
HAL Id: hal-04526492
https://hal.science/hal-04526492v1

Submitted on 29 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Open-source Software-hardware Integration Scheme
for Embodied Human Perception in Service Robotics
Iaroslav Okunevich, Vincent Hilaire, Stéphane Galland, Olivier Lamotte,

Yassine Ruichek, Zhi Yan

To cite this version:
Iaroslav Okunevich, Vincent Hilaire, Stéphane Galland, Olivier Lamotte, Yassine Ruichek, et al..
An Open-source Software-hardware Integration Scheme for Embodied Human Perception in Service
Robotics. The 20th IEEE International Conference on Advanced Robotics and Its Social Impacts
(ARSO 2024), IEEE, May 2024, Hong Kong, China. �hal-04526492�

https://hal.science/hal-04526492v1
https://hal.archives-ouvertes.fr


An Open-source Software-hardware Integration Scheme for
Embodied Human Perception in Service Robotics

Iaroslav Okunevich, Vincent Hilaire, Stéphane Galland, Olivier Lamotte, Yassine Ruichek, Zhi Yan∗

Abstract— Perception of human beings is one of the basic
capabilities of service robots and is the prerequisite for interac-
tion between robots and humans. Although enabling hardware
and software technologies have made great strides, there are
not many open-source solutions that organically integrate the
two. To address this shortfall, this paper introduces an open-
source scheme of hardware and software integration for robotic
embodied human perception. The embodied entity includes a
robot chassis, a computing unit based on ARM architecture, a
3D lidar, a 2D lidar and four RGB-D cameras for robot exterior
perception, a display panel for human-robot interaction, a set
of LED lights to show the robot’s status and a sonar strip for
low-level obstacle avoidance. The perception software is fully
based on the Robot Operating System (ROS) which allows high
modularity, fully deployed to the embodied entity and running
at a rate of 30 Hz. The entire integration solution is very
portable and publicly available at https://github.com/
Nedzhaken/human_aware_navigation.

I. INTRODUCTION

Embodied perception of humans is one of the capabilities
that service robots need to possess [1], [2]. Its enabling
technology includes hardware, software, and how to properly
integrate the two. Hardware mainly includes sensors such as
cameras and lidars for exteroception, as well as computing
units that process sensory data. Cameras can provide rich
semantics, but are sensitive to lighting conditions and cannot
provide accurate distance information. While the capabilities
of lidar are just the opposite [3]. Therefore, multimodal
perception has advantages over unimodal perception, but the
challenge lies in how to integrate them effectively [4]. Typ-
ical considerations include the field-of-view (FoV, i.e., the
covered sensing area) of different sensors, the information
redundancy of different modalities, the complementarity and
interactivity between sensor capabilities, and even how to
resolve conflicts between them [5]. To have an intuitive
understanding, Fig. 1 shows our instrumented robot. The
robot is a prototype for navigation in public spaces with
large-scale long-term human detection requirements.

On the other hand, the computing power of embedded
devices and the rapid development of GPUs make it possible
to truly realize robot embodied intelligence. Therefore, the
development of robot software systems is increasingly fo-
cused on deployability on CPU-GPU hybrid platforms. Fur-
thermore, in the face of increasingly complex embodied enti-
ties, high modularization and loose integration are the trends.
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Fig. 1. Our instrumented mobile robot for human-aware navigation in
public spaces.

However, what principles should be adopted to modularize
the system, how to effectively define the interfaces between
different modules, avoid excessive software encapsulation,
maximize the reusability of modules, and deploy the entire
system to the edge, etc. are still open problems.

Judging from the existing technology, on the one hand,
there are various hardware and software to support robot
embodied human perception, but open-source software-
hardware integration solutions are rarely introduced. On
the other hand, solutions running on the x64 platform are
common, but few run on the ARM platform and can be
holistically deployed to the edge. In order to fill this research
gap, this paper proposes a software-hardware integration
scheme that

• is open-source and highly modular, in which the per-
ception and the control components are physically de-
coupled, which means that the entire perception system
can run independently of the robotic chassis and has
very good portability;

• enables the entire robot software system to be deployed
to the edge and operate at 30 Hz, where the perception



stack is fully deployed to ARM-based embedded de-
vices, which creates conditions for the true realization
of embodied intelligence.

