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Abstract: In forensic genetics, the identification of an individual is often carried out by comparing
unknown DNA profiles obtained in a case against databases or references. When no match is found,
investigators need new tools in order to obtain additional leads. The latest technical advances now
make it possible to predict externally visible characteristics. With this objective, predicting the age of
an individual through DNA methylation analysis remains one of the last challenges. The prediction
models have to account for the specific constraints of this field, including tissue specificity and
DNA availability (i.e., low DNA amounts or low-quality DNA). Jung and colleagues have recently
produced models from blood, saliva and buccal cells by using a single base extension sequencing
method. With the goal of evaluating these models in our own analytical conditions, saliva and buccal
cell samples from 115 French individuals between the ages of 0 and 88 years old were collected and
analyzed. After having determined the optimal analysis conditions, including the DNA quantity for
bisulfite conversion (75 ng), some differences were highlighted in the measured methylation rates
between the two studies. Despite these discrepancies, the prediction performance levels remain very
similar, our study showing mean absolute errors of 3.5 years, 3.9 years and 3.2 years, respectively, for
the saliva, buccal swab and multitissue model, with limitations observed for the oldest and youngest
individuals. Furthermore, we propose the use of a prediction interval with an error dispersion and
correct prediction rate at ±5 years and ±10 years, respectively.
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1. Introduction

The identification of an individual from traces left in a crime scene or from human
remains often requires the comparison of the DNA profile to a known reference or to a
database. When this is feasible, forensic geneticists are able to provide evaluative evidence
to the investigators and to the court. Despite the latest advances in the DNA-profiling
domain (e.g., massive parallel sequencing) which allow the establishment of a DNA profile
from low-quantity and low-quality DNA (i.e., degraded DNA), new approaches have to
be developed in order to provide intelligence or to give priority to one lead instead of
another when no match occurs in databases or when there is no suspect. This investigative
DNA evidence is made possible thanks to the latest developments in genomics and DNA
sequencing. It is now possible to infer the geographical ancestry and the externally visible
features of an individual from the DNA extracted from a crime scene, thanks to analyses of
single nucleotide polymorhism (SNP) [1]. The prediction of eye, skin and hair pigmentation
can be very informative and even be a complement for facial reconstruction [2]. The
discovery of other informative markers or the improvement of predictions is critical for the
development of forensic DNA phenotyping (FDP).
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Furthermore, recent progress in epigenomics is providing other opportunities to collect
information from DNA, such as the tissue source of DNA evidence, the differentiation
of monozygotic twins or the age estimation of an individual [3,4]. Several DNA-based
approaches have been investigated for estimating the age of an individual in the forensic
domain because of the limitations of solid tissue (e.g., bones, teeth) analysis [1,5]. The most
promising age-estimation method turns out to be the analysis of DNA methylation [1,5].

Age prediction from DNA methylation relies on age-related hypomethylation or
hypermethylation of CpG sites contained in CpG islands, called differentially methylated
regions (DMR) [4,6]. One difficulty of age prediction using DNA methylation of age-
related CpG markers, also called “clock CpGs”, is that changes in methylation are due
not only to age but also to the tissue type or to exogenous factors [4,6]. Over the past
few years, many forensic-focused age-prediction models have been developed on the
basis of DNA methylation analysis using different analytical platforms, different statistical
analysis methods and different tissue types [3]. The main approach used for CpG site
methylation determination is the sequence analysis of bisulfite-converted DNA [1]. The
bisulfite conversion of DNA involves the conversion of unmethylated cytosines to uraciles
by means of a harsh chemical treatment while methylated cytosines remain intact. As a
result, while conventional DNA profiling requires a low DNA amount (<250 pg) to obtain
interpretable results, DNA methylation analysis determination needs a larger amount of
template, usually greater than tens or hundreds of nanograms. Moreover, because this is
a quantitative approach (determination of a methylation rate for a particular age-related
CpG site), the DNA sample (i.e., sampled DNA strands converted and then amplified)
needs to be representative in order to make a reliable prediction [7]. Another difficulty
resides in the forensic sample that has to be single sourced. Very few forensic sample
types can overcome these difficulties. This includes blood- or saliva-related samples (e.g.,
chewing gum), which can provide the largest DNA quantity from the crime scene and is
derived mainly from one individual. One limitation of saliva-related samples is that the cell
composition varies. To try to address this issue, some authors have used a buccal epithelial
cell signature [8] or cell-type-specific CpGs [9]. Another approach involves the use of
common age-associated markers among several sample types. It is with this objective that
Jung et al. proposed tissue-specific models and a multitissue model for age prediction from
blood, saliva and buccal swabs [10]. This study relies on CpG sites that have shown age
association in blood and saliva from ELOVL2, KLF14, MIR29B2C and TRIM59 gene regions
and from an additional region identified in blood age-prediction models [11,12]: FHL2. The
produced models allowed age predictions with mean absolute errors (MAEs) of 3.5 years
in blood, 3.6 years in saliva and 4.3 years in buccal swab samples for the tissue-specific
models and 3.8 years for the combined tissue model. Moreover, the targeted CpGs in this
study were situated in regions that were also used in a blood-specific model produced
by Zbieć-Piekarska et al. [12] and tested in an independent study by Cho et al. [11], with
similar MAEs (3.9 years, and 3.3 years, respectively).

