 7.81
2.0 1.0 5.0 22.24 23.41 7.46 7.25
2.0 1.0 10.0 21.53 21.88 6.87 6.62

need to be adjusted according to different datasets.
We also compared the effect of random dropout on both

datasets. The dropout value that performs better in AM is
selected. It can be found that the effect of random dropout
is relatively weak and unstable. This is because the random
dropout method is unlearnable and predefined dropout index.
It may break the local semantic consistency.

2) Analysis of Local Clip Self-Attention: In our proposed
LCSA, we introduce a clip partition (CP) method and inter-
cross attention (ICA) for clip-level inputs to enhance the infor-
mation interaction within each clip. To verify the effectiveness
of clip-level inputs and the LCSA, different combinations
of attention modules in AVRET encoder are evaluated in
Table IV. For notation, the baseline model is to use masked
self-attention (MSA) on the original inputs. MSA w/ ICA
means MSA with ICA. CCP+MSA means use the common
clip partition (CCP) method and MSA on clip-level inputs.
CP+MSA and CP+LCSA mean to the use of MSA and
LCSA respectively for each clip on clip-level inputs, and the
clip-level features are concatenated into continuous features
and then used as the output of the encoder. CP+MSA+MSA
and CP+LCSA+MSA mean to adding the global information
learning by connecting MSA after the original attention com-
binations.

As shown in the Table IV, the MSA equipped with ICA
has a certain performance loss when using the original inputs.
This is because when processing long SL videos with multiple
sign gestures, ICA crosses features together and affects the
discriminative information between different gestures. Fur-
thermore, after processing the original inputs into clip-level,
the combinations with different attentions show different ef-
fects. When only clip-level inputs and CCP are performed, the
improvement of MSA is relatively weaker, while LCSA has a
better performance and brings a larger improvement compared
to MSA w/ ICA. When clip-level attention combinations are

TABLE VII
EVALUATION OF DIFFERENT OPTIMIZER ON PHOENIX14T AND

CSL-FOCUSON.

Optimizer PHOENIX14T CSL-FocusOn
Dev Test Dev Test

Adadelta [56] 24.03 23.83 8.43 8.03
Adam [57] 24.17 24.05 8.62 8.28

AdamW [54] 24.31 24.84 8.81 8.37

TABLE VIII
EVALUATION OF DIFFERENT SL VIDEO FEATURES AND PRE-TRAINING ON

PHOENIX14T AND CSL-FOCUSON. (EN-B0+VMC DENOTES
EFFICIENTNET-B0 AND VIDEOMOCO)

Pre-trained Pre-training PHOENIX14T CSL-FocusOn
Feature VMP VLP Dev Test Dev Test

En-b0+VMC
✗ ✗ 19.12 19.41 8.81 8.37
✓ ✗ 21.57 21.25 9.13 9.28
✗ ✓ 22.49 22.17 9.64 9.81

TSPNet [22] ✗ ✓ 17.34 17.62 8.05 7.95
SLTT-S2T [10] ✗ ✗ 24.31 24.84 - -

additionally connected to the MSA, the performance of SLT is
further improved because the encoder increases the learning
capability of continuous spatio-temporal features and global
information. Overall, our LCSA performs better than other
methods and has better performance when local and global
are combined.

3) Analysis of Adaptive Fusion: To verify the effective-
ness of AF module, we conduct comparison experiments of
different feature fusion method. For notation in Table V,
Fen denotes the output feature of Transformer encoder. Fbm

denotes the temporal feature of BiLSTM in AM module. Faf

denotes the adaptive fusion feature of Fen and Fbm. On the
test set of PHOENIX14T, we can see that the second and third
fusion methods bring improvements of +0.90 BLEU and +1.55
BLEU, respectively. It also indicates that incorporating Fbm

in Fen can effectively improve SLT performance. However,
the BLEU score that using Faf is lower than the score of the
addition of Fen and Fbm. It is mainly because adaptive fusion
is an approach where knowledge enhancement and weakening
coexist. During training, some important knowledge of Fen

and Fbm may be weakened, which affects the final SLT effect.
Therefore, we fuse the three feature representations of Fen,
Fbm and Faf , so that the fused features of Fen and Fbm can
be enhanced by Faf while mitigating the weakening effect
of Faf . Thus, further performance improvement is achieved.
Moreover, this fusion approach is still valid on CSL-FocusOn
and achieves a +2.24 BLEU improvement on the test set.
We also perform experiments on simple feature concatenation
methods and GRF. As the experimental results in the bottom
of Table V show, our fusion method works better. It is
interesting to note that our AF module is simplified and
adapted from GRF, but performs slightly better than it. The
reason may be that the final feature fusion operation of GRF
is achieved by concatenation, and the experimental results of
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TABLE IX
COMPARISON OF EVALUATION RESULTS FOR END-TO-END SLT ON PHOENIX14T AND CSL-DAILY. ’*’ DENOTES THAT THE METHOD USES GLOSS

