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Abstract8

We present a novel Finite Volume (FV) scheme on unstructured polygonal meshes that is provably compliant with
the Second Law of Thermodynamics and the Geometric Conservation Law (GCL) at the same time. The governing
equations are provided by a subset of the class of symmetric and hyperbolic thermodynamically compatible (SHTC)
models introduced by Godunov in 1961. Specifically, our numerical method discretizes the equations for the conser-
vation of momentum, total energy, distortion tensor and thermal impulse vector, hence accounting in one single unified
mathematical formalism for a wide range of physical phenomena in continuum mechanics, spanning from ideal and
viscous fluids to hyperelastic solids. By means of two conservative corrections directly embedded in the definition of
the numerical fluxes, the new schemes are proven to satisfy two extra conservation laws, namely an entropy balance
law and a geometric equation that links the distortion tensor to the density evolution. As such, the classical mass
conservation equation can be discarded. Firstly, the GCL is derived at the continuous level, and subsequently it is
satisfied by introducing the new concepts of general potential and generalized Gibbs relation. The new potential is
nothing but the determinant of the distortion tensor, and the associated Gibbs relation is derived by introducing a set
of dual or thermodynamic variables such that the GCL is retrieved by dot multiplying the original system with the
new dual variables. Once compatibility of the GCL is ensured, thermodynamic compatibility is tackled in the same
manner, thus achieving the satisfaction of a local cell entropy inequality. The two corrections are orthogonal, meaning
that they can coexist simultaneously without interfering with each other. The compatibility of the new FV schemes
holds true at the semi-discrete level, and time integration of the governing PDE is carried out relying on Runge-Kutta
schemes. A large suite of test cases demonstrates the structure preserving properties of the schemes at the discrete
level as well.

Keywords: exact preservation of determinant constraint, thermodynamically compatible finite volume schemes,9

entropy preserving, entropy stability, unstructured mesh, continuum mechanics10

1. Introduction11

Born in 1929, Godunov embarked on a remarkable career that spanned several decades until his death in July12

2023. He made profound contributions to the development of numerical techniques for solving Partial Differential13

Equations (PDEs), particularly in the field of fluid dynamics. The celebrated Godunov theorem and Godunov scheme14

revolutionized Computational Fluid Dynamics (CFD), enabling scientists and engineers to simulate complex fluid15

flows. However, Godunov research developed beyond fluid dynamics, and in [31] he found a connection between16

symmetric hyperbolicity in the sense of Friedrichs [23] and thermodynamic compatibility. In this work of Godunov,17

one learns that for hyperbolic systems having an underlying variational formulation, the total energy conservation law18
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can be derived as the dot product of the other equations with the so-called thermodynamic dual variables that are given19

by the partial derivative of the total energy potential with respect to the conservative variables of the system. These20

variables are also known as main field, or even Godunov variables, see for instance [22]. Later on, Godunov and21

Romenski [54, 33] extended the theory of symmetric hyperbolic and thermodynamically compatible (SHTC) systems22

to a wide class of mathematical models: magnetohydrodynamics [32], nonlinear hyperelasticity [28], compressible23

multi-phase flows [53, 51] as well as relativistic fluid and solid mechanics [27, 52]. Within this theory the total24

energy potential plays a crucial role which is coming from the variational principle from which the system is derived.25

Moreover, the entropy density equation is part of the master system, while the total energy conservation law is an extra26

conservation law, since it is obtained by a linear combination of the other conservation equations. Due to the very27

general formalism, SHTC systems have been derived for modeling a wide range of physical phenomena that cover28

magnetohydrodynamics [29], nonlinear hyperelasticity [34], compressible multi-phase flows [55] and even relativistic29

fluid and solid mechanics [30, 56].30

The SHTC models are therefore compliant with the Second Law of Thermodynamics by construction, and they are31

derived as first order hyperbolic systems, where the stress tensor is a function of the inverse deformation gradient A32

rather than velocity gradients, even for fluids. Indeed, irreversible dissipative processes are accounted by the presence33

of source terms with one or more characteristic strain relaxation times 𝜏. The hyperbolicity of SHTC models implies34

finite wave speeds for all involved physical processes, even dissipative ones, thus making their mathematical structure35

substantially different from those PDE systems which admit parabolic dissipation and diffusion terms. Indeed, in [49],36

heat conduction is derived in first order hyperbolic form proving consistency with the Fourier law in the asymptotic37

regime [19]. Likewise, the stress tensor in the SHTC model proposed in [49] is asymptotically consistent with the38

Navier-Stokes model. The distortion tensor is defined as the inverse of the deformation gradient, hence it is defined by39

construction as the inverse of the Jacobian matrix associated to the Lagrange-Euler mapping between the Lagrangian40

(or material) to the Eulerian (or updated) configuration. Consequently, the distortion tensor accounts for the deforma-41

tion and rotation of the matter subject to mechanical and thermal loads. A direct link exists between the scalar density42

and the distortion tensor at the continuous level, which is also known as Geometric Conservation Law (GCL) in the43

Lagrangian formulation of the governing equations [18, 44]. As a consequence, the density equation in the original44

model is redundant at the continuous level [47]. This can be viewed as an internal consistency constraint. However,45

ensuring this compatibility at the discrete level is not obvious, and this is one goal of this work.46

As already mentioned, in the SHTC formalism the total energy equation plays the role of an extra conservation47

law that can be deduced from the other equations of the system at the continuous level. This means that the entropy48

balance law is part of the master system, and it becomes an equality in the absence of shock waves. Nevertheless, at49

the discrete level, the energy equation is typically solved, hence ensuring energy conservation and numerical stability50

in the energy norm, and a lot of research has been conducted in order to achieve thermodynamic compatibility, i.e.51

obtaining an entropy balance law as a consequence of the chosen discretization. This research line started from52

the pioneering work presented in [57], with the aim of devising provably entropy preserving and entropy stable53

numerical schemes that has been further investigated in [35, 26, 40, 43, 42, 6, 39, 41]. Other important contributions54

to the design and implementation of entropy preserving and stable schemes can be found for instance in [20, 16,55

36, 17, 25, 21] and references therein. The numerical strategy proposed in [1, 3] has been recently employed to56

construct a new family of thermodynamically compatible schemes in which the entropy inequality is solved instead57

of the energy [12, 13, 2, 14, 58], hence strictly mimicking the SHTC framework at the discrete level. The numerical58

methods are provably energy preserving at the semi-discrete level thanks to a scalar correction factor that is directly59

embedded in the definition of the numerical fluxes, hence ensuring conservation. In Lagrangian hydrodynamics,60

thermodynamically compatible schemes have been developed in order to obtain the total energy conservation and the61

satisfaction of an entropy inequality as a consequence of a compatible discretization of the equations of continuity,62

momentum and internal energy, see for instance [15, 4, 45]. A recent attempt in directly solving the entropy inequality63

and obtaining conservation and stability in the energy has been forwarded in [11].64

In this work, we make use of the general framework introduced in [1] for the construction of thermodynamically65

compatible schemes. We choose to discretize the total energy conservation law and deduce the entropy equation as a66

consequence, hence implying that the entropy inequality is one extra equation satisfied by the mathematical model,67

which must also be fulfilled at discrete level. This choice is the classical one because it is simpler to monitor energy or68

temperature in experimental devices compared to measuring entropy variations. From the continuous point of view,69

choosing the total energy equation or the entropy one is totally equivalent. Furthermore, the numerical scheme must70
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feature a discrete compatibility with the entropy inequality, and a discrete internal consistency between the determinant71

of the inverse of the deformation gradient and the discrete mass equation. We propose to resort to the approach72

originally forwarded in [1], and subsequently used in [2] for achieving thermodynamic compatibility for the SHTC73

model presented in [49]. Our novel idea is to define a new geometrical potential that plays the role of total energy in74

