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Abstract

Home chemotherapy systems allow the administration of cancer treatments at a patient’s
residence, avoiding an admission to inpatient care facilities. This innovative health care
model is interesting both economically and on a human level. It also raises several logistical
challenges. This paper focuses on one of the optimization problems arising in the context of
home chemotherapy services, where a complex scheduling problem underlies the operational
planning process. Indeed, some injectable chemotherapy drugs may remain stable only
during a few hours after being produced. Consequently, their production has to be carefully
scheduled jointly with their administration, which takes place at the patients homes during
a predefined time window. This gives rise to an integrated production scheduling and vehicle
routing problem, that we address using a large neighborhood search approach. Production
and administration sequences are iteratively modified, while a linear program is used to
determine optimal production and administration start times for the candidate sequences.
We analyze the impact of the linear program and establish that it is a crucial component
of the proposed method. We assess the performance of the proposed method by comparing
its solutions with those obtained through a compact mathematical formulation. We then
provide insights about the cost of taking into consideration time-related aspects of the
problem, i.e., integrated planning horizons, drug stability times, and administration time
windows.

Keywords OR in health services; Production scheduling and vehicle routing problem; Multi-
trip vehicle routing; Large neighborhood search; Chemotherapy planning

1 Introduction

In many developed countries, home chemotherapy is a rising trend. Home chemotherapy ser-
vices aim to assist cancer patients to remain safe and comfortable at home while continuing
to receive their treatment, avoiding hospitalization or admission to outpatient chemotherapy
facilities. Home chemotherapy also contributes to the employability of patients, enabling them
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to remain active for longer periods and in better health. Besides increasing the comfort of the
patients, home chemotherapy may help relieve congestion in outpatient chemotherapy services.
In the nineties, an Australian case study (Lowenthal, Piaszczyk, Arthur, & O’Malley, 1996)
demonstrated that home chemotherapy was at the same time safe and cost effective. A report
of the European Commission (European Commission, 2016) states that institutional care sys-
tems typically have higher costs than home care systems, which should be encouraged when the
patient’s condition allows it to favor at the same time independent living and cost-effectiveness.
Thus, shifting from a hospital-centered to a home-based care system can clearly be seen as a
possible direction to reinforce the financial stability of health systems. For all those reasons,
home chemotherapy sparks the interest of healthcare authorities, as does hospital at home in
general.

At the operational level, a complex scheduling problem underlies the daily home chemother-
apy process. It calls for the determination of an integrated drug production and administration
schedule. Indeed, injectable preparations for cancer treatment sometimes have a short stability
time, i.e., they may expire within a few hours after their production start time. Consequently,
they may not be produced ahead of time and then stored before being administered. The re-
sulting absence of inventories implies that the production of drugs has to be carefully scheduled
jointly with their administration. Moreover, when chronotherapy is used in cancer treatment,
the timing of drug administration takes into account biological rhythms of patients. This may
result in a short recommended time window to administer a given drug. Since the patients
comfort is essential for a quick recovery, their preferences need also to be taken into account to
determine the time window of the treatment administration. Doing so also allows patients to
remain professionally active when possible. For all the above mentioned reasons, establishing a
schedule for the production and administration of home chemotherapy drugs is a complex task
which may be a turn-off for medical teams. If handled properly, however, it may contribute to
improve the quality of service for the patients and to relieve the work of the medical staff inside
the hospital.

The operational problem described in this work stems from an envisioned home chemotherapy
system based on the current emerging practice observed in several Belgian and French healthcare
institutions. Our first contribution is to propose a solution method based on the strong inter-
dependence of the vehicle routing and production scheduling subproblems. A linear program,
whose usefulness is clearly demonstrated through computational experiments, is embedded in a
large neighborhood search framework and several algorithmic components specifically address
the temporal connection between the two subproblems. As a second contribution, we propose
a set of test instances that encompass realistic features of home chemotherapy systems. Since
several algorithmic parameters are required, we use the irace package to configure the proposed
solution method. As a third contribution, we propose a compact formulation for the studied
problem, which is solved by means of a commercial solver. These results are then exploited to
assess the quality of the proposed method. As a last contribution, we provide insights about
the impact of several instance parameters, and about their influence on the integration of the
two subproblems. In particular, we analyze the cost of integration, i.e., we investigate to which
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extend the absence of inventories due to short stability times increases the cost of the routing
and production schedules.

The remainder of this paper is organized as follows. Section 2 provides a description of the
home chemotherapy planning problem under consideration. A literature review is then given in
Section 3. Section 4 presents the proposed solution approach, which combines large neighborhood
search (LNS) with mathematical programming operators. Section 5 provides numerical results.
Conclusions and some prospects are drawn in Section 6.

2 Problem description

The problem described in this section is motivated by the emergence of home chemotherapy
systems. Its characteristics as well as realistic instance settings have been gathered through
discussions with doctors and head nurses in charge of home chemotherapy in Belgian and French
healthcare organizations.

In the considered problem, a set of patients must receive their chemotherapy treatment at
home on a given day. A single personalized drug must be produced for each patient. In the
following, we consider a set J of patients, where each patient is associated with two operations:
a drug production operation and a drug administration operation. Thus, each patient i ∈ J is
characterized by:

• a processing time Pi, which is the time needed to produce the personalized drug at the
hospital pharmacy,

• a stability time STi, which denotes the maximum delay between the start time of the
production operation and the start time of the administration operation,

• an administration time Si, which is the time needed to administer the drug at the patient’s
home,

• an administration time window [Ei, Li], within which the administration operation can
start.

The drugs are produced at the hospital pharmacy by a set P of pharmacists. Each drug
must be processed without preemption by a single pharmacist and each pharmacist can produce
any one drug at a time. We assume that pharmacists have homogeneous production skills, i.e.,
the processing time Pi of a given drug i does not depend on the pharmacist that produces the
drug. Given these assumptions, we model pharmacists as identical parallel machines and drugs
as jobs composed of a single operation analogously to the production scheduling literature.

The drug administration planning can be modelled as a multi-trip vehicle routing problem.
A set N of specialized nurses administer the drugs to patients at home. Each nurse performs
an administration journey that starts and ends at the hospital, denoted by 0. During the
journey, recently produced drugs may be loaded at the hospital between patient visits. A set of
consecutive patient visits that starts and ends at the hospital forms a trip. The time required
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for loading operations at the hospital, S0, is supposed constant for each trip, i.e., independent
of the specific subset of drugs to be loaded. Thus, without loss of generality, we assume S0 = 0.
The traveling time between two patients i and j is Tij , while T0i (resp. Ti0) denotes the traveling
time between the hospital and patient i (resp. between patient i and the hospital). Each patient
i must be visited within a given hard time window [Ei, Li]. A nurse arriving early has to wait,
and being late is prohibited.

Pharmacists and nurses have a limited working duration Dmax. They must start and end
their working shift within the planning horizon, defined by the time window [E0, L0]. We
suppose, without loss of generality, that E0 = 0.

The problem calls for the determination of a complete production and administration sched-
ule while ensuring that the drug administration for each patient starts during the corresponding
time window, each drug is stable at the time of its administration, the production process of
each drug is completed before the start time of the trip to which the corresponding patient is
assigned, and the working duration of none of the pharmacists and nurses exceeds its maximum
limit. Under those constraints, the following decisions have to be taken:

• the production of each drug must be assigned to a pharmacist,

• a production schedule has to be determined for each pharmacist,

• the administration of each drug must be assigned to a nurse,

• a routing schedule composed of one or more trips that do not overlap in time has to be
determined for each nurse.

Consequently, the problem under consideration includes two integrated subproblems: a pro-
duction scheduling problem with identical parallel machines, and a multi-trip vehicle routing
problem with time windows. The two subproblems are strongly integrated because of 1) stabil-
ity constraints, i.e., after the effective start of its production process, each drug administration
should start before the stability time expires, and 2) trip start time constraints, i.e., the pro-
duction of all drugs to be administered during a given trip should be completed before the start
time of this trip.

Let ePp be the start time and lPp the end time of the working shift of pharmacist p ∈ P. The
shift start time ePp is determined by the start time of the first production operation executed by
pharmacist p, while the shift end time lPp is the completion time of the last production operation.
Similarly, let eRn be the start time and lRn the end time of the working shift of nurse n ∈ N , where
eRn is the start time of the first trip and lRn the completion time of the last trip performed by
nurse n. The objective is to minimize the total working duration of the nurses and pharmacists:∑

p∈P(l
P
p − ePp ) +

∑
n∈N (lRn − eRn ).

The total working duration takes into account the drug production and administration times,
the traveling and waiting times of nurses, and the idle times of pharmacists. Such an objective
function is very relevant since pharmacists and nurses are highly skilled and may execute other
value added operations at the hospital before or after their assigned home chemotherapy oper-
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ations. Keeping them idle may increase significantly the opportunity costs of the system. We
coin the problem studied in this paper the home chemotherapy delivery problem (HCDP).

An optimal solution for a toy instance with seven patients is given in Figure 1. The associated
data are reported in Table 1. Travel times are displayed on the arcs of the administration part
of the solution. They are calculated as the Euclidean distance between locations (given as
coordinates in columns x and y in Table 1) truncated to the first decimal digit. The planning
horizon is [E0, L0] = [0, 600] and the shift length Dmax is set to 480. Two pharmacists and two
nurses are available. The first pharmacist produces drugs for patients 3, 7, 6, and 1, in this
order, while the second pharmacist produces drugs for patients 4, 2, and 5. In the figure, the
length of a rectangle corresponds to the processing time of the corresponding drug. Concerning
the administration schedule of the first nurse, drugs of patients 5, 7, 6 and 2 are loaded and the
administration trip starts at time 292.1. It ends at 510.1. As for the second nurse, the drugs
for patients 4 and 3 are loaded and the first administration trip starts at 212.1. This nurse goes
back at the hospital at time 370, where drugs of patient 1 can be loaded before beginning the
next trip, which is completed at time 436.6. The total working duration of the first nurse is thus
218, while the one of the second nurse is 224.5. The total working time of the pharmacists is
260, which provides a solution with a cost of 702.5. Note that stability times and time windows
are respected.
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292.1212.1192.1 370 436.6

Figure 1: Optimal solution for a toy instance with seven patients.

Figure 2 represents an optimal solution for the same toy instance when the stability con-
straints are relaxed (STi =∞, ∀i ∈ J ). The first pharmacist produces now all the drugs except
5, which is produced by the second pharmacist. Only one nurse is in charge of the administra-
tion phase. The corresponding single trip starts at 200 and finishes at 522.2, providing a total
work duration of 322.2. The total working time of the pharmacists is 260, and the total cost is
thus 582.2. It is clear from this example that imposing stability constraints strongly links the
production and the administration subproblems.
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Figure 2: Optimal solution for the toy instance after relaxing stability constraints.

i xi yi Pi STi Si [Ei, Li]

0 0.0 0.0 0 0 0 [0, 600]

1 12.0 20.0 40 160 20 [250, 500]

2 30.0 10.0 20 250 20 [300, 500]

3 30.0 40.0 40 150 20 [100, 300]

4 20.0 50.0 20 100 20 [100, 300]

5 40.0 30.0 60 150 20 [300, 500]

6 50.0 20.0 40 250 20 [300, 500]

7 50.0 40.0 40 200 20 [250, 500]

Table 1: Data associated with the seven patients of the toy instance.

3 Literature Review

The problem we consider relates to well-studied fields of operations research: production schedul-
ing and vehicle routing. In practice, even though the two subproblems are strongly intercon-
nected, they are often solved sequentially. The production schedule is established first, serving
as a basis to compute the routing plan. If the production schedule is known, then the routing
component of the problem considered in this work may be modeled as a nurse routing prob-
lem, which concerns routing decisions for nurses that provide care at the patients’ homes. The
nurse routing problem has been studied for more than 20 years (Rasmussen, Justesen, Dohn, &
Larsen, 2012; Braekers, Hartl, Parragh, & Tricoire, 2016). Most nurse routing problems studied
in the literature are vehicle routing problems which encompass preoccupations related to the
home healthcare sector such as workload balance, patient preferences with respect to nurses, or
staff qualifications. In the problem studied in this work, the drug availability depends on its
production completion time, implying a release date on each drug to be administered. Since
the nurses are allowed to perform multiple trips, this gives rise to a multi-trip vehicle routing
problem with time windows and release dates similar to the one studied in Cattaruzza, Absi,
and Feillet (2016).