The aim of this study was to adapt the age-prediction models produced by Jung and
colleagues to and implement them under in-house analytical conditions. Indeed, disposing
of a multitissue model or several tissue-specific models could enable us to predict age
from extensive forensic sample types. Despite the advantage of the SNaPshot-sequencing
method’s multiplexing ability and the differences in methylation rate measures obtained
from one analysis to another [10,13], we chose to adapt the models to a pyrosequencing
workflow, which allows access to several CpGs in the DNA sequence, conversely to the
SNaPshot method. This choice aimed to dispose of the simplest analytical workflow by
limiting the number of polymerase chain reaction (PCR) conditions and harmonizing the
PCR and sequencing primer sets in order to access the different CpGs that could be used in
the different models [10,12].
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2. Materials and Methods
2.1. Study Design and Sample Collection

This study was approved by the ethics commission of the forensic institute of the
French gendarmerie. It first involved the adaptation of the Jung et al. age-prediction models
to the DNA methylation rate obtained through an optimized pyrosequencing assay. The
assay, sensitivity and repeatability assessments were carried out by using the following
standards of known methylation rate: human WGA methylated and non-methylated DNA
sets (Zymo research, Irvine, CA, USA). The trueness of the DNA methylation rate measure
was assessed by using the Epitect Control DNA Set (Qiagen, Hilden, Germany) in order to
avoid any bias from bisulfite conversion. The model validation was carried out by using
saliva and buccal swab samples obtained from 115 volunteers between the ages of 0 and 88.
Each participant, or legal representative for minors, provided written free and informed
consent prior to sample collection. For each individual, 1 mL of saliva was obtained in a
sterile 40 mL sample flask (CEB, Beaucouzé, France), and two buccal swabs were obtained
(Copan group, Brescia, Italy). Each volunteer provided relevant personal information,
including birth date, sex and a general health declaration. Samples were conserved at
−20 ◦C until analysis.

2.2. Workflow Validation

Because the age-prediction models from Jung et al. were produced by using a single
base extension process [10], PCR primers, amplification conditions and pyrosequencing
primers had to be adapted to a pyrosequencing process (Table 1). For the ELOVL2 and
TRIM59 targets, primers from the Cho et al. [11] study were preferred thanks to their
better trueness of the methylation rate measure (Supplementary Data S1). Additionally,
two MgCl2 concentrations were selected for the PCR step: 1.5 mM for the FHL2 target
and 2.5 mM for the other targets for the same reason. The hybridation temperature was
fixed to 60 ◦C and primer concentration to 0.4 µM after optimization. Following the PCR
and pyrosequencing primer selection, the sensitivity of the assay was assessed from the
bisulfite conversion step by using the known methylation standards (100%, 0%) and a
1:1 mix (50% methylation) because the quantification of the DNA is performed only before
the bisulfite conversion. The methylation rate was determined for each CpG included in
the sequences (Table 1) for 300 ng, 150 ng, 75 ng and 37.5 ng DNA inputs, in triplicates.
Subsequently, the repeatability was evaluated from the bisulfite conversion step determined
as optimal, using a 1:1 mix of the 0% and 100% standards. The CpG methylation was
assessed for 12 replicates for each CpG site included in the five targets.