SHTC schemes, and consequently to derive the associated dual variables. In this way, another extra conservation law75

can be obtained which accounts for the geometric consistency, that is nothing but the Geometric Conservation Law76

written in the Eulerian framework. Up to the knowledge of the authors, no geometrically compatible schemes on fixed77

unstructured meshes are part of the state-of-the-art numerical schemes for continuum mechanics. In this work we will78

design a first order Finite Volume (FV) scheme on unstructured two-dimensional polygonal grids that is compatible79

with the Second Law of Thermodynamics and with the GCL, meaning that two extra conservation laws are satisfied80

by the scheme at the same time. This will ultimately allow to discard the classical mass conservation equation since81

the density can be deduced by the geometric compatibility achieved by the numerical method.82

The paper is organized in three main sections. In Section 2 we introduce the governing equations, the extra83

conservation laws and the final reduced compatible continuous model that is derived. Section 3 is devoted to the84

design of the numerical scheme, including two theorems that demonstrate the compatibility of the new methods at the85

semi-discrete level. Appendix A contains all the details related to the compatibility of the reduced model with the86

geometric constraint in the framework of SHTC systems. The numerical experiments are gathered in the dedicated87

Section 4, where we numerically verify that the structural properties of the continuous model are preserved at the88

discrete level. Finally, we draw some conclusions and an outlook to future developments in Section 5.89

2. Mathematical model90

2.1. Governing equations91

The governing equations are given by the unified first order hyperbolic model of continuum mechanics proposed92

in [49] that belongs to the class of hyperbolic thermodynamically compatible (HTC) systems [31, 28, 54, 33]. Let93

us assume Einstein summation convention over repeated indices, and let us adopt bold symbols to label vectors and94

matrices. Following [2], the mathematical model is written in three space dimensions with indices 1 ≤ 𝑖, 𝑘, 𝑚 ≤ 3 as95

follows:96

𝜕𝜌

𝜕𝑡
+ 𝜕 (𝜌𝑣𝑘)

𝜕𝑥𝑘
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝜌

𝜕𝑥𝑚

)
= 0, (1a)

𝜕𝜌𝑣𝑖

𝜕𝑡
+ 𝜕 (𝜌𝑣𝑖𝑣𝑘 + 𝑝 𝛿𝑖𝑘 + 𝜎𝑖𝑘 + 𝜙𝑖𝑘)

𝜕𝑥𝑘
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝜌𝑣𝑖

𝜕𝑥𝑚

)
= 0, (1b)

𝜕S

𝜕𝑡
+ 𝜕 (S𝑣𝑘 + 𝛽𝑘)

𝜕𝑥𝑘
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕S

𝜕𝑥𝑚

)
= Π + 𝛼𝑖𝑘𝛼𝑖𝑘

𝜃1 (𝜏1)𝑇
+ 𝛽𝑖𝛽𝑖

𝜃2 (𝜏2)𝑇
≥ 0, (1c)

𝜕𝐴𝑖𝑘

𝜕𝑡
+ 𝜕 (𝐴𝑖𝑚𝑣𝑚)

𝜕𝑥𝑘
+ 𝑣𝑚

(
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
− 𝜕𝐴𝑖𝑚

𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚

)
= − 𝛼𝑖𝑘

𝜃1 (𝜏1)
, (1d)

𝜕𝐽𝑘

𝜕𝑡
+ 𝜕 (𝐽𝑚𝑣𝑚 + 𝑇)

𝜕𝑥𝑘
+ 𝑣𝑚

(
𝜕𝐽𝑘

𝜕𝑥𝑚
− 𝜕𝐽𝑚

𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐽𝑘

𝜕𝑥𝑚

)
= − 𝛽𝑘

𝜃2 (𝜏2)
, (1e)

with 𝑡 ∈ R0
+ being the time and x = {𝑥𝑘} denoting the spatial position vector. The state vector q = {𝑞 𝑗 } =97

(𝜌, 𝜌𝑣𝑖 ,S, 𝐴𝑖𝑘 , 𝐽𝑘)⊤ is composed of mass density 𝜌 > 0, momentum 𝜌v = {𝜌𝑣𝑖}, total entropy S, distortion tensor98

A = {𝐴𝑖𝑘} and thermal impulse J = {𝐽𝑘}. Furthermore, 𝑝 > 0 and 𝑇 > 0 denote the fluid pressure and temperature,99

respectively. The fluid is also characterized by a polytropic index 𝛾 = 𝑐𝑝/𝑐𝑣 , given as the ratio of specific heats at100

constant pressure and volume, namely 𝑐𝑝 and 𝑐𝑣 , respectively. The above system also accounts for parabolic van-101

ishing viscosity terms with the parameter 𝜖 > 0, that yield a production contribution Π in the entropy equation (1c)102

which, according to [13] writes103

Π =
𝜖

𝑇
(𝜕𝑥𝑚𝑞𝑖) (𝜕2

𝑞𝑖𝑞 𝑗
E) (𝜕𝑥𝑚𝑞 𝑗 ) ≥ 0. (2)

The positivity of the production term is ensured by assuming a convex total energy potential implying that the Hessian104

of the total energy potential is at least positive semi-definite, i.e. 𝜕2
𝑞𝑖𝑞 𝑗

E ≥ 0, therefore the physical entropy is105
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increasing, in accordance with the Second Law of Thermodynamics. Here, E = E1 + E2 + E3 + E4 is the total energy106

of the system which is obtained as the sum of four terms [19]:107

E1 =
𝜌𝛾

𝛾 − 1
𝑒𝑆/𝑐𝑣 , E2 =

1
2
𝜌𝑣𝑖𝑣𝑖 , E3 =

1
4
𝜌𝑐2

𝑠𝐺̊𝑖 𝑗𝐺̊𝑖 𝑗 , E4 =
1
2
𝑐2
ℎ𝜌𝐽𝑖𝐽𝑖 , (3)

where G = {𝐺𝑖𝑘} := {𝐴𝑖 𝑗𝐴𝑘 𝑗 } represents the metric tensor and G̊ = {𝐺̊𝑖𝑘} = {𝐺𝑖𝑘 − 1
3 𝐺𝑚𝑚𝛿𝑖𝑘} denotes its trace-free108

part with 𝛿𝑖𝑘 being the Kronecker delta. The first term E1 corresponds to the internal energy, for which we assume the109

ideal gas equation of state, then the kinetic energy is considered by E2, whereas E3 is the shear energy with the shear110

sound speed 𝑐𝑠 , and the last term E4 takes into account the thermal energy with 𝑐ℎ being the heat wave speed. Let us111

now introduce the set of thermodynamic dual variables p := 𝜕qE = {𝑝 𝑗 } = (𝑟, 𝑣𝑖 , 𝑇, 𝛼𝑖𝑘 , 𝛽𝑘)𝑇 which are explicitly112

given by the derivative of the energy potential (3) with respect to the state vector q, that is113

𝑟 = 𝜕𝜌E, 𝑣𝑖 = 𝜕𝜌𝑣𝑖E, 𝑇 = 𝜕SE, 𝛼𝑖𝑘 = 𝜕𝐴𝑖𝑘
E, 𝛽𝑘 = 𝜕𝐽𝑘E. (4)

In the momentum equation (1b), the shear stress tensor 𝝈 = {𝜎𝑖𝑘} and the thermal stress tensor 𝝓 = {𝜙𝑖𝑘} are defined114

in terms of the dual variables 𝛼𝑖𝑘 and 𝛽𝑘 as115

𝜎𝑖𝑘 = 𝐴 𝑗𝑖𝜕𝐴 𝑗𝑘
E = 𝐴 𝑗𝑖𝛼 𝑗𝑘 = 𝜌𝑐2

𝑠𝐺𝑖 𝑗𝐺̊ 𝑗𝑘 , 𝜙𝑖𝑘 = 𝐽𝑖𝜕𝐽𝑘E = 𝐽𝑖𝛽𝑘 = 𝜌𝑐2
ℎ𝐽𝑖𝐽𝑘 . (5)