However, in the literature, in situations where keeping inventories can not be considered,
several authors have obtained substantial cost decreases by integrating the optimization of the
production scheduling and the vehicle routing problems instead of solving them sequentially
(Moons, Ramaekers, Caris, & Arda, 2017). In the following, we concentrate on studies that
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treat the production and the routing problems jointly.
As mentioned before, the problem we consider integrates production scheduling and vehi-

cle routing decisions. However, it should not be mistaken for the production-routing problem
(PRP) surveyed by Adulyasak, Cordeau, and Jans (2015). Indeed, the PRP combines lot-sizing
and routing decisions on a multi-period basis. On the production side, the question is not to
determine a precise production schedule for one period, but rather to decide in which periods
to produce. Since multiple periods are considered, inventories may be built up in the PRP. On
the contrary, our work falls into a different category, surveyed by Z.-L. Chen (2010) and more
recently by Moons et al. (2017), referred to as the production scheduling and vehicle routing
problem (PS-VRP), which focuses on single-period integrated production scheduling and vehicle
routing problems. In a PS-VRP, a detailed production schedule must be established in coor-
dination with vehicle routes and delivery schedules. We limit our literature review to works
that tackle the PS-VRP. Indeed, the literature concerning each one of the two sub-problems
is large, and an exhaustive review is out of the scope of this paper. The interested reader is
referred to Toth and Vigo (2014); Golden, Raghavan, and Wasil (2008); Braekers, Ramaekers,
and Van Nieuwenhuyse (2016) and to Potts and Strusevich (2009) for a complete view on routing
and scheduling problems.

The literature related to the PS-VRP is quite scarce in contrast with the extreme diversity of
contexts and problems. As noted by Ullrich (2013), PS-VRPs are relevant in situations where the
size of inventories is too small to act as a buffer between production and distribution. Keeping
inventories makes no sense when products have a short lifespan as the drugs considered in this
work. Other examples may be found in several industries as hot meal, newspaper, or ready-mix
concrete. For example, Garcia, Lozano, and Canca (2004) study the distribution of concrete that
must be swiftly delivered in order to avoid solidification. They consider the problem of scheduling
concrete orders with a no-wait policy: orders are manufactured and immediately delivered to
clients using a homogeneous fleet of vehicles. They must be served exactly at their due dates.
Even for products with a longer lifespan, supply chain management strategies may imply that
few or no inventories are kept between the production and the distribution activities, as it is
the case in just-in-time or make-to-order contexts. For example in computer production, each
customer can choose among several options for each component. As a consequence, the number
of possible combinations is huge and making a stock for each final product is not sustainable
for the company. Thus, computers are produced and then immediately delivered (Z.-L. Chen &
Vairaktarakis, 2005), in an assemble-to-order context.

There is no commonly accepted version of the PS-VRP. Different variants arose based on
customer and product characteristics, and depending on the considered production and distribu-
tion environments. In our work, we consider a parallel machine environment in conjunction with
a fleet of vehicles allowed to perform multiple trips as in Ullrich (2013); Lee, Kim, Johnson, and
Lee (2014); Kergosien, Gendreau, and Billaut (2017); Wang et al. (2019); Robbes, Kergosien,
André, and Billaut (2021). Even if those five works share some similarities with ours, they are
still very different in terms of problem characteristics as detailed below. Ullrich (2013) studies a
PS-VRP motivated by the automotive industry, where each customer orders one or more person-
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alized items (with no lifespan consideration). Parallel machines with machine-dependent ready
times produce items that have to be delivered to customers within a given hard time window
by heterogeneous vehicles. The objective is to minimize the total tardiness. The authors use a
genetic algorithm to solve the integrated problem up to 100 jobs. Their numerical experiments
show large improvements when solving the integrated problem compared to a decomposed ap-
proach that treats the production and the routing parts sequentially. Lee et al. (2014) consider
an integrated production and delivery problem in the context of nuclear medicine, where an
isotope with a 110 minutes half-life needs to be delivered to several medical end-users. Each
customer orders a given quantity of isotope to be delivered within a specified time window.
Production batches are launched in parallel cyclotrons at predetermined start times. On the
production side, orders have to be assigned to production batches. Also, the quantities to be
produced must be determined taking into account the deterioration of the isotope over time.
Instances with up to 100 customers are solved using a large neighborhood search. Kergosien et
al. (2017) consider a problem motivated, like ours, by the case of home chemotherapy. There
are no time windows for the drug administration but an administration due date is fixed by
the doctor. The objective is to minimize the maximum tardiness with respect to those drug
administration due dates. The authors develop a heuristic method based on Benders decompo-
sition to solve instances with a single vehicle and up to 40 patients. Wang et al. (2019) study a
problem with machine-dependant ready times, time windows, and uncertain travel times. The
objective is to minimize the travel cost, and a penalty is incurred for the cost due to tardiness.
The proposed memetic algorithm allows to take into account the risk preferences of the decision
maker in managing uncertainties. Numerical results are reported for instances containing up to
50 customers. Robbes et al. (2021) study the problem of producing and delivering chemother-
apy drugs from a production site to different oncology units of an hospital where injections are
performed. Drug production is associated with a release date corresponding to the final doctor
check and validation, and with a due date that represents the desirable delivery time of the
drug to the assigned unit. The production process is modelled as a three-stage hybrid flow shop
scheduling problem. The objective is to minimize the total tardiness. Instances with up to 180
drugs and three delivery points are tackled with several heuristics.

In Kergosien et al. (2017), like in this work, the product has a limited lifespan and batching
is not considered. Several other different PS-VRP versions have been devoted to products
with a short lifespan. Most of the time, batching is used in the following way: goods to be
delivered within a same trip are produced sequentially without interruption as a production
batch. The product lifetime starts as the batch production starts or ends. For example, in
Geismar, Laporte, Lei, and Sriskandarajah (2008), customers are served by a single truck allowed
to perform multiple trips. There is a single plant, with a specified production rate, that may
be considered as a single machine. Each trip delivers the products of a production batch and
the lifetime of the products begins when the production batch is completed. The authors use
an evolutionary algorithm to solve instances with up to 50 customers. Devapriya, Ferrell, and
Geismar (2017) consider an extension where the fleet size is a decision variable. They solve
instances with up to 40 customers, again using an evolutionary algorithm. Lacomme, Moukrim,
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Quilliot, and Vinot (2018) propose another extension with a given fleet size and use a hybridized
metaheuristic to solve large-scale instances with up to 200 customers. A branch-and-cut exact
algorithm has also been proposed recently by Karaoğlan and Kesen (2017) to solve the problem
introduced in Geismar et al. (2008). H.-K. Chen, Hsueh, and Chang (2009) develop a model
for fresh food distribution where the products deteriorate in time. A fleet of vehicles serves
customers with stochastic demands. Each product starts to deteriorate at the production start
time of the batch to be delivered in the same vehicle. On the contrary, in Armstrong, Gao, and
Lei (2008) and Viergutz and Knust (2014), the end of the lifetime of each product is determined
by its production start time, as it is the case in this work. However, these two works consider a
problem where all perishable products must be produced before being served by a single vehicle
in a single trip, and the delivery sequence of customers is known a priori. The objective is to
maximize the quantity of goods delivered.

We consider that both production and routing costs are functions of the working time.
Moons et al. (2017) note that production costs are not usually considered in the integrated
production-routing literature, since all products need to be produced. However, in the case of
home chemotherapy, pharmacists have to don a special outfit. This costs time and sterilization
material, implying that pharmacists will wait between production operations in case of idle time,
instead of removing their outfit to perform other tasks in the pharmacy. Thus, the potential
resulting waiting time may be viewed as an opportunity cost. As for the routing costs, François,
Arda, and Crama (2019) showed that, in presence of time windows, considering the total duration
instead of the total travel time leads to much more realistic solutions, avoiding large amounts of
waiting time. This is especially relevant in this case, since specialized nurses can perform duties
at the hospital before or after their journey instead of waiting in the vehicle.

4 A large neighborhood search heuristic

To solve the problem described in Section 2, we propose to use an LNS (Shaw, 1998), illustrated
in Algorithm 1, that iteratively removes and reinserts drug production and administration op-
erations to create new solutions.

As will be detailed later in this section, we differentiate between the set of sequences of
operations, and the schedule, which also contains the time-related information.

In this section, we first describe the solution representation (Section 4.1) and formally define
the search space and the useful notations (Section 4.2). We then provide a description of the
building blocks of the LNS.

First, an initial solution is built by following the procedure described in Section 4.3. The
optimal timing of the sequences composing this solution is calculated by solving a LP model as
detailed in Section 4.4. The dynamic time windows, which are explained in Section 4.5, are set
for the production and administration schedules. The outer loop of the procedure (Algorithm 1,
Lines 5-26) then starts. It is devoted to the modification of the production sequences. Details are
provided in Section 4.7. An inner loop (Lines 12-25) embedded in the outer loop is in charge of
optimizing the administration sequences of the solution, while the production sequences remain
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fixed. It relies on the removal and insertion heuristics presented in Section 4.6. An approximation
of the objective function is computed as explained in Section 4.5 to evaluate each candidate set
of administration sequences. Whenever the new administration sequences satisfy the acceptance
criterion, the optimal timing of all the production and administration sequences is determined
by calling the LP component of Section 4.4.

Algorithm 1 Large neighborhood search heuristic.
1: Construct an initial set of production and administration sequences Xinit (Sec. 4.3)
2: Compute Sinit as the optimal schedule of Xinit (Sec. 4.4)
3: Set dynamic time windows for production and administration schedules (Sec 4.5)
4: Set k ← 1; set Souter ← Sinit
5: while the stopping criterion is not met (outer loop) do
6: Perturb Souter on k production tasks (Steps 1 to 6, Sec. 4.7) to obtain Sinner
7: Update k and perturbation scheme
8: if Sinner is better than Souter then
9: Set Souter ← Sinner; reset k and perturbation scheme

10: end if
11: Set q ← 1
12: while the stopping criterion is not met (inner loop) do
13: Select removal and insertion heuristics hrem and hins randomly (Sec. 4.6)
14: Obtain X ′R

inner by using hrem and hins on q administration tasks from the routing se-
quences XR

inner of Sinner
15: if X ′R

inner satisfies the acceptance criteria then
16: Compute Sinner as the optimal schedule of X ′

inner (Sec. 4.4)
17: Update dynamic time windows (Sec. 4.5)
18: Reset q
19: if Sinner is better than Souter then
20: Set Souter ← Sinner; reset k and perturbation scheme
21: end if
22: else
23: Update q
24: end if
25: end while
26: end while

4.1 Solution representation

A solution to the studied integrated problem is composed of a production schedule and an ad-
ministration schedule. They both rely on a set of sequences for pharmacists or for nurses, respec-
tively. In the following, the distinction between a set of sequences and a schedule is important,
because several algorithmic components modify one or more sequences without recomputing an
associated schedule.

For the routing subproblem, in particular, the sequence of visits performed by a nurse is
represented as a giant tour. The journey of a nurse is a sequence of operations that starts with
a first loading operation at the hospital, continues with the administration operations of the
assigned patients and ends with a last visit at the hospital. Additional reloading operations
may occur within the sequence between administration operations. They are the trip delimiters
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inside the journey. Using 0 as a trip delimiter in the example of Figure 1, the journey of the first
nurse is represented by the giant-tour (0, 5, 7, 6, 2, 0), while the journey of the second nurse is
(0, 4, 3, 0, 1, 0). The multi-trip operators detailed in François, Arda, Crama, and Laporte (2016),
which are designed to modify journeys without decomposing them into their constituting trips,
are employed to remove and reinsert administration and reloading operations within the routing
solutions. Using these multi-trip operators, the insertion of an administration operation may be
accompanied by the insertion of a reloading operation at the hospital. When an administration
operation is removed, the concerned trip may be merged together with one or both adjacent
trips.

4.2 Search space

During the execution of the LNS algorithm, we allow visiting infeasible solutions obtained by
relaxing stability, trip start time, time window, and maximum working duration constraints. In
the following, we denote a solution of this relaxed version of the problem by S = SP ∪SR, where
SP is the corresponding solution of the production subproblem, i.e., the production schedule of
S, and SR is the corresponding solution of the routing subproblem, i.e., the routing schedule
of S.

Nagata, Bräysy, and Dullaert (2010) initially introduced the concept of time warp to allow
late arrivals in the context of vehicle routing problems with time windows. The time warp
allows, when a task is overdue in a given schedule, to fictively start the task execution at the
end of its time window, i.e., just on time. The quantity of time units that are traveled back in
time this way is called the time warp usage. In this work, we use the time warp concept in three
different situations: (i) to allow violation of patients’ time windows, (ii) to allow violation of
stability times, and (iii) to allow producing a drug late w.r.t. the start time of the corresponding
trip. When a nurse arrives late at a patient’s home in case (i) or (ii), or when a pharmacist
starts a drug production late in case (iii), we pretend that the concerned worker is allowed to
travel back in time to start to execute the operation just on time. That is, the production and
administration start times of the drugs fictively never violate the relaxed constraints due to the
use of a time warp mechanism. The total time warp of a given solution S, i.e., the total quantity
of time units that have to be traveled back in time by all the workers, is recorded as δ(S).

