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Abstract

Swarm robotics promises adaptability to unknown situ-
ations and robustness against failures. However, it still
struggles with global tasks that require understand-
ing the broader context in which the robots operate,
such as identifying the shape of the arena in which
the robots are embedded. Biological swarms, such as
shoals of fish, flocks of birds, and colonies of insects,
routinely solve global geometrical problems through
the diffusion of local cues. This paradigm can be explic-
itly described by mathematical models that could be
directly computed and exploited by a robotic swarm.
Diffusion over a domain is mathematically encapsu-
lated by the Laplacian, a linear operator that measures
the local curvature of a function. Crucially the geom-
etry of a domain can generally be reconstructed from
the eigenspectrum of its Laplacian. Here we introduce
spectral swarm robotics where robots diffuse informa-
tion to their neighbors to emulate the Laplacian op-
erator -enabling them to “hear” the spectrum of their
arena. We reveal a universal scaling that links the op-
timal number of robots (a global parameter) with their
optimal radius of interaction (a local parameter). We
validate experimentally spectral swarm robotics under
challenging conditions with the one-shot classification
of arena shapes using a sparse swarm of Kilobots. Spec-
tral methods can assist with challenging tasks where
robots need to build an emergent consensus on their
environment, such as adaptation to unknown terrains,
division of labor, or quorum sensing. Spectral methods
may extend beyond robotics to analyze and coordinate
swarms of agents of various natures, such as traffic or
crowds, and to better understand the long-range dy-
namics of natural systems emerging from short-range
interactions.

Main

In swarm robotics [3–5], robots collaborate to solve
a given problem. Each robot has a limited capac-

∗co-corresponding authors (equal contribution): genot@iis.u-
tokyo.ac.jp nicolas.bredeche@sorbonne-universite.fr

ity for sensing, processing, and actuation, but, col-
lectively, the robots compensate with their massive
parallelism, redundancy, and adaptability. Proof-of-
concepts in swarm robotics have showcased the con-
struction of nests [6], the formation of shapes [2, 7],
flying UAVs [8, 9] and social learning [10]. However,
these ad-hoc approaches rely on robots having direct
access to all necessary information in their surround-
ings [11]. It remains unclear how a swarm of robots
can solve a global problem like identifying the geome-
try of its entire environment in a decentralized way. In
nature, biological swarms solve geometrical problems
with limited perception and mobility [12–15]. Ants find
the shortest path between their nest and a food source
(foraging) [16, 17] and termites build 3D networks of
conduits to ventilate their nest [18]. Schools of fish or
flocks of birds move in a synchronized pattern (school-
ing or flocking) [19], and a colony of bees can split into
two colonies to grow (swarming) [20]. Cells depend on
the spatial gradients of chemicals (morphogens) to es-
tablish a universal positioning system [21]. Although
the details vary, these global patterns emerge from the
local diffusion of information across the agents of the
swarm. These biological phenomena hint at an under-
lying principle of information diffusion which, though
not explicitly calculating mathematical models, effec-
tively solves complex spatial problems.

Mathematically, the diffusion of a physical quantity
across space is described by the Laplacian ∇2 [22] -
a second-order linear operator that correspond to the
divergence (∇·) of the gradient (∇) and quantifies the
local curvature of a function: ∇2f = ∇ · (∇f), i.e.,
how quickly does the function vary with space. The
Laplacian is ubiquitous in physics [23] and describes
the diffusion of heat, matter or momentum (through
the heat equation), or the propagation of mechanical
or electromagnetic waves (through the wave equation).
The Laplacian also controls the energy level of a quan-
tum system (through the Schrödinger equation). It is
an intrinsic differential operator, meaning that it oper-
ates based on the internal geometry of a space without
reference to an external coordinate system, as opposed
to the gradient for instance. This property makes it in-
variant by rotation and translation, and is essential for

1

ar
X

iv
:2

40
3.

17
14

7v
1 

 [
cs

.R
O

] 
 2

5 
M

ar
 2

02
4

https://orcid.org/0000-0002-5893-9761
https://orcid.org/0000-0002-1467-2401
https://orcid.org/
https://orcid.org/0000-0003-0306-8943
https://orcid.org/0000-0002-9100-1855
https://orcid.org/0000-0002-8241-7461
https://orcid.org/0000-0001-7535-7432
mailto:leo.cazenille@gmail.com
mailto:genot@iis.u-tokyo.ac.jp
mailto:genot@iis.u-tokyo.ac.jp
mailto:nicolas.bredeche@sorbonne-universite.fr


Draft

Figure 1: Framework of spectral swarm robotics. a: Description of our contribution: a swarm of robots
computes the spectral fingerprint of its arena in a distributed way, so that each individual robot has its own
fingerprint estimate; the robots reach a consensus on this value across the entire swarm; finally, this value is used
to classify the shape in which the swarm is located. Our approach is validated using swarms of Kilobots [1, 2].
b: Comparison of results from the continuous and graph Laplace operators over 7 geometric shapes. Color codes
correspond to the local components of the second eigenfunction (in the continuous case) and eigenvector (in the
graph case). The graph cases have 250 nodes randomly distributed in the shapes. λ2 is averaged over 64 runs
with different seeds and shown with its standard deviation. To easily compare the continuous and graph cases,
values of the second eigenvalue λ2 are normalized to have a value of 1 for disk arenas. Images are re-scaled for
better visualization, computations are performed with arenas of the same surface. c: Workflow of the spectral
swarm algorithm (see Supplementary Sec. 3 for full details) for decentralized shape classification. Kilobots will
diffuse their internal state, resulting in a partition. Then the convergence rate of the diffusion process is used
to estimate λ2. The robots reach a consensus on this value across the entire swarm and show a different LED
color depending on its value, resulting in a classification decision.
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easily formulating physical and geometrical laws that
are the same across different frames of references.

The Laplacian is also a central concept in the fields
of differential geometry and spectral shape analy-
sis [24,25]. Mark Kac’s 1966 paper [26], “Can One Hear
the Shape of a Drum?” introduces a pivotal question
in mathematical physics, asking whether the shape of
a drum can be deduced from its sound. The vibra-
tional frequencies of a drumhead depend on its shape,
and through the Helmholtz equation correspond to the
eigenvalues of the Laplacian in the space [27].

The eigenspectrum of the Laplacian can be used as
a signature that encode crucial geometrical and topo-
logical properties about a shape: eigenvalues inform
on the presence of bottlenecks [25] and can serve as
a (often but not always unique) spectral fingerprints
of a shape [28–30]. Laplacian eigenvectors are natu-
ral indicators of how a shape can be partitioned into
parts (“nodal domains”) that are internally cohesive
but distinct from each other [31, 32]. The Lapla-
cian presents thus a promising yet unexplored tool for
swarm robotics to address geometrical problems only
solved currently by biological swarms (Supplementary
Sec. 1).

Here, we propose to develop spectral methods for
swarm robotics settings, bringing together the local in-
formation of each robot to reach a collective consensus
and precipitate collective decision-making. At a micro-
scopic level, the Laplacian can be fully computed: it
can be discretized with arbitrarily precision through a
random graph embedded in the space [28]. Specifically,
methods of spectral shape analysis extract global de-
tails about a shape (i.e., the macroscopic organization
of a swarm) by examining the local diffusion of infor-
mation within the graph of linked nodes (i.e., the graph
of communication channels between robots). The spec-
trum of eigenvalues of the Laplacian is utilized to study
and identify the graph shape, corresponding to the spa-
tial distribution of a robot swarm in our case.

Spectral swarm robotics

We introduce spectral swarm robotics - adapting
spectral approaches to be computed in a distributed
way on robot swarms (Supplementary Sec. 1). The
spectral signature of the Laplacian suggests a way for
a robotic swarm to sense the geometry of its arena with
diffusion (Fig. 1a, Supplementary Sec. 2). The diffu-
sion of information within a certain shape is strongly
influenced by its geometry.

Therefore, robots can learn the geometry of their
arena by passing information to each other to emu-
late the Laplacian operator: the robot swarm simu-
lates heat diffusion as each robot adjusts its internal
states to the average temperature (internal state) of
its neighbors. By looking at how quickly the swarm
gets to a stable state (i.e., by locally measuring the
relaxation time to the equilibrium), we can reliably es-
timate the eigenvalues locally. As a result, each robot
can determine the spatial configuration of the entire

swarm, exploiting the fact that some shapes are more
conducive to diffusion than others (e.g., heat can dif-
fuse uniformly across two dimensions in a disk, but
it is predominantly confined to one dimension in an
elongated ellipse). Robots then move to change their
neighbors and repeat these measurements several times
to reduce variance and eventually converge to an esti-
mated eigenvalue. While, for a finite swarm of robots,
this average value would not necessarily converge to
the true value of the continuous case, it can be used
as a fingerprint that helps the robot to sense its sur-
roundings.

In particular, the second smallest eigenvalue (λ2) of
the Laplacian, also known as “algebraic connectivity”
or “Fiedler value” [33] influences the swarm’s connec-
tivity and synchronization speed1, and is often used
as a fingerprint by the spectral shape analysis commu-
nity [28,34](Supplementary Sec. 2.3).

Figure 1b shows for seven different arenas the sec-
ond smallest eigenfunction f2 or eigenvector v2 of the
continuous and graph Laplace operators as well as the
corresponding eigenvalue λ2. The graph eigenvector v2
approximates well its continuous counterpart f2 and,
once normalized, the values of λ2 are very similar in
both cases. λ2 is higher in shapes with higher connec-
tivity, like the disk, and decreases with the presence
of nodes with lower connectivity acting as information
bottlenecks.

Our method enables decentralized classification of
robotic arena shapes, detailed in Fig. 1c, Supplemen-
tary Fig. 1, Methods and Supplementary Sec. 2 & 3.
The process begins with N robots randomly walking in
the arena until they are evenly distributed. They then
identify their neighbors, defined as robots within com-
munication range σ, forming a graph that captures the
swarm’s connectivity and the arena’s geometry. Next,
the robots engage in information diffusion rounds, up-
dating their states sni (i-th individual at the n time
step) based on the Laplacian operator’s diffusion law.
This reveals global spectral properties and allows each
robot to locally estimate λ2, corresponding to diffusion
rates.

Finally, robots average their λ2 estimates, leading to
a consensus on the arena’s shape, indicated by specific
LED colors for different shapes (e.g., gold for triangle,
violet for annulus, cyan for disk).

We tested this method using physical simulations
with up to 550 robots and classified seven geometric
shapes. Figure 2 showcases the behavior of the algo-
rithm in simulation. It confirms the evolution of the
sign and magnitude of state sn during the diffusion
stage. The swarm starts from a highly heterogeneous
sn, where typically half of the neighbors of each robot
i have a different internal state of the opposite sign
of s0i . With time, diffusion smooths out local dispari-
ties in sign: robots homogenize their individual states
with their neighbors and the swarm eventually parti-
tions into two stable nodal domains of opposite signs.
The partition is reproducible between runs for shapes

1The first smallest eigenvalue λ1 is always equal to 0.
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Partitioning
Gradual λ2
estimation

λ2 = speed of
convergence

Steps Time-lapse of sign(sn
i ) during one iteration Indiv. λ2

from one it.
Final λ2

after 30 it.n = 0 n = 15 n = 40 n = 60 n = 85 n = 105 n = 145 n = 200 n = 450

Converged Converged in sign to the Fiedler vector (second eigenvector v2 of the Laplacian matrix L) correct λ2: 66% correct λ2: 94%

Converged Converged Converged Converged Converged Converged Converged Converged Converged correct λ2: 28% correct λ2: 84%

Converged Converged Converged Converged Converged Converged Converged Converged Converged correct λ2: 38% correct λ2: 88%

Converged Converged Converged Converged Converged Converged Converged Converged Converged correct λ2: 50% correct λ2: 78%

Converged Converged Converged Converged Converged Converged Converged Converged Converged correct λ2: 9% correct λ2: 69%

Converged Converged Converged Converged Converged Converged Converged Converged Converged correct λ2: 47% correct λ2: 97%

Converged Converged Converged Converged Converged Converged Converged Converged Converged correct λ2: 72% correct λ2: 91%