The work of the shear and thermal stress tensors 𝜒𝑘 as well as the heat flux ℎ𝑘 are given by116

𝜒𝑘 = 𝜕𝜌𝑣𝑖E
(
𝐴 𝑗𝑖𝜕𝐴 𝑗𝑘

E + 𝐽𝑖𝜕𝐽𝑘E
)
= 𝑣𝑖 (𝜎𝑖𝑘 + 𝜙𝑖𝑘), ℎ𝑘 = 𝜕SE 𝜕𝐽𝑘E = 𝑇𝛽𝑘 = 𝜌𝑐2

ℎ𝑇𝐽𝑘 , (6)

Finally, the mathematical model (1) is also endowed with algebraic source terms which contain two positive117

functions 𝜃1 (𝜏1) > 0 and 𝜃2 (𝜏2) > 0 that depend on q and on the relaxation times 𝜏1 > 0 and 𝜏2 > 0 as follows:118

𝜃1 =
1
3
𝜌𝑧1𝜏1 𝑐

2
𝑠 |A|−

5
3 , 𝜃2 = 𝜌𝑧2𝜏2 𝑐

2
ℎ, 𝑧1 =

𝜌0

𝜌
, 𝑧2 =

𝜌0𝑇0

𝜌 𝑇
, (7)

with 𝜌0 and 𝑇0 being a reference density and a reference temperature, respectively, and |A| denoting the determinant119

of A. The asymptotic limit of the model (1) has been analyzed in [19] at the continuous level and in [7] in the fully120

discrete setting, showing that for small relaxation times, i.e. when 𝜏1 → 0 and 𝜏2 → 0, the Navier-Stokes-Fourier121

limit is obtained. Indeed, the stress tensor 𝜎𝑖𝑘 and the heat flux ℎ𝑘 tend to122

𝜎𝑖𝑘 = −1
6
𝜌0𝑐

2
𝑠𝜏1

(
𝜕𝑘𝑣𝑖 + 𝜕𝑖𝑣𝑘 −

2
3
(𝜕𝑚𝑣𝑚) 𝛿𝑖𝑘

)
, ℎ𝑘 = −𝜌0𝑇0𝑐

2
ℎ𝜏2𝜕𝑘𝑇, (8)

with 𝜎𝑖𝑘 fulfilling Stokes hypothesis. In the asymptotic regime, the relaxation time 𝜏1 is directly related to the viscosity123

of the fluid by 𝜇 = 1
6 𝜌0𝑐

2
𝑠𝜏1. Analogously, there is a direct link between the relaxation time 𝜏2 and the thermal124

conductivity coefficient which is explicitly given by 𝜅 = 𝜌0𝑇0𝑐
2
ℎ
𝜏2.125

The eigenstructure of the system (1) has been studied in [38]. Here, we are only interested in an estimate of the126

maximum eigenvalues that can be chosen according to [7] as127

𝜆 =

√︄
𝛾 𝑝

𝜌
+ 4

3
𝑐2
𝑠 + 𝑐2

ℎ
. (9)

2.2. Overdetermined systems: extra conservation laws128

By construction, see [49], the model (1) is an overdetermined hyperbolic system, thus implying the satisfaction of129

additional (or extra) conservation laws. Firstly, we obtain total energy conservation from the HTC framework, then130

we focus on the derivation of the Geometric Conservation Law that imposes a geometric constraint on the determinant131

of the distortion tensor |A|.132
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2.2.1. Total energy conservation law133

By dot multiplying equations (1a)-(1e) with the associated thermodynamic variables p, one obtains the total energy134

equation135

𝜕E

𝜕𝑡
+ 𝜕 (E𝑣𝑘 + 𝑣𝑖 𝑝 𝛿𝑖𝑘 + 𝜒𝑘 + ℎ𝑘)

𝜕𝑥𝑘
− 𝜕

𝜕𝑥𝑚

(
𝜖

E

𝜕𝑥𝑚

)
= 0, (10)

meaning that the following Gibbs relation is satisfied:136

1 · 𝑑E = 𝑟 ·𝑑𝜌 + 𝑣𝑖 ·𝑑 (𝜌𝑣𝑖) + 𝑇 ·𝑑S + 𝛼𝑖𝑘 ·𝑑𝐴𝑖𝑘 + 𝛽𝑘 ·𝑑𝐽𝑘 := p ·𝑑q
1 · (10) = 𝑟 ·(1a) + 𝑣𝑖 ·(1b) + 𝑇 ·(1c) + 𝛼𝑖𝑘 ·(1d) + 𝛽𝑘 ·(1e) . (11)

This also implies that the entropy production term Π in (1c) must be compatible with the parabolic dissipation terms137

𝜕SE · Π + p · 𝜕𝑚 (𝜖𝜕𝑚q) = 𝜕𝑚 (𝜖𝜕𝑚E) , (12)

and that the dot product of p with the algebraic relaxation source terms must vanish138

p · S(q) = 0. (13)

Although the rigorous formalism and derivation of HTC systems implies the use of the entropy as state variable,139

let us remark that the energy equation (10) could be solved instead, and the associated entropy balance can be retrieved140

again from the Gibbs relation (11) as141

𝑇 𝑑S = −𝑟 · 𝑑𝜌 − 𝑣𝑖 · 𝑑 (𝜌𝑣𝑖) + 1 · 𝑑E − 𝛼𝑖𝑘 · 𝑑𝐴𝑖𝑘 − 𝛽𝑘 · 𝑑𝐽𝑘 , (14)

with a set of dual variables142

r = {𝑟 𝑗 } =
1
𝑇
(−𝑟,−𝑣𝑖 , 1,−𝛼𝑖𝑘 ,−𝛽𝑘)⊤. (15)

This implies the assumption of a physical entropy potential S such that r = 𝜕qS with an associated positive semi-143

negative Hessian matrix 𝜕2
𝑞𝑖𝑞 𝑗

S ≤ 0.144

2.2.2. Geometric Conservation Law (GCL)145

The governing equations (1) also involve a geometric constraint on the determinant of the distortion tensor A,146

which corresponds to the inverse deformation gradient for reversible processes in the material. To properly derive this147

geometric constraint, let us consider the Lagrange-Euler mapping between the Lagrangian domain Ω ⊂ R3 and the148

Eulerian domain 𝜔(𝑡) ⊂ R3 at time 𝑡 > 0, that deforms in time through the movement of the material. At the aid

(   ,t)X

X

x

t=0 t

Φ x(  ,t)

F=
X

Φ

Φ

−1

Figure 1: Sketch of the Lagrangian-Eulerian transformation.