In order to take into account the violations of the maximum working duration constraints,
we define an overtime value for each pharmacist and each nurse. For each pharmacist p ∈ P,
the overtime is calculated as γPp = max{0, (lPp − ePp ) − Dmax}, while for each nurse n ∈ N ,
it is computed as γRn = max{0, (lRn − eRn ) − Dmax}. The total overtime of S is defined as
γ(S) =

∑
p∈P γ

P
p +

∑
n∈N γRn .

The cost of a candidate solution S is denoted by C(S,M) =
∑

p∈P(l
P
p − ePp ) +

∑
n∈N (lRn −

eRn ) +M(δ(S) + γ(S)), where M is a very large number. This implies that, for the purpose of
detecting new best solutions, the total amount of infeasibilities is the first criterion, while the
duration comes second if compared solutions are both feasible or if they have the same amount
of infeasibilities.

However, when guiding the search, for the purpose of accepting or rejecting moves, an alter-
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nate cost function is used in order to ease exploring infeasible solutions: C(S, α) =
∑

p∈P(l
P
p −

ePp ) +
∑

n∈N (lRn − eRn ) +α(δ(S) + γ(S)), where α ∈ [αmin, αmax] is an adaptive parameter. The
value of α is initialized to αmin and a parameter µ ≥ 1 controls its variation as described in
Olivera and Viera (2007). Whenever an accepted solution contains overtime or time warp, the
value of α is set to min{αµ, αmax} to focus on reducing infeasibility. Else, the value of α is set
to max{α/µ, αmin} to encourage visiting infeasible solutions. After ξ iterations with α set to
αmax, the value of α is reset to αmin to prevent it from remaining stuck at its maximum value
αmax. The values of αmin, αmax, µ, and ξ are determined during the algorithm configuration
phase.

4.3 Initial solution

The initial solution is created in three phases: first, the production schedule is initialized, second,
the administration sequences are created, and third, the optimal schedule of production and
administration sequences is determined using the LP procedure described in Section 4.4.

To create the production schedule, we proceed in two steps: an assignment step, where drugs
are assigned to pharmacists, and a scheduling step, where production tasks of each pharmacist
are scheduled.

In the assignment step, the drugs to produce are first sorted in increasing order of their
tightness defined as STi−Pi−T0i. The tightness represents the maximum slack of the adminis-
tration start time with respect to the drug production start time. The sorted list of drugs is split
into |P| segments, each of size ⌊(|J |/|P|)⌋ or ⌈(|J |/|P|)⌉. The drugs in each segment are then
sorted in decreasing order of their processing times, and segments are concatenated in a single
list starting from the first segment up to the last one. Finally, drug in position i = 0, . . . , |J |−1

of the list is assigned to the pharmacist i mod |P|.
This first step is designed to create an even assignment of the drugs to the pharmacists with

respect to the tightness, while taking into account at the same time the balance of the processing
times.

After performing the assignment, the scheduling step begins. The drugs to be processed
by each pharmacist are sorted in increasing order of the center of their static production time
window, i.e., (EP

i + LP
i )/2, where the values of EP

i and LP
i are deduced from Ei and Li as

explained in the next section. This produces a production sequence for each pharmacist. The
production of each drug is then scheduled at the latest possible start time that minimizes the
working duration of each pharmacist while satisfying the static production time windows. Those
computations are straightforward using the concatenation equations described in Section 4.5.

The dynamic time windows (see Section 4.5) of the administration operations are set accord-
ing to those schedules. Then, a vehicle-based regret insertion heuristic, as defined in François et
al. (2019), creates the administration sequences. The LP procedure described in Section 4.4 is
used to determine the optimal schedule of the initial production and administration sequences.
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4.4 Evaluation subproblem

In heuristic approaches, being able to evaluate moves efficiently is crucial to ensure the overall
speed of the method. In this problem, however, performing a move that modifies the schedule of
any nurse or pharmacist leads to a chain of reactions that impacts the complete solution schedule.
This is due to the interdependence between the operations to be performed by pharmacists and
nurses. Let us consider, for example, a move that inserts a patient inside a given trip. Such an
insertion affects the administration start times during the nurse’s journey. Consequently, the
production start times of the drugs administered by the concerned nurse are impacted due to
the linking constraints between production and routing: drug stability constraints and trip start
time constraints. Thus, all the pharmacists producing these drugs see their respective production
schedule affected. Similarly, each change in the production schedule impacts the administration
schedule. Such interdependencies are usually encountered in vehicle routing problems with
synchronization, surveyed in Drexl (2012), Soares, Marques, Amorim, and Parragh (2023), and
tend to complicate the evaluation of candidate solutions.

Given a removal or insertion move to evaluate, the production and administration sequences
of the candidate solution are known but the optimal values of all the start time variables need to
be computed: the complete production and administration schedules have to be determined. We
call this issue the evaluation subproblem. For the example of Section 2, solving the evaluation
subproblem would consist in finding jointly the optimal start times of all 14 operations (7 for
the production and 7 for the administration), as well as the trip start times, to minimize the
total duration. The start times provided in the example are already optimal, which can be easily
seen in this case because the production idle time and the administration waiting time are both
equal to zero. As explained further in this section, this evaluation subproblem can be solved
using a linear programming (LP) model.

Very few recent studies have tried to evaluate efficiently moves in problems that include
interdependencies. In Masson, Lehuédé, and Péton (2014), handicapped persons must be trans-
ported from their origin location to their destination through a dedicated fleet. These persons
may have to be transferred from one vehicle to another at so-called transfer locations, imply-
ing precedence constraints, and hence interdependence, between vehicle journeys. The authors
model the evaluation of the feasibility of a move as a simple temporal problem (STP), whose
constraints impose bounds on time intervals separating pairs of events. In Masson, Lehuédé,
and Péton (2013), the concept of forward time slack of Savelsbergh (1992) is extended to eval-
uate efficiently the feasibility of moves for the same problem. The complexity of evaluating the
feasibility of inserting a customer inside a vehicle journey is cubic in the number of customers
in the case of Masson et al. (2014) and it is performed in constant time with quadratic updates
when a solution is modified in Masson et al. (2013). Lehuédé, Grangier, Grimault, and Masson
(2015) extend the technique presented in Masson et al. (2013) for two more variants of vehicle
routing with synchronization constraints.

However, in this work, those techniques are not straightforward to adapt for the following
reasons.
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• We are not only interested in evaluating the feasibility of the moves, but also the change
in the objective function value. Indeed, in our case, changing the schedule of the solution
also implies a change in the total working duration.

• Since feasible schedules may be difficult to obtain, and because we want to allow visiting,
during the search, solutions that are infeasible w.r.t. time-related constraints, we need
to evaluate the new working duration of a candidate solution as well as its amount of
infeasibility.

Les us now present the evaluation subproblem considered in this work. Let X be a set of
production and drug administration sequences which include all the operations to be executed.
Given this set X , the evaluation subproblem is to determine the optimal start and completion
times of the production, administration, and loading operations. The obtained schedule is
denoted Sopt(X ). We model this problem as a linear program. The sets, parameters, and
decision variables of this model are provided in Table 2.

Even though there are no time windows directly imposed on the start times of the production
operations in the studied problem, the earliest production start time of a drug i is clearly
constrained due to its earliest administration start time and its stability time. Moreover, the
latest production start time of a drug i has to permit starting the drug administration before
the end of the corresponding time window. Taking those dependencies into account, we deduce
a time window [EP

i , L
P
i ] that is valid on the start time of each production operation i ∈ J :

EP
i = Ei − STi,

LP
i = Li − T0i − Pi.

With the aim of determining the amount of infeasibility related to these bounds, we impose
time window constraints on the production start times in the models provided here after. Below,
we first give the LP formulation of the evaluation subproblem if infeasibilities are not allowed.

min
∑
p∈P

(lPp − ePp ) +
∑
n∈N

(lRlastTn − eRfirstTn ) (1)
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Sets

J , indexed by i and j Set of patients
Jp Set of production operations executed by pharmacist p ∈ P
Jn Set of patients visited by nurse n ∈ N
R, indexed by r and s Set of non empty trips
AP = {(i, j) ∈ J 2

|i is produced right before j}
Set of consecutive production operations executed by a same pharma-
cist

AR = {(i, j) ∈ J 2

|i is administered right before j}
Set of consecutive patients visited by a same nurse in a same trip

AN = {(r, s) ∈ R2

|r is executed right before s}
Set of consecutive trips performed by a same nurse

Parameters

Pi Processing time of drug i ∈ J
STi Stability time of drug i ∈ J
Si Time necessary to administrate drug i ∈ J
Ei Earliest start time of administration operation i ∈ J
Li Latest start time of administration operation i ∈ J
EP

i Earliest start time of production operation i ∈ J
LP
i Latest start time of production operation i ∈ J

Tij Travel time between patient i and j ∈ J
T0i (resp. Ti0) Travel time between the hospital and patient i ∈ J (resp. patient i

and the hospital)
Dmax Maximum length of a shift
firstPp First production operation executed by pharmacist p ∈ P
lastPp Last production operation executed by pharmacist p ∈ P
firstTn First trip performed by nurse n ∈ N
lastTn Last trip performed by nurse n ∈ N
firstRr First patient visited in trip r ∈ R
lastRr Last patient visited in trip r ∈ R
tripi Trip that visits patient i ∈ J
M A very large number

Decision variables

tPi Start time of production operation i ∈ J
tRi Start time of administration operation i ∈ J
ePp Start time of the working shift of pharmacist p ∈ P
lPp End time of the working shift of pharmacist p ∈ P
eRr Start time of trip r ∈ R
lRr End time of trip r ∈ R
δPi Time warp on the start time of production operation i ∈ J
δRi Time warp on the start time of administration operation i ∈ J
γP
p Overtime of pharmacist p ∈ P

γR
n Overtime of nurse n ∈ N

Table 2: Notations for the LP formulation of the evaluation subproblem.
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s.t. tPi + Pi ≤ tPj ∀(i, j) ∈ AP (2)

tRi + Si + Tij ≤ tRj ∀(i, j) ∈ AR (3)

EP
i ≤ tPi ≤ LP

i ∀i ∈ J (4)

Ei ≤ tRi ≤ Li ∀i ∈ J (5)

tRi − tPi ≤ STi ∀i ∈ J (6)

tPi + Pi ≤ eRtripi ∀i ∈ J (7)

tPlastPp + PlastPp
≤ lPp ∀p ∈ P (8)

tRlastRr + SlastRr
+ TlastRr ,0 ≤ lRr ∀r ∈ R (9)

ePp ≤ tPfirstPp ∀p ∈ P (10)

eRr + T0,firstRr
≤ tRfirstRr ∀r ∈ R (11)

lRr ≤ eRs ∀(r, s) ∈ AN (12)

lPp − ePp ≤ Dmax ∀p ∈ P (13)

lRlastTn − eRfirstTn ≤ Dmax ∀n ∈ N (14)

tPi , t
R
i ≥ 0 ∀i ∈ J (15)

ePp , l
P
p ≥ 0 ∀p ∈ P (16)

eRr , l
R
r ≥ 0 ∀r ∈ R (17)

The objective function to be minimized (1) is the total working time of pharmacists and
nurses. Constraints (2) and (3) respectively ensure the consistency of production and admin-
istration start times. Constraints (4) and (5) are time windows constraints. Constraints (6)
and (7) are the synchronization constraints that link production and administration operations:
the stability of each drug must be respected and each trip may start only if all the concerned
drugs are produced. Constraints (8) and (10) respectively determine the end and start time of
the working shift of each pharmacist. Similarly, Constraints (9) and (11) respectively determine
the end and start time of each trip. Constraints (12) state that a trip may not start before
the end of the preceding trip performed by the same nurse. Constraints (13) and (14) impose
a maximum working duration for the pharmacists and nurses. Finally, Constraints (15) to (17)
define the variable domains.

