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COMPUTING A SQUARE ROOT
FOR THE NUMBER FIELD SIEVE

JEAN-MARC COUVEIGNES

ABSTRACT. The number field sieve is a method proposed by Lenstra, Lenstra, Man-
asse and Pollard for integer factorization (this volume, pp. 11-40). A heuristic analysis
indicates that this method is asymptotically faster than any other existing one. It
has had spectacular successes in factoring numbers of a special form. New technical
difficulties arise when the method is adapted for general numbers (this volume, pp.
48-89). Among these is the need for computing the square root of a huge algebraic
integer given as a product of hundreds of thousands of small ones. We present a
method for computing such a square root that avoids excessively large numbers. It
works only if the degree of the number field that is used is odd. The method is based
on a careful use of the Chinese remainder theorem.

1. INTRODUCTION

We begin by recalling the basic scheme of the number field sieve, cf. [7]. Let n be
a positive integer that is not a power of a prime number. In order to factor n, we
first find many congruences modulo n involving a given set of numbers called the
basis. This is done by means of a suitable ring of algebraic integers. To construct
this ring, one chooses a positive integer d, which is the degree of the ring to be
constructed; if n has between 110 and 160 decimal digits then d = 5 is a good
choice. Next one chooses a monic polynomial f € Z[X] of degree d that represents
n, i.e., f(m) = n for some integer m. We want both m and the coefficients of f to
be as small as possible. Indeed, we can easily make them smaller than n'/¢. Now,
if f 1s reducible, then a non-trivial factor h of f should give a non-trivial factor
h(m) of n. Otherwise, we consider the number field K = Q[X]/(f) together with
the morphism ¢ from the order Z[a] to Z/nZ for which ¢(a) = m, where we write
a = (X mod f). We then look for algebraic numbers of the form a + ba such that
both a+ bm and a+ ba are smooth. This means that, for a suitable positive integer
y chosen at the beginning, both a + bm and the norm N(a + ba) of a + ba are
integers divisible only by prime numbers not exceeding y. With each prime number
p < y we associate a function v,:Z — {0} — Z/2Z, which assigns to any non-zero
integer k the residue class modulo 2 of the number of factors p in k. In the same
way, we associate with any prime ideal p of Z[a] of norm at most y the function
vy Zla] — {0} — Z/2Z that maps an element to the residue class modulo 2 of the
number of factors p appearing in that element (cf. [3, Section 5]).
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As suggested by Adleman [1], we also use characters obtained in the following
way. Choose a collection of non-zero prime ideals g of Z[a] that are different from
all primes p used before and that do not divide the discriminant of f. With each
such q we associate the function x4: Z[o] — q — Z/2Z defined by

(2) { 0 if z is a square modulo g,
Xal#) = 1 otherwise.

The first part of the algorithm consists of the search for many pairs (a,b) of
relatively prime rational integers for which both @ 4+ bm and a + ba are smooth,
and @ + bm > 0. In the second part one looks for subsets S of the set of pairs that
have been found for which

H (a +bm) is asquare in Z,
(a,b)eS

H (a + ba) is a square in K.
(a,b)eSs

One hopes that this is ensured by the following three conditions:

Z vp(a 4+ bm) = 0 mod 2 for all prime numbers p < y,

(a,b)eS

Z vp(a+ ba) = 0 mod 2 for all prime ideals p of Z[a] of norm < y,
(a,b)eS

Z Xq(a + ba) = 0 mod 2 for all g that have been chosen.
(a,b)eS

Indeed, these conditions are necessary. If enough characters y, have been chosen
then one may expect that the conditions are sufficient as well.

This leads to a large algebraic number v that is given as a product of many small
ones, and that is a square in Z[a] (see [3]):

(1) v = f’(a)2 . H (a+ba) = ﬂ2 with 8 € Z[«].

(a,b)eS

We also know that the image of v under ¢,

e(7) = f'(m)*- H (a + bm) mod n,

(a,b)eS

satisfies

Fm)- I (a+bm)=f'(m)*- [T p*r =%,

(a,b)es p<y

where the integers e, can be determined from the prime factorization of the numbers
a + bm, and where

v=f'"(m)- Hpef’.

p<y
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As for 3, we know its decomposition as an ideal of Z[a]; but since we do not know
generators for the prime ideals of norm at most y, this does not enable us to write
down an explicit expression for 3 itself. However, we do know an expression for the
norm of 3:

(2) N(8) = £N(f'(a)) - [] p".

p<y

where the f, are non-negative integers that can be determined from the prime
ideal decomposition of 3. Furthermore, since 3 € Z[a] there exists a polynomial
B € Z[X] of degree at most d — 1 such that # = B(a). We shall compute this
polynomial.