Table 1. Age marker and genomic location of the targeted CpG, primer sequences, reference, strand,
amplicon size, final PCR MgCl2 concentration and sequence to analyze.

Target
CpG

position
(GRCh38)

Primers (5′–>3′)
F: Forward
R: Reverse

S: Sequencing
B: Biotin

Ref. Strand
Amp.
Size
(bp)

[MgCl2]
(mM)

Sequence to analyze (5′–>3′):
Y, R: Analyzed CpG

Y, R: Other CpGs
T or A: Conversion Control

ELOVL2 Chr6:
11044628

F: AGGGGAGTAGGGTAAGTGAGG
R:

B-AACCATTTCCCCCTAATATATACTTCA
S: GGGAGGAGATTTGTAGGTTT

(2) - 303 2.5 AGTYGGYGTYGGTTTYGYGYGGYGGTTTAA
YGTTTAYGGAGTTTTAG

FHL2 Chr2:
105399282

F: GGGTTTTGGGAGTATAGTAGT
R: B-AAAATAACCCCCTCCTCC

S: GTTTTGGGAGTATAGTAGTTAT
(1) + 191 1.5 TYGGGAGYGTYGTTT

TYGGYGTGGGTTTTYGGGYGYGAGTTT

KLF14 Chr7:
130734355

F: B-AGGTTGTTGTAATTTAGAAGTTT
R:

ATATTTAACAACCTCAAAAATTATCTTATC
S:

TTAACAACCTCAAAAATTATCTTATCTCC

(1) + 114 2.5 RCRTTCTTTCTTCTACCRACRAACCAAATA
ATAATAACAAAAC

MIR29B2C Chr1:
207823681

F: B-GGGTTAYGTTATTAAGTTTTGAAG
R: TAAAACCAAATTCTAAAACATTC

S: AAACCAAAATTTAAATCTAC
(1) + 116 2.5 RCAAACRACRATAAATAATCC

TRIM59 Chr3:
160450189

F: TATGGTATAGGTGGTTTGGGGGAGA
R: B-

ATAAAAAACACTACCCTCCACAACATAAC
S: TTGGGGGAGAGGTTG

(2) + 146 2.5 GGTTTGGYGYGGGAYGAGGYGAAGYGT
YGGTGGTYGAYGGTTTTT
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2.3. DNA Extraction

For the cohort samples, the DNA was first extracted using the Crime Prep Adem-Kit
(Ademtech, Pessac, France). The DNA was eluted in 80 µL in a 96-well DeepWell plate
(Ademtech, Pessac, France). Samples were then immediately quantified by using the
Investigator Quantiplex Pro qPCR kit (Qiagen, Hilden, Germany) and stored at −20 ◦C
until further analysis.

2.4. Bisulfite Conversion

Bisulfite conversion was performed by using the EpiTect Fast Bisulfite Conversion
kit (Qiagen, Hilden, Germany). The DNA input was determined in the sensitivity study.
During this step, the DNA followed two cycles of denaturation: at 95 ◦C for 5 min and
conversion at 60 ◦C for 20 min. After desulfonation and the washing steps, the DNA was
obtained in 15 µL elution buffer. Samples were then stored at −20 ◦C, or they were stored
at 4 ◦C if processed in less than 24 h. The DNA obtained from this step is estimated to be
50–60% of the initial amount [14].

2.5. Converted DNA PCR

Amplification of converted DNA was carried out using the Pyromark PCR kit (Qiagen,
Hilden, Germany). PCR reactions were set in a 25 µL total volume, with 12.5 µL master
mix, 2.5 µL loading buffer and 2 µL converted DNA. The primers (Eurofins Genomics,
Ebersberg, Germany) and MgCl2 concentrations have previously been determined (Table 1
and Supplementary Data S1). PCR reactions involved a first step at 95 ◦C for 5 min,
followed by 45 cycles at 94 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 30 s and a final step at
72 ◦C for 1 min. During the workflow validation, the presence of amplification products
was checked by using 2% agarose gel electrophoresis using 5 µL of the PCR product (data
not shown).