In order to evaluate the amount of infeasibility of a given solution, we first define non-negative
time warp variables for the start times of production and administration operations. The time
warp δRi (resp. δPi ) of the administration start time (resp. production start time) of drug i is the
quantity of time units that the concerned nurse (resp. pharmacist) would need to travel back in
time in order to start the operation just on time. That is, the fictive administration start time,
fRi = tRi − δRi , and the fictive production start time, fPi = tPi − δPi , of a drug i ∈ J always
satisfy Constraints (4)-(7). Every pharmacist and nurse continue their sequence according to
the fictive start times of the already executed operations. In order to integrate the time warp
variables into the model, Constraints (2)-(9) are replaced by the following:
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tPi − δPi + Pi ≤ tPj ∀(i, j) ∈ AP (18)

tRi − δRi + Si + Tij ≤ tRj ∀(i, j) ∈ AR (19)

EP
i ≤ tPi − δPi ≤ LP

i ∀i ∈ J (20)

Ei ≤ tRi − δRi ≤ Li ∀i ∈ J (21)

tRi − δRi − STi ≤ tPi ∀i ∈ J (22)

tPi − δPi + Pi ≤ eRtripi ∀i ∈ J (23)

tPlastPp − δPlastPp + PlastPp
≤ lPp ∀p ∈ P (24)

tRlastRr − δRlastRr + SlastRr
+ TlastRr ,0 ≤ lRr ∀r ∈ R (25)

In order to allow each nurse or pharmacist to fictively work more than the maximum au-
thorized duration Dmax, non-negative overtime variables are introduced into the model. The
overtime of each pharmacist p ∈ P (resp. each nurse n ∈ N ) is represented by γPp (resp. γRn ).
The overtime variables are added in Constraints (13) and (14) as follows:

lPp − ePp +
∑
i∈Jp

δPi ≤ Dmax + γP
p ∀p ∈ P (26)

lRlastTn − eRfirstTn +
∑
i∈Jn

δRi ≤ Dmax + γR
n ∀n ∈ N (27)

The aim here is to obtain the production and routing schedules that have the least amount of
infeasibility. The objective function of the model is modified accordingly, i.e., the total amount
of infeasibility is penalized by M , a very large number, in (1):

min
∑
p∈P

(lPp − ePp ) +
∑
n∈N

(lRlastTn − eRfirstTn )

+M
∑
i∈J

(δPi + δRi ) +M(
∑
p∈P

γP
p +

∑
n∈N

γR
n ) (28)

In our LNS algorithm, the LP model that allows infeasible schedules is solved whenever the
optimal schedule Sopt(X ) of a given set X of production and administration sequences needs to
be computed.

4.5 Heuristic evaluation

In the evaluation subproblem presented above, the complete schedule of a candidate solution
needs to be computed to determine the exact objective function value of this solution. However,
this value may be approximated by fixing some parts of the schedule in order to avoid incessant
resolutions of the above LP. If the production schedule is considered as fixed, i.e., the start
times of all the production operations are fixed, then moves on the administration schedule may
be evaluated in constant time using the concatenation equations described in Vidal, Crainic,
Gendreau, and Prins (2015), only slightly adapted as explained later in this section. Likewise, if
the administration schedule is considered as fixed, i.e., the start times of the trips and the drug
administration operations are fixed, then moves on the production schedule may be evaluated in
constant time. Of course, as already mentioned, fixing a part of the schedule leads to obtaining
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a suboptimal objective function value for the given production and administration sequences.

Dynamic time windows. Given a production schedule SP , the fictive production start time
f̂Pi is known for all i ∈ J , implying time bounds on the drug administration operations.

• The administration start time of drug i is bounded from above because of the stability
time: tRi ≤ min {f̂Pi + STi;Li}.

• The administration start time of drug i is bounded from below because of the processing
and traveling times: tRi ≥ max {f̂Pi + Pi + T0i;Ei}.

Thus, whenever a production schedule is given, the administration time windows [Ei, Li]

may be strengthened. We refer to these induced time windows as dynamic time windows. The
dynamic time window [ÊR

i , L̂
R
i ] of an administration operation i ∈ J is calculated as follows:

ÊR
i = max {f̂Pi + Pi + T0i;Ei},

L̂R
i = min {f̂Pi + STi;Li}.

Similarly, given a routing schedule SR, the administration start time f̂Ri of drug i and the
start time êRtripi of the trip visiting patient i are known for all i ∈ J , implying time bounds on
the production operations.

• The production start time of drug i is bounded from below because of the stability time:
tPi ≥ f̂Ri − STi.

• The production start time of drug i is bounded from above by the start time of the trip
that visits patient i: tPi ≤ êRtripi − Pi.

Consequently, the dynamic time window [ÊP
i , L̂

P
i ] of a production operation i ∈ J is deter-

mined as follows:

ÊP
i = f̂Ri − STi,

L̂P
i = êRtripi − Pi.

Concatenation equations. We use the concatenation equations proposed by Vidal et al.
(2015) in order to evaluate moves of one subproblem given time windows - dynamic or not -
imposed on its operations. Vidal et al. (2015) describe each move as a series of path concatena-
tions, which allows evaluating vertex-based or edge-based moves in O(1), even though infeasible
solutions are considered. A path is defined as a sequence of vertices, where each vertex repre-
sents a single operation. An implicit timing of a path τ is described through four measures: the
minimum duration D(τ), the minimum time warp usage TW (τ), the earliest start time E(τ)
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of the first operation τ(1), and the latest start time L(τ) of the first operation τ(1): for τ(1),
any start time in the interval [E(τ), L(τ)] results in obtaining the minimum duration and the
minimum time warp usage for path τ .

Let τ1 and τ2 be two paths. Define Λij as the minimum delay between the completion of
operation i ∈ J and the start of operation j ∈ J . The four measures for τ1 ⊕ τ2, i.e., the
concatenation of τ1 and τ2, can be computed using the concatenation equations of Vidal et al.
(2015) reported below.

D(τ1 ⊕ τ2) = D(τ1) +D(τ2) + Λτ1(|τ1|),τ2(1) +∆WT (29)

E(τ1 ⊕ τ2) = max{E(τ2)−∆, E(τ1)} −∆WT (30)

L(τ1 ⊕ τ2) = min{L(τ2)−∆, L(τ1)}+∆TW (31)

TW (τ1 ⊕ τ2) = TW (τ1) + TW (τ2) + ∆TW (32)

where
∆ = D(τ1)− TW (τ1) + Λτ1(|τ1|),τ2(1) (33)

∆WT = max{E(τ2)−∆− L(τ1), 0} (34)

∆TW = max{E(τ1) + ∆− L(τ2), 0} (35)

Note that ∆ is the time at which the vehicle reaches the first customer in sequence τ2, while
∆WT and ∆TW respectively represent the minimum waiting time and time warp that result
from the concatenation of τ1 with τ2.

Concatenations for production moves. When considering the production subproblem, a
path represents a sequence of production operations performed by the same pharmacist. For a
path τ containing the production operation of a single drug i, D(τ) and TW (τ) are respectively
equal to Pi and 0. Depending if the production time window of i considered during the concate-
nation operation is dynamic or not, E(τ) and L(τ) are respectively equal either to ÊP

i and L̂P
i ,

or to EP
i and LP

i . Note that Λij = 0 for all i ∈ J and j ∈ J \ {i}.

Concatenations for routing moves. When considering the routing subproblem, a path
represents a sequence of administration and loading operations performed by the same nurse. In
this study, concatenations of administration sequences are always performed given a production
schedule SP . Consequently, only dynamic time windows are used. The vertex set J̄ = J ∪ {0}
represents all the administration operations to be executed together with the loading operations
at the hospital. For all i ∈ J̄ and j ∈ J̄ \ {i}, the minimum delays are defined as Λij = Tij .
For a path τ containing a single patient i, the four measures D(τ), TW (τ), E(τ), and L(τ)

are respectively equal to Si, 0, ÊR
i , and L̂R

i . However, when concatenating a path τ1 that only
contains a loading operation with a path τ2 starting with one or more patient visits, we have to
consider those patients to determine the earliest start time of path τ1. The start time of a trip
r is bounded from below by the production completion times of the drugs administered during
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the trip: eRr ≥ maxi∈Jr {f̂Pi + Pi}, where Jr ⊆ J is the subset of drugs administered in trip
r. Thus, the earliest start time ÊT

r of a trip r depends on the subset of patients visited and is
defined as follows:

ÊT
r = max

i∈Jr

{f̂Pi + Pi}

Consequently, the four measures D(τ), TW (τ), E(τ), and L(τ) of a path τ containing only
a loading operation at the hospital, which is followed by trip r in the considered concatenation,
are respectively 0, 0, ÊT

r , and L0.
In order to maintain the values needed to evaluate moves in O(1) when using multi-trip

operators with trip-dependent earliest loading start times, we employ the path concatenations
proposed by François et al. (2019). Let T be a journey consisting of one or more trips. Let o be
the first loading operation of T and o′ be its final visit at the hospital. For each vertex i in T ,
let Oi and O′

i denote respectively the visits at the hospital which initiate and terminate the trip
containing i. Note that o is equivalent to Oi if vertex i belongs to the first trip of T . Similarly,
o′ is equivalent to O′

i if i belongs to the last trip of T . When updating T , for each i in T , we
maintain the previously defined four measures for four different paths:

• τ[o,i], from the first loading operation of T included to vertex i included,

• τ[i,o′], from vertex i included to the last loading operation of T included,

• τ(Oi,i], from the last visit at the hospital preceding vertex i excluded to vertex i included,

• τ[i,O′
i)
, from vertex i included to the first visit at the hospital following vertex i excluded.

The earliest start time ÊT
r of trip r that starts at Oi and ends at i is also maintained. The first

three path types are used to evaluate insertion and removal moves. The fourth one is needed
for merging consecutive trips. When inserting or removing an administration operation, the
earliest start time of the preceding visit at the hospital changes. Maintaining the four measures
of those four different paths for each i in T permits evaluating any insertion or removal move in
O(1). We refer the reader to François et al. (2019) for an in-depth explanation regarding move
executions.

In the following, we denote by CR(XR,M) or CR(XR, α) the minimum cost of a set of
administration sequences XR obtained by summing the minimum possible duration of each
sequence, and penalizing with a factor M or α the total associated overtime and time warp.

4.6 Removal and insertion heuristics

Several types of heuristic moves are used in the above described algorithm.

• Removal of production operations.

• Insertion of production operations.
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• Removal of administration operations.

• Insertion of administration operations.

Removal heuristic for production sequences. The first step of the procedure is to remove
k production operations from the production sequences. For each patient, the value (L̂R

i −
ÊR

i )/(Li − Ei) is computed. It measures the narrowing of the administration time window
imposed by the start time of the production operation. Patients are sorted in a ranked list in
increasing order of those values. The randomized selection mechanism proposed in Ropke and
Pisinger (2006) is applied such that patients with small ranks have a higher probability to be
removed (see Algorithm 2). The value of υP is set during the configuration phase. If it is equal
to 1, all the patients have the same probability to be selected. The probability of selecting a
patient at the beginning of the ranked list increases when υP is large.

Algorithm 2 Randomized selection
1: Create a ranked list V containing all the patients
2: while the number of selected patients is strictly smaller than k do
3: Set the value of ρ ∼ U [0, 1[
4: Select the patient whose index in V is equal to ⌊ρυP × |V|⌋, where υP ≥ 1 is a parameter.
5: Remove the selected patient from V
6: end while

Insertion heuristic for production sequences. An insertion heuristic reconstructs the
production sequences after they have been destroyed. Drugs are inserted one by one following
a greedy mechanism. As already mentioned, many different sets of production sequences may
yield the same cost. This is why the greedy criterion takes into account the potential impact
of the insertion of a production operation on the administration sequences, rather than simply
considering the duration increase of the production sequences.

The measure CP (XP
p ) related to the production sequence XP

p of pharmacist p is used as an
indicator of the size of the dynamic routing time windows that result from XP

p . Let CP (XP
p )

be defined as
∑

i∈XP
p
((l

R
i − eRi ) × (lRi − eRi ))/(Li − Ei), where lRi − eRi (resp. lRi − eRi ) is the

size of the dynamic administration time window when production start times are fixed at their
latest (resp. earliest) possible values which minimize the duration of XP

p . The larger the size
of the dynamic routing time windows, the higher the value of CP (XP

p ). Let CP (XP ) be equal
to

∑
p∈P C

P (XP
p ), and let ∆CP

j (XP ) be the variation of CP (XP ) if drug j is inserted in XP at
the position resulting in the highest CP (XP ) value after insertion. The drug to select at each
iteration of the greedy production insertion heuristic is the one that globally decreases the less
the size of the time windows, i.e., argmaxj∈J P {∆CP

j (XP )}, where J P denotes the set of drugs
that need to be inserted in production sequences. Indeed, ∆CP

j (XP ) is negative for all j, since
inserting a drug in a production sequence may never result in increasing the quantities (lRi −eRi )
and (lRi − eRi ). Thus, ∆CP

j (XP ) should be maximized.
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Removal and insertion heuristics for administration sequences. Administration moves
modify only the administration sequences without modifying the production schedule. That
is, a given production schedule SP is considered as fixed and administration operations are
removed and reinserted taking into account the dynamic time windows imposed by SP on the
administration start times.