The method suggested in [3] is as follows. First, look for an odd prime ¢ such
that the polynomial f remains irreducible modulo ¢. Then, compute ¥ mod ¢ by
performing all multiplications in the product (1) modulo ¢q. We view v mod ¢ as an
element of the finite field F s, and we can easily compute the square roots of this
element. Next, we choose one of the two square roots and lift it to a square root
modulo ¢2, ¢*, ¢%, ..., using Newton’s method, until the modulus is larger than
twice a given estimate of the size of the coefficients of B. In this manner we find
B. The congruence

B(m)* = ¢(8)* = ¢(B%) = ¢(7) = v’ mod n

suggests that ged(B(m) — v, n) has a good chance to be a non-trivial factor of n.

One of the difficulties with this method is the very large size of the numbers that
occur in the last iterations of Newton’s method. The time taken by this computation
is comparable to the time taken by the entire algorithm, except if one uses fast
multiplication techniques; but even if that is done one may have serious practical
difficulties with the very large integers that arise. It is particularly disconcerting
that the huge numbers that we compute are ultimately replaced by their remainder
modulo n.

The approach that we suggest is to work with many different moduli m; = qf’,
where the ¢; are distinct odd primes for which f is irreducible modulo ¢;. We
first compute, as above, a square root §; of ¥ modulo each m;, i.e., a polynomial
B; € Z[X] of degree at most d—1 such that 3; = B;(«) satisfies 37 = v mod m;; the
coefficients of B; matter only modulo m;. If 5 = B(«a) denotes, as above, one of the
two square roots of v in Z[«a], then we have §; = £ mod m;, where the signs are
a priori unknown. Our first problem is to compute those signs or, equivalently, to
make sure that the various ; are congruent to the same square root f modulo m;.
Next, using the Chinese remainder theorem, we can compute § = B(a) € Z[a]
and ¢(3) = (B(m) mod n) € Z/nZ. However, the coefficients of B and the number
B(m) are so large one should avoid explicitly calculating any of them. We shall see
that once the B(m) mod m; are known, we can compute B(m) modulo n without
computing B or B(m) itself.

2. DESCRIPTION AND ANALYSIS OF THE METHOD

We first consider the sign problem discussed at the end of Section 1. We shall make
the assumption that the degree of the extension K/Q is odd. The basic observation
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is that, under this hypothesis, we have N(—z) = —N(z) for any non-zero element
z of K. Hence, exactly one of the two square roots of v has positive norm. Let
that one be called 3. Suppose, as above, that we know a square root 3; = B;(«) of
v modulo m; = qf’ for each i, and that we want to test whether §; = # mod m;
or f; = —fF mod m;. We can decide this by looking modulo ¢;. Thus, we compute
the norm of (B mod ¢;), viewed as an element of the finite field of cardinality ¢f;
this norm is the (¢f — 1)/(g; — 1)th power of (% mod ¢;), and it belongs to the
prime field Z/q;Z. We compare this norm with the residue modulo ¢; of the norm
of 3, which is computed by means of formula (2), but with £N(f’(«)) replaced by
its absolute value; the multiplications in (2) are performed modulo g¢;. If the two
norms are equal, then 8; = 8 mod m;, and we keep B;. If they are opposite, then
we replace B; by —B;.

Substituting m in B; we find B(m) modulo m; for all ¢, and we wish to compute
B(m) modulo n. We discuss this problem in a more general setting.

2.1. Changing moduli. In modular arithmetic one represents an integer by means
of 1ts residue classes modulo each of a set of pairwise coprime integers m;. The
theoretical basis of modular arithmetic is formed by the Chinese remainder theorem.
An introduction to the algorithmic aspects of modular arithmetic, and a discussion
of its applications, can be found in [4, Section 4.3.2].