II. RELATED WORK

Software and hardware integration is one of the fundamen-
tal issues in robotics. However, despite its self-evident impor-
tance, there is relatively little literature devoted to introducing
and exploring this topic. Early reported approaches focused
on overall system availability [6], subject to the hardware and
software at the time. Later, with the development of technol-
ogy, functionality was considered more in the integration. For
example, system integration of a robotic arm with a mobile
base was introduced [7], [8], enabling the mobile robot to
have object manipulation capabilities. In recent years, some
researchers have begun to pay attention to the performance
indicators that integrated systems need to meet to eventually
form industrial products. For example, an integrated solution
for cleaning robots in public places was proposed in [9],
in which the reliability of human and dirt detection was
emphatically evaluated; the flexibility of coupled integration
of position sensors, with the aim of improving the application
of self-driving cars in challenging environments, is presented
in [10]; and the real-time performance of an integration
scheme for forestry robot perception pipelines is evaluated
in [11]. In contrast, the integration scheme proposed in
this paper considers reliability, flexibility, and real-time in
combination, rather than any one aspect among them.

III. SOFTWARE-HARDWARE INTEGRATION

An autonomous mobile robot typically contains four major
components: sensors, actuators, computing units, and power
supplies. Based on the principle of “not reinventing the
wheel”, our solution first includes a mature commercial robot
chassis, which solves the three problems of actuator, com-
puting unit for robot control, and power supply. The robot
chassis is a Clearpath Jackal UGV with four driving wheels.
A CPU-based single board computer (SBC) is integrated
into the chassis for tasks with real-time requirements, such
as robot motion control and communication with essential
– typically high-frequency – sensors including four wheel
encoders, an inertial measurement unit (IMU) and a 2D
lidar. The chassis is powered by a 270-watt-hour lithium-ion
battery pack, which also powers additional computing units
and sensors, supporting approximately two hours of auton-
omy for the entire robotic system. Regarding the software
and hardware integration of the embodied human perception
system, we will next introduce it from five aspects: sensors,
computing units, communications, peripherals, and software.
As we mentioned before, the perception system is designed
with system portability in mind and does not target a specific
robot chassis.

A. Sensors

The selection of exteroceptive sensors mainly considers
three aspects: 1) long-term robot autonomy, especially the
perception system needs to be robust to various lighting

Fig. 2. Schematic representation (not to scale) of sensing areas of the
integrated sensors. The RGB-D cameras and the 3D lidar are used for
human detection and tracking around the robot. The 2D lidar is applied
in simultaneous localization and mapping (SLAM). The sonar belt is used
for obstacle avoidance.

conditions; 2) the largest possible range of perception, in-
cluding breadth and depth, and try to avoid dead spots;
3) acquisition of environmental semantic information for
distance information redundancy, especially including color
and texture information. In addition, secondary aspects are
also considered: 1) low-level and reliable obstacle avoidance;
2) response to boundary conditions such as glass walls. For
the above, a multimodal sensory system is required. In our
scheme, a 3D lidar, a 2D lidar, four RGB-D cameras and a
sonar belt are integrated. Their specifications are shown in
Table I, and their sensing coverage areas are shown in Fig. 2.

TABLE I
VARIOUS SENSOR SPECIFICATIONS INTEGRATED IN OUR SCHEME

Sensor Data release Measure. Horizontal Vertical
frequency distance FoV FoV

3D lidar 10 Hz 150 m 360◦ 30◦

2D lidar 40 Hz 30 m 270◦ -
RGB-D cam. 30 Hz 6 m 87◦ 58◦

Sonar 40 Hz 4 m 15◦ -

The 3D lidar (a Robosense RS-LiDAR-16) is mounted
on top of the entire perception system, 80 cm above the
ground. Like the 2D lidar, the sensor in this modality is
not sensitive to lighting conditions and is suitable for day
and night use. Since the 3D lidar typically has panoramic
scanning capability and detection capability of up to tens
of meters, the robot can detect humans or other dynamic
objects as early as possible [12], [13], and therefore have
more time to react accordingly. The shortcoming of lidar



is that it can only provide a set of sparse coordinate points,
which is not enough to understand the environmental context.
While some lidars provide intensity information, the value
of the intensity is entirely determined by the lidar’s internal
signal processing unit, which is usually a black box (for
commercial reasons) [14]. Therefore, it is necessary to add
visual sensors.