149

of Figure 1, let X = {𝑋𝑘} and x = {𝑥𝑘} represent the coordinate of any Lagrangian point in Ω and Eulerian point in150

𝜔(𝑡), respectively. Then, the Lagrange-Euler mapping 𝚽 = {Φ𝑖} is such that x = 𝚽(X, 𝑡) ∈ 𝜔(𝑡), and the kinematic151

velocity of the material in the Eulerian frame is given by152

𝑣𝑖 (X, 𝑡) = 𝜕Φ𝑖 (X, 𝑡)
𝜕𝑡

. (16)
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The deformation gradient tensor F = {𝐹𝑖𝑘} is nothing but the Jacobian matrix associated to the flow map Φ and153

verifies154

𝐹𝑖𝑘 =
𝜕Φ𝑖

𝜕𝑋𝑘

. (17)

We assume that for all 𝑡 > 0, the determinant of F, called the Jacobian of the transformation, satisfies det(F(X, 𝑡)) :=155

|F(X, 𝑡) | > 0, so that the flow map is always invertible. The inverse of the transformation links the Eulerian coordinate156

to the Lagrangian one, i.e. X = Φ−1 (x, 𝑡), and the distortion tensor in the mathematical model (1) is geometrically157

defined as A = F−1 for reversible processes. The determinant of the deformation gradient represents the ratio of the158

Eulerian volume element to the Lagrangian volume element, that is159

𝑑𝑣 = |F|𝑑𝑉. (18)

Following [24], the mass conservation law with respect to the Lagrangian configuration is expressed for 𝑡 ≥ 0 by160

𝑑

𝑑𝑡

∫
Ω

𝜌(X, 𝑡) |F(X, 𝑡) | 𝑑𝑉 = 0, (19)

with the Lagrangian or material derivative given by161

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝑣𝑘

𝜕

𝜕𝑥𝑘
. (20)

Since relation (19) must hold for an arbitrary domain Ω, it implies162

𝜌(X, 𝑡) |F(X, 𝑡) | = 𝜌(X, 0) =⇒ |F| = 𝜌0

𝜌
, (21)

where we recall that 𝜌0 = 𝜌(X, 0) is the initial density of the material. Consequently, thanks to the relationship163

A = F−1, the determinant of the distortion matrix must obey the following constraint:164

|A| = 𝜌

𝜌0
. (22)

This geometric constraint is extremely difficult to be respected at the discrete level, especially for Eulerian165

schemes. To the best knowledge of the authors, this has never been achieved so far on fixed grids. Therefore, our aim166

is to satisfy the constraint (22) by proposing a new approach, that requires the satisfaction of an extra conservation167

law for the quantity |A|. Using the Lagrangian derivative (20) and neglecting viscous and source terms, the evolution168

equation (1d) writes169

𝑑𝐴𝑘𝑖

𝑑𝑡
+ 𝐴𝑘 𝑗

𝜕𝑣 𝑗

𝜕𝑥𝑖
= 0. (23)

Employing the Jacobi formula and the above relation, the time derivative of the determinant of the distortion tensor170

leads to171

𝑑 |A|
𝑑𝑡

= tr
(
|A| W 𝑑A

𝑑𝑡

)
, W = A−1,

= −|A|𝑊𝑖𝑘 𝐴𝑘 𝑗

𝜕𝑣 𝑗

𝜕𝑥𝑖

= −|A| 𝛿𝑖 𝑗
𝜕𝑣 𝑗

𝜕𝑥𝑖
. (24)

By replacing the material derivative on the left hand side of (24) with its Eulerian counterpart according to (20), the172

Geometric Conservation Law is obtained as an extra conservation law satisfied by the governing equations (1), which173

is explicitly given by174

𝜕 |A|
𝜕𝑡

+ 𝜕

𝜕𝑥𝑘
( |A|𝑣𝑘) = 0. (25)
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Therefore, satisfying the GCL (25) implies that the constraint (22) is also respected. To mimic the HTC approach,175

let us introduce a new set of pseudo-thermodynamic variables w = {𝑤𝑖𝑘} that are dual with respect to a pseudo-176

potential given by |A|, thus obtaining w := 𝜕A |A|. Then, by construction, one can verify that a pseudo-Gibbs relation177

is satisfied, that is178

𝑑 ( |A|) = 𝑤𝑖𝑘 ·𝑑 (𝐴𝑖𝑘) := w · 𝑑A
(25) = 𝑤𝑖𝑘 ·(1d) . (26)

More precisely, the source term of the distortion tensor equation (1d), referred to as SA, has been designed in [49] not179

to affect the mass conservation equation. Indeed, it is proportional to 𝜕AE, namely180

SA = − 𝜕AE

𝜃1 (𝜏1)
= − 𝜶

𝜃1 (𝜏1)
= − 3

𝜏1
|A| 5

3 A G̊. (27)

On the other hand, the dual variables w are given by181

w = |A| A−⊤. (28)

Therefore, the contraction w : SA = tr(w⊤ SA) yields182

w : SA = − 3
𝜏1
|A| 8

3 tr(A−1 A G̊) = − 3
𝜏1
|A| 8

3 tr(G̊) = 0, (29)

since G̊ is the trace-free part of the metric tensor G = A⊤ A. The details concerning the derivation of the GCL in183

terms of the dual variables w can be found in Appendix A.184

2.3. Reduced compatible model185

The previous considerations incline us to consider a reduced model consisting of the following equations:186

𝜕𝜌𝑣𝑖

𝜕𝑡
+ 𝜕 (𝜌𝑣𝑖𝑣𝑘 + 𝑝 𝛿𝑖𝑘 + 𝜎𝑖𝑘 + 𝜙𝑖𝑘)

𝜕𝑥𝑘
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝜌𝑣𝑖

𝜕𝑥𝑚

)
= 0, (30a)

𝜕E

𝜕𝑡
+ 𝜕 (E𝑣𝑘 + 𝑣𝑖 𝑝 𝛿𝑖𝑘 + 𝜒𝑘 + ℎ𝑘)

𝜕𝑥𝑘
− 𝜕

𝜕𝑥𝑚

(
𝜖

E

𝜕𝑥𝑚

)
= 0, (30b)

𝜕𝐴𝑖𝑘

𝜕𝑡
+ 𝜕 (𝐴𝑖𝑚𝑣𝑚)

𝜕𝑥𝑘
+ 𝑣𝑚

(
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
− 𝜕𝐴𝑖𝑚

𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚

)
= − 𝛼𝑖𝑘

𝜃1 (𝜏1)
, (30c)

𝜕𝐽𝑘

𝜕𝑡
+ 𝜕 (𝐽𝑚𝑣𝑚 + 𝑇)

𝜕𝑥𝑘
+ 𝑣𝑚

(
𝜕𝐽𝑘

𝜕𝑥𝑚
− 𝜕𝐽𝑚

𝜕𝑥𝑘

)
− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕𝐽𝑘

𝜕𝑥𝑚

)
= − 𝛽𝑘

𝜃2 (𝜏2)
. (30d)

This system satisfies the entropy inequality (1c) and the Geometric Conservation Law (25). We underline that no187

evolution equation for the mass density is embedded in the model, since the material density can be easily computed188

from the determinant constraint (22) thanks to the GCL compatibility, that is 𝜌 = 𝜌0 |A|. Likewise, the entropy balance189

is also satisfied by the reduced model (30) which is compliant with the Gibbs relation (14).190

Here we consider the state variables u = (𝜌𝑣𝑖 , E, 𝐴𝑖𝑘 , 𝐽𝑘), and the governing equations can be written in a compact191

matrix-vector formulation as192

𝜕u
𝜕𝑡

+ 𝜕f𝑘 (u)
𝜕𝑥𝑘

+ B𝑘 (u)
𝜕u
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕u
𝜕𝑥𝑚

)
= S(u), (31)

where f𝑘 (q) is the nonlinear flux tensor and B𝑘 (u)𝜕𝑘u contains the non-conservative part of the system in block-193

matrix notation for A and J. The algebraic sources are gathered in the term S(u), while the regularizing viscous terms194

are given by 𝜕𝑚 (𝜖𝜕𝑚u).195

The model (30) is solved with a finite volume method on general unstructured meshes that is proven to preserve196

both the geometric and the thermodynamic compatibility. Indeed, the novel numerical method only solves the reduced197

model (30) because it is compliant with (1c) and (25). All the details of the numerical scheme are provided in the next198

section.199

7



3. Numerical scheme200

3.1. Semi-discrete finite volume scheme on unstructured meshes201

To ease the notation and the readability, subscripts are used for tensor indices while superscripts denote the spatial202

discretization index. The two-dimensional computational domain Ω ∈ R2 is discretized with a total number 𝑁ℓ of203

non-overlapping unstructured polygonal control volumes 𝜔ℓ with border 𝜕𝜔ℓ and barycenter coordinates xℓ . We204

underline that Voronoi meshes can also be employed as well as any other general polygonal elements. The surface of205

the element is denoted with |𝜔ℓ |, whereas |𝜕𝜔ℓ | refers to the cell perimeter. The set of neighbors of cell 𝜔ℓ is labeled206

with Nℓ , and 𝜕𝜔ℓr is the common edge shared by two adjacent elements 𝜔ℓ and 𝜔r with outward pointing unit normal207

vector nℓr . Figure 2 shows an example of an unstructured polygonal mesh and a sketch of the adopted notation.

x

y

0 2 4 6 8 10
0

2

4

6

8

10

Figure 2: Left: example of unstructured Voronoi mesh. Right: notation used for cell 𝜔ℓ and one direct neighbor cell 𝜔r .