ANNOTATIONS IN TRAINING

Method PHOENIX14T
Dev Test

Gloss-free ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
RNN+Luong [20] 32.60 31.58 18.98 13.22 10.00 30.70 29.86 17.52 11.96 9.00
RNN+Bahdanau [20] 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58
Multitask-T [21] - - - - - 36.28 37.22 23.88 17.08 13.25
TSPNet-Joint [22] - - - - - 34.96 36.10 23.12 16.88 13.41
SimulSLT [15] 36.38 36.21 23.88 17.41 13.57 35.88 37.01 24.70 17.98 14.10
GASLT [23] - - - - - 39.86 39.07 26.74 21.86 15.74
STMC-T [13] 39.76 40.73 29.42 22.61 18.21 39.82 41.05 29.92 23.01 18.47
Multi-channel [11] 44.59 - - - 19.51 43.57 - - - 18.51
GFSLT-VLP [24] 43.72 44.08 33.56 26.74 22.12 42.49 43.71 33.18 26.11 21.44
AVRET-VLP (ours) 47.62 46.98 34.97 27.48 22.49 46.61 46.80 34.73 27.22 22.17

Gloss-based ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
SLTT-S2T [10] - 45.54 32.60 25.30 20.69 - 45.34 32.31 24.83 20.17
PiSLTRc-S2T [14] 47.89 46.51 33.78 26.78 21.48 48.13 46.22 33.56 26.04 21.29
MMTLB [19] 45.84 47.31 33.64 25.83 20.76 45.93 47.40 34.30 26.47 21.44
HST-GNN [16] - 46.10 33.40 27.50 22.60 - 45.20 34.70 27.10 22.30
XmDA [18] 48.05 - - - 22.90 47.33 46.84 34.69 27.50 22.79
ConSLT* [17] - - - - - - 48.73 36.53 29.03 24.00
SignBT* [12] 50.29 51.11 37.90 29.80 24.45 49.54 50.80 37.75 29.72 24.32
AVRET (ours) 50.24 50.32 37.83 28.97 24.31 50.86 51.38 38.45 30.39 24.84

Method CSL-Daily
Dev Test

Gloss-free ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
GASLT [23] - - - - - 20.35 19.90 9.94 5.98 4.07
GFSLT-VLP [24] 36.70 39.20 25.02 16.35 11.07 36.44 39.37 24.93 16.26 11.00
AVRET (ours) 36.11 38.40 24.28 15.83 10.86 36.64 39.73 25.27 16.41 11.28
AVRET-VLP (ours) 37.22 40.22 26.33 17.27 12.48 37.63 40.43 26.52 17.61 12.63

Gloss-based ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
BN-TIN-Transf [12] 37.29 40.66 26.56 18.06 12.73 37.67 40.74 26.96 18.48 13.19
AVRET (ours) 46.34 47.31 34.67 23.80 17.84 47.26 48.78 35.11 24.55 18.22
SignBT* [12] 49.49 51.46 37.23 27.51 20.80 49.31 51.42 37.26 27.76 21.34
XmDA* [18] 49.36 - - - 21.69 49.34 50.92 38.21 28.31 21.58
MMTLB* [19] 53.38 53.81 40.84 31.29 24.42 53.25 53.31 40.41 30.87 23.92

C(Fen, Fbm, Faf ) in Table V also confirm that the effect of
concatenation method is weaker than matrix-vector addition.