The 2D lidar is mounted 30 cm above the ground, facing
forward. Integrating this sensor instead of using a one-stop
solution based on the 3D lidar, as the lidar installed at a low
position is more in line with the needs of SLAM, and can
also cover the perception blind spot of the 3D lidar installed
at a high position. In addition, the use of 2D lidar, which has
higher measurement frequency, accuracy, and resolution than
3D lidar, is also beneficial for localization and collision-free
navigation of the robot in the deployment environment. In
our case, a Hokuyo UTM-30LX-EW 2D lidar is integrated.

Four Intel RealSense D455 RGB-D cameras are installed
32.7 cm from the ground and placed towards all sides of
the robot to provide a quasi-panoramic view. Due to our
safety and social interaction requirements for the robot, the
left and right cameras are slightly shifted to the front in
order to close the blind spot of perception. The negative
impact of this setting is to increase the visual blind spots
on both sides of the rear. A possible complement would
be to add a fifth camera to achieve panoramic coverage,
which would also increase the cost of software-hardware
integration. An economical and effective solution is to use
our multi-modal perception solution so that the robot can
rely on the panoramic perception of the 3D lidar together
with the back-end information fusion algorithm to achieve
the effect of blind filling. Although the cameras are sensitive
to lighting conditions, their ability to provide rich environ-
mental semantics and reliable close-range object detection
has made them one of the standard components of mobile
robots today.

Finally, five HC-SR04 UltraSonic sensors are mounted
23 cm from the ground to enhance collision detection in the
forward direction and to cope with some edge cases such as
glass walls.

B. Computing Units

In addition to the CPU-based computing unit inside the
robot chassis, we integrated a CPU-GPU-based computing
unit, Nvidia Jetson AGX Xavier, outside the robot. With
peak computing power of up to 32 TOPS and high-speed
I/O performance of 750 Gbps, it supports the data transfer
and computing resource needs of our human detection and
tracking system based on the 3D lidar and RGB-D cameras.

C. Communications

The connectivity between the various components of the
robot is shown in Fig. 3. Communications between all
hardware components are based on wired connections. As
a robotic system, the data transfer rate and communica-
tion bandwidth must be fully considered to avoid undue
challenges to the algorithm’s fault tolerance and to avoid
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Fig. 3. Schematic diagram of the connections between the various
components of the robot. The red and blue lines represent the power and
data connections respectively.

catastrophic data delay and loss. Based on this principle, the
2D and 3D lidars are respectively connected to the Jackal
SBC and the Nvidia AGX through Ethernet cables to ensure
that the sensory data is processed by the corresponding
computing units in time. The Jackal SBC and the Nvidia
AGX are directly connected via an Ethernet cable and
maintain soft time synchronization. Additionally, the four
RGB-D cameras are connected to the Nvidia AGX via an
USB hub.

D. Peripherals

As shown at the bottom of Fig. 3, the installed peripherals
include a set of LED lights to display the status of the robot
and a LED display for human-robot interaction.

E. Software

The software system has been fully implemented into
ROS [15] Melodic distribution with high modularity, as
shown in Fig. 4. It is divided into two parts: human per-
ception and robot control, which are deployed on the two
aforementioned computing units with loose coupling.

The human perception stack is built on a tracking-by-
detection pipeline. Specifically, human detection is per-
formed on the data generated by the camera and the 3D lidar.
Camera-based detection uses off-the-shelf YOLOv2 [16]
detector and first obtains the 2D bounding box of people
from the RGB image. Then it utilizes the registered depth
information to project the 2D bounding box to 3D and
calculates the 3D coordinates of the detected human (i.e.,
the centroid of the 3D bounding box, same hereinafter).
The lidar-based detection utilizes the Adaptive Clustering
(GPU version) SVM detector [12] to obtain the human 3D
coordinates directly from the point cloud. To reduce false
alarms, we developed a ROS package to remove background
point clouds, which correspond to occupied and unknown
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Fig. 4. Our current human-aware robot navigation software design. The red blocks refer to drivers, which are responsible for the sensory data representation.
The blue blocks represent state-of-the-art methods. The light green blocks refer to the modules we developed. The white blocks represent the modules
provided by the ROS navigation stack. The turquoise block represents the human-aware navigation module.

cells in the grid map. Then, a multi-target tracker [17]
is used and high-level information fusion is performed on
detections from different detectors. The final output is a
human position with covariance, speed, trajectory, and other
information [18]. It can be seen that in our current system,
the velocity of pedestrians is estimated by software, i.e. the
tracker. Hardware such as millimeter-wave radar can also
directly provide object velocity information based on the
Doppler effect [19].