As stated before, the multi-trip operators proposed in François et al. (2016) are employed
for that purpose. When inserting an administration task in a nurse’s journey, we consider the
following four multi-trip insertion schemes and choose the least costly:

1. Insert the administration task.

2. Insert a reloading operation at the hospital and then the administration task.

3. Insert the administration task and then a reloading operation at the hospital.

4. Insert a new trip, which contains only the considered administration task between two
reloading operations.

In removal heuristics, when removing an administration task would cause a journey to contain
two consecutive reloading operations, one of these is also removed. A merge operator, which
is included by default within all removal heuristics, allows merging two consecutive trips of a
journey by removing the reloading operation between them. Merges are recursively performed
if needed. The insertion and removal moves are evaluated in O(1) using path concatenations
as explained in Section 4.5. The heuristics selected are those that have proven useful in the
ALNS algorithm of François et al. (2019) when the considered objective is the minimization of
the working duration, i.e., random removal, worst removal - versions (a) and (b), Shaw removal
- versions (b) and (c), greedy insertion, vehicle-based regret insertion, and position-based regret
insertion.

As it was the case for the removal heuristic dedicated to production sequences, a randomiza-
tion factor, named υR is used in several removal heuristics cited above. Its value is determined
during the configuration phase.

4.7 Structure of the LNS algorithm

The proposed LNS is a destroy & repair heuristic composed of two embedded loops. The
outer loop perturbs the incumbent solution by modifying its production sequences. Then, the
production sequences are fixed while the inner loop concentrates on improving the administration
sequences. Within the inner loop, a production schedule is known at all times and dynamic
administration time windows are imposed. Algorithm 1 then presents the outline of the proposed
LNS algorithm.

Outer loop. While many different sets of production sequences may yield the same minimum
production cost, routing costs are highly dependent on the administration sequences. This is
the main reason why the algorithm perturbs the production sequences from time to time before
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evaluating many routing moves given a fixed production sequence. In the following, we call
perturbation the process of creating new schedules as a basis for the inner loop iterations.

In each outer loop iteration, one out of four perturbation schemes is used, with a dynamic
parameter k. These four schemes all follow the same steps.

Step 1: Remove k production operations.

Step 2: Remove either the corresponding k administration operations, or all of them (de-
pending on the perturbation scheme used).

Step 3: Reinsert the removed production operations.

Step 4: Compute a temporary production schedule and deduce the dynamic administration
time windows.

Step 5: Reinsert the removed administration operations.

Step 6: Compute the optimal (production and administration) schedule of the new set of
sequences.

In Step 1, those drugs, whose dynamic administration time window width is short compared
to the width of their original time window, are more likely to be removed. The removal criteria
are mathematically described in Section 4.6. In Step 2, the administration sequences are de-
stroyed. Depending on the perturbation scheme, either the k drugs removed from the production
sequences are also removed from the administration sequences (perturbation schemes 1 and 2),
or all administration sequences are completely emptied (perturbation schemes 3 and 4).

For the purpose of reinserting the removed drug production operations into the produc-
tion sequences during Step 3, production time windows should be considered. In perturbation
schemes 1 and 2, since only the k drugs removed from the production sequences are also removed
from the administration sequences, the dynamic production time windows of the removed drugs
are reset to their original production time window value [EP

i , L
P
i ], while the dynamic produc-

tion time windows [ÊP
i , L̂

P
i ] of the other drugs are kept unchanged. This ensures that the new

production sequences will be compatible with the partial administration sequences that were
not destroyed. On the contrary, in schemes 3 and 4, since all the administration sequences are
reinitialized, all the dynamic production time windows are reset to their original production time
window values [EP

i , L
P
i ]. The reinsertion of the k removed drugs in the production sequences

is performed with a greedy heuristic, which aims at widening the dynamic administration time
windows compared to those of the last incumbent solution. This insertion heuristic is detailed
in Section 4.6.

In order to reinsert the removed administration operations consistently with the production
sequences, a temporary production schedule is computed in Step 4. Indeed, this allows the
calculation of dynamic administration time windows that will favour coherence between the
production and the administration sequences. Two options are considered. In schemes 1 and
3, we select the earliest possible start time within the start time interval that minimizes the
makespan of the sequence. In schemes 2 and 4, the latest start time in the same interval is
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chosen. Once the production schedule is fixed, dynamic administration time windows [ÊR
i , L̂

R
i ]

are updated for all drugs. In Step 5, insertion of unadministered drugs (either k or all drugs) is
performed using a greedy routing heuristic.

Finally, in Step 6, the optimal schedule of the new set of sequences is computed thanks to
the dedicated LP procedure. The new perturbed solution created through this process is the
initial solution of the inner loop described below.

At the beginning of the algorithm, k and the perturbation scheme are equal to 1. The
perturbation schemes are used in a cyclic fashion (1, 2, 3, 4, 1, etc.). After the fourth perturbation
scheme has been used, the value of k is increased by one unit or it is set to 1 if the new value
would exceed kmax. Whenever a new best solution is detected, it becomes the new incumbent
of the outer loop, and the value of k is reset to 1 as well as the perturbation scheme. The
value of kmax is determined during the configuration phase as a fraction of the instance size:
kmax = ⌊λouter × |J |⌋, where λouter ∈ ]0, 1].

The stopping criterion of the outer loop is the maximum run time of the algorithm.

Inner loop. During an outer loop iteration, after a perturbation has been applied to the
incumbent solution using the six steps detailed above, the inner loop iteratively performs con-
strained routing moves, i.e., moves that modify only the administration sequences while keeping
the production schedule unchanged. That is, a production schedule SP is provided at all times,
and the dynamic time windows imposed by SP on the administration start times are those that
will be taken into account to evaluate the routing moves. As stated in Section 4.2, infeasible
routing moves may be considered for acceptance. The feasibility of administration sequences is
evaluated relatively to the dynamic administration time windows.

At each iteration of the inner loop, q drug administration operations are removed and rein-
serted using randomly selected removal and insertion heuristics described in Section 4.6. Note
that all removal (resp. insertion) heuristics have the same probability to be chosen. Indeed, as
shown in François et al. (2016) and Turkeš, Sörensen, and Hvattum (2021), adaptive heuristic
selection is not necessarily an important algorithmic component, especially if offline parameter
configuration is used, which is the case here. In the first iteration, and each time a solution is
accepted, the value of q is set to 1. If the candidate solution is rejected, the value of q is increased
by one unit, as long as it does not exceed qmax, in which case it is set to qlow. The values of
qmax and qlow are determined during the configuration phase as functions of the instance size:
qmax = ⌊λinner × |J |⌋ and qlow = ⌊λinner × |J |/δ⌋, where λinner ∈ ]0, 1] and δ ∈ N+

0 .
In a given inner loop iteration, the selected heuristics modify XR

inner, the set of administration
sequences of Sinner, to obtain a candidate set of administration sequences X ′R

inner. A simulated
annealing framework is used to decide whether to accept X ′R

inner. The acceptance probability is
equal to exp[−(CR(X ′R

inner, α)−CR(XR
inner, α))/(θC

R(XR
inner, α))], where θ is the temperature. If

the candidate set of administration sequences is accepted, then Sopt(X ′
inner) is computed thanks

to the LP procedure, and it becomes the inner loop incumbent. At each iteration, θ is set to
max{ηθ, θmin}, where η ∈ [0, 1] is the cooling factor. The minimum temperature is defined as
θmin = κθ0 with κ ∈ [0, 1]. The configuration phase determines the respective value of θ0, κ,
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and η.
In order to detect new best solutions, the cost measure of a solution S becomes C(S,M).

Indeed, the value returned by C(S, α) does not depend only on the characteristics of the solution
S but also on the value of the adaptive parameter α during a given iteration. On the contrary,
the value returned by C(S,M) stays consistent throughout the course of the algorithm. Thus,
once a solution has been accepted in the inner loop and recorded as the new Sinner, C(Sinner,M)

is compared to C(Souter,M), which is always the best cost found so far.
The stopping criterion of the inner loop is met if the maximum run time of the algorithm is

reached, if the consecutive number of infeasible solutions exceeds ω, or if the consecutive number
of non improving solutions exceeds ω′. The respective values of ω and ω′ are determined during
the configuration phase.

5 Numerical Results

In this section, the instances created to perform numerical analyses are detailed. Then, the
numerical value of the algorithmic parameters are given and we explain how they are obtained.
Afterwards, algorithmic and managerial insights obtained from numerical experiments are pro-
vided.

5.1 Instances

Each instance is composed of a graph containing the geographic characteristics of the patients
and of the hospital, and of additional information about the patients, the pharmacists, and the
nurses. As mentioned in Section 2, interviews have been carried out in healthcare institutions
in Belgium and France. The instance characteristics detailed below take into account the infor-
mation gathered through those contacts. Due to the complexity of the underlying operational
problem, the number of cancer patients currently treated at home by the contacted healthcare
institutions is very small. Consequently, the proposed instances mimic possible future problems,
rather than current real-world applications.

For each graph, patient locations are generated as X-Y coordinates on a plan. The distance
matrix is built using Euclidean distances truncated to the first decimal. In each graph, 25%
of the patients are concentrated in a small zone that represents a city center, 50% are located
around the city center in a zone that can be seen as an urban area, and the 25% remaining
are situated further away in a regional area. The hospital location is located in the urban area,
outside of the city center, as it is often the case in practice.

We consider several settings for the following instance parameters: the number of patients,
the length of the planning horizon, the stability times, and the time windows. The number of
patients |J | is equal to either 25, 50, or 100. The length of the planning horizon (L0 − E0) is
either 10 or 14 hours. The stability times are either short or long. Short (resp. long) stability
times are generated randomly such that STi+Si is a multiple of 30 minutes ranging from 120 to
240 minutes (resp. 300 to 480 minutes), for each i, while the administration time Si is randomly
generated in {20, 30, 40, 50, 60, 70, 80} minutes. Instances have either one of two settings: 25%
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of short and 75% of long stability times, or 50%-50%. Time windows are either equal to 120
minutes (short) or to 240 minutes (long). Instances have either one of two settings: 25% of short
and 75% of long time windows, or 75%-25%. For all instances, the processing time of a drug is
randomly generated in {20, 30, 40, 60, 70, 80} minutes. Indeed, since each drug is personalized,
and its composition depends on a medical prescription, a specific processing time is implied
and motivates the generation of this parameter in the given interval. Table 3 summarizes the
possible instance settings.

Parameter Values # Settings

Number of patients {25, 50, 100} 3
Length of the planning horizon (hours) {10, 14} 2
Percentage of short stability times {25, 50} 2
Percentage of short time windows {25, 75} 2

Table 3: Instance parameters.

In total, there exist 24 combinations of those four parameter values, eight for each size of
the patient list. One graph was created for each one of those combinations. For each one of the
24 graphs, several worker configurations have been systematically generated, i.e., the number of
pharmacists, the number of nurses, and the length of the working shift. An iterative procedure
based on a modified version of the algorithm proposed in this work was used to generate values
for |P| and |N |, provided a shift size Dmax of 6 or 8 hours. Several combinations of values were
tested by starting with lower bounds of |P| and |N |, and gradually increasing |P| (resp. |N |)
while keeping |N | (resp. |P|) unchanged, either until feasibility was reached, or until |P| (resp.
|N |) reached a threshold. In the latter case, |N | (resp. |P|) was increased by one unit and the
procedure restarted. Since the goal here is to find feasible instances very quickly, the modified
algorithm used in each iteration stops either as soon as a feasible solution is found, or when
the maximum running time is reached. In this case, it corresponds to the maximum running
time of the original algorithm divided by 10. Once feasibility was achieved for given values of
|P| and |N |, up to two instances were created: one by retrieving one unit from the value of
|P| and another by retrieving one unit from the value of |N |, respectively. Those new instances
were then retested up to 5 times using the original stopping criteria in an attempt to achieve
feasibility. Each time feasible solutions are obtained, harder instances are generated in the same
manner. Consequently, the proposed instances are designed to be relatively difficult to solve:
decreasing by one the number of workers may lead to infeasible instances.

The resulting set of test instances contains 93 instances based on 24 different graphs. A folder
containing the 93 instances is available at the following address: https://hdl.handle.net/2268/292474.

5.2 Algorithm configuration

The automatic configuration tool irace (López-Ibáñez, Dubois-Lacoste, Pérez Cáceres, Birat-
tari, & Stützle, 2016) is used to configure the proposed algorithm. For this purpose, ten training
instances different from the test instances, but generated according to the same principles, are
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used. For each algorithmic parameter, we define an initial range of possible values. Based on the
list of parameters and their respective ranges, irace returns the final set of parameter values,
called configuration, that performed best on the training instances among a large number of
configurations tested through statistical races.