4) Analysis of Joint Loss Design: In Section III-E, we
constrain two AM modules by introducing weakly supervised
constrained loss term LAM ′ and LAM ′′ . Therefore, we further
conduct comparison experiments to explore and analyse the
effectiveness of LAM ′ and LAM ′′ with different loss weights
in training. As shown in Table VI, we set the value of loss
weight λTrans to a constant value of 1.0, which corresponds
to λT in SLTT [10]. This is because LAM ′ and LAM ′′ are
not involved in the inference of the target sentence, and we
must use LTrans to supervise the inference of the target
sentence to constrain it. When λAM ′ or λAM ′′ is 0 indicates
that the corresponding loss function is not used and the
constraint effect cannot be worked, so the translation effect

on PHOENIX14T is not ideal. When both λAM ′ and λAM ′′

are set to 1.0, the translation performance of the test set
is significantly improved. However, when the value of both
loss weights are increased, the translation effect acquires
further improvement at the beginning, but decreases gradually
afterwards. It demonstrates that both loss weights need a
suitable value in order to achieve the best training effect.
Besides, as we increase λTrans, the translation effect also
decreases gradually. And our experiments on CSL-FocusOn
also verified the effectiveness of LAM ′ and LAM ′′ . Therefore,
in terms of the experimental results on both datasets, the use
of weakly supervised constraints with appropriate loss weight
for the AM modules is crucial for our method.

5) Analysis of different optimizers: While the Adam [57]
optimizer is widely used in CSLR and SLT tasks, in some
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TABLE X
COMPARISON OF EVALUATION RESULTS FOR END-TO-END SLT ON CSL-FOCUSON.

Method Dev Test
Gloss-free ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
RNN+Luong [20] 29.12 28.87 16.57 10.52 6.15 28.03 28.37 16.17 9.81 5.84
RNN+Bahdanau [20] 28.85 29.15 16.82 10.64 6.42 28.41 28.33 16.25 10.06 6.28
SLTT-S2T [10] 30.58 30.23 17.91 11.51 7.33 30.05 29.87 17.45 11.18 7.11
Multi-channel [11] 29.81 29.53 17.17 11.09 7.64 29.88 30.02 17.73 11.39 7.42
GASLT [23] 30.91 31.11 18.52 12.19 8.23 30.38 30.32 18.03 11.52 7.84
TSPNet-Joint [22] 31.14 30.90 18.31 12.11 8.05 30.17 30.52 18.25 11.78 7.95
AVRET (ours) 31.28 31.14 18.75 12.42 8.81 31.08 31.35 18.67 12.24 8.37
GFSLT-VLP [24] 31.21 32.41 19.21 13.47 9.34 30.88 32.18 19.03 13.31 9.12
AVRET-VLP (ours) 32.18 32.74 19.47 13.65 9.64 33.02 33.15 19.88 14.12 9.81

recent unsupervised learning research, we note that [27]
achieves excellent training results using the AdamW [54]
optimizer. Therefore, we further explored the effectiveness of
different optimizers in our approach. The experimental results
are shown in Table VII, where different optimizers can de-
liver different performance improvements. On PHOENIX14T,
the AdamW optimizer shows the relatively best translation
performance on both development and test sets and makes the
BLEU score of the test set exceed the development set. On
CSL-FocusOn, AdamW also outperforms the other optimizers.
Adadelta [56] is not as effective as other optimizers. It shows
that AdamW is more suitable for our method than other
optimizers.

6) Analysis of SL video features and pre-training: To
evaluate the effectiveness of gloss-based and gloss-free SL
video features as well as model pre-training, we conduct end-
to-end SLT experiments by using different SL video features
and pre-training methods, and the experimental results are
shown in Table VIII. For the gloss-free features, we per-
form self-supervised pre-training via Efficientnet-b0 [48] and
VideoMoCo [28] (En-b0+VMC), and fine-tuning on [24] to
extract the SL features of PHOENIX14T and CSL-FocusOn,
respectively, and then use VMP and VLP for model pre-
training on AVRET. As shown in Table VIII, VLP can bring
better performance improvement on both datasets. This is
mainly because the key to both AVRET and VMP is to
mask visual features, while VLP is to mask SL sentences.
Therefore, the performance improvement of VMP relative to
VLP is limited. For comparison with GASLT [23], we also use
TSPNet [22] to extract SL video features. The results show that
our method performs better than GASLT. Besides, to compare
with the baseline model SLTT-S2T [10] on PHOENIX14T,
we use gloss-based features for SLT and show a significant
performance gain. This also verifies that glosses can not only
improve the SLT effect during training, but also generate more
discriminative SL features.

7) Limitation: The selected dropout threshold of AM mod-
ule is related to the average frame size in the different datasets,
and the size and boundaries of SL video clips also need to be
set manually. If the appropriate dropout threshold, window
size and stride cannot be set, it will affect the final SLT

performance.