We consider the following algorithmic problem from modular arithmetic (cf.
[9, Section 4]). One is given a collection of pairwise coprime positive integers m;,
a positive integer n, for each 7 an integer z; with 0 < z; < m;, and a small
positive real number ¢, for example ¢ = 0.01. In addition, one is provided with the
information that there exists an integer z satisfying z = z; mod m; for each i, and
|z < (% —¢) [, ms; clearly, such an integer z is unique if it exists. The question is
to compute the residue class of * modulo n.

If we define the quantities

(3) M :Hmi,

(4) M; =[] mj = M/m;,
J#L
(5) a; = 1/M; mod m;, 0<a; < my,

then the number z = ZZ a; M;z; is congruent to x modulo M. Hence, if we round

z/M to an integer: r = [Z + 1], then we have & = z — rM. The point is that we

can calculate r without calculating the possibly very large number z, as follows.
From z = z—rM and our hypothesis |z| < (3 — €)M it follows that % + 3 is not

within € of an integer. Hence, to calculate r it suffices to know an approximation ¢
to z/M with |t — z/M| < e. Such an approximation can be obtained from

(6) D D

I3

All terms in the sum are between 0 and max; m;, so they can be computed as low
precision real numbers.
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This results in the following algorithm. Denote by rem(a, b) the remainder of the
Euclidean division of a by b.

1. For each %, compute rem(M;, m;) by multiplying out the product (4) modulo m;,
and compute the numbers a; as in (5) with the extended Euclidean algorithm.

2. Compute rem(M, n) by multiplying out the product (3) modulo n, and compute
rem(M;, n) for each i; if gcd(m;,n) = 1 one can do this by dividing rem(M, n)
by m; modulo n;

3. Compute a number ¢ that differs by less than ¢ from the sum in (6), and round
t to an integer: r = [t + 1].

4. Output

rem(z,n) = rem((z a; rem(M;, n)mz) —rrem(M,n), n) .
(If m; is much larger than n one may prefer to replace a; and z; by rem(a;, n)
and rem(z;,n) in this expression.)

Note that we never handle numbers substantially larger than the moduli.

2.2. Size and complexity. We derive upper bounds for the integers b; for which
B = by +bia+ -+ bs_1a?" ! with 3 as in (1). For f = Z?:o a; X we write

£l = (Ez 0 af)l/z, and we let u be an upper bound for all numbers |a|, |b| for

which (a,b) € S.

Proposition. We have
[baf < a2 F170 - (2l £)#S
for0<i<d—-1.

Proof. The field K has d embeddings into the field of complex numbers, and we
denote the image of an element ¢ € K under the kth embedding by ¢(*). We have

f=TI= (X - a®), and
d
(7) max(1, [a®))) sH x(1, 1)) < [|£]]

for each k; the first inequality is trivial, and the second is due to Landau [5; 8,
Chapitre IV, Section 3.3].

Let ég, 61, ..., 64—1 € K be defined by Zd Ls Xt = F/(X — a), so that § =
Z;.i;é_l ai+j+1a]. By [6, Chapter ITI, Proposition 2] we have
(8) T8/ (@) = 3 49500,
k=1

where Tr: K — Q is the trace function. The Cauchy-Schwarz inequality and (7)
imply that
d—1—i ' '
BEP <P D P < d AP (0 <i<d-1).
j=0
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From

B/ F @) =TT la+ba™] < (2ullf])#®

(a,b)eS

we now obtain

d
i = [ 326090/ /@) < a2 |17 - 2ul 1S,

k=1

as required.
If f is chosen as in [3], then we have ||f] < Vd-n'? and |m| < n'/? and
therefore

9) |B(m)| < d@+5)/2 . (2u/dnt/4)#512,

Note that the three factors in this upper bound are of completely different orders
of magnitude. In realistic cases, the last factor has millions of decimal digits, the
middle one has between one and two hundred digits, and the first one has just a few
digits. We refer to [3, 9.3 and Section 11] for an estimate of 4 and #S as functions
of n and d.

The estimate (9) is good enough to enable us to get a rough impression of the
precision needed, 1. e., the number and size of moduli m;. Note that too many moduli
would make us waste time, while not enough moduli would give an incorrect result.
In order to get a more accurate estimate, we can explicitly compute the zeroes a(*)
of f as low precision complex numbers. We can then evaluate the complex numbers
65’“) and f’(a(k)), and, multiplying out the product (1), the real numbers |8
Then we obtain from (8) an upper bound for |b;|. This leads to an upper bound for
B(m) that is better than (9).