Table 4 summarizes the algorithmic parameters introduced in former sections by categorizing
them according to the algorithmic component they belong to. For each parameter, the initial
range is provided as well as the final value recommended by irace.

Algorithmic component Parameter Type Authorized range Final value

Objective function αmin integer, step 10 [10,50] 20
(4.2) αmax integer, step 10 [αmin,1000] 60

µ real, 1 digit [1,2] 1.4
ξ integer, step 10 [10,100] 80

Simulated annealing θ0 real, 3 digits [0.010,0.050] 0.019
(4.7) κ real, 2 digits [0.01,0.50] 0.03

η real, 3 digits [0.950,0.999] 0.965

Stopping criteria ω integer, step 50 [50,500] 350
(4.7) ω′ integer, step 50 [50,2000] 900

Bounds on k and q λinner real, 2 digits, step 0.05 [0.10,0.40] 0.30
(4.7) δ integer [2,15] 11

λouter real, 2 digits, step 0.05 [0.10,0.40] 0.20

Randomization factors υP real, 1 digit, step 0.5 [1,5] 3.0
(4.6) υR real, 1 digit, step 0.5 [1,5] 4.0

Table 4: Algorithmic parameters values.

5.3 Experiments on test instances

The computer used for the numerical experiments is an Intel(R) Core(TM) i7-8665U CPU
@1.90GHz. Five runs are performed for each instance, with a time limit per run in seconds
equal to twenty times the number of patients, that is, 500, 1000, and 2000 seconds for instances
of 25, 50, and 100 patients respectively.

Table 5 is divided into four groups of columns. The instance characteristics are reported
in the eight first columns. The next four columns relate to the global schedule, which includes
the production and administration schedules, while two additional groups of two columns are
dedicated to the production schedule and to the administration schedule respectively.

For each instance, Table 5 reports the number of feasible solutions obtained over five runs,
as well as the average solution value, the best solution value C∗, and the difference between the
best and the worst solution values computed as a percentage of C∗.

For both the production and administration schedules, the first column shows the average
duration expressed as a percentage of the total available working time, which is equal to the
length of the shift Dmax multiplied by the number of pharmacists or nurses. The second column
reports the average idle or waiting times as a percentage of the duration.
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Graph 01 25 10 25 25 8 3 5 5 3055.52 3032.9 1.7% 86.11% 0.00% 75.65% 7.41%
8 4 4 5 3001.60 2971.8 1.6% 64.58% 0.00% 91.75% 9.77%
6 4 5 5 2976.28 2952.5 1.5% 86.12% 0.01% 96.45% 7.57%

Graph 02 25 10 25 75 8 3 6 5 3313.32 3257.7 3.1% 90.28% 0.00% 69.91% 6.54%
8 4 5 5 3183.64 3178.8 0.4% 67.71% 0.00% 78.49% 8.58%
6 4 6 5 3171.80 3163.8 0.7% 90.28% 0.00% 86.66% 6.77%

Graph 03 25 10 50 25 8 3 6 4 3689.25 3648.5 2.9% 97.92% 0.00% 79.14% 7.45%
8 5 5 5 3526.66 3482.4 2.4% 58.83% 0.13% 88.12% 7.40%
6 4 7 5 3524.38 3492.3 2.0% 97.92% 0.00% 83.90% 6.38%

Graph 04 25 10 50 75 8 3 6 5 3514.78 3476.1 2.2% 90.97% 0.00% 76.55% 9.70%
8 4 5 5 3312.48 3287.1 1.5% 68.23% 0.00% 83.44% 8.98%
6 4 6 5 3324.38 3279.9 2.7% 90.97% 0.00% 93.26% 6.81%

Graph 05 25 14 25 25 8 3 5 5 3336.72 3324.3 1.0% 87.50% 0.00% 86.53% 7.02%
6 4 6 5 3329.54 3316.9 1.0% 87.50% 0.00% 95.81% 6.29%

Graph 06 25 14 25 75 8 3 5 5 3014.50 2997.9 1.1% 72.92% 0.00% 81.85% 6.57%
6 3 6 5 3022.42 3004.5 1.3% 97.42% 0.20% 91.22% 5.26%

Graph 07 25 14 50 25 8 3 5 5 3488.34 3477.9 0.7% 95.14% 0.00% 88.26% 6.94%
6 4 7 5 3478.78 3433.1 2.1% 95.15% 0.01% 83.67% 6.53%

Graph 08 25 14 50 75 8 3 5 5 3163.24 3145.1 2.1% 84.88% 0.19% 80.87% 6.84%
6 4 6 5 3159.86 3140.7 1.5% 84.96% 0.28% 89.65% 5.50%

Graph 09 50 10 25 25 8 6 11 3 7272.97 7117.4 3.4% 92.36% 0.00% 87.37% 4.31%
8 7 11 5 6944.18 6865.0 3.4% 79.17% 0.01% 81.14% 3.40%
8 8 10 5 6864.76 6823.8 1.6% 69.27% 0.00% 87.60% 4.03%
8 10 9 5 6839.12 6809.3 1.2% 55.56% 0.25% 96.58% 4.81%
6 8 13 5 6797.56 6749.9 1.5% 92.36% 0.00% 88.41% 2.88%
6 9 13 5 6758.86 6720.6 1.2% 82.10% 0.00% 87.58% 2.89%
6 10 12 5 6735.68 6686.6 1.4% 73.89% 0.00% 94.34% 3.11%

Graph 10 50 10 25 75 8 7 8 5 6311.08 6276.7 1.2% 81.25% 0.00% 93.26% 4.12%
6 9 10 5 6162.52 6133.3 1.2% 84.26% 0.00% 95.35% 3.46%

Graph 11 50 10 50 25 8 6 10 5 6723.62 6649.6 3.0% 86.79% 0.38% 88.00% 4.34%
8 7 10 5 6472.50 6443.6 0.9% 74.21% 0.13% 82.90% 4.62%
8 8 9 5 6591.22 6574.7 0.4% 65.95% 1.67% 93.95% 4.51%
6 7 12 3 6499.90 6449.6 1.3% 98.81% 0.00% 92.82% 3.44%
6 8 12 5 6445.72 6391.3 1.8% 86.68% 0.26% 91.42% 3.56%

Graph 12 50 10 50 75 8 6 9 5 6317.40 6239.9 2.4% 85.07% 0.00% 89.52% 5.23%
8 7 9 5 6155.98 6101.2 2.1% 72.92% 0.00% 85.79% 4.55%
8 9 8 5 6061.40 6006.8 1.6% 56.81% 0.17% 93.94% 5.13%
6 7 11 5 6212.64 6171.8 1.5% 97.22% 0.00% 95.02% 3.94%
6 8 11 5 6115.14 6064.4 1.4% 85.07% 0.00% 92.55% 4.15%

Graph 13 50 14 25 25 8 6 8 5 6287.18 6254.9 1.2% 90.66% 0.04% 95.74% 5.07%
6 8 11 5 6301.22 6254.9 1.2% 90.87% 0.26% 93.04% 3.36%
6 9 11 5 6250.62 6216.0 1.2% 80.56% 0.00% 91.93% 3.57%

Graph 14 50 14 25 75 8 6 8 5 6309.14 6289.8 0.7% 91.73% 0.07% 95.50% 5.00%
6 8 11 5 6301.50 6252.7 1.5% 91.69% 0.02% 92.45% 4.47%

Continued on next page
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6 9 11 5 6325.78 6246.0 2.0% 82.26% 0.94% 92.44% 4.43%

Graph 15 50 14 50 25 8 5 9 5 6176.24 6145.6 0.8% 97.92% 0.00% 88.57% 3.97%
8 6 9 5 6176.50 6132.9 1.6% 81.61% 0.01% 88.57% 3.69%
6 7 11 4 6146.55 6108.5 1.1% 93.25% 0.00% 95.87% 3.53%
6 8 11 4 6166.03 6136.8 0.8% 81.60% 0.00% 96.36% 3.00%

Graph 16 50 14 50 75 8 6 9 5 6398.64 6383.2 0.7% 89.99% 0.07% 88.12% 5.41%
8 7 9 5 6414.90 6337.0 2.5% 77.71% 0.81% 88.05% 5.88%
6 8 12 5 6306.12 6230.7 2.0% 90.04% 0.12% 85.95% 3.80%
6 9 11 4 6456.33 6402.0 1.2% 80.79% 1.06% 96.93% 5.15%

Graph 17 100 10 25 25 8 12 17 5 11947.68 11892.9 1.0% 80.21% 0.00% 89.80% 2.91%
8 14 16 4 11921.83 11821.6 2.0% 69.18% 0.62% 94.70% 2.86%
6 14 28 5 11552.78 11527.4 0.3% 91.67% 0.00% 68.78% 1.87%
6 16 21 5 11507.62 11423.0 1.1% 80.21% 0.00% 91.11% 1.96%
6 23 20 5 11415.34 11392.4 0.5% 55.80% 0.00% 94.38% 1.98%

Graph 18 100 10 25 75 8 14 18 4 11861.00 11827.7 0.6% 74.55% 0.00% 79.29% 1.96%
8 15 18 1 11842.70 11842.7 0.0% 69.58% 0.00% 79.08% 1.97%
8 17 15 4 11876.33 11803.9 1.3% 61.41% 0.02% 95.35% 2.10%
6 16 35 2 11712.50 11642.5 1.2% 86.98% 0.00% 53.19% 0.84%
6 18 32 4 11588.03 11571.8 0.4% 77.31% 0.00% 57.10% 1.88%
6 31 19 3 11647.67 11538.3 1.5% 44.99% 0.21% 96.88% 1.91%

Graph 19 100 10 50 25 8 13 20 5 12447.82 12411.9 0.7% 78.53% 0.00% 78.62% 2.04%
8 14 19 5 12402.20 12333.9 1.3% 72.97% 0.08% 82.22% 2.50%
6 16 22 5 12386.20 12317.7 1.6% 85.07% 0.00% 94.52% 2.04%
6 17 22 5 12215.82 12110.7 1.6% 80.07% 0.00% 92.37% 2.03%

Graph 20 100 10 50 75 8 14 18 4 12652.05 12588.0 0.8% 77.06% 1.12% 86.50% 2.33%
8 15 17 5 12446.46 12373.1 0.9% 71.42% 0.43% 89.52% 2.36%
6 16 32 4 12213.30 12185.4 0.4% 88.89% 0.00% 61.57% 1.52%
6 17 32 5 12267.20 12206.8 1.0% 83.85% 0.22% 61.94% 1.91%
6 18 22 5 12321.56 12225.0 1.5% 79.24% 0.29% 90.74% 1.85%

Graph 21 100 14 25 25 8 11 17 5 12372.10 12203.9 3.2% 94.36% 0.04% 90.56% 2.94%
8 12 17 5 12279.94 12228.7 1.2% 86.53% 0.08% 89.41% 2.84%
6 19 22 5 12223.80 12171.5 1.1% 73.07% 0.36% 91.24% 2.28%
6 20 21 4 12175.50 12085.4 1.2% 69.52% 0.51% 94.84% 2.00%

Graph 22 100 14 25 75 8 11 16 4 11468.75 11420.7 0.8% 93.68% 0.52% 84.93% 3.40%
8 12 16 5 11348.88 11302.6 0.9% 85.97% 0.63% 83.30% 2.35%
8 13 14 4 11486.53 11324.2 2.3% 79.99% 1.42% 96.66% 3.35%
8 14 14 4 11612.03 11448.5 3.5% 75.20% 2.60% 97.60% 3.29%
6 16 26 5 11524.28 11452.0 1.0% 86.87% 1.67% 69.66% 2.53%
6 17 20 5 11507.74 11345.0 3.0% 82.14% 2.12% 90.01% 2.08%
6 18 19 3 11536.63 11460.2 1.2% 77.24% 1.70% 95.48% 2.95%

Graph 23 100 14 50 25 8 12 17 5 13125.34 12858.0 3.7% 91.73% 0.63% 96.10% 2.90%
8 13 17 5 13061.90 13013.5 1.2% 84.52% 0.46% 95.44% 2.78%
6 16 23 5 12905.26 12861.5 0.7% 91.48% 0.37% 92.22% 2.39%
6 17 23 5 12800.42 12769.0 0.6% 85.82% 0.04% 91.17% 2.04%

Continued on next page
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Graph 24 100 14 50 75 8 11 18 5 12694.04 12604.2 1.6% 91.60% 0.55% 90.94% 2.78%
8 12 18 5 12839.56 12736.3 1.7% 84.01% 0.59% 92.60% 3.43%
8 16 17 1 12884.90 12884.9 0.0% 65.77% 4.78% 96.00% 2.85%
6 24 29 3 13265.03 13125.8 3.0% 59.76% 6.66% 77.61% 2.19%
6 25 29 4 13040.90 12896.6 2.0% 58.05% 7.90% 74.87% 1.62%

Table 5: Results for benchmark instances.