D. Comparisons with State-of-the-art Methods
1) Evaluation on PHOENIX14T and CSL-Daily: As shown

in Table IX, we report the translation results of AVRET with
existing models on the end-to-end SLT task to demonstrate
the effectiveness of our method. For fair comparison, the
translation results of each dataset are divided into two groups
gloss-free and gloss-based according to the features used. Note
that SignBT [12], ConSLT [17], XmDA [18], and MMTLB
[19] use gloss annotations to participate in SLT training.

As shown in gloss-free results on PHOENIX14T, GFSLT-
VLP [24] has a very significant performance improvement
on Transformer-based SLT network by masked self-supervised
pre-training with visual language supervision learning. So, we
apply it to AVRET for pre-training and feature fine-tuning.
As the results shown in Table IX, our AVRET-VLP achieves
the best performance. For the gloss-based results, AVRET
achieves better performance on end-to-end SLT without using
glosses in training and surpasses the SLTT-S2T with BLEU-
4 scores of +3.62 and +4.67 on development and test sets,
respectively. Compared with the current state-of-the-art SLT
methods, AVRET achieves competitive performance. It not
only outperforms HST-GNN and XmDA on both sets, but also
surpasses SignBT on the test set. However, we are slightly
below SignBT in the development set.

In Table IX, we also compare AVRET and AVRET-VLP
with some SLT methods on CSL-Daily. For the gloss-free re-
sults, AVRET is weaker than GFSLT-VLP on the development
set, while it performs better on the test set. And, benefit from
the use of VLP in AVRET, we achieve even more significant
performance by about +1.35 on test set. For the gloss-based
results, BN-TIN-Transf [12] is the baseline model that does
not use sign back-translation during training. Our method is
weaker than SignBT and MMTLB, although it has a larger
improvement and superiority than BN-TIN-Transf. The main
reason is that the performance improvement of these methods
relies mainly on gloss and multi-modality pre-training, while
our model starts from the most basic SLT, which is more
effective when no additional annotations are involved in the
training.
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2) Evaluation on CSL-FocusOn: In Table X, we compare
AVRET and AVRET-VLP with some SLT methods on CSL-
FocusOn. The experimental results show that AVRET-VLP can
achieve better SLT performance than GFSLT-VLP. However,
although our method still achieves the better BLEU score, the
performance improvement of the method on PHOENIX14T
and CSL-Daily is more significant than on CSL-FocusOn,
which is attributed to three factors. Firstly, we cannot use
CNN-LSTM-HMMs to extract frame-wise SL video features
since CSL does not have datasets like in [58]–[60] that can
provide the same language with extra supervision. The experi-
mental results in [10] also show that pre-trained CNN-LSTM-
HMMs features are more effective than Efficientnet [48], and
it can effectively improve the performance of CSLR and SLT.
Secondly, although CSL-FocusOn contains fewer videos than
PHOENIX14T, the average frame size and vocabulary size of
a single video exceeds PHOENIX14T, and the vocabulary size
even exceeds 20k. It may be due to the special scenarios of
news and the irregular spoken Chinese expressions. Finally,
Chinese sentences are separated differently from English or
German, and the news scenarios also greatly increase the
difficulty of the Chinese words separation tool. Therefore, our
method is more effective in dealing with PHOENIX14T which
has high-quality annotations.

V. CONCLUSION

In this paper, we propose an adaptive video representa-
tion enhanced Transformer (AVRET) to improve the end-
to-end SLT performances without using glosses in training.
To solve the weakly supervised problem of end-to-end SLT,
we introduce an adaptive masking module that can drop out
different video frame representations adaptively to enhance
the input samples. It can be equipped not only before the
Transformer encoder, but also between the encoder and the
decoder. Particularly, we use SL sentences to impose the
weakly supervised loss constraints on it. Furthermore, we add
a local clip self-attention module in the encoder to learn clip-
level video information. By connecting it with masked self-
attention, it also endows the encoder to learn local and global
video information. To fuse the two spatio-temporal features
generated by the AM module and encoder, we introduce an
adaptive fusion module that adaptively enhances the important
information in both features to produce more robust feature
representation. Moreover, we construct a new Chinese contin-
uous SL video dataset based on a news program, namely CSL-
FocusOn, and share its construction method. In summary, our
method is very simple and flexible and can be easily applied
to Transformer-based models. Extensive experiments on the
three datasets also demonstrate the superiority of our method.
We hope that our work will promote SLT research.
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