Squared arena = diffusion has converged
in sign to the Fiedler vector v2

sign(sn
i ) Color code of estimated class

Figure 2: Representative time-lapses of the behavior of the proposed algorithm applied to 7 arenas
in simulations. Left: diffusion stage, resulting in a partitioning of the shapes (color code: sign of internal state
sni ). The second eigenvalue λ2 of the Laplacian matrix of the communication graph between robots corresponds
to the convergence rate of diffusion: the information diffusion converges at different rates depending on the
topology of the arena. Right: in turn, robots use the observed convergence rate to compute a local estimate
of this value iteratively refined at each iteration of the algorithm. After 30 iterations, the estimations have
converged and formed a consensus. Based on the value of λ2, the robots display a color code corresponding
to the detected arena shape. Images are re-scaled for visualization; during simulations, arenas surface are
normalized to be 500000mm2, with τ = 1/15 seconds corresponding to the amount of time between two steps
of diffusion. We use the same parameters as regime r3 of Fig. 3, with N = 300 robots and σ = 85mm. The
percentages of correct λ2 are computed over 64 runs.
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Figure 3: Classifying regimes of the system computed in simulations over 64 runs. a: Influence of the
number of robots N and of the field of perception σ on the accuracy. We filter the accuracy score to only show
results where the simulated diffusion sessions converge: empty bins correspond to results with more than 50% of
cases with algorithmic instabilities from over-connected graphs and numerical errors (i.e., without exponential
decay of sni ). We identify five representative regimes: r1 to r5. Examples of regime r3 behavior are shown in
Fig. 2. The best-performing results are found on the hyperbola N = 17S/(πσ2). Top-right corner: examples of
robot distribution in the annulus arena; colored disks around each robot represent their field of perception σ.
b: Evolution of estimated λ2 values over 30 iterations of the algorithm, for each arena. Line colors correspond
to the color code in Fig. 2. Only r1, r3, r5 are shown (r4 is similar to r3, and r2 is an over-connected case).
The order of λ2 values for each arena is generally conserved across regimes, except in r5, where the order is
inverted compared to r1, r3, r4. c: Confusion matrices and accuracy scores for regimes r1, r3, r5, showing the
performance of the system to accurately classify the shapes. Each row represents the instances of an actual
class (i.e., the shapes the robots are situated in) while each column represents the instances of a predicted class
(i.e., the shapes the robots report using LED color). The diagonal elements of the matrix (from top-left to
bottom-right) represent the number of points for which the predicted class is equal to the true class, i.e., the
correct predictions; perfect accuracy corresponds to the identity matrix. Off-diagonal elements in the matrix
describe the misclassifications, i.e., the instances where the model predicted a class that differs from the true
class. 5
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without symmetries (i.e., arrow), because the eigenval-
ues are not expected to be degenerate (i.e., λ2 < λ3,
and the eigenspace associated to λ2 is of dimension 1).
As for the magnitude, the absolute value of each si
decays exponentially after a sufficient time, although
the time needed to fall into this regime depends on the
spatial position of the robots. The signs of the si of
robots located near the interface are expected to re-
solve later than that of robots far from the interface,
which quickly converges. After the diffusion stage, each
robot estimates the diffusion convergence rate of (i.e.,
slope of log(|sni |)) to compute a local estimation of λ2.
Robots will then predict the shape of the arena they
are in depending on the value of λ2. Robots estimation
can vary depending on initial conditions and so will be
different at each iteration, considering robots move and
change their neighbors at the beginning of each itera-
tion. After 30 iterations, a consensus will emerge and
the probability of the swarm to correctly identify the
shape is strongly increased (e.g., from 66% to 94% for
the disk). The algorithm accuracy measures how often
the agents can correctly classify in a distributed way
the shape they are situated in. Supplementary Fig. 3
& 5 show in detail the improvement in accuracy when
going from one to 30 iterations.

Universal scaling law

We explored how shape classification accuracy was in-
fluenced by two parameters that are important for ex-
perimental design: the number of robots N and the
field of perception σ. Associated results are found in
Fig. 3a. Scaling laws properties give rise to five dif-
ferent regimes depending on chosen parameters: r1
to r5, that are separated through three hyperbolae
N = αS/(πσ2) with S the surface of the arenas, πσ2

the surface occupied by one agent, S/(πσ2) is the num-
ber of agents needed for full and non-overlapping cov-
erage of the arenas by the agents, and α is the coverage
ratio of the arena by the swarm. The constant α is an
intrinsic factor different for each hyperbola.

We find that the best pairs of parameters (N, σ) fall
along the hyperbola α = 17 (r1, r3, r4) shown in red
in Fig. 3a: r1 has a relatively high number of agents,
with low σ, r4 has a relatively low number of agents
but with high σ, and r3 is a middle-ground between
r1 and r4. As suggested by [35], highest values of field
of perception is not necessarily correlated with higher
accuracy. Typically, each robot is surrounded by an
empty area S/N (where S is the surface of the arena).
This gives a typical lengthscale l =

√
S/N for the dis-

tance between robots. Now the field of perception σ
must be finely tuned to accommodate this distance. If
σ is several times larger than l, then the details and
granularity of the shape are lost. If σ < l then the
connectivity of the graph drops and information is not
spread efficiently across the whole shape.

The lower boundary of the optimal conditions region
is the hyperbola α = 7.5 (white in Fig. 3a) that marks
the transition between graphs with several connected

components (below the curve) to only one component
(above the curve, normal behavior of the algorithm).
The mean number of connected graph components is
presented in Supplementary Fig. 6 (bottom). Below
the curve, agents can still propagate local information
from components to components when they move at
the beginning of each iteration and change their neigh-
bors. The swarm will converge to inexact λ2 estimates
but that may still be different depending on the shape
of the arena, as seen in regime r5 where the algorithm
can distinguish a disk from an annulus, but is not ac-
curate enough to identify 7 different shapes. Results
directly on the curve correspond to a “low-accuracy
valley” at the bifurcation between the two dynamics.

The upper boundary of the optimal conditions region
is the hyperbola α = 32 (black in Fig. 3a) that sepa-
rates convergent results (below the curve) from over-
connected results with algorithmic instabilities (regime
r2). The former are cases where the diffusion process
behaves as expected, with an exponential decay of |sni |
on all agents. The latter cases have over-connected
graphs that renders λ2 estimation difficult for two rea-
sons: 1) all arenas will correspond to relatively simi-
lar communication graph topologies and 2) too much
neighbors broadcast information, resulting in numeri-
cal instabilities. Supplementary Fig. 6 (Top) shows the
average number of neighbors of agents and that having
more than 25 neighbors does not allow the algorithm
to converge.

We estimated how many runs were necessary for
a swarm to discriminate the shapes (Fig. 3b). For
regimes r1 and r3, most shapes are readily separated
after a few iterations (e.g., the square and the disk are
easily separated from the rest). Following the central
limit theorem, the standard deviation of λ2 estimates
across runs converges as x−k with x the amount of
iterations, and 0 < k ≤ 1 a variable that depends
on the case. It takes about 20 iterations to separate
shapes with similar λ2, such as the square and the
disk. The confusion matrices in Fig. 3c confirm the
quality of classification: r1 and r3 have respectively
100% (perfect score) and 86% of accurately classified
shapes. Interestingly, the magnitude of λ2 is roughly
in line with the expected connectivity of the shape. A
convex shapes like a disk diffuses information roughly
ten times more quickly than a non-convex shape like
the annulus.

The way the agents move during their random walk
phase influences the diffusion dynamics (Supplemen-
tary Sec. 5.2). If the agents are evenly distributed
within their arena, and only form one connected graph
component they will be able to capture all local fea-
tures of the shape and communicate it to the entire
swarm – in this case, staying immobile and avoiding
the random walk phase would not have a detrimental
effect on the accuracy of the algorithm. Inversely, if the
agents are aggregated only in some parts of the arena,
and form several disconnect graph components (e.g.,
regime r5), it is necessary for them to disperse at each
iteration to change their neighbors and broadcast their
states from graph component to graph component.
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Figure 4: Comparison between theoretical, simulated, and experimental results on a two classes
classification setting with two shapes (disk and annulus) using one iteration of the algorithm. a,b: Examples of
arena partition in both the continuous and discrete (graph) cases. Colored zones and nodes correspond to the
sign of the local component of the Fiedler vector v2 of the Laplacian (red: negative, blue: positive). In both
cases, global information (i.e., access to the full Laplacian matrix) is used to compute v2. c: Evolution of the
internal state |sni | of each robot i during a diffusion session (i.e., using only local information) in simulations (64
runs). The slope of each respective curve is used to estimate the local value of λ2 on each robot i. d: Computation
of λ2 using global information directly from the entire graph in b. e: Distribution of λ2 values estimated on
each robot (violin plots) in simulations, compared to the value computed using global information from the
continuous Laplacian (red lines). Values are normalized so that the mean of disk values is 1.0. f: Time-lapses of
the algorithm, in simulations and in experiments, with 25 robots. Experimental photos are blurred to ease the
visualization of LED colors. Left: diffusion, resulting in partitioning (the color of each robot corresponds to a
local component of the Fiedler vector v2). Right: individual λ2 estimation on each robot from the convergence
rate of diffusion, and consensus (collective averaging) over the entire swarm. Robots show a LED color-code
according to the value of λ2: cyan when a disk is detected, violet for an annulus. Images are re-scaled for
better visualization; both simulations and experiments have arenas surface approximately equal to 70000mm2.
g: Confusion matrices and accuracy scores of simulations (over 64 runs per arena) and experiments (over 15
runs per arena).
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Extended Data Figure 5: Time-lapses of the experiments, with 25 robots, respectively for the disk (a)
and annulus (b) arenas. Experiments use the same parameters as simulations and experiments of Fig. 4.
Only the results of 16 runs are shown (over 30 considered runs). Time-lapses of all runs are presented in
Supplementary movie 1. Experimental photos are blurred to ease the visualization of LED colors (except left
column). Images are re-scaled for better visualization; experiments have arenas surface approximately equal
to 70000mm2. Left: Initial state of the robots before the start of experiments. Middle: diffusion, resulting in
partitioning (the color of each robot corresponds to a local component of the Fiedler vector v2). In the studied
configuration, robots typically converge in the domain n ∈ [60, 110] for the disk arenas and in the domain
n ∈ [180, 210] for the annulus arenas. In rare cases, the robots may still change state after convergence, due
to computation errors, or message transmission errors – in such case, the partitioning the robots converged
into may be broken (e.g., last experiment on the annulus arena). The spectral swarm robotics algorithm will
detect and ignore divergent cases after convergence (cf details in Supplementary Sec. 3). Right: individual λ2

estimation on each robot from the convergence rate of diffusion, and consensus (collective averaging) over the
entire swarm. Robots show a LED color-code according to the value of λ2: cyan when a disk is detected, violet
for an annulus. The robots detected the correct shape on 22 runs over 30 runs (15 runs on each arena), which
translates into an accuracy score of 22/30 = 73%.
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Experimental validation

We successfully validated experimentally our algorithm
on a swarm of 25 Kilobots robots (Fig. 4 and Fig. 5)
with the experimental setup described in Supplemen-
tary Sec. 4 (videos listed in Supplementary Sec. 5.3).
We focus only on two arenas: the disk and the annulus.
Those shapes were selected because they correspond
to the λ2 values that are the furthest apart (Fig. 3b).
To increase the difficulty of our experimental valida-
tion, and showcase the robustness of our algorithm, we
select particularly harsh conditions in term of num-
ber of agents and number of iterations. Indeed, sim-
ulation results (Supplementary Fig. 8) show that on
2-arenas classification tasks only one iteration of the
algorithm was sufficient, even for relatively small num-
ber of robots. In the experimental setup, robots start
well-distributed in the arena to study the performance
of the diffusion process (Supplementary Sec. 5.2). The
actual field of perception varies from robot to robot and
depends on their current position in the arena (environ-
mental effects), but a rough estimate places it around
85mm.

The cases that use only local information (simula-
tions and experiments in Fig. 4f) show similar behavior
compared to theoretical results computed using global
information (with access to the full Laplacian matrix,
either in the continuous or discrete case: Fig. 4a,b).
Notably, the diffusion processes in all four cases re-
sults in a graph partition in two equal zones, suggesting
that the swarm has correctly converged along the sec-
ond eigenvector. Figures 4c,d show instances of time-
evolution of the internal state of robots during a diffu-
sion process, respectively in a 25-agent simulation (c)
and computed directly on the full graph Laplacian (d):
both cases show an exponential decay, of which the
slope (i.e., converge rate) approximates λ2. In both
simulations and experiments, the diffusion processes
tend to converge faster in disk arenas than in annulus
arenas (Figs. 4g and 5a,b).