5.4 Assessing the quality of the results

In this section, we assess the quality of the results yielded by the proposed LNS algorithm by
comparing the cost of the obtained solutions with those obtained by solving a mixed integer
programming (MIP) formulation with a commercial solver, Cplex 20.1. The proposed MIP
formulation of the HCDP is presented in Appendix A. A maximum computation time of 4
hours is given to solve each instance.

For the instances with 25 patients, Cplex was unable to find a feasible solution within 4
hours. Consequently, smaller instances of 10 patients were built. To do so, nine sublists of 10
consecutive patients were extracted from the patient list of the underlying graph of instances
with 50 patients and a 10-hour planning horizon (i.e. Graphs 09, 10, 11, and 12, see Table 5).
For each one of the resulting graphs with 10 patients, the number of nurses and pharmacists
were computed as described in Section 5.1, considering a shift length of 6 hours. We decided to
use only the shorter planning horizon and the shorter shift length since the new instances are of
small size.

In Table 6, the results found by the LNS over 5 runs, with a time limit of 200 seconds
per run, are compared to the results found by Cplex in 4 hours. The first four columns contain
respectively the name of the original graph, the id of the first patient of the sublist in the original
graph, the number of pharmacists, and the number of nurses. Then, the upper bound found by
Cplex is provided, if any. The gap between the upper and lower bounds is shown in the next
column, in percentage of the lower bound. Finally, the two last columns summarize the results
found by the LNS, using the notations of Table 5.

The gap between the upper and lower bounds is very large in all cases, thus optimality of
the solutions is never guaranteed. The LNS yields a feasible solution for all instances in each
run, while Cplex is able to find a feasible solution for 25 instances out of 36. On average, for
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Graph 09 01 2 3 1532.3 1534.95
06 2 3 1601.3 1604.92
11 2 4 1509.1 528.79 % 1508.1 1513.94
16 2 3 1533.2 1546.94
21 2 3 1285.5 1299.84
26 2 3 1280.5 885.00 % 1259.9 1260.02
31 2 3 1453.0 169.07 % 1419.8 1458.78
36 2 4 1792.2 184.48 % 1779.2 1805.20
41 3 3 1657.4 1657.50

Graph 10 01 2 2 1218.9 1220.02
06 3 3 1242.3 300.74 % 1242.3 1242.30
11 2 3 1542.1 140.95 % 1525.0 1537.48
16 2 3 1452.3 1452.60
21 2 3 1314.6 471.57 % 1301.2 1310.10
26 2 3 1079.6 799.67 % 1079.6 1083.52
31 2 2 1097.6 1097.60
36 2 3 1545.2 136.85 % 1576.0 1584.24
41 2 3 1543.4 63.29 % 1543.4 1543.40

Graph 11 01 2 3 1377.2 1152.00 % 1341.9 1352.44
06 2 3 1416.3 388.21 % 1433.8 1435.68
11 2 3 1398.5 294.17 % 1380.9 1399.62
16 2 3 1330.6 1344.18
21 2 3 1301.5 665.59 % 1301.5 1307.76
26 2 3 1377.3 498.83 % 1357.8 1363.04
31 2 4 1522.9 625.19 % 1493.4 1500.26
36 2 4 1418.8 1421.50
41 2 3 1202.6 651.63 % 1202.6 1205.64

Graph 12 01 2 3 1232.5 460.23 % 1232.2 1232.38
06 2 2 1120.0 921.54
11 2 3 1295.7 534.21 % 1297.5 1312.62
16 2 3 1209.8 706.53 % 1209.8 1209.80
21 2 3 1194.6 419.39 % 1194.4 1194.48
26 2 3 1356.7 142.27 % 1336.5 1340.54
31 2 3 1343.8 437.52 % 1321.5 1333.38
36 2 3 1349.5 513.41 % 1344.5 1345.26
41 2 3 1557.0 368.83 % 1472.2 1492.62

Table 6: Results for 10-patients instances.

those 25 instances, the duration of the best (resp. average) solution found by the LNS is 0.79%
(resp. 0.21%) lower than the one of the feasible solution provided by Cplex. The best solution
known is reported in bold for all instances. It can be observed that the duration of the best
solution found by the LNS exceeds the duration of the feasible solution found by Cplex for only
three instances.

In order to compare our results with optimal solutions, 40 instances of five patients were
created in the same manner. The time limit was set to 100 seconds per run for the LNS. Cplex
was able to systematically prove optimality, while the LNS reached this optimum 5 times over
5 runs in 37 cases. For the three remaining instances, a gap of 1.27% on average was observed
between the average duration found by the LNS and the optimal solution. It should be noted
that, even though the running times were set to 4 hours for Cplex and 100 seconds for the LNS,
both methods found the optimal solution very quickly: 5.9 seconds on average for Cplex and 1.5
seconds for the LNS.
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5.5 The importance of the LP component

As explained in Section 4.5, the proposed solution method relies on an LP procedure to determine
optimal start times for both the production and administration sequences. This computation
takes place each time a solution is accepted in the inner loop (See Algorithm 1, Lines 15-16).

The usefulness of this LP component has been challenged by running experiments with
different triggers. The results are found in Table 7. They are aggregated by instance size and
show the average number of feasible solutions found over five runs, the average cost deviation
from the cost obtained using the original trigger, as well as the percentage time spent in the LP
procedure.

The original trigger, "when a solution is accepted in the inner loop", is denoted Accept. The
considered alternatives are described below.

• Perturbation: After each perturbation (on the initial solution of the inner loop), and
whenever a new best solution is found.

• New best : Whenever a new best solution is found.

• Post-opt : Only as a post-optimization step on the final solution.

• Threshold : If an accepted solution does not deteriorate excessively the objective function
value compared to the one of the incumbent solution of the inner loop. A threshold
deterioration ν ∈ {0%, 1%, 2%} is set. Note that, as it is the case to detect improvements,
the original objective function is used.

• Time slack : Considering an accepted solution, when maxr∈R(L(r) − E(r)) is relatively
large (≥ ψ minutes). If this criteria is met, it indicates that the opportunity for timing
optimization is non negligible. We carried experiments for ψ ∈ {2, 5, 10}.

The Threshold and Time slack triggers restrain the set of accepted solutions that are reop-
timized using the LP procedure. Threshold focuses on reoptimizing those candidate solutions
that are more likely to become the new incumbent of the inner loop. Time slack concentrates on
candidate solutions whose current schedule might be very different from the optimal one. Both
the Threshold and the Time slack triggers must be parameterized. In both cases, three settings
were considered as can be seen above in the trigger descriptions. Only the option yielding the
best results in terms of feasibility is shown in Table 7.

It can be observed that the time spent in the LP component for the original trigger is
considerable for small instances while it becomes more reasonable as the instance size increases.
When comparing the results for the Accept and Post-opt trigger, it is clear that the LP procedure
increases the number of feasible solutions found over five runs by the proposed algorithm.

For instances with 25 patients, the New best trigger slightly outperforms the Accept trigger
both in terms of feasibility and average cost of the obtained solutions. Also, the time spent by
the LP is extremely small for the New best trigger. Unfortunately, the quality of the results
decrease very significantly with the instance size. Conclusions are comparable regarding the
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Average # 25 4.95 4.95 5.00 4.70 4.90 4.90
feasible 50 4.79 4.60 4.58 3.39 4.76 4.79
solutions 100 4.30 4.05 3.98 3.03 4.28 3.13

Average cost 25 - -0.25% -0.47% +0.78% +0.04% -0.38%
compared to 50 - -0.48% -0.06% +1.44% +0.10% -0.11%
Accept 100 - +0.98% +1.55% +1.71% +0.47% +1.26%

Time spent 25 77.87% 49.78% 0.38% 0.00% 77.41% 1.82%
in LP (%) 50 46.27% 12.48% 0.32% 0.00% 47.06% 0.33%

100 28.71% 4.99% 0.23% 0.00% 28.59% 0.01%

Table 7: Comparison of different triggers for the LP component.

Perturbation trigger, even though the time spent in the LP procedure is more important than
the one of the New best trigger.

For the Threshold trigger, the best results were obtained with a 2% deterioration threshold,
which is in fact nearly equivalent to the Accept trigger, since very few accepted solutions exceed
this threshold. This explains the similarity of the results for those two triggers. Since decreasing
the threshold decreases the quality of the results, especially on large instances, this trigger is
not a valid alternative.

The case of the Time slack trigger is not straightforward. The best results were obtained on
small instances with a 5′ time slack, and the quality of the results was even slightly improved:
−0.38% and −0.11% on the objective function value for instances with 25 and 50 patients respec-
tively. However, for instances with 100 patients, the quality of the results decrease drastically.
Nine instances could not be solved at all after five runs. This was due to the fact that very few
solutions satisfied the trigger, resulting in a case that is very similar to the Post-opt trigger. In
fact, for many large instances, even a very small value of ψ would not result in an improvement
since the trigger is difficult to satisfy. Consequently, more work would be required to determine
if there exists an interesting time-related trigger.

5.6 The cost of integration

Table 8 compares the duration obtained for the integrated problem under consideration with the
duration that would be obtained when production and administration operations are planned
sequentially.

Two conditions must mandatorily be met to ensure that the production and administration
subproblems can be considered independently. First, stability constraints must be relaxed, and
second, planning horizons must not overlap. The first condition alone is not sufficient since trip
earliest start times are bounded by production completion times.

Clearly, having to integrate the production and administration subproblems comes at a cost,
but it is a necessary condition to be able to take stability constraints into account and to suppress
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the drug inventories between production and administration operations. In Table 8, this cost of
integration is expressed as a percentage increase of the duration of the non-integrated schedules.
For the production schedule without any integration, the obtained duration is always equal to
the optimum solution, that is, the sum of the processing times. For the administration schedule,
the average duration obtained over five runs is considered as the reference value. Note that,
in order to obtain those values, experiments have been sped up by dividing the running time
by five since the algorithm converges much faster when the production and the administration
subproblems are disconnected.

The results are aggregated based on different values of the instance parameters. It can clearly
be seen that, for all groups of instances, the production duration of the integrated solution is
very close to the sum of the processing times. Indeed, the production schedules obtained for the
integrated problem contain nearly no idle time. However, the total duration of the administration
operations increases on average by approximately 15%. The multi-trips participate to this
cost increase. For the integrated problem, solutions contain around two trips per nurse on
average over all instances, while they never occur when the subproblems are treated sequentially.
Increasing the length of the planning horizon reduces the magnitude of the cost increase, and
so does increasing the proportion of long stability times. This can easily be explained by the
fact that those two factors influence the level of integration of the two subproblems. Note that
the stability constraints may narrow dynamic time windows more substantially if static time
windows are large. This may explain that instances with 25% of short time windows yield a
slightly more important cost of integration than instances with 75% of short time windows.

Global Production Administration
duration incr. duration incr. duration incr.

All instances +8.39% +0.49% +14.47%

Planning horizon 10 hours +8.94% +0.12% +15.77%
14 hours +7.72% +0.95% +12.90%

Stability 25% short +7.23% +0.31% +12.66%
50% short +9.56% +0.68% +16.32%

Time windows 25% short +8.69% +0.14% +15.19%
75% short +8.08% +0.84% +13.77%

Table 8: The cost of integration.

5.7 The impact of stability

Experiments were conducted on instances with 25 and 50 patients to compare the solutions with
and without stability constraints. In practice, the stability of some drugs may be larger than the
planning horizon and hospitals may prefer to administer only these at home in order to ease the
planning process. However, providing hospitals with suitable decision-making tools is necessary
to enlarge the set of patients that can benefit from home hospitalization.

Table 9 shows the duration increase when stability is taken into account. Note that in our
experiments, the solutions obtained when stability is relaxed contain no production idle time.
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Global Production Administration
duration incr. duration incr. duration incr.

All instances +4.07% +0.14% +6.89%

Stability 25% short +3.06% +0.07% +5.23%
50% short +4.97% +0.19% +8.37%

Planning horizon 10 hours +2.73% +0.10% +4.55%
14 hours +5.96% +0.19% +10.18%

Table 9: The cost of stability.

This is expected since the optimal solutions of this relaxed problem never contain idle time.
Indeed, any feasible solution containing production idle time may be transformed into a solution
that does not have any, by pushing all production operations backward in time. In the absence
of stability times, such a strategy may only enlarge the dynamic routing time windows, possibly
resulting in a decrease of the routing cost. Consequently, the production duration increase
reported in Table 9 can also be interpreted as the total production idle time as a percentage of
the total processing time.