208

We start the derivation of a finite volume method for discretizing the reduced model (31). For finite volume209

schemes, data are stored and evolved in time as piecewise constant cell averages which are defined as210

uℓ :=
1

|𝜔ℓ |

∫
𝜔ℓ

u 𝑑x. (32)

To obtain a semi-discrete finite volume scheme, let us integrate in space the governing equations over the control211

volume 𝜔ℓ by keeping time continuous:212

|𝜔ℓ | 𝜕uℓ

𝜕𝑡
+

∫
𝜔ℓ

(
𝜕f𝑘 (u)
𝜕𝑥𝑘

+ B𝑘 (u)
𝜕u
𝜕𝑥𝑘

− 𝜕

𝜕𝑥𝑚

(
𝜖
𝜕u
𝜕𝑥𝑚

))
𝑑x =

∫
𝜔ℓ

S(u) 𝑑x. (33)

Application of the theorem of Gauss on the nonlinear flux and viscosity terms yields213

|𝜔ℓ | 𝜕uℓ

𝜕𝑡
+

∫
𝜕𝜔ℓ

(
f𝑘 (u) −

(
𝜖
𝜕u
𝜕𝑥𝑚

))
· n 𝑑𝑆 +

∫
𝜔ℓ

B𝑘 (u)
𝜕u
𝜕𝑥𝑘

𝑑x =

∫
𝜔ℓ

S(u) 𝑑x. (34)

The non-conservative terms are integrated using a path-conservative approach, see [48, 10] and references therein,214

hence obtaining215 ∫
𝜔ℓ

B𝑘 (u)
𝜕u
𝜕𝑥𝑘

𝑑x =

∫
𝜕𝜔ℓ

D𝑘 · n 𝑑𝑆 +
∫

𝜔ℓ\𝜕𝜔ℓ

B𝑘 (u)
𝜕u
𝜕𝑥𝑘

𝑑x, (35)
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where the new term D𝑘 · n takes into account potential jumps of the solution across the element boundaries and it is216

defined for the interface between 𝜔ℓ and 𝜔r as217

D𝑘 · n =
1
2

1∫
0

B𝑘 (𝝍(uℓ , ur , 𝑠)) · nℓr 𝜕𝝍

𝜕𝑠
𝑑𝑠. (36)

The integration path 𝝍 is chosen to be a simple straight-line segment according to [48, 10], thus it is given by 𝝍 =218

𝝍(uℓ , ur , 𝑠) = uℓ + 𝑠 (ur − uℓ), and the jump term (36) reduces to219

D𝑘 · n =
1
2

©­«
1∫

0

B𝑘 (𝝍(uℓ , ur , 𝑠)) · nℓr 𝑑𝑠
ª®¬ (ur − uℓ). (37)

The first order semi-discrete finite volume scheme for the governing equations (34) writes220

𝜕uℓ

𝜕𝑡
= −

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
F(uℓ , ur) +D (uℓ , ur) +G(uℓ , ur)

)
· nℓr + S(uℓ), (38)

where the volume term in (35) vanishes since at first order any gradient of u inside the cell is zero, and the source221

term integral simply corresponds to the evaluation of S with uℓ thanks to the definition of the finite volume solution222

(32). The numerical flux is given by a central approximation, that is223

F(uℓ , ur) · nℓr =
1
2

(
fℓ𝑘 + fr𝑘

)
𝑛ℓr𝑘 , (39)

and the following discretization is chosen for the non-conservative terms (37)224

D (uℓ , ur) · nℓr =
1
2

B𝑘 (ūℓr) 𝑛ℓr𝑘 (ur − uℓ), ūℓr =
1
2
(ur + uℓ), (40)

which corresponds to a midpoint rule for the evaluation of the path-integral (37). The dissipative numerical flux is225

computed by a Rusanov-type scheme with226

G(uℓ , ur) · nℓr = −𝜖ℓr ∥xr − xℓ ∥ ur − uℓ

∥xr − xℓ ∥
= −𝜖ℓr (ur − uℓ), 𝜖ℓr =

1
2

max
(
|𝜆(uℓ) |, |𝜆(ur) |

)
, (41)

where we use the estimate of the maximum eigenvalue of the system according to (9) for the definition of the positive227

coefficient 𝜖ℓr . To ease the notation, let us introduce the abbreviations228

F̃ℓr := F̃(uℓ , ur), Dℓr := D (uℓ , ur), Gℓr := G(uℓ , ur). (42)

229

As it stands, the finite volume scheme (38) is not structure preserving: it is neither compliant with the extra230

conservation laws (1c) nor with (25). Therefore some ad hoc modifications have to be designed in order to make the231

scheme structure preserving.232

3.2. Geometrically compatible finite volume scheme233

We start by designing a modification of the finite volume scheme (38) such that geometric compatibility is ensured234

by satisfying the GCL equation (25) as an extra conservation law of the mathematical model. For the moment, we235

neglect the source terms and the dissipation fluxes, i.e we assume Gℓr · nℓr = 0 and S(u) = 0. We rely on a236

very general method firstly proposed for achieving thermodynamic compatibility in [1], and more recently extended237

to hyperbolic systems of the type (1) to recover energy conservation from the direct discretization of the entropy238

inequality [13, 2, 14]. Here, we apply this strategy for the first time to preserve a different structural property rather239

than thermodynamics.240
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Let us interpret the determinant of the distortion matrix |A| as a thermodynamic potential, and the associated241

dual variables w = {𝑤𝑖𝑘} = 𝜕A |A| as a set of thermodynamic variables. Moreover, let Fℓ,r
A · nℓr denote the central242

fluxes related to the distortion tensor equation (30c) according to (39). Likewise, fA,𝑚 represents the physical flux243

of equation (30c) and Dℓr
A · nℓr are the corresponding fluctuations of the non-conservative terms restricted to (30c).244

According to [1], these fluxes are modified by a correction factor 𝛼ℓr
A , which is defined at the cell interface, hence245

obtaining the modified fluxes246

F̃ℓr
A · nℓr = Fℓr

A · nℓr − 𝛼ℓr
A (wr − wℓ) · nℓr =

1
2

(
fℓA,𝑘 + frA,𝑘

)
𝑛ℓr𝑘 − 𝛼ℓr

A (wr − wℓ) · nℓr . (43)

The scalar correction factor 𝛼ℓr
A has no sign, and it can add or subtract the total amount of the jump in the dual variables247

which is needed to reach geometric compatibility with the GCL (25). To determine 𝛼ℓr
A , the conservation principle is248

invoked. Indeed, across each cell boundary 𝜕𝜔ℓr , a consistent condition implies that the sum of the fluctuations must249

balance the sum of the fluxes which have to be preserved. This sum, namely |A|𝑣𝑘 in (25), must be recovered as the250

dot product of equation (30c) with the dual variables wℓ , that is251

wℓ ·
(
F̃ℓr

A · nℓr − fℓA,𝑘 · 𝑛
ℓr
𝑘

)
+ wr ·

(
frA,𝑘 · 𝑛

ℓr
𝑘 − F̃ℓr

A · nℓr
)
+

wℓ ·Dℓr
A · nℓr + wr ·Dℓr

A · nrℓ =

(
( |A|𝑣𝑘)r − (|A|𝑣𝑘)ℓ

)
𝑛ℓr𝑘 .