We consider that the diffusion process has converged
when two distinct nodal zones emerge. In most cases,
there will not be any evolution afterwards. However,
the diffusion process can sometimes diverge (i.e., par-
tition no longer encompasses only 2 zones) after reach-
ing convergence, due to the propagation of computa-
tion errors when the local states are close to 0. After
the diffusion has converged, the algorithm will ignore
any possible subsequent divergence in its estimation
of λ2. Communication errors and local asymmetries
in the Laplacian matrix (one-way communication be-
tween an agent and its neighbor) often render the par-
tition uneven (Fig. 5), despite algorithmic methods to
reduce communication errors (Supplementary Secs. 3.2
and 4.2.1).

Our approach is robust to these issues for shape clas-
sification purposes: we obtain accuracy scores of 73%
over 30 experiments and show that the behavior of the
algorithm in experiments matches the one seen in sim-
ulations (Fig. 4f,g, 95% of accuracy over 64 runs of
simulations) and in theoretical analyses (Fig. 4e).

Conclusions

We numerically showed that a swarm of robots con-
trolled by the spectral swarm robotics algorithm could
“hear” the shape of its arena in spite of the robots
having no physical sensors to probe their environment.
This was validated both in simulations and experimen-
tally.

Spectral analysis is robust and scalable and, in the-
ory, is not susceptible to error done by a single robot.
In the case of the naive gradient algorithm (which com-
putes the distance of each robot to a reference robot),
a single and transient error by a single robot could
be amplified and propagated in the swarm, eventually
making the whole computation unstable [36,37]. These
error cascades severely limit the scalability of the algo-
rithm, as punctual errors increase with the size of the
swarm. In contrast, we did not observe catastrophic
failures of computations with our approach (except for
over-connected cases), which we attribute to the in-
herent regularization brought by diffusion, an operator
known to smooth local noise and errors. If a robot
incorrectly computes its internal states, the error is
quickly corrected by the diffusion of information from
the neighbors of the faulty robot [7]. This self-repair
process by diffusion allows the algorithm to scale to
much larger swarms.

While it is theoretically possible for different shapes
to share the same spectrum, only a few such instances
have been discovered in the field of spectral shape anal-
ysis, and they tend to be anomalies with non-smooth,
non-convex boundaries [38]. It is likely that this may
not even apply to our approach, as robot motility inside
arenas can slightly bias our eigenvalue estimations: two
shapes with the same geometric spectrum may not have
exactly the same spectrum estimated by the swarm.

Spectral analysis by robotic swarm could be fur-
thered in several directions. We implicitly used a Neu-
mann boundary conditions (diffusion does not cross the
wall), but with robots that can sense walls, we could
use Dirichlet boundary conditions to estimate the dis-
tances of the robots to the nearest walls (to do that
one could clamp the state of robots near the walls, and
initializing other robots to 0 - the rate at which they
converge to 1 being a proxy for their distance to the
boundaries).

With more processing power, the robots could also
estimate eigenvalues beyond λ2 and get a finer view
of the shape’s spectrum, so as to discriminate a larger
number of shapes with fewer iterations. The method
also naturally extends to the 3rd dimension, which
could find use in swarms of flying robots.

Experimental validation, currently classifying only
the disk and annulus arenas, could be extended to
more shapes: this would require several iterations of
the algorithm with robots moving at the start of each
iteration to change their neighbors, making actual ex-
perimental tests on Kilobots to be difficult. Kilobots
in closed settings tend to aggregate towards the walls,
rending the distribution of Kilobots in a disk eventu-
ally converge to the same distribution as in an annu-
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lus. This could be alleviated by using a different kind
of robots, either embarked with a distinct morphol-
ogy preventing wall bottlenecks [39], or with a more
complex dispersion scheme. For now, the algorithm
requires the robots to be immobile during the diffu-
sion stage, and to move during the random-walk stage.
Our approach could be extended so that robots are
always moving, with no stop. However, this would in-
volve using a different information propagation mech-
anism than chemical diffusion: possibly taking inspira-
tion from fluid dynamics or on the synchronization of
moving oscillators (e.g., in nature: firefly synchronized
flashing, while constantly changing their neighbors),
or by adapting the emerging field of Graph Fourier
Transforms [40] in signal graph processing to dynami-
cal cases.
Spectral swarm robotics could also be extended to

other tasks: for instance, estimate the number of
robots in a swarm [37], identify the shape of objects in
an experimental arena, compute geometrical properties
of the environment from spectral analysis (number of
objects, curvature of walls, etc).

In summary, we introduced a way for a swarm of
robots to compute spectral statistics of their envi-
ronment in a distributed way, and providing effective
methods to close the gap between local interaction and
global dynamics to precipitate collective decision mak-
ing. This problem is critical because it will emerge in
any kind of real-world application of swarm robotics:
robots deployed in the field will always have to ad-
just their behavior depending on the geometry of their
environment. Our approach addresses this problem al-
lowing the swarm to recognize environmental features
and adapt to gain in efficiency.

Methods
Swarm robotics and Kilobots

We use Kilobots robots to test our approach (Fig. 1a,
Supplementary Fig. 2). In the past ten years,
Kilobots [1, 2] have become a standard to prototype
robots swarms, and exemplify the characteristics of
robots in swarms. They have been used for numer-
ous tasks including self-assembling into predetermined
shapes [2, 7], phototaxis [41], creating moving and de-
forming soft-bodied kilobots aggregates [42], morpho-
logical computation and decentralized learning [39],
contour detection [43].

On its own, a Kilobot is a centimeter-sized robot
that (rudimentarily) moves and communicates (imper-
fectly) with its neighbors. These robots ignore their
position or velocity because they are devoid of position
or velocity sensors. As a result, they haphazardly nav-
igate their environments, similarly to a random walk.
Kilobots are also “blind” to their environment. They
only sense ambient light and lack the panoply of prox-
imity sensors (camera, LIDAR, radar, ultrasound, ca-
pacitive or force sensors) embarked on larger robots re-
quired to detect obstacles, follow walls, or orient them-
selves.

Spectral swarm robotics algorithm

Here is a theoretical description of our proposed al-
gorithm of spectral swarm robotics for shape analysis,
as illustrated in Fig. 1c. More details and a table of
variables can be found in Supplementary Secs. 2 & 3.

In the seeding phase, an even number N of robots are
seeded in the arena and walk randomly, long enough
to spread homogeneously. After 25 minutes (Supple-
mentary Table 5), the robots stop and initiate several
iterations of the algorithm. They enter a discovery
phase to register their neighbors. Two robots are de-
fined as neighbors if they can communicate with each
other, that is, they are within each other’s field of per-
ception σ. For typical robotic experiments, σ is several
times the extent of a single robot, which means that
a robot only sees a fraction of the swarm at any time
(which may comprises tens or hundreds of robots).

The neighborhood relationship immediately defines
a graph G on the robots which captures the connectiv-
ity of the swarm and the geometry of the arena, with
an adjacency matrix A defined such that Ai,j = 1 if the
robots i and j are neighbors and 0 otherwise (by con-
vention a robot is not its own neighbor). The robots
then engage in rounds of diffusion of information.

Robots initially set their internal state s0i to −1 or
1 (a state chosen to have a zero mean, which is con-
served during diffusion) and, at each round of diffusion,
they update their internal state according to the law of
diffusion on a graph [44,45] (Supplementary Sec. 2.1):

sn+1
i = sni + cτ

N∑
j=1

Aij(s
n
j − sni ) (1)

with n the current time step.
which can be rewritten in a matrix form:

sn+1 = sn − cτLsn (2)

where L is the Laplacian matrix of the graph, c is the
diffusion rate across edges of the graph and τ is time
between two steps of diffusion. Note that c includes
a notion of distances between nodes; here we assume
that all edges have the same weight (distance is 1, i.e.,
G is unweighted). On the diagonal, Li,i is the number
of neighbors detected by the robot i, and off the diag-
onal, Li,j = −1 if i and j are neighbors, and Li,j = 0
otherwise.

Assuming cτ is small, this time evolution can be ap-
proximated analytically by taking the exponential of
the Laplacian matrix.

sn = e−ncτLs0 (3)

Since the Laplacian matrix L is symmetric and pos-
itive, its eigenvalues λi are real and positive, with
λ1 = 0 ≤ λ2 ≤ λ3 ≤ · · · . By the spectral theorem,
the time evolution of sn is given by its projection on
the eigenvectors vi of L:

sn =

k∑
i=1

e−λincτ (s0 · vi)vi (4)
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where s0 ·vi is the projection of the initial state s0 on
vi. The internal state s

n
i of each robot converges to the

mean of the initial s0, which corresponds to the state
where the information is fully mixed and the robots
share the same internal state. Since by design the mean
was set to be 0, after some time, sn decays exponen-
tially along v2:

sn = e−λ2ncτ (s0 · v2)v2 (5)

This equation is the crux of our strategy to identify
the shape of the robot arena. The shape controls the
rate at which information diffuses in the robot graph
through λ2, which is known in the literature as the alge-
braic connectivity of the neighborhood graph [33, 46].
The magnitude of λ2 reflects the connectivity of the
robot graph: the more paths there are between any
two robots, the larger λ2 tends to be, and the faster the
robots synchronize their internal state and converge to
their collective mean. So a swarm of robots dispersed
in a disk is expected to have a larger connectivity than
a swarm dispersed in a annulus with the same surface,
and so information is expected to spread faster in the
former case. Of note, if the robot graph is not con-
nected (there exists at least one pair of robots without
a path between them in the graph), then λ2 = 0 and
the robotic swarm is partitioned into distinct clusters
that synchronize internally, but not globally. This can
happen even for connected shapes when the field of per-
ception or the number of robots are too small, which
opens holes in the neighborhood graph and prevents
information from fully flowing in the swarm. The asso-
ciated eigenvector v2 also plays an important role: it is
known as the Fiedler vector and the sign of its coordi-
nates define a partition of the graph, as seen in Fig. 1b
where color codes correspond to local components of
the second eigenvector.

From Eq. 5, each robot individually estimates λ2 by
linearly fitting the exponential decay rate – after a suit-
able time – of its internal variable sni to 0. Each robot
thus gets a slightly different estimate of λ2, which is
then averaged across the swarm after each iterations
to obtain a more accurate value. Still, this estimate
remains noisy, because the number of robots is finite.
To refine this estimate, after each iteration, the robot
randomly walk in the shape, stop, and start again the
process of estimating λ2. By taking the cumulative av-
erage of λ2 since the beginning, the swarm refines and
converges to an estimate of λ2. For sets of shapes that
are not pathological (i.e., with distinct λ2), it is in prin-
ciple possible to discriminate them provided enough it-
erations, since our Monte Carlo estimate converges to
λ2 as 1/

√
N .
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their advice on using Kilobots.

Author contributions

A.J.G, L.C., and N.B. conceptualized, planned, and
supervised the project. A.J.G, N.L-D., N.A-K., O.M.
provided the theoretical background and design, L.C.
and A.J.G. designed the algorithm. L.C. wrote the
code for robotic controllers and simulation, and most
of analysis and plotting scripts. A.J.G. and N.L-D.
performed the theoretical analysis. L.C. computed and
analyzed all simulations. N.B, A.L. and M.I. conducted
all experiments with robots. L.C., N.L-D. and N.B.
assembled the figures. L.C., A.J.G, N.B., N.L-D. and
N.A-K. wrote the manuscript. L.C., A.G. and N.B.
wrote the supplementary information and designed the
supplementary videos. N.A-K. and N.B. acquired the
funding.

Funding

This work was supported by the MSR project funded
by the Agence Nationale pour la Recherche un-
der Grant No ANR-18-CE33-0006 and JSPS Fos-
tering Joint International Research (B) Grant No
JP19KK0261. NLD acknowledges support from Eu-
ropean Research Council (ERC) under the European’s
Union Horizon 2020 programme (grant No 770940)

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information is available for this
paper.
Correspondence and requests for materials
should be addressed to Leo Cazenille, Nicolas
Bredeche or Anthony J. Genot.