2.6. Purification and Pyrosequencing

The PCR products (10 µL) were then pyrosequenced by using the Pyromark Q24
platform using the Pyromark Q24 Advanced CpG reagents kit (Qiagen, Hilden, Germany).
For this purpose, 0.4 µM of sequencing primers was added to the previously purified am-
plification products using Pyromark Q24 Vacuum Workstation (Qiagen, Hilden, Germany).
Before pyrosequencing, the mixture underwent two incubation steps, one at 80 ◦C for 5 min
and one at room temperature for 2 min.

2.7. Statistical Analysis

The sequence analysis and the determination of the methylation rate were performed
using the Pyromark Q24 Software (Qiagen, Hilden, Germany). For each sequence, a con-
version control was included in order to check the efficiency of the bisulfite conversion
step. The statistical treatment was performed using MSO 2016, R (v4.0.3) and Rstudio
(v1.4). The following packages were used: stats v4.0.3, tidyverse v1.3.1, ggplot2 v3.3.3,
ggpubr v0.4.0 and car v3.0.10. Comparisons between sample sets were performed using
Mann–Whitney–Wilcoxon tests and signed rank Wilcoxon tests if paired. Comparisons
between several samples were carried out by using Kruskal–Wallis tests (Bonferonni correc-
tion). Each statistical test was carried out by using a 0.05 threshold. The performance of the
models was assessed by calculating the adjusted R2 and the mean absolute error (MAE).
Finally, a 95% prediction interval was estimated for each model, and a correct prediction
rate was determined at ±5 and ±10 years for the 10-year age classes.

3. Results
3.1. Trueness

Owing to differences between pyrosequencing and single base extension workflow, it
was not possible to use the amplification and sequencing conditions described in Jung and
colleagues’ previous work [10,15]. Therefore, we adapted and determined our proper ampli-
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fication conditions by modifying the annealing temperature and the MgCl2 concentrations.
In order to determine a single amplification condition, the most stringent condition (i.e.,
62 ◦C and 1.5 mM MgCl2) was discarded for the failed amplification or the low sequencing
template obtained for some targets. For example, MIR29B2C was the most difficult target
to amplify and was not possible to amplify with 1.5 mM MgCl2 under the 60 ◦C and 62 ◦C
conditions. The optimal amplification condition was determined as an annealing tempera-
ture of 60 ◦C and 2.5 mM MgCl2 for the ELOVL2, KLF14, MIR29B2C and TRIM59 targets.
A special amplification condition (i.e., 60 ◦C and 1.5 mM) was determined for the FHL2
target as we observed a high bias in the methylation rate measure for the 2.5 mM MgCl2
conditions. This could be explained by a strand bias during the amplification [15–19].
Moreover, high variations in the methylation rates were observed for the ELOVL2 target
using Jung and colleagues’ primer set. Those variations were due to low sequence quality
while performing pyrosequencing and may be attributed to unspecific amplification or
sequencing primer issues [15]. As a result, having better sequencing qualities and fewer
variations in the methylation rates, the Cho and colleagues’ primer sets were preferred for
the ELOVL2 and TRIM59 targets (see Tables 1 and S1).

3.2. Sensitivity

The sensitivity was evaluated for the whole assay, from the bisulfite conversion step
onward. For this purpose, three replicates of different quantities (300 ng, 150 ng, 75 ng
and 37.5 ng) of 100%, 50% and 0% standard methylated DNA followed the whole DNA
methylation measurement process. The standard deviation of the methylation rate obtained
for each of the 32 CpG sites contained in the five targets (Table 1) was calculated for each
condition. The sensitivity threshold was evaluated to determine the minimum input of
DNA needed to achieve the assay and to describe the variability of methylation measure or
inconsistencies occurring at low DNA inputs.