Given that the integration scheme we developed will
eventually be used for human-aware navigation, additional
clarification is necessary here. The robot navigation can be
done with or without a map. For the former, we integrate
the map server and the AMCL modules provided by ROS
on the robot’s onboard PC, so that the robot can know its
global position in the map reference frame. In the absence
of a map, the robot performs ego-estimation based on pro-
prioception and/or exteroception. But no matter what kind
of navigation, under our software architecture, it can easily
incorporate human information around the robot, thereby
generating path planning with human awareness. This claim
corresponds to the turquoise module in Fig. 4. According to
its dependencies, the human-aware navigation module can
be flexibly deployed on the SBC side or the AGX side.
Benchmarking of different human-aware navigation modules
with the developed integration scheme is presented in our
work [20].

IV. EVALUATION

We evaluate the integrated system at micro and macro
levels respectively. At the micro level, we specify the inputs
and outputs of each module and show its average operating
frequency. At the macro level, we evaluate the effectiveness
of the perception stack by designing several test cases to
evaluate the results from system input to output using an
end-to-end approach. In our paper, we consider system
performance in a software engineering sense (CPU, GPU,
and RAM usage of the computing unit), rather in an algorith-
mic sense (accuracy of human detection and tracking). We
conduct laboratory experiments to ensure robust detection of

experimental participants and to minimize the impact of the
algorithm on the integrated system performance.

A. Micro level

From Table II we can see that both the 3D lidar driver
and the background removal module operate at a frequency
of 10 Hz, which corresponds to the preset spinning frequency
of the 3D lidar. The subsequent 3D object detector runs at
a higher frequency of 20 Hz to ensure timely processing
of the point cloud data. This result is higher than the best
performance (11 Hz) reported in [21]. Furthermore, although
the RGB-D camera driver and YOLOv2 detector run at 30 Hz
and 44 Hz respectively, the current module responsible for
projecting 2D object bounding boxes to 3D can only run at
a lower frequency of 25 Hz. This result is slightly inferior
to the best performance (28 Hz) reported in [21], at the
expense of better modularity. Ultimately, the multi-target
tracker operates at 30 Hz, which is on par with the data
release frequency of the RGB-D cameras and much greater
than that of the 3D lidar. To measure all frequencies reported
in this paper we use ”rostopic hz” command from rostopic
ROS package.

Additionally, it is worth knowing that the operating fre-
quencies of the 2D lidar driver and the localization module
are both 40 Hz, which is equal to the data release frequency
of the 2D lidar. This means that the actual pose of the robot
is updated with the 2D lidar data without any delay, thus
providing conditions for safe robot control.

B. Macro level

At the macro level, we track the Nvidia AGX’s CPU, GPU,
and RAM usage in the absence and presence of humans. In
addition, we measure the working frequency of the multi-
target tracker with different numbers of humans. During the
experiment, the number of people varies from one to three.
The maximum number of people is due to limited space in
the experimental room. As the output of the tracker is also the
output of the entire perception stack, measuring it provides
a glimpse into the effectiveness of the latter.

The experiments include two scenarios, each repeated
ten times. Due to very small deviations in results between



TABLE II
INPUTS, OUTPUTS AND OPERATING FREQUENCIES OF THE SOFTWARE MODULES

Module (ROS package name) Input Output Frequency
3D lidar driver (rslidar) Raw data 3D point cloud 10 Hz [SD = 500]
Background removal (lidar background removal) 3D point cloud, map 3D point cloud 10 Hz [SD = 77]
3D object detector (object3d detector gpu) 3D point cloud 3D bounding box 20 Hz [SD = 500]
RGB-D camera driver (realsense ros) Raw data Color and depth images 30 Hz [SD = 143]
YOLOv2 2D object detector (darknet ros) Color image 2D bounding box 44 Hz [SD = 400]
2D bounding box to 3D (rgbd detection2d 3d) 2D bounding box, depth image 3D bounding box 25 Hz [SD = 11]
Multi-target tracker (bayes people tracker) 3D bounding box Human trajectory and more 30 Hz [SD = 333]
2D lidar driver (hokuyo node) Raw data 2D point 40 Hz [SD = 5000]
Localization (amcl) 2D point, map Robot pose 40 Hz [SD = 48]