11



Draft

Hearing the shape of an arena with spectral swarm robotics

Supplementary Information

Leo Cazenille1 , Nicolas Lobato-Dauzier2,3 , Alessia Loi4 , Mika Ito5, Olivier Marchal6 ,
Nathanael Aubert-Kato5 , Nicolas Bredeche4,∗ , Anthony J. Genot2,∗
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3Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, F-75005, Paris, France
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1 Spectral shape analysis

Mark Kac’s famous 1966 paper, “Can One Hear the Shape of a Drum?” [26] presented a novel and fascinating
question rooted in the field of mathematical physics: if you only heard the sound a drum makes, could you
figure out what shape the drum is? In other terms, is it possible to identify the shape of a drumhead merely
from the list of its vibrational frequencies (or eigenvalues), essentially ’hearing’ its shape? This concept is an
important question in the realm of spectral geometry. It challenges us to consider whether different drums
(interpreted as 2D manifolds) could produce identical sounds, thereby sharing the same eigenvalue spectrum,
or if the sound of a drum is as unique as its shape. While it has been established that instances of differing
shapes producing identical spectra are possible, such cases are remarkably rare (and tend to be anomalies with
non-smooth, non-convex boundaries) [38], emphasizing the intricate interplay between the auditory perception
of an object and its geometric structure.
In the realm of network theory, the process of extracting a comprehensive graph structure has been investigated

in temporal networks [47], which focus on whether and when interaction occurs between node pairs, considering
the flow of data instead of its nature. It has also been applied to the field of graph signal processing that study
the harmonics of a graph using so-called Graph Fourier Transforms [40]. A similar exploration was made in
spectral graph theory [24, 25], but here the aim is to pull out global graph traits under the assumption of a
static graph and a central observer overseeing all nodes. Specifically, methods of spectral shape analysis [26]
extract global details about a shape (i.e., the macroscopic organization of a swarm) by examining the local
diffusion of information within the graph of linked nodes (i.e., the graph of communication channels between
robots). The spectrum of eigenvalues of the Laplacian is utilized to study and identify the graph’s shape (in
our case, the spatial distribution of a robot swarm).
The Laplace–Beltrami operator (LBO) is a generalization of the Laplace operator to functions defined on

submanifolds in Euclidean space and more generally on Riemannian manifolds. The recent surge of interest
in the spectral analysis of the LBO has resulted in a considerable number of spectral shape signatures that
have been successfully applied to a broad range of areas, including manifold learning [29], object recognition
and deformable shape analysis [30,48], medical imaging [49], and shape classification [28]. For instance, Shape-
DNA [28] extracts a fingerprint of a shape by computing the first eigenvalues of the LBO. More generally,
spectral analysis is widely used to study networks of distributed sensors (for example networks of antenna in
5G).

The LBO is ideal for shape analysis for several reasons: (1) it is intrinsic (invariant to isometric deforma-
tions [50]); (2) it is not tied to a specific shape representation and can be discretized on 2D manifolds, meshes,
point clouds, etc [51]; (3) its eigenbasis is optimal for approximating functions with limited variation, and in
many cases, only the first few eigenfunctions are needed for a satisfactory approximation [52].

However, a critical limitation for swarm robotics is that, while diffusion can be enacted on a microscopic scale,
graph traits are derived by centrally combining information. This implies that individual nodes do not have
access to macroscopic data. By using linear and non-linear operators for a distributed application of diffusion,
we propose that the diffusion of information can serve as a bridge between the local scale of an individual robotic
agent and the global scale of the swarm (Main Text Fig. 1a).

∗co-corresponding authors (equal contribution): genot@iis.u-tokyo.ac.jp nicolas.bredeche@sorbonne-universite.fr
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To gain access to global graph traits at the individual node (or robot) level, the Laplacian operator can
be deployed to instantiate diffusion [22]. Diffusion bridges the local scale of a robot to the global scale of the
environment. Mathematically, diffusion is represented by the Laplacian, an ubiquitous linear operator measuring
how much a quantity (like temperature or molecular concentration) changes compared to its surroundings.
It governs many aspects of physics, ranging from the energy levels of quantum systems, the propagation of
electromagnetic waves, mechanical vibrations, the diffusion of heat, or the viscosity of a fluid.

Even though the Laplacian is a local operator (i.e., a function that only considers what’s happening at a
specific point and its immediate surroundings), it is fully determined by the geometry of the environment in
which it functions: the eigenvalues and eigenfunction of the Laplacian are completely determined by boundary
conditions. For instance, the shapes in Main Text Fig. 1b all results with a different value of λ2 (i.e., second
eigenvalue of the Laplacian), making this value usable as a fingerprint to identify these shapes.

Spectral analysis is typically only computed using global information, by having the entire Laplacian matrix
available [51, 53]. Robots only have access to local information (their own internal state and information
communicated by their neighbors). As such, computing global statistics on individual robots is challenging.
Due to very slow communications (a few bytes per seconds) and very limited memory capabilities, it may be
impossible, or at least extremely difficult, to regroup the entire Laplacian matrix on all robots of the swarm.
Instead, we propose to estimate spectral statistics in a distributed way, and embodied in a swarm of robots,
allowing the swarm to collectively “hear the shape of their arena”.

2 Theoretical analysis

Variable name Unit Description

N - Number of agents.

H - Mean number of neighbors of agents in a given configuration.

σ [m] Radius of the field of perception of the agents.

S [m2] Arena surface.

G - Graph of communication flows between agents

A - Adjacency matrix of G. Ai,j = 1 if the agents i and j are neighbor, and 0 otherwise (by convention
a robot is not its own neighbor).

L - Laplacian matrix of G. On the diagonal, Li,i is the number of neighbors detected by the agent i,
and off the diagonal, Li,j = −1 if i and j are neighbors, and Li,j = 0 otherwise.

sni - Internal state of agent i at diffusion step n (i.e., time t = n× τ). Used during the diffusion stages
of the algorithm. Intended to have a zero mean at each step n.

κ [m2.s−1] Coefficient of information diffusion.

c = 1s−1 [s−1] Information diffusion rate across edges of G.
τ [s] Amount of time between two steps of diffusion.

T - Number of diffusion steps.

B - Number of diffusion steps to ignore at the beginning of a diffusion session when estimating λ2.

C - Number of collective averaging rounds.

λi - i-th eigenvalue of the Laplacian L.

Indivλij - Local estimation of the i-th eigenvalue of the Laplacian L by agent j during one iteration.

Consensusλij - Consensus estimation of the i-th eigenvalue of the Laplacian L by agent j during one iteration.

Finalλij - Final estimation of the i-th eigenvalue of the Laplacian L by agent j.

vi - i-th eigenvector of the Laplacian L.

l =
√

S/N [m] Typical lengthscale of the distance between agents.

P - Number of information diffusion sessions computed in parallel.

I - Number of iterations.

Supplementary Table 1: Nomenclature of all considered variables

2.1 Information diffusion model

The diffusion model refers to a mathematical representation of the physical process of diffusion, in which a
large number of small elements spread in the environment through random movement and collisions. Assuming
the number of elements is large enough, one can define their distribution at a given spatial position (x, y) (for
the two-dimensional case considered in this article) as a local concentration s(x, y), with changes over time
according to the following partial differential equation:
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∂s

∂t
= κ∇2s (6)

where κ is the coefficient of diffusion, a macroscopic value specific to the elements and ∇2 is a 2D Laplacian
operator defined as:

∇2 =
∂2

∂x2
+

∂2

∂y2
(7)

That notion of diffusion can be extended to work with graphs, where the concentrations of interest are stored
in the nodes and diffuse through the edges. In this case, we need to change to define a diffusion rate c that
works similarly to κ and describes the rate at which the elements will spread through the edges. While c could
be edge specific (the same way that κ can be position specific in a non-homogeneous environment), for the sake
of simplicity, we set c to be identical for all edges.
Then, based on the formulation of diffusion, the flow going through an edge connecting two nodes i and j,

with respective concentrations si and sj , in the j to i direction over a period dt, will be c(sj − si)dt. Thus, the
contribution of that edge to the concentrations si and sj will be:

dsi
dt

∣∣∣∣
(i,j)

= c(sj − si)
dsj
dt

∣∣∣∣
(i,j)

= c(si − sj) (8)

We can then extend that calculation to the whole graph:

dsi
dt

= c
N∑
j=1

Ai,j(sj − si) (9)

where A is the adjacency matrix, thus defining Ai,j if nodes i and j are connected by an edge. Note that,
since we are using undirected graphs, A is necessarily symmetric.

When considering discrete time steps of duration τ , equation (4) becomes:

sn+1
i = sni + cτ

N∑
j=1

Aij(s
n
j − sni ) (10)

which is exactly the equation used by the robots to update their internal state.

2.2 Convergence

In this section we discuss the convergence rate of the discrete graph Laplacian toward the continuous Laplacian.
We consider the more general context of [54]. Following its terminology, we consider a Riemannian manifold M
of dimension d = 2, and N points xi which are independently and uniformly distributed over M . We consider
a weight matrix W defined as:

Wij = k

( ||xi − xj ||2
2ϵ

)
(11)

where k is the kernel function, and ϵ is the kernel bandwidth. In machine learning, a typical choice for the
kernel function is k(x) = e−x (radial basis function kernel). However, in our experiments and simulations we
use a step kernel (k(x) = 0 if ||x|| > θ, and k(x) = 1 if ||x|| ≤ θ for some constant θ). The parameter

√
ϵ is

homogeneous to a distance and plays the role of field of perception in our setting. It is the distance over which
the points can communicate with their neighbors. Thanks to that definition, we set θ = 1 in the step kernel
function. As such, we obtain in our case W = A, where A is the adjacency matrix defined earlier.
To build the graph Laplacian, we then consider the diagonal matrix D given by:

Dii =

N∑
j=1

Wij (12)

For a step kernel, D is simply the degree matrix counting the number of neighbors of each point xi within a
distance θ.
We now define the matrix of the negative defined left-normalized discrete Laplacian:

L̃ = D−1W − I (13)

(Note that in our simulation and experiments, we consider the non-normalized discrete Laplacian L = D−A).
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We consider a smooth test function f . Singer established the following uniform estimate of the error of the
left-normalized discrete Laplacian compared to the continuous Laplacian [54].

1

ϵ

N∑
j=1

L̃ijf(xi) =
1

2
∇f(xi) +O

(
1

N1/2ϵ
, ϵ

)
(14)

This error estimate shows that for a fixed ϵ, the left-normalized discrete Laplacian converges point-wise to
the continuous Laplacian as 1/

√
N , which is the classical scaling expected from the central law. Similarly to

our numerical simulations on robots, it also predicts that for a fixed N , there is an optimal bandwidth ϵ that
minimizes error because the error terms contains two sub terms that behaves oppositely with ϵ. If ϵ is too large,
all points are connected and the Laplacian matrix is an almost constant matrix (a clique connectivity) that
carries little information over the local geometry. Conversely, if ϵ is too small, points are disconnected and the
left-normalized Laplacian matrix does not encode information about the geometry either. Balancing the two
errors terms, Singer shows that the optimal ϵ is:

ϵ =
C(M)

N1/4
(15)

where C(M) is a function that depends on the manifold M . It must be noted that this equation predicts an
optimal scaling for the field of perception

√
ϵ N1/8, which is sensibly different from the scaling N1/2 that we find

in numerical simulations for robots. The discrepancies in the exponents may be explained by various factors:
Singer considers Riemannian manifold without boundaries and point, while we consider shapes with boundaries
with non-penetrating hard spheres. In addition we consider slightly different problems: Singer estimates the
optimal field of perception for approximating the continuous Laplacian [54], while we estimate the optimal field
of perception for classifying distinct shapes.

2.3 Spectral gap

In this section, we discuss the physical interpretation of λ2 in light of spectral graph theory [33]. In the general
case, the spectral gap of a self-adjoint linear operator is the modulus of the smallest non-zero eigenvalue. The
spectral gap plays a central role in graph theory and quantum mechanics, as it controls the dynamical properties
of the system on which the operator is defined. In our case, if we assume that the graph is connected, and given
that the first eigenvalue of the graph Laplacian λ1 is always 0 (because the constant vector is an eigenvector
with a null eigenvalue), the spectral gap is simply λ2. As such, λ2 is expected to provide information about the
shape of the graph, which allows us to distinguish between the different arena presented in the main text.

2.3.1 Isoperimetric inequality and Cheerger constant

The eigenvalue λ2 of the graph Laplacian measures how easily information diffuses on a graph. A large λ2

implies that information flows easily and smoothly between all parts of the graph, while a small λ2 indicates
the presence of bottlenecks in the flow. In the worst case, λ2 = 0 implies that the graph is not connected, with
at least two independent parts.
To see this quantitatively, let us first define the boundary ∂(S ) of a subset S of vertices as the set of edges

that connect a vertex inside S to a vertex outside A.

∂(S ) = {(u, v) ∈ E |u ∈ S , v /∈ S } (16)

The isoperimetric ratio of S measures the size of the boundary ∂(S ) with respect to the size of S :

h(S ) =
|∂(S )|
|S | (17)

where | . | is the sums of degrees d of vertices in a set:

|S | =
∑
x∈S

dx (18)

We can then define the Cheeger constant, or isoperimetric number of a graph G, as the minimum isoperimetric
number taken over all subsets that have less than half of the total number of vertices.