As shown in Figure 1, the 0% methylated DNA standard deviation was quite low
and did not exceed 2%. This can be explained by an efficient conversion of unmethylated
cytosines. The variability observed is in the range of the pyrosequencing step variability
that was previously estimated at 1.3% in our analytical conditions (data not shown). For
the different quantities, the mean standard deviation estimated was between 0.2% and
0.4%. The standard deviation (SD) obtained for the 50% and 100% methylated DNA
presented the same evolutions with an increase in the observed standard deviation while
decreasing the DNA input quantities. The maximum variability should be obtained for
the 50% methylated DNA because it is expected to have a 50% chance of choosing either
a methylated CpG site or an unmethylated CpG site. Interestingly, quite high standard
deviations were also obtained for the 100% methylated DNA. This observation could be
linked to the bisulfite conversion efficiency. In both cases, the mean standard deviation for
the 300 ng condition did not exceed 1.3%, but this DNA amount is rarely reached when
analyzing forensic samples. Both the 150 ng and 75 ng conditions showed acceptable
results, with better accuracy for the first condition and with a mean SD of 3.2% and a third
quartile under 5% SD for the second in the 50% and 100% methylated DNA conditions. As
a result, the 75 ng condition was considered to be the best compromise. This choice was
made by taking into account the low amount of DNA usually found in forensic samples.
The 75 ng condition would allow us to measure the DNA methylation of samples with a
DNA concentration of approximately 2 ng/µL. The methylation rates obtained for a sample
with 37.5 ng converted DNA could not be considered as reliable, because the SD was able
to reach or exceed 10% for certain triplicates and not others, thus highly impacting the
precision of age predictions.
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Figure 1. Standard deviation of the measured methylation rate of the CpG sites comprised in the five
targets, for three replicates of 100%, 50% and 0% methylated DNA standards. In each case, measures
were performed for four different DNA quantities from the conversion bisulfite step (300 ng, 150 ng,
75 ng, 37.5 ng).

3.3. Repeatability

The methylation rate of the 32 CpG sites comprising the five targets was measured
for 12 replicates from the bisulfite conversion step in the previously chosen condition
for the 50% methylated DNA. As shown in Figure 2, the obtained SD ranged from 1%
to 7% depending on the CpG site and the target itself. This can be due to the quality
of the pyrosequencing and directly due to the sequence of the target itself. A general
increase in the SD can be observed as the distance of the CpG from the beginning of the
sequence increases. This can be partly explained by the increasing background signal in
the sequence [15]. The large SD observed for the FHL2 target is caused by one replicate
only, which was not removed from the analysis, because a good sequence quality was
obtained. An error in preparation cannot be excluded. The minimum SD was obtained for
the KLF14 target’s CpGs. Importantly, the observed methylation rate differs from 50%, and
the difference varies according to each target. The methylation of ELOVL2 CpG sites can
reach 20%, whereas the values obtained for the KLF14 target are above 40%. Each target
presents a bias in the measured methylation rate. This contrasts with the results obtained
in the primer selection (Supplementary Data S1). It might be partly explained by a different
preparation of the methylation control, but this could not be checked.
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3.4. Correlation between Age and Methylation at Five CpG Sites Using Pyrosequencing

The methylation rate was able to be determined for the five CpG sites in the 115 saliva
samples and in almost all the buccal swab samples, except for two, for which the methy-
lation rate of all the CpG sites could not be determined (113 samples analyzed). The
methylation rates observed for our sample set are concordant with the data obtained by
Jung et al. but present differences. Discrepancies are also observed between sample types.

The data obtained from individuals between 0 and 18 years of age and from individuals
between 70 and 88 years of age cannot be compared with the original study, because no data
were provided for these individuals in the case of saliva and buccal swab samples. In our
study, the use of minors under the age of 18 would require the use of a binding regulatory
framework, so only people over 18 were accepted as volunteers. It is important to highlight
that the linearity of the correlation for the youngest individuals can be lost, depending
on the target and the sample type. This phenomenon can be observed for the TRIM59
target for the saliva samples and the ELOVL2 and TRIM59 targets for the buccal swab
samples (Supplementary Data S2). This loss of linearity has already been observed in other
studies [12,20,21]. Thus, the comparison of the data produced by using pyrosequencing
data and the original data is performed only for individuals from 18 to 70 years of age
(Figure 3).