(a) The performance without people around the robot (b) The performance with one or more people around the robot

Fig. 5. The performance of the developed perception system.

individual trials, we report results from only one of the trials.
The first scenario aims to measure the system parameters
without any humans around the robot, the results of which
are shown in Fig. 5(a). It can be seen that the CPU usage is
about 75%. The GPU usage is less stable than the CPU, with
an average of 80%. The RAM usage rate starts to increase
from 10%, and the reason for this will be analyzed below.
As expected, the multi-target tracker runs at zero frequency
because there are no humans around the robot.

The second scenario evaluates the system with an increas-
ing number of people around the robot. Specifically, the robot
was first deployed in an empty room. Then, a person entered
the room and started to leave after 30 seconds. Next, two
people entered the room and also started to leave after 30
seconds. Finally, three people came into the room and started
to leave after 30 seconds. During the experiment, people were
asked to move around the robot at normal walking speed.
Through the entire process, the perception system correctly
detected and tracked all participants. The performance of the
corresponding three modules, as shown in the blue blocks in
Fig. 4, has been widely evaluated in the original papers [16],
[12], [17]. The experimental results are shown in Fig. 5(b).

The green, yellow, and red areas in the respective subplots
illustrate the time periods when one, two, and three people

enter and leave the room, respectively. The size of the area
increases with the number of people since more people
means more time needed to enter and leave the room.
Experimental results show that CPU usage increases when
humans are detected. However, the relationship between this
increase and the number of people remains unclear. Instead,
the GPU usage drops first after detecting people and then
returns to the value before the drop. The RAM occupancy
does not show a noticeable response to human detection.
The working frequency of the multi-target tracker is stable
at around 30 Hz after the appearance of humans, and it
is not sensitive to the number of people. To find out why
RAM usage grows with runtime, we performed additional
digging. First, the presence of humans is unnecessary, as
the growth can occur with or without humans. Similar to
an ablation experiment, we search for the source of the
problem by disabling individual modules in the system. The
experimental results are shown in Fig. 6. Specifically, we
tested 1) only 2D object detector, 2) only 3D lidar driver, 3)
only 3D object detector, and 4) the entire perception system.
Fig. 6 shows that the 3D object detector is the source of the
continuous increase in memory footprint. The reason is that
this detector calls the CUDA library optimized for AGX1,

1https://github.com/NVIDIA-AI-IOT/cuPCL



Fig. 6. The RAM footprint results for various perception system configu-
rations without human presence.

which is currently a closed source. Therefore, the current
problem of growth can only be located and cannot be solved
temporarily.

Based on the above experiments, our insights can be
summarized in two aspects.

• Compared to the system running at 20 Hz reported
in [18], our integrated system exhibited higher input and
output frequencies of the people tracker. Additionally
taking the results reported in [21] as a reference, the
above results show the broad industrial application
prospects of our proposed scheme.

• The increasing RAM usage hinders the long-term de-
ployment of the system, so the 3D object detector
should be improved.

V. CONCLUSIONS

In this paper, we presented a software-hardware integration
scheme for embodied human perception in service robotics.
The instrumentation details and ROS package collection are
publicly available to the community. The developed system
is designed for embedded hardware and can be deployed
holistically to the edge. Experimental results illustrate the
high performance of the integrated perception system with
the frequency of people tracker equal to 30 Hz. However,
the 3D object detector should be improved for long-term
application. The limit of work duration with the Adaptive
Clustering SVM detector depends on the RAM size of a
computing unit.

Our future work includes addressing the incremental RAM
footprint of the 3D object detector. Additionally, experiments
will be conducted in large public spaces with more partici-
pants to gain insights into the relationship between system
resource requirements and environmental dynamics.
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