(44)

By inserting the definition of the modified fluxes (43) in the condition (44), we obtain the sought correction factor252

defined at the cell interface 𝜕𝜔ℓr:253

𝛼ℓr
A =

(
( |A|𝑣𝑘)r − (|A|𝑣𝑘)ℓ

)
𝑛ℓr
𝑘
+

(
Fℓr

A · nℓr
)
· (wr − wℓ) −

(
wr · frA,𝑘

− wℓ · fℓA,𝑘

)
𝑛ℓr
𝑘

(wr − wℓ)2

−
(wr + wℓ) ·Dℓr

A · nℓr

(wr − wℓ)2 .

(45)

Obviously, if wℓ = wr then no correction occurs and we simply set 𝛼ℓr
A = 0. We underline that the correction factor254

𝛼A has no sign and, in principle, it is unbounded. From the numerical viewpoint, we only take care about avoiding255

division by zero.256

Geometric compatibility with dissipation fluxes and source terms. Even with smooth initial data, the solution of257

the PDE system (30) can exhibit shocks and other discontinuities, which require a stabilization of the numerical258

scheme that is carried out relying on parabolic vanishing viscosity terms. Also in this case, the compatibility with the259

geometric extra conservation law (25) must be respected. To that aim, let us add to the compatible fluxes (43) also the260

dissipative fluxes Gℓr
A · nℓr as well as the source terms SA (uℓ) = − 𝜶ℓ

𝜃 (𝜏1 ) , so that the semi-discrete evolution equation261

(30c) for A now becomes262

𝜕Aℓ

𝜕𝑡
+

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
F̃ℓr

A +Dℓr
A

)
· nℓr = −

∑︁
r∈Nℓ

Gℓr
A · nℓr + SA (uℓ). (46)

The part on the left hand side of the above equation is already compatible with the GCL thanks to the modified fluxes263

(43) with the scalar correction factor given by (45). Therefore, we focus on the compatibility of the right hand side264

of (46). Recalling the definition (41) and following [13], after multiplication by the dual variables wℓ , for the viscous265

terms we obtain266

wℓ · Gℓr
A · nℓr =

1
2

(
wℓ · Gℓr

A · nℓr + wr · Gℓr
A · nℓr + wℓ · Gℓr

A · nℓr − wr · Gℓr
A · nℓr

)
=

1
2
(wr − wℓ) · 𝜖ℓr (Ar − Aℓ)︸                             ︷︷                             ︸

G1

− 1
2
(wr + wℓ) · 𝜖ℓr (Ar − Aℓ)︸                             ︷︷                             ︸

G2

. (47)
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The second term G2 is the approximation of the jump term related to the numerical dissipation in the GCL (25), that267

is268

−1
2
(wr + wℓ) · 𝜖ℓr (Ar − Aℓ) ≈ −𝜖ℓr ( |A|r − |A|ℓ). (48)

Indeed, applying path integration in the state variables A, the following relation holds true by construction:269

Ar∫
Aℓ

w · 𝑑A =

Ar∫
Aℓ

𝜕A |A| · 𝑑A = |A|r − |A|ℓ , (49)

and the term 1
2 (w

r + wℓ) (Ar − Aℓ) in (48) can be seen as a numerical approximation of the path integral in (49) using270

a trapezoidal rule. Therefore, we still remain with an additional contribution given by the first term G1 in (47). To271

control its production of numerical dissipation, we reformulate the jump in the dual variables w as a jump in the state272

variables A through the Hessian matrix 𝜕2
AA |A|ℓr which verifies the Roe property273

𝜕2
AA |A|ℓr · (Ar − Aℓ) = wr − wℓ . (50)

The Hessian matrix at the cell interface is computed as274

𝜕2
AA |A|ℓr =

1∫
0

𝜕2
AA |A| (𝝃 (𝑠)) 𝑑𝑠, 𝝃 (𝑠) = Aℓ + 𝑠 (Ar − Aℓ), 0 ≤ 𝑠 ≤ 1, (51)

where 𝜕2
AA |A| explicitly writes275

𝜕2
AA |A| =



0 0 0 0 𝐴33 −𝐴32 0 −𝐴23 𝐴22
0 0 0 −𝐴33 0 𝐴31 𝐴23 0 −𝐴21
0 0 0 𝐴32 −𝐴31 0 −𝐴22 𝐴21 0
0 −𝐴33 𝐴32 0 0 0 0 𝐴13 −𝐴12
𝐴33 0 −𝐴31 0 0 0 −𝐴13 0 𝐴11

−𝐴32 𝐴31 0 0 0 0 𝐴12 −𝐴11 0
0 𝐴23 −𝐴22 0 −𝐴13 𝐴12 0 0 0

−𝐴23 0 𝐴21 𝐴13 0 −𝐴11 0 0 0
𝐴22 −𝐴21 0 −𝐴12 𝐴11 0 0 0 0


. (52)

These contributions, which come from all the faces Nℓ of the cell, must vanish in order to obtain compatibility with276

the GCL equation (25). Consequently, a production term Πℓ
A is introduced to balance these terms with opposite sign,277

that is given by278

Πℓ
A =

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

1
2
𝜖ℓr (Ar − Aℓ) · 𝜕2

AA |A|ℓr (Ar − Aℓ), (53)

where only jumps in the state variables appear because of the use of the Roe-type Hessian matrix (51). The production279

term Πℓ
A is a scalar, that now needs to be distributed among all the components 𝐴ℓ

𝑖𝑘
of the distortion tensor, hence280

obtaining new contributions 𝑃ℓ
𝑖𝑘

. Here, we adopt a rescaling with respect to the trace of the distortion tensor, as281

proposed in [12] for the redistribution of a production term associated to the Reynolds stress tensor, thus we define282

𝑃ℓ
𝑖𝑘

as283

𝑃ℓ
𝑖𝑘 = Πℓ

A
𝑤ℓ
𝑖𝑘

tr(wℓ wℓ,⊤)
, (54)

with the positive trace tr(wℓ wℓ,⊤) = 𝑤ℓ
𝑖𝑘
𝑤ℓ
𝑖𝑘

≥ 0.284

At last, it remains to verify the compatibility with the source terms. Multiplication of SA (uℓ) by the dual variables285

yields286

−wℓ · 𝜶ℓ

𝜃 (𝜏1)
= −𝑤ℓ

𝑖𝑘 ·
𝛼ℓ
𝑖𝑘

𝜃 (𝜏1)
= 0, (55)
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therefore the compatibility is proven by construction of the dual variables w, as demonstrated at the continuous level287

by (29). All the related details are reported in Appendix A.288

Theorem 1 (Geometric compatibility). The semi-discrete finite volume scheme for the equation of the distortion289

tensor A given by290

𝜕Aℓ

𝜕𝑡
+

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
F̃ℓr

A +Dℓr
A +Gℓr

A

)
· nℓr = − 𝜶ℓ

𝜃 (𝜏1)
+ Πℓ

A
wℓ

tr(wℓ wℓ,⊤)
, (56)

with the geometrically compatible fluxes (43), the non-conservative products (40), the dissipation terms (41) and the291

production term (53), satisfies the extra conservation law (25) with the following conservative semi-discrete scheme:292

𝜕 |A|ℓ
𝜕𝑡

+
∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

1
2

(
𝐹ℓ
|A | + 𝐹r

|A |

)
· nℓr = 0. (57)