We now give a rough estimate of the complexity of our method as a function of
the logarithm of an upper bound like (9) for B(m); let this logarithm be called s.
For the sake of comparison, we mention that the square root method proposed in [3]
takes time s'+°(1) if fast multiplication techniques are used, and s2+°(1) otherwise,
and that the entire number field sieve is conjectured to run in time s2¥°(1) gee [3,
9.3 and Section 11]; here and below the o(1) is for n — oo. The time taken by our
method depends on the size and the number of the moduli, and on whether or not
fast multiplication techniques are used. We consider two extreme cases.

In the first case the moduli are chosen as small as possible. We assume, heuristi-
cally, that f is irreducible modulo one out of every d primes (see the remark below).
We take the m; to be the first ds(1+40(1))/log(ds) such primes. Their product will
then be s'+°(1) which is large enough for the algorithm of 2.1. From d = s°(!) one
sees that both the number of moduli and the largest of them is of the order s*+°(1)
The most time-consuming part of the method is the computation of the product
(1) modulo each m;. This requires s2+o(1) multiplications. Since all multiplications
are done with small numbers, 1t is not clear how fast multiplication techniques can
help at all. It is conceivable, though, that the computation can be speeded up by
some divide-and-conquer technique.

The second extreme possibility is to fix the number of moduli and to choose
each m; to be exp(sl‘l'o(l)) for some positive constant ¢. In this case we can use fast
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multiplication, and the time taken is s'+°(*). This is also achieved in [3] by means
of a single modulus. With this choice of moduli one does ultimately handle very
large integers.

The conclusion is that from a theoretical point of view our method does not rep-
resent an improvement over [3]. In practice, however, our method has the advantage
of offering the possibility to work with much smaller numbers, and in addition it
can be run in parallel. The number and the size of the moduli to be used depend
strongly on the features of the available computing equipment. In [2] many small
moduli are chosen, which is justified by the use of a massively parallel computer.
One can imagine that in other situations it is desirable to use larger moduli so as
to take advantage of sophisticated multiplication techniques. In principle it is not
necessary to let the moduli be of the same approximate size: if several different
computers are used, then one can adapt the sizes of the moduli to the individual
machines.

Remark. It was pointed out in [3] that primes q for which f is irreducible modulo ¢
do not necessarily exist, but that for “most” f one may expect that one out of every
d primes has this property (see [10]). If the degree d, which we assumed to be odd,
is a prime number, then indeed every irreducible polynomial f € Z[X] of degree d
remains irreducible modulo at least one out of every d primes (asymptotically). This
applies in particular to d = 3, 5, and 7. For the proof it suffices, by the argument
of [3, Proposition 9.1], to show that every transitive permutation group G of prime
degree d contains at least #G/d cycles of length d. Indeed, by Cauchy’s theorem
G has an element of order d, and this element must be a d-cycle. Letting G act
by conjugation on the set of its d-cycles one finds that the number of d-cycles is
divisible by #G/d, as required.

The complete algorithm may be summarized as follows.

Algorithm. Let the integers n and m, the integer v mod n, the polynomial f,
and the set S of pairs (a,b) be given, as in the number field sieve. This algorithm
determines the possibly trivial factorization of n that the set S gives rise to.

1. Choose the moduli m; = qf’ according to the above remarks. This necessitates
the computation of complex approximations to the a(?) and |ﬂ(i)|.

2. Compute for each i the numbers rem(M;, m;), a;, and rem(M;, n) as in 2.1.

3. For each modulus m;, compute the product

yi= 2 H (a4 bX) mod (f,m;),

(a,b)eS

as well as a square root 3; of ;.

4. Compute Ny i, the norm of 8; mod ¢;, and N» ;, the product in (2) modulo ¢;.
If N1 ; # Na,; then replace §; by —f;. Let B; € Z[X] be a polynomial of degree
< d —1 for which g; = B; mod (f, m;), and compute B;(m) (modulo m;). This
step 1s to be performed for each i.

5. Compute B(m) mod n from the B;(m) using the quantities calculated in step 2
(see 2.1).

6. Output ged(B(m) — v, n).

Note that steps 3 and 4 can be parallelized.
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