The comparison of distributions from the two data sets was carried out using a Mann–
Whitney U test (p-value = 0.05) and the Pearson’s r correlation coefficient (r). In the case of
the saliva samples, we were able to detect a difference in the distributions for the five CpG
sites (p-value < 0.05), confirmed by the different correlation coefficient values. The ELOVL2
CpG presented an r of 0.71 for our data and 0.83 for the initial data. FHL2 also presented
a lower r in our case (0.44) than the one obtained in the original study (0.74). Higher
correlation coefficients were observed for the TRIM59, MIR29B2C and KLF14 targets at
respectively 0.70, −0.84 and 0.75 for our data, against 0.66, −0.70, and 0.74 for Jung and
colleagues’ data, together with different slopes (Figure 3). The data point distributions
seem particularly different for the FHL2, MIR29B2C and TRIM59 targets, with different
slopes and offsets of the data points. In the case of buccal swab data, the Mann–Whitney
U tests were significant for the ELOVL2, FHL2, KLF14 and TRIM59 targets (p-value for
MIR29B2C of 0.46). Surprisingly, the observed differences between the two data sets were
not the same between the two sample types. Here, the ELOVL2 CpG correlation gave a
better r value, of 0.76, in our case, against 0.68 in the original data. Moreover, the two
correlations seemed to be offset as for the TRIM59 target (r = 0.69 and r = 0.73, respectively).
Here again, a small difference was observed for the KLF14 correlation with close r values
of 0.73 and 0.71 (Figure 3). The r coefficients for the FHL2 targets were respectively 0.50
and 0.46, and the slope observed did not seem to be different. Finally, the MIR29B2C target
again gave a better r, of −0.65, for our data, against −0.31 for Jung and colleagues’ data.
As expected, we observed differences in correlations that can be caused by the analysis
method as described in the Jung and colleagues’ study for the KLF14 target [10] but also
an offset of data points and important changes in correlations for other targets. The most
visible change is observed for MIR29B2C in the two sample types with a flared distribution
of the data points, associated with a very tight distribution for the youngest individuals.

When comparing the data from saliva and buccal swabs in our data set (paired
Wilcoxon tests on predicted ages, p-value = 0.05), differences were observed in the distribu-
tions for all the targets, especially for the FHL2, TRIM59 MIR29B2C targets (p-values of
1.36 × 10−13, 1.21 × 10−13 and 2.16 × 10−16, respectively). Even if differences in distribu-
tions had been observed for ELOVL2 and KLF14 (4.06× 10−6 and 5.19× 10−7, respectively),
the data points would seem to be more superimposed. Moreover, in terms of correlation,
the ELOVL2 and KLF14 targets present very close correlation coefficients, while FHL2 and
MIR29B2C present high differences (Supplementary Data S2). Interestingly, the TRIM59
correlation coefficients are identical, but the data points seem to be offset, and the loss
of linearity in the correlation seems to be greater for the buccal swab than for the saliva



Forensic Sci. 2023, 3 199

samples. This observation might be due to the different proportions of epithelial cells and
white blood cells in the two sample types.
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3.5. Age Prediction on Saliva and Buccal Swab Samples Using Tissue-Specific and
Multitissue Models

Despite the differences observed between the data sets and the sample types, age
prediction was performed by using the three models from the original study (Figure 4).
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Several observations can be formulated when observing the age prediction for indi-
viduals from 0 to 88 years. The first one is the loss of linearity for the age prediction under
age 18 for the different models, where the buccal swab model and the multitissue model
are the most impacted. This might be caused by the loss of the linearity of the correlation
for TRIM59 and ELOVL2. This induces an underestimation of the age of the youngest
individuals (under 10 years of age). The same underestimation of age can be observed
for the oldest subjects. Additionally, the error rates are largely increased for individuals
over age 60. Notably, the increase in the error rate observed in our data implies a breach
in the residuals hypothesis for linear regressions (Supplementary Data S3). Although it
can be partly explained by the underrepresentation of elderly people, it is well known that
the methylation rate of a particular CpG site can be modified by the environment [22,23].
Thus, even if the correlation of the methylation rate to the age is still true, the effect of such
exogenous variations has to be taken into account when estimating the age of the oldest
individuals, and the communication of the result has to be carefully carried out. Several
solutions could be proposed to address this issue. One of them could be the determination
of age-class (e.g., 5 or 10 years)-dependent statistical indicators, and another could use
a threshold when predicting age (e.g., not providing results above age 60). On the other
hand, the errors in predictions decrease for the youngest individuals thanks to a lower
effect of the exogenous methylation modifications. This is particularly observed in the case
of the saliva-specific model (Figure 5). Unfortunately, for the other models, the loss of the
linearity of the predictions compensates for this decrease in errors with an underestimation
of the age for the youngest individuals. Here again, predicting the age of young individuals
would have to be carefully carried out given this issue. The use of a second threshold for the
youngest individuals could represent one of the solutions despite the major importance of
age estimation in the young individuals (e.g., migratory context). The loss of linearity in the
correlation can also be addressed by using mathematical transformations while building
an age-prediction model [24].