Proof. Let us recall that the discrete Gauss theorem over a closed surface yields the relation293 ∑︁
r∈Nℓ

|𝜕𝜔ℓr | nℓr = 0. (58)

Dot multiplying the distortion equation (56) by the dual variables wℓ , we obtain294

wℓ · 𝜕Aℓ

𝜕𝑡
+

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

wℓ ·
(
F̃ℓr

A +Dℓr
A +Gℓr

A

)
· nℓr = wℓ ·

(
− 𝜶ℓ

𝜃 (𝜏1)
+ Πℓ

A
wℓ

tr(wℓ wℓ,⊤)

)
. (59)

On the right hand side, we have295

wℓ ·
(
− 𝜶ℓ

𝜃 (𝜏1)
+ Πℓ

A
wℓ

tr(wℓ wℓ,⊤)

)
= 0 + Πℓ

A, (60)

where the first term vanishes thanks to the compatibility condition (55) (see Appendix A) and the second term verifies296

by construction the relation297

wℓ · Πℓ
A

wℓ

tr(wℓ wℓ,⊤)
= 𝑤ℓ

𝑖𝑘 Π
ℓ
A

𝑤ℓ
𝑖𝑘

𝑤ℓ
𝑖𝑘
𝑤ℓ
𝑖𝑘

= Πℓ
A. (61)

On the left hand side of (59), we add and subtract the terms 1
2 wr · F̃ℓr

A · nℓr , 1
2 wr ·Drℓ

A · nrℓ and 1
2 wr ·Gℓr

A · nℓr , hence298

obtaining299

𝜕 |A|ℓ
𝜕𝑡

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(wℓ + wr) · F̃ℓr

A · nℓr + (wℓ − wr) · F̃ℓr
A · nℓr

)
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
wℓ ·Dℓr

A · nℓr + wr ·Drℓ
A · nrℓ + wℓ ·Dℓr

A · nℓr − wr ·Drℓ
A · nrℓ

)
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(wℓ + wr) · Gℓr

A · nℓr + (wℓ − wr) · Gℓr
A · nℓr

)
= Πℓ

A.

(62)

Due to the continuity of the computational mesh, it holds that nℓr = −nrℓ . Furthermore, the term (wℓ −wr) · F̃ℓr
A · nℓr

300
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can be rewritten by means of the compatibility condition (44), which leads to301

𝜕 |A|ℓ
𝜕𝑡

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(wℓ + wr) · F̃ℓr
A · nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

((
( |A|𝑣𝑘)r − (|A|𝑣𝑘)ℓ

)
+

(
wℓ · fℓA,𝑘 − wr · frA,𝑘

))
𝑛ℓr𝑘

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
wℓ ·Dℓr

A + wr ·Drℓ
A

)
· nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(wℓ + wr) · Gℓr

A · nℓr + (wℓ − wr) · Gℓr
A · nℓr

)
= Πℓ

A.

(63)

By virtue of the discrete Gauss theorem (58), we can add to the left hand side of the above equation a zero term given
by ∑︁

r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
( |A|𝑣𝑘)ℓ − wℓ · fℓA,𝑘

)
𝑛ℓr𝑘 = 0,

and we reformulate the numerical dissipation according to (47)-(48) with the Roe-type property (49), hence obtaining302

𝜕 |A|ℓ
𝜕𝑡

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(wℓ + wr) · F̃ℓr
A · nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
( |A|𝑣𝑘)r + (|A|𝑣𝑘)ℓ

)
𝑛ℓr𝑘

− 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
wℓ · fℓA,𝑘 + wr · frA,𝑘

)
𝑛ℓr𝑘

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
wℓ ·Dℓr

A + wr ·Drℓ
A

)
· nℓr

+
∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

1
2
𝜖ℓr (Ar − Aℓ) · 𝜕2

AA |A|ℓr (Ar − Aℓ) − 𝜖ℓr ( |A|r − |A|ℓ)

= Πℓ
A.

(64)

The last term on the left hand side partially cancels with the production term Πℓ
A, that follows by the definition (53).303

Therefore, the extra conservation law (25) is satisfied by defining the following fluxes in the semi-discrete finite304

volume scheme (57):305

𝐹ℓ
|A | · nℓr = (( |A|𝑣𝑘)ℓ − wℓ · fℓA,𝑘) 𝑛

ℓr
𝑘 + wℓ ·

(
F̃ℓr

A +Dℓr
A

)
· nℓr + 2 𝜖ℓr |A|ℓ ,

𝐹r
|A | · nℓr = (( |A|𝑣𝑘)r − wr · frA,𝑘) 𝑛

ℓr
𝑘 + wr ·

(
F̃ℓr

A +Drℓ
A

)
· nℓr − 2 𝜖ℓr |A|r .

(65)

□306

3.3. Thermodynamically compatible finite volume scheme307

After achieving compatibility with the extra conservation law (25), the semi-discrete finite volume scheme must be308

modified again to be compliant with the Second Law of Thermodynamics, meaning that it must fulfill also the entropy309

balance (1c). This is equivalent to satisfy the Gibbs relation (14), implying that we need to work with all the state310

variables u plus the density. However, thanks to the geometrically compatible discretization achieved for the distortion311
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tensor A, we can deduce the density directly from the determinant of A as 𝜌 = 𝜌0 |A|, therefore the full vector of state312

variables is simply given by ũ = (𝜌0 |A|, u)⊤ = (𝜌0 |A|, 𝜌𝑣𝑖 , E, 𝐴𝑖𝑘 , 𝐽𝑘)⊤. The thermodynamic correction is carried313

out in analogy with the one employed for the geometric compatibility, hence we introduce a modified set of numerical314

fluxes of the form315

F̂(ũℓ , ũr) · nℓr = F̃(ũℓ , ũr) − 𝛼ℓr
𝑆 (r̃r − r̃ℓ), (66)

where 𝛼ℓr
𝑆

is a scalar correction factor that must be determined to obtain thermodynamic compatibility. The fluxes316

F̃(ũℓ , ũr) · nℓr coincide with the central fluxes for all equations of (30) except for the distortion tensor equation, for317

which they are given by (43). Furthermore, the flux in the continuity equation (1a) is computed from the compatible318

fluxes (65) of the semi-discrete equation for |A| given by (57) upon multiplication by 𝜌ℓ0 . Consequently, we have that319

F̃(ũℓ , ũr) · nℓr =


1
2 𝜌ℓ0

(
𝐹ℓ
|A | + 𝐹r

|A |

)
· nℓr for (1a) with fluxes (65)

F(uℓ , ur) · nℓr for (30a)-(30b)-(30d)

F̃A (uℓ , ur) · nℓr for (30c)

. (67)

Since the compliance with the GCL must not be destroyed by this new modification, we deliberately choose to add the320

correction factor 𝛼ℓr
𝑆

to only a subset of dual variables among r in (15), which is referred to as r̃ in (66). Specifically,321

we allow the momentum and the thermal impulse equations to account for the thermodynamic compatibility, thus322

defining323

r̃ =
1
𝑇

(
0, 𝜕𝜌vE, 0, 0, 𝜕JE

)⊤
= {𝑟 𝑗 } =

1
𝑇
(0,−𝑣𝑖 , 0, 0𝑖𝑘 ,−𝛽𝑘)⊤. (68)

We remark that the equations for density and distortion tensor are not affected by the thermodynamic corrections324

since they already carry the geometric compatibility correction. Let us also note that the total energy equation is not325

modified in order to maintain stationary solutions of the governing PDE, as explained at the end of this section. To326

compute the correction factor 𝛼ℓr
𝑆

we can now proceed along the lines of [1, 3], hence requiring that the sum of all the327

fluctuations across an element interface is equal to the flux difference of the entropy equation (1c), thus leading to328

rℓ ·
(
F̂(ũℓ , ũr) · nℓr − fℓ𝑘 · 𝑛

ℓr
𝑘

)
+ rr ·

(
fr𝑘 · 𝑛

ℓr
𝑘 − F̂(ũℓ , ũr) · nℓr

)
+

rℓ ·D (ũℓ , ũr) · nℓr + rr ·D (ũr , ũℓ) · nℓr =

(
(S𝑣𝑘 + 𝛽𝑘)r − (S𝑣𝑘 + 𝛽𝑘)ℓ

)
𝑛ℓr𝑘 .