We additionally define ∆(G) as the maximum degrees of vertices of the graph G. We can now state the
Cheeger inequalities [25,46] which provides lower and upper bounds for the eigenvalue λ2 with the isoperimetric
number h(G):

h(G) ≥ λ2

2
≥ h2(G)

2∆(G)
(19)
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This inequality is central in spectral theory as it directly relates local properties that are controlled by
diffusion (e.g., the rate of diffusion of information) with global properties that are set by the shape of a graph.
For instance, on graph with large λ2, h(G) is large and information flows easily because all their subsets have
large boundaries and are well connected to other subsets. Conversely, if a graph G is not connected, there exists
two subsets that are not connected so h(G) = 0, and the Cheeger inequality forces λ2 = 0.

2.3.2 Fiedler vector algebraic connectivity

The eigenvalue λ2 and its eigenvector v2 are also related to the algebraic connectivity and Fiedler vector of
graph theory.
The eigenvector v2 can be used to partition a graph into two natural clusters.
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3 Spectral swarm robotics algorithm

Here we propose to translate the theoretical approach presented earlier into a multi-agents algorithm that can
be implemented as robotic controller of robotic swarms in simulations or experiments. The swarm of agents can
collectively classify the shape of their arena based on distributed spectral shape analysis. Each agent computes
its own estimation of λ2 using only local information (i.e., its own state and that of neighboring agents) – this
value serving as a signature of arena shapes.
The spectral swarm robotics algorithm is summarized in Supplementary Fig. 6. It is also formally described

in Alg. 1.

Iteration

Compute Final λ2 = 
Mean of all Consensus λ2 

over all iterations

Final state:
Robot color = type of arena

End?

No

Yes

Seeding
(Long random Walk)

Agents disperse in the 
arena

Short random Walk
Agents change their 

neighbors

Compute Consensus λ2 on each robot by 
collective averaging: mean of Indiv. λ2 on all 

neighborhoods Compute Indiv. λ2 on each robot = 
rate of information diffusion

Information pre-diffusion of s from agent to agent

Initial conditions:   agents flip a coin (≈50% chance) to either start with              or          

Information diffusion of s from agent to agent, convergence 
to a partition

Initial conditions: projection on pre-diffusion:                          to ensure 

X 3

P = 3 diffusions at the same time, with different initial conditions

Send handshake messages to 
neighbors to compile a list of 

stable neighbors on each robot
List of 
accepted 
neighbors

- ID #42
- ID #336
- ID #1081
- ….

Supplementary Figure 6: Workflow of the spectral swarm robotics algorithm.

This algorithm is designed to be easily implementable on Kilobot robots. As such, it makes the following
assumptions:

• the agents can all synchronously execute the same stage of the algorithm – i.e., all agent have access to a
temporal counter iterated continuously during the experiment and with roughly the same value across all
agents. This allows the algorithm to provide a fixed budget of time for each stage of the algorithm.

• the agents can communicate to their neighbors across a given field of perception.

• the agents can display ongoing results (such as their estimated value of λ2) by changing the color of an
in-board LED.

• the agents can perform floating-point computations, with a library implementing basic math functions –
i.e. abs, log, exp

Agents are assumed to be initially placed packed at the center of the arena. Our approach requires agents
to be distributed in all parts of the arenas, so the spectral swarm robotics algorithm starts by making the
agents disperse and move to random positions in the arena (“initial seeding”) by using the “run-and-tumble”
algorithm.

After the seeding stage, the algorithm starts its main loop. In each iteration a of the main loop, the agents
will compute their own estimation of λ2, termed here as Indivλ2i(a) for each agent i. During one iteration, the
agents will sequentially perform the following operations:
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1. Agents will move with a short budget of time, in order to change their neighbors. This allows the algorithm
to change its initial conditions and to start with different configurations of neighbors from iteration to
iteration. After the allotted time has elapsed, agents will stop moving and stay immobile for the rest of
the iteration.

2. Agents will use a handshaking system to determine what are their “stable” neighbors, i.e., the list of
neighbors k of a focal agent i such as, most of the time, i can broadcast messages to k and k can broadcast
messages to i. That process is required as there is a variability in the actual field of perception σ of robots,
due to small physical differences (e.g., infra-red captors) or environmental conditions (e.g., slightly higher
IR luminescence in parts of the arena). This variability can result in cases where agent i would be able to
reach k but not the opposite. However, our algorithm relies on the Laplacian of the communication graph
which is expected to be symmetrical. As such, it is important to determine which neighbors are stable.

3. Agents compute P = 3 diffusion sessions in parallel (further details in subsequent sections), each with
different initial conditions. This process allows each agent to compute P different local estimates of
Indivλ2i(a, d) with d the index of the diffusion session performed in parallel. Each agent then average
their local estimates to obtain a single local estimate Indivλ2i(a).

4. Local estimates are broadcasted on all neighborhoods so that agents can reach a consensus towards a global
estimate Consensusλ2. This is achieved through a collective averaging process: agents iteratively average
their local estimate with those of their neighbors.

5. Agents will check if the total budget of time allotted to the experiment is exceeded or not. If the latter is
true, they proceed to the next iteration.

The algorithm will sequentially compute I iterations. The Consensusλ2i values obtained at each iteration
are averaged to compute the overall λ2i estimation, termed Finalλ2i . The agents will set the color of their
LED depending on the value of Finalλ2i : for a given set of arenas, we define a corresponding set of LED colors,
respectively associated in turn to a set of centroid values of λ2 values.
Each part of the algorithm will be further developed in the following sections.

Algorithm 1 Main algorithm, executed on each robot i.

run and tumble(seeding duration) ▷ Seeding, long random walk

for a in 1..I do ▷ Perform I iterations
run and tumble(short rw duration) ▷ Short random walk at the beginning of each iteration

neighbors← handshake() ▷ Identify stable neighbors

▷ Start diffusion of information with neighboring robots
parallel-for d in 1..P do ▷ Perform P diffusion sessions in parallel

s0i (a, d)← random choice(-1, 1) ▷ Initialization, with random values: either -1 or 1
si(a, d), Indivλ2i(a, d)← diffusion(neighbors, s0i (a, d)) ▷ Pre-diffusion
s0i (a, d)← s0i (a, d)− sTi (a, d) ▷ Initialization from pre-diffusion values to ensure

∑
i s

0
i (a, d) = 0

si(a, d), Indivλ2i(a, d)← diffusion(neighbors, s0i (a, d)) ▷ Diffusion
end parallel-for

Indivλ2i(a)←
∑P

d Indivλ2i
(a,d)

P ▷ Average λ2i values estimated through the P diffusion sessions

▷ Reach consensus across the swarm, through collective averaging of λ
Consensusλ2i(a)← coll averaging(neighbors,Indivλ2i(a))

end for

Finalλ2i ←
∑I

a Consensusλ2i
(a)

I ▷ Average Consensusλ2i across all iterations
set robot LED color(Finalλ2i)

3.1 Dispersion of agents in bounded arenas (random walk)

For both dispersion stages (in Supplementary Fig. 6: “initial seeding” and “short random walk”), the agents
move according to a run-and-tumble motion. Run-and-tumble is a motion pattern used in nature primarily by
bacteria, such as Escherichia coli (E. coli), to navigate their environment [55,56].
The run-and-tumble motion can also be implemented in robotic systems (especially in swarm robotics) – and

specifically in scenarios where the robot has to explore an unknown environment. The process works as follows:
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Run During the “run” phase, a robot moves in a generally straight path. This can be achieved by setting the
wheels, tracks, or other locomotion systems to move forward in a set direction.

Tumble At random or predetermined intervals, the robot will enter the “tumble” phase. This is a state in
which the robot changes its direction. This might involve stopping, spinning in place, or otherwise altering
its trajectory to set a new course. The new direction can be random or determined by certain rules or
sensors.

After tumbling, the robot begins its next “run” in this new direction.

This pattern continues, allowing a robot to explore its environment. The run-and-tumble algorithm is straight-
forward and does not require complex computations or detailed knowledge of the environment, which makes it
suitable for small, relatively simple robots. It also allows for robust exploration and can even be used in groups
of robots, where collective behaviors can emerge from individual run-and-tumble movements.

For the spectral swarm robotics algorithm, we assign a budget of time for both dispersion stages. At the end
of these budgets, the robots stop dispersing and switch to the next stage of the algorithm. We selected the
run-and-tumble motion strategy for the spectral swarm robotics algorithm because it ensures that the robots
can disperse in the arena in a roughly uniform manner, and change their neighbors even in crowded scenarii.

3.2 Handshake messages

Kilobots communicate by broadcasting a message to their neighborhood through infrared signals, resulting in
potential conflicts if two or more robots are broadcasting at the same time. Message integrity is ensured through
a CRC mechanism. However, the portion of correctly received messages depend on the number of neighbors.
The proportion of correctly received messages can be quite low (≈ 10 − 30% when 4-8 Kilobots broadcast
messages in the same neighborhood.
Agents will employ a handshaking process to identify their “stable” neighbors, or the collection of neighbors

k for a focal agent i, such that, in most cases, i can transmit messages to k, and k can reciprocate. Indeed,
the actual field of perception σ of robots can vary due to minor physical distinctions (e.g., infrared sensors) or
environmental factors (e.g., marginally increased IR luminescence in certain parts of the arena). This may lead
to situations where agent i can communicate with k, but not the other way around. However, our algorithm
relies upon the Laplacian of the communication graph, which is assumed to be symmetrical. Consequently, it
is crucial to establish which neighbors are reliable.
In our approach, each focal agent i will continuously broadcast handshake messages containing its own

identifier, and the identifier of agents that it has previously successfully received messages from. As such, if
agent i receive a message from agent k confirming that k can receive a message from i, it means that there is a
bidirectional communication channel between i and k. This process is repeated several time: at each new round
of handshaking, agents will first empty their list of neighbors, then continuously broadcast for some time. After
a fixed budget of time, agents stop broadcasting handshake messages, and will assess which agents they have
a stable bidirectional communication channel with, on all handshaking rounds. On each agent, the latter are
regrouped into a list of stable neighbors.

3.3 Diffusion and Indivλ2 estimation

In this stage of the algorithm, agents aim to compute a local estimate of λ2, noted Indivλ2i for agent i. This
is achieved by diffusing local information of each agent within the entire swarm, as described in the Method
section of the main text. Local information is formalized by agent internal state at diffusion step t: sti. The
latter is propagated throughout the swarm by following the dynamics of diffusion, as implemented in Alg. 2.
Theoretical sections explained that when

∑
i s

0
i = 0, the states of each agent decays along v2. At this time,

Indivλ2i corresponds to the rate of diffusion at the coordinates of agent i and can be estimated by computing
the slope of the decay of each sti.

The difficulty with this approach is that we need to ensure condition Cmean i.e., ⟨s0⟩ = 1
N

N∑
i=1

s0i = 0 (considering

that the s0i are not all set to 0), without having any access to global information (in this case, the mean of s).
Let’s consider the following strategy P: each agent randomly starts with an initial state s0i either equal to −1
or to 1. Assuming that the number of agent is even, and sufficient large, this will result in a mean very close
to 0 (variability will decrease as the number of agents increase). However, if these conditions are not met, this
strategy would not work.
Instead, we propose a strategy that will ensure Cmean even if the number of agents is small and not even. In

order to do this, we first carry out a diffusion session (termed pre-diffusion) with initial conditions similar to
P: s0ipre = −1 or 1. As a result of the diffusion dynamics, sipre converges to the mean of initial conditions ⟨s0pre⟩.
This allows us to estimate how to correct the initial conditions to ensure Cmean. After the pre-diffusion, we thus
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execute a new diffusion session, with initial conditions corrected by using a projection from pre-diffusion values:
s0i = sTipre − s0ipre . This allows the diffusion session to ensure condition Cmean, and it can be used to effectively
estimate Indivλ2i for any number of agents.