The comparison between sample sets was carried out only for individuals between
18 and 70 years old. No difference was found when comparing the errors obtained for
the original data set to the obtained data (Mann–Whitney U test on errors, p-value = 0.05,
Bonferonni corrected). Thus, excluding the extreme ages, the models produced by Jung
and colleagues seem to be transposable to our analytical workflow.

Despite quite good mean absolute errors, prediction errors of 15 years were reached
(see Figure 5). Moreover, looking at the error distribution for the 10-year age classes,
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we can observe large distributions. This suggests that the mean absolute error may not
be the most relevant statistical indicator for the precision of the predictions, or at least,
it needs to be completed. Given a normal distribution of the residuals, the prediction
interval can be calculated for each new prediction. Further, 95% prediction intervals of
±8.8 years are obtained for the saliva model and ±10 years for both the buccal swab
and multitissue models. The application of such large intervals contrasts with the use of
mean absolute errors and lessens the usefulness of age predictions that use this model
in forensic applications. The good prediction rates for the calculation of the 10-year age
classes at ±5 years and ±10 years (Table 2) supports the use of the prediction intervals.
The observation of such large errors is concordant with the study of Schwender and
colleagues [21], who proposed an approach using 1 RMSE or 2 RMSE. Finally, when
calculating the predication intervals from Jung and colleagues’ data, very close intervals
are obtained: ±8.6 years, ±9.8 years and ±9.2 years.
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Table 2. Correct prediction rates at ±5 and ±10 years for the three models, according to the sample
types for 10-year age classes.

Age Class

Model Interval 0–10
n = 16

11–20
n = 15

21–30
n = 19

31–40
n = 18

41–50
n = 20

51–60
n = 15

61–70
n = 3

71–80
n = 6

81–90
n = 3

Saliva
±5 y 100% 80% 84% 56% 65% 87% 67% 17% 0%
±10 y 100% 100% 100% 94% 85% 93% 100% 67% 0%

Buccal swab
±5 y 88% 67% 50% 83% 74% 80% 67% 33% 0%
±10 y 100% 100% 94% 100% 100% 100% 67% 83% 33%

Multi-tissue-Saliva
±5 y 100% 87% 95% 61% 70% 87% 33% 33% 0%
±10 y 100% 100% 100% 94% 90% 93% 100% 50% 0%

Multi-tissue-Buccal swab
±5 y 81% 80% 72% 78% 74% 60% 67% 33% 0%
±10 y 94% 100% 94% 100% 100% 93% 67% 50% 0%
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4. Discussion

The estimation of an individual’s age from forensic samples is of major importance
in the prediction of externally visible characteristics for providing intelligence from DNA
and thus new leads to investigators. Over the past few years, several age-estimation
models from DNA have been produced for this purpose. These models often use different
techniques and different CpG markers. Moreover, they are developed for a particular
sample type, e.g., blood, thanks to tissue-specific methylation rates. The aim of the present
study was to test and adapt Jung and colleagues’ model to in-house analytical conditions
in order to be able to predict age from several sample types.