Table 9 also shows a significant increase of the total administration time in the presence of
stability constraints. As shown in Section 4.5, a drug with a short stability time may shrink the
corresponding dynamic administration time window, and significantly impact the administration
schedule. The cost increase is higher for instances that have originally a larger number of short
stability times (120 to 240 minutes) and for instances with a longer planning horizon, since
stability constraints amplify the level of integration more significantly in those cases.

5.8 The impact of time windows

Experiments were performed on instances with 25 and 50 patients by setting all time window
lengths to identical values, with the objective of evaluating the relation between time window
lengths and the total cost. First, all time windows have been relaxed, i.e., considered to have
a duration equal to the planning horizon. Second, the following values have been set as time
window size for all the patients: 480, 360, 240, and 120 minutes. The time window centers
are kept unchanged compared to those of the original instances. The total duration as well as
the production and administration duration values are reported in Table 10 in terms of their
increase compared to the case where time windows are relaxed. The two last columns show the
administration duration increase separately for instances having 25% and 50% of short stability
times.

Note that, when time windows are relaxed, an optimal solution without idle production time
is not guaranteed, contrarily to the case of relaxed stability times. We illustrate this point using
a toy example where two patients need a similar drug with ST1 = ST2 = 150, P1 = P2 = 40,
and S1 = S2 = 30. Travel times are such that T01 = T02 = T10 = T20 = 80. There is one
pharmacist and one nurse available. Clearly, it is not possible to produce the two drugs and
then travel to any of those two patients before the stability time of the first produced drug
expires (P1 + P2 + T01 = 40 + 40 + 80 > 150). The only possible solution is to administer each
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Administration
TW Global Production Administration duration
size duration incr. duration incr. duration incr. 25% short 50% short

stability stability

480 +0.55% +0.00% +0.95% +0.88% +1.02%
360 +1.23% +0.00% +2.08% +1.68% +2.47%
240 +2.16% +0.03% +3.66% +3.04% +4.29%
120 +5.73% +0.20% +9.61% +7.77% +11.45%

Table 10: Cost increase compared to instances with relaxed time windows.

drug in a specif trip. Without loss of generality, say that the production of the first drug starts
at time 0. The second patient may be reached the earliest at P1 + T01 + S1 + T10 + T02 = 310.
Consequently, the production start time of the second drug may not start before 160, resulting
in a minimum idle time of 120 time units.

In the considered instances, the production idle times are anecdotal but not necessarily
equal to zero when time windows are relaxed. It can be observed that the decrease of the time
window size only results in a very small amount of supplementary production idle time, while
the administration time gradually increases with the reduction of the time window size. The
increase is strongly amplified as time window sizes become more restrictive. The cost increase is
more important for instances with short stability times as can be seen in the last two columns
on Table 10.

6 Conclusion

In this work, we presented an integrated production scheduling and vehicle routing problem
encountered in the context of home chemotherapy. The problem is composed of two subprob-
lems: the scheduling of drug production operations, which are performed by pharmacists in the
hospital, and the routing and scheduling of drug administration operations, which are performed
by a set of nurses and take place at the patients’ homes.

The studied problem includes several constraints related to the timing of the production and
administration operations. Firstly, a drug stability time limits the time span allowed between
the drug production and administration. Secondly, the administration of drugs are subject to
time windows. We showed how those timing constraints, as well as the presence of a joint
planning horizon, causes the two subproblems to be closely interwined. We elaborated heuristic
and exact algorithmic components that specifically take into consideration this interdependence.

We created realistic test instances for the studied problem and configured the proposed
solution method using irace, an automatic configuration tool.

A linear program was repeatedly used inside the large neighborhood search in order to
reoptimize the schedules, provided sequences obtained using large neighborhood search moves.
We demonstrated that this component was crucial to obtain feasible solutions, especially for
larger instances, and we believe that further work on the criteria that trigger the call to this
linear program may benefit the effectiveness and efficiency of solution methods.
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We provided a compact mathematical formulation for the problem studied. Its resolution
provides a comparison basis to assess the quality of the results obtained by the proposed method.

We performed numerical experiments and evaluated the cost of having to integrate the
production and administration operations as opposed to a situation where the two plannings
would be established separately. Our focus here was to provide insights about the effects of
problem characteristics that are not compatible with a sequential planning approach.

We evaluated the impact of time windows and stability constraints. The provided insights
may be useful when setting up a home chemotherapy process, in order to raise awareness about
the impact of patient-related characteristics on operational decisions.

Several extensions of the studied problem deserve attention in future works. First, since the
operations presented in this paper occur in and around hospitals, routing plans may be affected
by the nuisances of cities, as for example, congestion and peak hours. Thus, the consideration
of time-dependent or stochastic travel times is an important extension, which will be especially
challenging combined with the route interdependencies faced in this case. Also, our work mainly
focuses on the operational problem for a single day, while in practice, multi-period settings may
need to be considered. Issues faced in the home healthcare sector may be relevant, such as nurse
consistency and workload balance.

From a methodological point of view, an interesting and challenging research direction would
be to design a method able to provide high quality lower bounds for such a complex problem.
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A Mathematical formulation for the HCDP

In this section, we propose a compact (in the number of variables and constraints) mixed integer
programming (MIP) formulation for the HCDP described in Section 2. To this end, we make
use of the following notations. In particular, let:

• R be the set of trips indexed from 1 to |N | × |J |. Without loss of generality, the nurses
can be ordered. The first |J | trips are performed by the first nurse, the second nurse is in
charge of trips |J | + 1 to 2|J |, and so on. Indeed, a trivial upper bound on the number
of trips performed by each nurse is given by the number of patients |J |;

• AN =
{
(r, s) ∈ R2|r is executed right before s

}
be the set of consecutive trips performed

by each of the nurses;

• firstTn be the index of the first trip of nurse n ∈ N ;

• lastTn be the index of the last trip of nurse n ∈ N ;

• 0 and J + 1 be respectively the initial and final dummy drug of each production sequence
and the initial and final location (hospital) of each delivery trip, where J = |J |;

• J0 = J ∪ {0};

• JJ+1 = J ∪ {J + 1}.

The MIP formulation makes use of the following sets of variables.

• Binary variables:

– xPijp equals 1 if drug i ∈ J0 is produced right before drug j ∈ JJ+1 by pharmacist
p ∈ P, 0 otherwise;

– xRijr equals 1 if drug i ∈ J0 is administrated right before drug j ∈ JJ+1 in trip r ∈ R,
0 otherwise;

– yPip equals 1 if drug i ∈ J is assigned to pharmacist p ∈ P, 0 otherwise;

– yRir equals 1 if drug i ∈ J is administrated during trip r ∈ R, 0 otherwise.

• Real variables:

– tPi is the starting time of the production of drug i ∈ J ;

– tRi is the starting time of the administration of drug i ∈ J ;

– eRr is the starting time of the trip r ∈ R;

– lRr is the completion time of the trip r ∈ R;

– ePp is the starting time of the working day of pharmacist p ∈ P;

– lPp is the ending time of the working day of pharmacist p ∈ P;
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The formulation reads as follows:

min
∑
p∈P

(lPp − ePp ) +
∑
n∈N

(lRlastTn − eRfirstTn ) (36)

∑
p∈P

yP
ip = 1 ∀i ∈ J (37)

∑
j∈JJ+1,j ̸=i

xP
ijp =

∑
j∈J0,j ̸=i

xP
jip = yP

ip ∀i ∈ J , ∀p ∈ P (38)

tPi + Pi ≤ tPj +M(1− xP
ijp) ∀i, j ∈ J , ∀p ∈ P (39)

ePp ≤ tPi +M(1− yP
ip) ∀i ∈ J , ∀p ∈ P (40)

tPi + Pi ≤ lPp +M(1− yP
ip) ∀i ∈ J , ∀p ∈ P (41)

lPp − ePp ≤ Dmax ∀p ∈ P (42)

ePp ≤ lPp ∀p ∈ P (43)

E0 ≤ ePp ∀p ∈ P (44)

lPp ≤ L0 ∀p ∈ P (45)∑
r∈R

yR
ir = 1 ∀i ∈ J (46)

∑
j∈JJ+1,j ̸=i

xR
ijr =

∑
j∈J0,j ̸=i

xR
jir = yR

ir ∀i ∈ J , ∀r ∈ R (47)

∑
i∈JJ+1

xR
0ir =

∑
i∈J0

xR
i,J+1,r = 1 ∀r ∈ R (48)

tRi + Si + Tij ≤ tRj +M(1− xR
ijr) ∀i ∈ J , ∀j ∈ J , ∀r ∈ R (49)

eRr + T0i ≤ tRi +M(1− xR
0ir) ∀i ∈ J , ∀r ∈ R (50)

tRi + Si + Ti0 ≤ lRr +M(1− xR
i,J+1,r) ∀i ∈ J , ∀r ∈ R (51)

lRr ≤ eRs ∀(r, s) ∈ AN (52)

lRlastTn − eRfirstTn ≤ Dmax ∀n ∈ N (53)

eRr ≤ lRr ∀r ∈ R (54)

Ei ≤ tRi ≤ Li ∀i ∈ J (55)

E0 ≤ eRfirstTn ∀n ∈ N (56)

lRlastTn ≤ L0 ∀n ∈ N (57)

tRi − tPi ≤ STi ∀i ∈ J (58)

tPi + Pi ≤ eRr +M(1− yR
ir) ∀i ∈ J , ∀r ∈ R (59)

xP
ijp ∈ {0, 1} ∀i ∈ J0, ∀j ∈ JJ+1, i ̸= j, ∀p ∈ P (60)

xR
ijr ∈ {0, 1} ∀i ∈ J0, ∀j ∈ JJ+1, i ̸= j, ∀r ∈ R (61)

yP
ip ∈ {0, 1} ∀i ∈ J , ∀p ∈ P (62)

yR
ir ∈ {0, 1} ∀i ∈ J , ∀r ∈ R (63)

tPi ≥ 0, tRi ≥ 0 ∀i ∈ J (64)

eRr , l
R
r ≥ 0 ≥ 0 ∀r ∈ R (65)

ePp ≥ 0, lPp ≥ 0 ∀p ∈ P (66)

Objective function (36) minimizes the total working time. Constraints (37) impose that each
drug is produced. Constraints (38) are flow conservation constraints on the production. Con-
straints (39) impose the correct scheduling of production operations. Constraints (40) and (41)
impose the correct calculation of the start and the end of the working time for each pharmacist.
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Constraints (42) impose that the working time of each pharmacist does not exceed the shift
length. Constraints (43) impose that the working day of each pharmacist starts before end-
ing. Constraints (44) and (45) impose that the shift of each pharmacist is within the planning
horizon. Constraints (46) impose that each drug is administrated. Constraints (47) are flow con-
servation constraints on the administration. Constraints (48) impose that each trip leaves the
hospital either to perform at least one administration operation or to directly go to the hospital
(in such a case, no administration is performed during the trip). Constraints (49) impose the
correct scheduling of administration operations. Constraints (50) and (51) impose the correct
calculation of the start and the end of each administration trip. Constraints (52) impose that a
trip starts after the preceding trip has ended. Constraints (53) impose that the working time of
each nurse does not exceed the shift length. Constraints (54) impose that each trip ends after
starting. Constraints (55) impose that administration takes place during the corresponding time
window. Constraints (56) and (57) impose that the shift of each nurse is within the planning
horizon. Constraints (58) impose the respect of the stability times. Constraints (59) impose
that if a trip carries a drug, it leaves the hospital after its production has been completed.
Constraints (60)–(66) define the variables.

As already said, a trivial upper bound on the number of trips performed by each nurse is
given by |J |. The provided model can be strengthened by improving this bound, called RN in
the following. For doing so, we first order the patients by increasing amount of time needed to
visit them alone in a round trip, without taking into account the time windows. Then, we loop
over the patients and consider as many round trips as possible given the working duration limit.
This procedure is described in Algorithm 3.

Algorithm 3 Improving the value of RN .
1: Sort all patients by increasing T0i + Si + Ti0 (patient 1 is the one with smallest value)
2: RN = 0, t = 0
3: while t < Dmax do
4: RN ←− RN + 1
5: t←− t+ T0,RN + SRN + TRN,0

6: end while

Finally, note that the following constraints have been added in the MIP formulation to break
symmetries:

yRir ≤
J∑

j=1

yRj,r−1, ∀i ∈ J , n = 0, . . . , |N | − 1, r = n ·RN + 1, . . . , (n+ 1) ·RN (67)

Constraints (67) allow patients to be assigned to a trip with index r of a nurse, only if at
least one patient is assigned to the previous trip of that nurse (with index r − 1).
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