Algorithm 2 Code for diffusion and pre-diffusion sessions.

function diffusion(neighbors, s0i )
▷ Start diffusion of information with neighboring robots
t0i ← 0
for j in 1..T do ▷ Perform T diffusion steps, each with a duration of timeout diff

initial time diff← current time ticks()

broadcast(sj−1
i ) ▷ Allow neighboring robots to retrieve it

▷ Retrieve all sk from neighbors, until timeout
cj ← 0
while current time ticks()− initial time diff < timeout diff do

sjk ← retrieve value from next neighbor(neighbors)

cj ← cj + (sjk − sji )
end while
sji ← sj−1

i + τcj ▷ Update si according to the law of diffusion

tji ← τj
end for

▷ Compute local approximation of λ2 by using ordinary least square (OLS)

Indivλ2i ← −
(T−B)

T∑
j=B

(tjilog(|s
j
i |))−

T∑
j=B

(tji )
T∑

j=B

(log(|sji |))

(T−B)
T∑

j=B

(tji )
2−(

T∑
j=B

tji )
2

▷ B = Number of diffusion steps to ignore

return si, Indivλ2i

end function

Algorithm 2 describes how diffusion and pre-diffusion sessions are computed. We rely on the OLS (ordinary
least square) algorithm applied to log(|sti|) to estimate the slope of the exponential decay of sti on each agent.

For the computation of Indivλ2i we only take into account the time steps after B, which correspond to a
burn-in period. Indeed, as seen in Main Text Fig. 4 (c and d), the values of log(|sti|) at the start of a diffusion
session are not linear.
Here is a description of a number of internal functions used in Alg. 2:

current time ticks() returns the current ticks of the agent. Ticks are initialized at 0 at the start of a
simulated or experimental run, and are iterated at a frequency of 1/31 ≈ 0.322 Hz.

broadcast(val) continuously emit messages containing value val in the neighborhood. Neighboring agents
will be able to receive the latter message, if they are situated at a distance smaller than σ of the focal
agent.

retrieve value from next neighbor(neighbors) Wait for an agent listed in neighbors to broadcast a mes-
sage to the focal agent, and return this message. If the same agent broadcasted several messages, only take
the last one into account.

In this stage of the algorithm, agents displays (i.e., LED color) a color code corresponding to the sign of their
value of sti(a, 0): blue for negative values, red of positive values.
Computing several diffusion sessions in parallel allows the algorithm to have the results over several initial

conditions, while pooling transmitted values of sti(a, d) of all P diffusion sessions into only one message. This
enables the computation of several diffusion dynamics concurrently, for the same amount the messages transmit-
ted (and corresponding budget of time) as would be needed for a single diffusion session. Of course, depending
on the hardware implementation, and communication capabilities of the agents, it may be possible to compute
a larger number of diffusion sessions in parallel.

3.4 Computing Consensusλ2 through collective averaging

After the diffusion sessions, each agent of the swarm has a different local estimation of λ2, i.e., Indivλ2i . There
can be a large variability in those estimations, depending on the position of the agents in the arena. As such, we
aim to compute the mean of these values so as to reach a global consensus on the estimation. This is achieved
by using a collective averaging scheme, as described in Alg. 3. The value of Consensusλ2i is initially set to
Indivλ2i on each agent. Then, agents will average their value of Consensusλ2i with their neighbors. This
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Algorithm 3 Code for reaching a consensus on a value through collective averaging.

function coll averaging(neighbors, w)
▷ Reach consensus across the swarm, through collective averaging
Consensusw ← w
for k in 1..C do ▷ Perform C coll. avg. rounds, each with a duration of timeout cons

initial time cons← current time ticks()

broadcast(Consensusw) ▷ So that neighboring robots can retrieve it
▷ Retrieve values from neighbors, until timeout
Consensusk ← 0
Nk ← 0 ▷ Number of neighbors we received a message from
while current time ticks()− initial time cons < timeout cons do

Consensusk ← Consensusk + retrieve value from next neighbor(neighbors)

Nk ← Nk + 1
end while
Consensusw ← Consensusk+Consensusw

Nk+1
end for
return Consensusw

end function

process is repeated over C rounds. The fact that all agents operate over the same number of rounds ensures
that all agents are represented equally in consensus building, and that the consensus is indeed the global average
over all values of Indivλ2i .
In this stage of the algorithm, agents display (i.e., LED color) a color code corresponding to the arena they

estimate they are in, depending on the value of Consensusλ2 (cf Sec. 3.5). This value will be updated during
the collective averaging session, and so the associated LED color will iteratively change accordingly.

3.5 Identifying centroids for visualizing Consensusλ2 and Finalλ2 on each robots

The LED color code displayed by agents during the collective averaging and Finalλ2 computation stages
corresponds to the arena the agent estimate they are in. Namely, the color codes correspond to the predicted
classes (i.e., arena shape) in a classification process involving a given library of possible shapes. Each possible
class in the library of possible shapes will be respectively associated with a centroid, i.e., the mean value of
Finalλ2 across 64 simulated runs (cf Main Text Fig.3c). Then, the predicted class of agent i will be decided
using a nearest centroid classifier based on its current value of Finalλ2i , i.e., it will correspond to the class in
the library of shapes with which its Finalλ2i is closest.
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4 Experimental setup

4.1 Robots and Arenas

Supplementary Figure 7 shows the experimental setup used at Sorbonne Université for conducting all the
robotic experiments. We use two arenas (disk and annulus), each populated with 25 robots. The robots used
are Kilobots [1, 2], originally designed at Harvard University and bought from the K-Team SA company.
All experiments are conducted while the whole setup is isolated from external perturbation using light-

occluding black curtains placed on all sides and above the setup. The whole setup is enclosed in a construction
of an aluminum section that supports the camera and lightning (see Caption of Supplementary Fig. 7 for an
exhaustive description).

Setting up each experiment starts with removing the dust on the arena by using a wipe with a very small
quantity of water to ensure maximum ground reflection. The target area (Disk or Annulus) is drawn on the
floor to help position the robots before the experiment starts. Kilobots are then initially placed randomly in
the target area, broadly respecting a uniform distribution (i.e., clusters are avoided), with random orientation.
Initial positions thus vary from one run to another. Each experiment starts with all robots at full charge. The
experiment is started using the infrared overhead controller, and the black curtains are closed within 10 seconds.
Monitoring is performed with a dedicated webcam connected to a desktop computer. The image is voluntarily

blurred so that each Kilobot’s overhead LED standout as a blurred circle of color that corresponds to the current
state of the robot.

An extensive description of the experimental procedure can be found at:
https://docs.google.com/document/d/10KSpUdTHtPYe3wSIos1Mmxrl_9l3OnisLJLadvIc4j8/edit?usp=

sharing

4.2 Controller design and implementation of the algorithms on kilobots

We implement the spectral swarm robotics algorithm on Kilobots by using the Kilombo [57] framework: it allows
the same C code to be used both in simulations and as controllers of actual Kilobots, without any modification.
Supplementary Table 2 lists the colors displayed by the Kilobots LEDs depending on their current behavior.

LED color Description

Dispersion
Red Tumble behavior

Green Run behavior

Diffusion

White Pre-diffusion stage

Blue sign(sti) > 0

Red sign(sti) < 0

Grey sign(sti) = 0

λ2 estimation

Cyan Disk detected

Orange Square detected

Green Arrow detected

Red Star detected

Gold Triangle detected

Brown Stop detected

Violet Annulus detected

Supplementary Table 2: Table of LED colors displayed by the robots depending on their current behavior.

4.2.1 Implementation challenges

There is a number of pitfalls to keep in mind when implementing the spectral swarm robotics algorithm on
Kilobots.
First of all, robots have problems to communicate due to collisions between messages. The more neighbors

there are, the more collisions there will be. Furthermore, there is variability between each robot in their ability
to receive and send messages: some robots will have a more powerful IR transmitter than others, or be affected
by different environmental artifacts (background light, presence of ground particles, etc). This discrepancy in
the ability of the robots to communicate also varies during the experiment, even if the robots are immobile. This
leads to cases where a robot can communicate with a neighbor, but that neighbor cannot communicate back –
which, in turn, precipitates the emergence of asymmetries in the Laplacian matrix (which are supposed to be
symmetrical). If the number of asymmetries is sufficiently large, several robots may have diffusion sessions that
become divergent (i.e., they no longer decay exponentially). Such errors will rapidly impact the entire swarm
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Supplementary Figure 7: General overview of the experimental setup used for the robotics experiments. Top-
left: general view of the experimental setup, which is closed using light-occluding black curtains. The robot
area is 152 cm per 72 cm, within which a smaller area (88 cm per 72 cm) is physically delimited. The green
floor (D) placed on the robot area is a cutting map on which stands a single Kilobot robot. Two Pixel K80
professional LED photography light projectors (A) are placed on either side of the setup, pointing upwards with
an angle of 45 deg, and complemented with two rails of LED (White 5700K) placed on the ceiling, for a global
illumination of 506-584 lux (B). A Logitech C920s HD Pro Webcam (C) and a Pixelink PL-D734MU camera
(not used here) are placed in the center of the ceiling (115 cm above the robot area) and point downwards.
The ceiling is covered in white matte paper Top-right: a Kilobot robot (height = 34mm, diameter = 33mm).
The Kilobot features two vibrating motors (A), one 3.3V rechargeable battery, three metallic rods (C) and an
infrared LED transmitter and photodiode receiver (D) placed underneath the robot and pointing downwards.
Bottom-left: the annulus (left) and disk (right) configurations, using 25 robots. The disk configuration has a
radius of 150mm and a surface of ≈ 70685.8mm2. The annulus configuration has an external radius of 200mm,
internal radius of 133mm and a surface of ≈ 70092.1mm2. Bottom-right: same as above, acquired from the
overhead webcam. A matte white floor is used, as well as a black disk shape for the annulus configuration used
to physically forbid communication between robots from the opposite region of the annulus.

by being propagated by the diffusion process, biasing the results of the algorithm. This problem is partially
alleviated through the Handshake mechanism of the spectral swarm robotics algorithm, as described in Sec. 3.2.
However, it is often not sufficient to avoid the presence of asymmetries: cases where a robot will not be able to
communicate with a given neighbor only for a small number of steps still remain. We have found that working
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with low values of τ (e.g., τ = 1/50s) decreases the influence of asymmetries on the diffusion process, as it
reduces the global rate of the diffusion process. Furthermore, the amount of time robots have to broadcast and
receive messages at each step (timeout diff in Alg. 2) needs to be adjusted in order to leave enough time for
the robots to communicate with all their neighbors (taking into account message collisions).
Second, the robots need to be temporally synchronized so that they are able to all execute the same stages of

the algorithm at the same time. We rely on the internal “kiloticks” counter of the Kilobots: it is initialized at 0
at the start of an experiment, and incremented at a frequency of 31 Hz. It is thus important that all robots start
an experiment at the exact same time. There are small variabilities in the clock frequencies of the robots, and
they all have a small time lag. During the diffusion, some robots may be 1-4 steps behind the others. Again,
this can be partially alleviated by using small values of τ , as it will reduce the impact of bias and errors in
the diffusion process. Furthermore, variabilities in clock frequency are influenced by the charge of the Kilobots
battery – as such, we start each experiment with robots that are all fully charged.
Third, the diffusion can degenerate after a certain time-step (e.g., if time lags or large number of asymmetries

in the Laplacian corrupted some robots’ internal state). In this case, the degenerated part of the diffusion
should not be taken into account for the Indivλ2i calculation. This is implemented by computing Indivλ2i at
each step of the diffusion by using OLS, and computing the mean squared error (MSE) of the fit. At the end
of the diffusion, only the fit with the lowest MSE is kept as the value of Indivλ2i .

4.2.2 Communication between robots

Kilobots communication is very slow: they can broadcast at most 9 bytes of payload per messages, twice per
second (18 bytes per seconds). This is a theoretical maximum rate that will rarely be reached. When the
amount of neighbors increases, so does the amount of message collisions, resulting in a very low number of
correctly received messages in such setting: ≈ 10− 30% with 8 neighbors i.e., ≈ 1.8− 5.4 bytes per seconds.
Supplementary Table 3 describes the content of the messages broadcasted by the robots for each stage of the

algorithm.
In the handshake stage, each robot keep a list of known neighbors. The payload of the messages contains the

unique identifiers (UID) of 3 selected known neighbors. The selection of known neighbors from the list iterates
from message to message, in a round-robin fashion.
In the diffusion stage, the messages contain the values of sti(a, d) for agent i, at diffusion step t, during

iteration a, and for all P = 3 diffusion sessions d computed in parallel. Due to size constraints of the message,
the values of sti(a, d) are transmitted as half-precision float, while they are stored as single-precision float in the
robots.
In the collective averaging stage, the messages contain the current Consensusλ2i value of agent i.