Using pyrosequencing instead of SNaPshot, the PCR and pyrosequencing primers had
to be adapted. This led us to the use of primers from two models [10,11] and a different
amplification condition for the FHL2 target thanks to trueness issues in the methylation rate
determination. Following workflow optimization, the sensitivity was assessed. The final
selected DNA quantity for bisulfite conversion was 75 ng. This corresponds to a sample
presenting a 2 ng/µL concentration after DNA extraction, which is concordant with the
DNA concentration found in casework samples [11,21]. This compromise was chosen while
taking into account the precision of the DNA methylation measure and the applicability
of the model to forensic samples. The sensitivity assessment was performed for the DNA
quantity before bisulfite conversion, as it is the last step when a reliable quantity of DNA
is available. In this analytical condition, the PCR amount of DNA has been estimated at
5 ng [14]. The repeatability experiment revealed a maximum standard deviation of 7% for
the FHL2 and MIRB29B2C CpGs and a lower standard deviation for the other targets (<5%).
This is thought to be directly linked to the quality of the amplification and pyrosequencing
assays, which can be very different, depending on the target and its sequence.

Certain correlations of methylation rates to age were the same as those in the original
study, while others differed, especially for the MIR29B2C target. This is partly explained by
technical differences between the pyrosequencing and SNaPshot techniques [10]. Despite
the different correlations that were obtained by using pyrosequencing, age predictions
were performed, and good predictions were obtained, according to the MAE obtained for
each model.

Despite the low MAE observed, the correct prediction rates were low at ±5 years,
and the error dispersion obtained led us to the use of a 95% prediction interval. This
interval was calculated to ±9 years for the saliva model and ±10 years for the other
models. These intervals are concordant with the correct prediction rates at ±10 years. Such
intervals reduce the value of the prediction for investigators but may be a better statistical
indicator than the MAE, which could give a false idea of the precision of the prediction.
An alternative could be to present the results using the MAE and the associated standard
deviation or to use lower intervals (e.g., 90% or 80% prediction intervals).

In addition, the predictions do not present the same errors for each age class. Impor-
tantly, the linearity of the prediction model is lost for the youngest individuals, giving an
overall underestimation of age despite low errors. On the other hand, the errors are largely
increased for the oldest individuals, thus not satisfying the homoscedasticity hypothesis of
the residues. A cutoff for the predictions should be applied for age-prediction models or
different statistical indicators for the highest age predictions. Nevertheless, it is important
to underline the lack of data for the oldest age classes, which could lead to an over- or
underestimation of the prediction errors.

Finally, the Jung and colleagues’ models were able to be adapted to our analytical
conditions even if technical modifications had to be carried out. The use of such models is
still limited by the large quantity of DNA needed and the relatively large age-prediction
errors. With the advantage of pyrosequencing being the accessibility to several CpGs in the
sequence and its principal drawback being the impossibility of multiplexing, models using
the massively parallel sequencing techniques could be the best solution. Interestingly, the
enhanced age-prediction tool developed by the VISAGE consortium [24] proposes reliable
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age prediction using only 40 ng of DNA, with a low MAE, addressing the DNA-quantity
issue by using a model built on massive parallel sequencing.

5. Conclusions

In forensic science, age evaluations, using DNA, are carried out by the analyses of
multiple methylation markers that provide information on chronological age. The aim of
our study was to show that samples from saliva from buccal swabs could be used to evaluate
the CpG methylated domain as a good strategy for age prediction. The obtained results
confirm that the DNA methylation status analyzed from saliva from a buccal swab could
be used as an age predictor in forensic applications, using tissue-specific or multitissue
models and a different analytical workflow. Nevertheless, the prediction precision still
needs to be improved through the use of other sequencing techniques or the discovery of
new CpG markers.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/forensicsci3020015/s1, Figure S1: Methylation rate measure of each
CpG site contained in the five targets for a 50% methylation standard and for Jung et al. and Cho et al.
primer sets under different amplification conditions (T ◦C and [MgCl2]). When no data are displayed
for a particular condition, the amplification failed or no sequencing data could be obtained, because of
the low amplification of the target. Figure S2: Correlations of the methylation rate to the chronological
age for ELOVL2, FHL2, KLF14, MIR29B2C and TRIM59 CpGs in buccal swabs and saliva samples.
Pearson’s r and its associated p-value are given for each correlation. Figure S3: (A) Residue analysis
for the saliva model from 0- to 88-year-old individuals (up) and 18- to 75-year-old individuals (down).
(B) Residue analysis for the buccal swab model from 0- to 88-year-old individuals (up) and 18- to
75-year-old individuals (down). (C) Residue analysis for the multitissue model from 0- to 88-year-old
individuals (up) and 18- to 75-year-old individuals (down).
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