4.3 Analysis and plotting scripts

All analysis and plotting scripts were written in Python 3.10. The following libraries were used to perform
analyses: NumPy [58], Pandas [59], NetworkX [60], SciPy [61], Geopandas [62] and shapely [63]. Plotting was
realized through the Matplotlib [64] and Seaborn [65] libraries.
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H
an

d
sh
ak
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Variable name Type Size (bits) Description

kilo uid uint16 16 Kilobot unique identifier

known uid0 uint16 16 Unique identifier of already known neighbor

known uid1 uint16 16 Unique identifier of already known neighbor

known uid2 uint16 16 Unique identifier of already known neighbor

- - 8 Empty

type uint8 8 Type of message (handshake, diffusion, coll. averaging, etc)

CRC uint16 16 Cyclic redundancy checksum

D
iff
u
si
on

Variable name Type Size (bits) Description

kilo uid uint16 16 Kilobot unique identifier

sti(a, 0) half-precision float 16 Diffused value, for iteration a and diffusion session 0

sti(a, 1) half-precision float 16 Diffused value, for iteration a and diffusion session 1

sti(a, 2) half-precision float 16 Diffused value, for iteration a and diffusion session 2

- - 8 Empty

type uint8 8 Type of message (handshake, diffusion, coll. averaging, etc)

CRC uint16 16 Cyclic redundancy checksum

C
o
ll
.
av

g.

Variable name Type Size (bits) Description

kilo uid uint16 16 Kilobot unique identifier

Consensusλ2i single-precision float 32 Broadcasted consensus value

- - 24 Empty

type uint8 8 Type of message (handshake, diffusion, coll. averaging, etc)

CRC uint16 16 Cyclic redundancy checksum

Supplementary Table 3: Description of the data packets transmitted from kilobots to kilobots during the hand-
shake, diffusion and collective averaging stages of the spectral swarm robotics algorithm. The maximal
size of kilobots messages payload (i.e., data, without type and CRC) is 72 bits (9 bytes).
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5 Supplementary Results

Here, we provide additional results that provide a more detailed analysis compared to those of the main text.
Specifically, we investigate in simulations:

• the influence of the number of iterations on the accuracy of the spectral swarm robotics algorithm, first in
the case with 7 arenas and then focusing on the 2 most different arenas in terms of Finalλ2.

• the influence of the simulation parameters (number of agents N , field of perception σ) on the order of the
Finalλ2 values relative to the shape of arenas.

• how the dispersion scheme used and initial position of the agents can influence the results of the algorithm,
and whether having moving agents is necessary.

Supplementary Table 4 lists the simulation and experimental cases conducted in this paper. The SI present
the results of the five first cases (Supplementary Figs. 8- 18). The main text presents the results of the first
case (Main Text Figs. 2 and 3) as well as the remaining two cases, sim-2 and expe-2 (Main Text Fig. 4).

The parameters values used for all cases are listed in Supplementary Table 5.

Case name Simulations
or experi-
ments

Dispersion alg. Surface of
arenas S

Arenas Nr. of
runs

Nr. of
agents N

Lenghtscale l Nr. of
itera-
tions I

sim-large-7 Simulations run-and-tumble 500000mm2 Disk, Square, Arrow,
Star, Triangle, Stop,
Annulus

64 50− 550 100.0− 30.15 1-30

sim-large-2 Simulations run-and-tumble 500000mm2 Disk, Annulus 64 50− 550 100.0− 30.15 1-30

sim-small-2-dispersion Simulations run-and-tumble 70000mm2 Disk, Annulus 64 10− 80 83.67− 29.58 1-10

sim-small-2-random Simulations None - immobile
robots initialized at
random positions

70000mm2 Disk, Annulus 64 10− 80 83.67− 29.58 1-10

sim-small-2-uniform Simulations None - immobile
robots initialized
uniformly in the
arenas

70000mm2 Disk, Annulus 64 10− 80 83.67− 29.58 1-10

sim-2 Simulation None - immobile
robots initialized
uniformly in the
arena

70000mm2 Disk, Annulus 64 25 52.91 1

expe-2 Experiments None - immobile
robots initialized
uniformly in the
arena

70000mm2 Disk, Annulus 15 25 52.91 1

Supplementary Table 4: List of all considered cases in simulation and experiments.

5.1 Simulations: arenas with surface S = 500000mm2

Here, we consider in simulation the cases sim-large-7 (with 7 arenas) and sim-large-2 (with only 2 arenas:
disk and annulus). Both cases have arenas with a surface of S = 500000mm2. Main Text Figs. 2 and 3 present
results from the sim-large-7 case, after 30 iterations. That number of iterations was selected because, for all
parameters considered, the algorithm needs at most 30 iterations to converge when considering arenas of that
size.
Supplementary Fig. 8 compares the results with respect to accuracy after respectively 1 and 30 iterations.

Both configurations show a clear impact of the simulation parameters (N and σ) on the accuracy. These results
validate the conclusions from Main Text Fig. 3: a higher number of iterations translate into a higher accuracy.
For both 1 and 30 iterations, we observe similar regimes as in Main Text Fig. 3, with the optimal solutions
found in the hyperbole N = αS/(πσ2) with α = 17.
Supplementary Figure 9 shows the influence of the parameters N and σ on the ordering of the values of

Finalλ2 corresponding to all 7 arenas. This ordering (“ranking”) corresponds to the order of their associated
values: the lowest value is ranked first (0), the second lowest is ranked second, and so on. The highest value
is ranked last (6). On the optimal α = 17 hyperbole (including regimes r1, r3 and r4 from Main Text Fig. 3),
the ordering is generally consistent – starting from low to high: annulus, stop, triangle, star, arrow, square and
disk. In the neighborhood of regime r5, this ordering is roughly inverted – it starts with the disk to finish with
the annulus. In most cases, the disk and annulus are the furthest apart in terms of ranking.
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We thus chose to focus on the disk and annulus arenas in subsequent cases, allowing us to investigate a more
canonical scenario compared to the sim-large-7. Namely, Supplementary Fig. 10 presents accuracy results
for the sim-large-2 case (including rankings). Compared with the sim-large-7 case, the accuracy results of
sim-large-2 are higher for all considered parameters. After one iteration, the best-performing parameters are
only found close to the hyperbole p. After 30 iterations, most parameters result in high-performing solutions:
optimal solutions (accuracy of 100%) are found close to the optimal α = 17 hyperbole, close to the r5 regime,
as well as for very low number of agents and short fields of perception (N ∈ [50, 150], σ ∈ [40, 85]). The only
solutions with lower accuracy are found on the boundaries between regimes, and corresponds to the boundaries
seen in the ranking figure at the bottom.

Parameter Name sim-large-7 sim-large-2 sim-small-2-
dispersion

sim-small-2-
random

sim-small-2-
uniform

sim-2 expe-2

B
as
e

Nr. of runs 64 15

Arena Surface S 500000mm2 70000mm2

Agent diameter 33 mm

Field of Perception σ 30mm-320mm ≈ 85 mm

Nr. of agents N 50-550 10-80 25

Initial s0 value −1 or 1. chosen randomly, uniform distribution is *not* enforced

τ 1.0/15.0s 1.0/50.0s

Number of iterations I 1-30 1-10 1

Initial position of agents Packed in the center of the arena Random po-
sitions

Uniformly distributed (equidistant to neighbors)

Prop. of correctly received
messages between neighbors

100% ≈ 10%

Number of diffusion sessions
computed in parallel per it.

3

Max nr. of neighbors 20

T
im

e

Simulation/Experiment time 1143900 kt ≈ 615min 257300 kt ≈ 138min 148800 kt = 80min 146630 kt ≈ 79min

Initial dispersion duration 46500 kt = 25min 0 kt

Iteration total duration 36580 kt ≈ 20min 21080 kt = 680s 14880 kt = 480s 146630 kt = 79min

Iteration waiting time 930 kt = 30s

Iteration handshake 310 kt = 10s 6200 kt = 200s

Iteration handshake step dur. 31 kt = 1s 248 kt = 8s

Iteration dispersion duration 6200 kt = 200s 0 kt

Iteration diffusion/pre-
diffusion duration

13950 kt = 450s 6200 kt = 200s 54250 kt = 29min

Iteration diffusion/pre-
diffusion nr. of steps

450 200 218

Iteration diffusion/pre-
diffusion step duration

31 kt = 1s 248 kt = 8s

Iteration diffusion burn-in 5000 kt ≈ 161s 620 kt = 20s 10000 kt ≈ 323s

Iteration collective avg. du-
ration

620 kt = 20s 15500 kt = 500s

Iteration collective avg. nr.
of steps

20 62

Iteration collective avg. step
dur.

31 kt = 1s 248 kt = 8s

D
is
p
er
si
on

Step duration 15 kt ≈ 0.48s -

Tumble duration 93 +N (0, 1) ∗ 31 kt = 3 +N (0, 1) s -

Tumble duration domain 0− 124 kt = 0− 4s -

Run duration 19 kt = 0.6s -

Supplementary Table 5: List of parameter values used with all cases. One kilotick (kt) corresponds to 1/31 ≈
0.03 seconds.
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Supplementary Figure 8: Evolution of the accuracy with respect to the field of perception of each agent and
the number of agents, for the case sim-large-7. Here, we consider 7 arenas with a surface S = 500000mm2.
All results are computed over 64 simulation runs. We adjust the accuracy score to only show results where the
simulated diffusion sessions in the swarm did not diverge: empty bins correspond to results where there are
more than 50% of runs exhibiting divergences. Top: results obtained after only 1 iteration. Bottom: results
obtained after 30 iterations.
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Supplementary Figure 9: Ranking of the values of the Finalλ2 centroids for all arenas in the sim-large-7 case,
after 30 iterations.
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Supplementary Figure 10: Evolution of the accuracy with respect to the field of perception of each agent and
the number of agents, for the case sim-large-2. With this case, we consider 2 arenas (disk vs annulus) of
surface S = 500000mm2. All results are computed over 64 simulation runs. We adjust the accuracy score to
only show results when the simulated diffusion sessions in the swarm did not diverge: empty bins correspond to
results where more than 50% of runs failed to converge. Top: results obtained after only 1 iteration. Middle:
results obtained after 30 iterations. Bottom: Ranking of the values of the Finalλ2 centroids for the disk arena.
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Supplementary Figure 11: Top: Mean number of neighbors of agents (i.e., mean degree of the communica-
tion graphs), and Bottom: mean number of connected graph components in the sim-large-7 case, after 30
iterations.
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5.2 Simulations: influence of the dispersion algorithm

We want to study how the dispersion algorithm and the initial position of the agents influence the behavior
of the spectral swarm robotics algorithm and associated results in terms of shape classification accuracy. We
consider the following three cases:

sim-small-2-dispersion where agents are initially packed at the center of the arena and move according to
a run-and-tumble motion during both the “seeding” and the “short random walk” stages of the spectral
swarm robotics algorithm. As such, agents first disperse throughout the arena and then move at the
beginning of each iteration of the algorithm to change their neighbors.

sim-small-2-random where agents are initially placed at random positions of the arena and where they remain
static: the “seeding” stage of the spectral swarm robotics algorithm is skipped and agent do not move during
the “short random walk” stage. As such, they always keep the same neighbors for all iterations.

sim-small-2-uniform where agents are initially optimally distributed throughout the arena so that the dis-
tance between each pair of neighboring agents is the same across the entire swarm. This ensures that
all parts of the arena are identically discretized by the communication graph of the agents. The optimal
positions of the agents are found by using K-Means to find N clusters from a large (100000) number of
points randomly placed in a space with the boundaries as the arenas.

All three cases are performed in simulation, with two arenas (disk and annulus) of surface S = 70000mm2 – in
turn, we will use a smaller number of agents compared to the cases of the previous section (Supplementary
Table 4).
While cases sim-small-2-dispersion and sim-small-2-random do not assume any prior knowledge about

the geometry of the arenas, the sim-small-2-uniform case assumes that it is possible to distribute uniformly
the agent in the arenas before the start of the algorithm. In experiments with Kilobots, this can be achieved by
having the human experimenter positioning the robots so that they are evenly distributed before starting the
experiment.
Supplementary Figure 12 shows the densities of agents after the seeding stage over 64 runs. In all cases, for

both arenas, the agents reach all parts of the arenas, with no visible gap.
Supplementary Figure 13 shows representative examples of agents position after the “initial seeding” stage

for the three cases.
Supplementary Figure 14 characterizes the spacial distribution of agents after the seeding stage for the three

cases considered here. We consider the following three complementary statistics and assess their distribution
using violin plots:

Degrees The distribution of degrees in the communication graphs. This metric only takes into account the
communication graph G itself, without considering the distance between agents.

dmin/σ The distance between the focal agent and its closest neighbors divided by σ, the field of perception
of the agents. This metric only takes into account the distance to one neighbor, without involving the
communication graph G.

Cell Surface of Voronoi tessellation The area of each cells obtained by computing a Voronoi tessellation
of the positions of the agents in the arena (constrained by the geometry of the arena). This metric only
takes into account the spatial size of neighborhoods, without involving the communication graph G. The
Voronoi tessellation is computed in our Python scripts using the Geopandas and shapely packages [62,63].

In both configurations, the results of cases sim-small-2-dispersion and sim-small-2-random are generally
similar for the degrees and cell surface metrics and differ from the results of case sim-small-2-uniform.
The results of the dmin/σ metric suggest that agents tend to be more packed together in the sim-small-
2-dispersion and sim-small-2-random cases compared to the sim-small-2-uniform – this matches the
examples of Supplementary Fig. 13. The cell surfaces in the uniform case has generally less variability compared
to the other cases (at least for the annulus): indeed all agents are equidistant to their neighbors in this case. In
turn, the discretization of the shape is more uniform in the sim-small-2-uniform case.

Note however, when the number of agents is sufficiently low, it is very possible to obtain a graph of agents
with multiple graph components (cf Supplementary Fig. 13, i.e., a graph that is not fully connected. This will
have a different set of consequences depending on the case:

sim-small-2-dispersion The agents move and change their neighbors every iteration. Consequently, the graph
components do not stay static over iterations: they may sometimes merge together or split; some agents
may go from one component to another. In turn, the estimations of λ2 will be periodically transferred from
component to component, making the system able to correctly (but imprecisely) estimate λ2 while some-
times having more than one graph component. That means that it is still possible to have a classification
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Supplementary Figure 12: Density of agents in the arenas after the initial seeding, for cases with arena surface
S = 70000mm2 and for two different configurations (either 25 or 45 agents). Results were obtained over 64 runs.

with high-performing accuracy even if there are more than one component. Of course, if the number of
components is too high (i.e., the number of agents is too low), such computation will be impossible: the
diffusion sessions will diverge, and/or the information from one component to another won’t be transferred,
resulting in an inaccurate classification.

sim-small-2-random The agents are immobile and always keep the same neighbors. Therefore, isolated agents
will always remain isolated and graph components will not be able to communicate with each other over
multiple iterations. This will results in each component doing its own independent estimation of λ2. As this
estimation assumes that the agents are distributed across the entire arena, this process will almost always
results in an incorrect (rather than imprecise) estimation, only taking into account the spaces covered by
each component.

sim-small-2-uniform The agents are immobile and equidistributed in the arena. As such, if there are several
components, it follows that there are actually N components, that is, the agents are all too distant from
each other to communicate. In this case, all agents are isolated and the diffusion stages cannot be computed,
resulting in undecided classification results.

These findings are corroborated by Supplementary Fig. 15, showing the difference in accuracy scores between
the three cases after 10 iterations (the number of 10 iterations was selected so that Finalλ2 estimations have
converged for all settings). The case sim-small-2-dispersion has generally higher (or at least equivalent)
accuracy than the sim-small-2-random case: as explained before, it may be attributed to the capacity of the
former to have agents that change neighbors across iterations. In particular, that is the case when σ is small
(≤ 85mm, i.e., the realistic range for Kilobots), placing the system below the optimal α = 17 hyperbole or to the
right of this hyperbole: in these settings, the dispersion case having far higher scores than the random case.
Both the sim-small-2-dispersion and sim-small-2-uniform cases have similar (100%) accuracy scores

close to the optimal α = 17 hyperbole (1). The latter has better scores than the former immediately below p
(2), while the dispersion case outperforms the uniform case above and to the right of p (3), and with settings
with low values of N (≤ 40) and σ (≤ 85mm) (4). The good results of the uniform case in (1) and (2) can
be explained by considering an uniform distribution of agents in the arena: it both ensures that the graph
is connected (except for settings where the agents are too far from each other) and that the discretization of
the shape is uniform (each point occupies a Voronoi cell that all have similar size). However, the agents in
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Supplementary Figure 13: Examples of position of the agents after the initial seeding, for cases with arena
surface S = 70000mm2 and for two different configurations (either 25 or 45 agents).

the uniform case do not move and always keep the same neighbors at each iteration; while this lowers the
variability in Finalλ2 estimations, it also makes the estimation less resilient to graph artifacts that could bias
such estimations (e.g., small number of agents diverging, affecting their entire neighborhood). This may also be
the case in the (3) settings where the uniform case may have graphs that are too dense, increasing the probability
of divergences and computation anomalies during the diffusion stages; this is alleviated in the dispersion case
by changing neighbors at each iteration. In the (4) settings, the uniform distribution will have agents that are
too far apart from each other to be able to communicate, while the dispersion case would still have clusters of
agents sufficiently close to each other to estimate Finalλ2, possibly using only the local geometry, as the graph
will be too small to match the entire surface of the arenas with those settings.

Finally, Supplementary Figs. 16, 17 and 18 show the results in accuracy after 1 and 10 iterations respectively
for cases sim-small-2-dispersion, sim-small-2-random and sim-small-2-uniform. They also show the
influence of the parameters N and σ on the ordering of the values of Finalλ2 corresponding to the two arenas
(cf Sec. 5.1 for details). The results are consistent with our previous analysis in Supplementary Fig. 15, with
rankings showing demarcation lines between regimes.

In the end, the sim-small-2-dispersion and sim-small-2-uniform are complementary and may be selected
depending on N and σ. They exhibit similar results on the optimal α = 17 hyperbole.
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Supplementary Figure 14: Statistical analysis of the different types of agent dispersion in arenas of surface S =
70000mm2. We consider the sim-small-2-dispersion, sim-small-2-random, and sim-small-2-uniform cases
– named in the figure “dispersion”, “random” and “uniform” respectively. Two configurations are considered,
using 25 and 45 agents respectively. Statistical significance is computed using the two-sided Mann-Whitney-
Wilcoxon test with Bonferroni correction. Significant pairs are designated as follows: ns: 0.05 < p ≤ 1.00, *:
0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***: 0.0001 < p ≤ 0.001, ****: p ≤ 0.0001.
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Supplementary Figure 15: Difference in accuracy scores between cases sim-small-2-dispersion, sim-small-
2-random and sim-small-2-uniform, depending on the number of agents and their field of perception. All
results are obtained in simulations over 10 iterations and over 64 runs. Each bin of the 2D histograms corresponds
to the difference between the accuracy score of the sim-small-2-dispersion with the scores of either the sim-
small-2-random (top) or the sim-small-2-uniform case (bottom). We adjust the accuracy score to only
show results where the simulated diffusion sessions in the swarm do not diverge: empty bins correspond to
results where there are more than 50% of the runs exhibiting divergences.
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Supplementary Figure 16: Evolution of the accuracy depending on the number of agents and their field of
perception, for the case in simulation sim-small-2-dispersion. In this case, we consider 2 arenas (disk vs
annulus) of surface S = 70000mm2 and the robots use the run-and-tumble dispersion algorithm to move
throughout the arenas between each iteration. All results are computed over 64 runs of simulation. We adjust
the accuracy score to only show results where the simulated diffusion sessions in the swarm do not diverge:
empty bins correspond to results where there are more than 50% of runs exhibiting divergences. Top: results
with only 1 iteration. Middle: results obtained after 10 iterations. Bottom: Ranking of the order of values
of the Finalλ2 centroids for the disk arena.
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Supplementary Figure 17: Evolution of the accuracy depending on the number of agents and their field of
perception, for the case in simulation sim-small-2-random. In this case, we consider 2 arenas (disk vs
annulus) of surface S = 70000mm2 and the robots always stay immobile during the simulation. The initial
position of the robots inside the arenas are random (2D uniform distribution). All results are computed over 64
runs of simulation. We adjust the accuracy score to only show results where the simulated diffusion sessions in
the swarm do not diverge: empty bins correspond to results where there are more than 50% of runs exhibiting
divergences. Top: results after 1 iteration. Middle: results after 10 iterations. Bottom: Ranking of the
values of the Finalλ2 centroids for the disk arena.
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Supplementary Figure 18: Evolution of the accuracy with respect to the number of agents and their field of
perception, for the case in simulation sim-small-2-uniform. In this case, we consider 2 arenas (disk vs annulus)
of surface S = 70000mm2 and the robots always stay immobile during the simulation. Robots are distributed
uniformly in the arenas, so that they are equidistant to their neighbors (obtained through Voronoi tessellation).
All results are computed over 64 runs of simulation. We adjust the accuracy score to only show results where
the simulated diffusion sessions in the swarm do not diverge: empty bins correspond to results where there
are more than 50% of runs exhibiting divergences. Top: results after one iteration. Middle: results after 10
iterations. Bottom: Ranking of the values of the Finalλ2 centroids for the disk arena.
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5.3 Experimental runs with Kilobots & Supplementary Videos

All Kilobots experiments involve the experimental case expe-2 described in Supplementary Table 4. In-
dividual runs and obtained classification results are listed in Supplementary Table 6. The raw video files
of all experiments are made available at the following link: https://e.pcloud.link/publink/show?code=
kZY21SZoia38Rb7tFj0mXK4jwqqmJe18Kmk.

Additionally, we provide three explanatory videos as supplementary materials, described as follow:
Video SI1 ( https://e.pcloud.link/publink/show?code=XZdVJjZXeAay878b8ysf33nFmRnP7mJy80X)

presents the results of the expe-2 case, involving experiments with 25 robots in arenas of surface equals to
S = 70000mm2. First, we display the observed behavior of the DDSA algorithm on one experimental run with
the disk and annulus arenas. This is illustrated by a time-lapse showing the active LED colors of each robots,
both in the “diffusion” and “λ2 estimation” stages of the algorithm. Then, we concurrently present the results
obtained through all experimental runs of Supplementary Table 6.
Video SI2 ( https://e.pcloud.link/publink/show?code=XZIVJjZ3UkDoIUOaKkwM0VJxz0OWSFHAi77) com-

pares experimental results of case expe-2 with simulation results of case sim-2. Both experimental and sim-
ulated agents are driven by the same controllers implementing the spectral swarm robotics algorithm on a
Kilobot architecture. In either cases, we observe similar dynamics, for the “diffusion” (swarm exhibit a correct
partitioning) and “λ2 estimation” (swarm correctly classify arenas) stages.

Video SI3 ( https://e.pcloud.link/publink/show?code=XZGVJjZ77O1LvCtiY7URffCtgVCq88zhwXV)
showcases swarm behavior in the sim-large-7 case, with parameters of regime r3 (shown in Main Text Figs. 2
and 3). It involves 300 agents with a field of perception of 85mm and 7 arenas of surface equals to S = 500000mm2.
This video presents a time lapse similar to the one in Main Text Fig. 2, both for the “diffusion” and “λ2 esti-
mation” stages of the algorithm.

Exp.
number

Associated video file Disk classifica-
tion

Annulus classifi-
cation

Additional notes

0 2022-07-21_14-16-04.mp4 Disk Annulus Disk LED color is orange instead of
cyan (early version of the color set),
code, parameters, centroids are the
same as other experiments.

1 2022-07-21_15-47-12.mp4 Disk Annulus -
2 2022-07-22_10-18-21.mp4 Disk Annulus -
3 2022-07-22_11-50-10.mp4 Annulus Annulus -
4 2022-07-22_13-33-07.mp4 Disk Disk -
5 2022-07-22_15-25-54.mp4 Disk Annulus -
6 2022-07-22_17-06-29.mp4 Disk Disk -
7 2022-09-15_15-45-26.mp4 Disk Disk -
8 2022-09-16_10-38-16.mp4 Disk Annulus -
9 2022-09-16_12-42-32.mp4 Annulus Annulus -
10 2022-09-19_10-41-44.mp4 Annulus Annulus -
11 2022-09-19_12-14-47.mp4 Disk Annulus -
12 2022-09-19_13-43-33.mp4 Disk Disk -
13 2022-09-19_15-24-21.mp4 Disk Annulus -
14 2022-09-19_16-58-24.mp4 Annulus Annulus -

Supplementary Table 6: List of experimental runs and names of associated video files. Each experiment in-
volved two arenas: Disk (color code: cyan) and Annulus (color code: violet). Correctly detected arenas are
in bold. Note that experiment 0 used the color code “orange” rather than cyan, as we initially intended to
use the former to indicate a disk arena. We changed the color code to violet to ease visualization. How-
ever, the results of this experiment remain correct, as they used the same code, parameters and centroids as
the other 14 experiments. Raw video files can be found at https://e.pcloud.link/publink/show?code=

kZY21SZoia38Rb7tFj0mXK4jwqqmJe18Kmk
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