(69)

By employing the flux definition (66) in the conservation condition (69), the thermodynamic correction scalar 𝛼ℓr
𝑆

is329

found to be given by330

𝛼ℓr
𝑆 =

(
(S𝑣𝑘 + 𝛽𝑘)r − (S𝑣𝑘 + 𝛽𝑘)ℓ

)
𝑛ℓr
𝑘
+

(
F̃(ũℓ , ũr) · nℓr

)
·
(
rr − rℓ

)
−

(
rr · fr

𝑘
− rℓ · fℓ

𝑘

)
𝑛ℓr
𝑘(

r̃r − r̃ℓ
)2

−
(
rr + rℓ

)
·D (ũℓ , ũr) · nℓr(
r̃r − r̃ℓ

)2 .

(70)

Obviously, we set 𝛼ℓr
𝑆

= 0 if r̃ℓ = r̃r . Even in this case, the correction factor 𝛼𝑆 may be unbounded, and no special331

treatment is numerically applied apart from avoiding division by zero. The source terms in equations (30c) and (30d)332

are compatible by construction also for thermodynamic compatibility. Indeed, multiplication of the sources by the333

dual variables 𝜕𝐴ℓ
𝑖𝑘
E = 𝛼ℓ

𝑖𝑘
and 𝜕𝐽ℓ

𝑘
E = 𝛽ℓ

𝑘
, with negative sign and divided by the temperature according to (14), yields334

−
𝛼ℓ
𝑖𝑘

𝑇ℓ

(
−

𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)

)
−

𝛽ℓ
𝑘

𝑇ℓ

(
−

𝛽ℓ
𝑘

𝜃2 (𝜏2)

)
=

𝛼ℓ
𝑖𝑘
𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)𝑇ℓ
+

𝛽ℓ
𝑘
𝛽ℓ
𝑘

𝜃2 (𝜏2)𝑇ℓ
≥ 0, (71)

which is exactly the source term in the entropy equation (1c).335

The geometrically and thermodynamically compatible semi-discrete finite volume scheme without numerical dis-336

sipation is then given by337

𝜕uℓ

𝜕𝑡
+

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
F̂(uℓ , ur)ℓr +D (uℓ , ur)ℓr

)
· nℓr = S(uℓ), (72)
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with the definition of the compatible fluxes (66)-(67) and the thermodynamic correction factor (70).338

Remark (On the energy equation in the thermodynamic correction). The subset of dual variables r̃ in the flux cor-339

rection (66) does not take into account the dual variable in the energy equation, which is equal to 1/𝑇 . Without loss340

of generality, let us consider a computational domain Ω = [−𝐿; 𝐿]2 with periodic boundaries and 𝐿 ∈ R, and the341

following initial condition with only a discontinuity in the density field located at | |x| | = 𝑅0 ⊂ Ω:342

𝜌(x, 𝑡 = 0) =
{

𝜌𝐿0 for | |x| | ≤ 𝑅0

𝜌𝑅0 for | |x| | > 𝑅0
, v(x, 𝑡 = 0) = 0, 𝑝(x, 𝑡 = 0) = 𝑝0, A(x, 𝑡 = 0) = I, J(x, 𝑡 = 0) = 0.

(73)
In this case, the total energy is only given by the internal energy contribution which is constant, namely343

E(x, 𝑡 = 0) = 𝑝0

𝛾 − 1
, (74)

therefore the semi-discrete finite volume scheme (72) yields344

𝜕uℓ

𝜕𝑡
= 0, (75)

and the initial condition (73) also represents the exact solution. The correction factor is a priori nonzero, i.e. 𝛼ℓr
𝑆

≠ 0,345

because of the pressure and temperature terms in the momentum and thermal impulse equations, respectively. If we346

add the thermodynamic correction in the energy equation, the associated flux F̂E (uℓ , ur) · nℓr should be corrected347

with the jump term in the dual variable 1/𝑇 , leading to348

F̂E (uℓ , ur) · nℓr = FE (uℓ , ur) · nℓr − 𝛼ℓr
𝑆

(
1
𝑇 r

− 1
𝑇ℓ

)
. (76)

This would no longer preserve the constant energy density (74) because the discontinuity in the density profile causes349

a jump in the temperature which is defined as350

𝑇 (x, 𝑡 = 0) = 𝑝0

𝜌(x, 𝑡 = 0) 𝑐𝑣 (𝛾 − 1) . (77)

As a consequence, the artificial flux (76) is not physical and thus the thermodynamic dual variable 1/𝑇 is not included351

in the dual vector r̃ for computing the scalar factor 𝛼ℓr
𝑆

in (70), so that the geometrically and thermodynamically352

compatible scheme still maintains this physical equilibrium, i.e. we obtain again the correct stationary solution given353

by (75).354

Thermodynamic compatibility with dissipation terms. As done for the geometric compatibility, to ensure the stability355

of the scheme in case of discontinuous solutions we also take into account the parabolic dissipation terms (41),356

thus we supplement the geometrically and thermodynamically compatible scheme (72) with the dissipative fluxes357

G(uℓ , ur) · nℓr , hence giving rise to the non-negative production term Πℓ in the entropy inequality (1c).358

Theorem 2 (Thermodynamic compatibility). The semi-discrete finite volume scheme for the reduced model (30)359

𝜕uℓ

𝜕𝑡
+

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
F̂(uℓ , ur)ℓr +D (uℓ , ur)ℓr +G(Aℓ ,Ar)

)
· nℓr = S(uℓ), (78)

with the geometrically and thermodynamically compatible fluxes (66)-(67), the non-conservative products (40) and360

the dissipation terms (41), satisfies the extra conservation law (1c) with the following conservative semi-discrete361

scheme:362

𝜕Sℓ

𝜕𝑡
+

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

1
2

(
𝐹ℓ
S + 𝐹r

S

)
· nℓr = Πℓ +

𝛼ℓ
𝑖𝑘
𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)𝑇ℓ
+

𝛽ℓ
𝑘
𝛽ℓ
𝑘

𝜃2 (𝜏2)𝑇ℓ
. (79)
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Furthermore, assuming 𝑇ℓ > 0 and 𝜕uuS
ℓr ≤ 0, the right hand side of the entropy balance is non-negative:363

Πℓ +
𝛼ℓ
𝑖𝑘
𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)𝑇ℓ
+

𝛽ℓ
𝑘
𝛽ℓ
𝑘

𝜃2 (𝜏2)𝑇ℓ
≥ 0, (80)

therefore the scheme (78) also satisfies a cell entropy inequality.364

Proof. The proof is similar to the one already carried out for Theorem 1. We introduce the abbreviations365

F̂ℓr := F̂ℓr (uℓ , ur), Dℓr := D (uℓ , ur), Gℓr := G(uℓ , ur). (81)

We consider the dual variables ũ = (𝜌0 |A|, u)⊤ where the density is directly evaluated from the determinant of the366

distortion tensor, and the associated fluxes are computed using (65) multiplied by 𝜌ℓ0 in the GCL equation (57). With367

a little abuse of notation, let us omit the tilde symbol and assume that the additional fluxes related to the density368

equation are embedded in the flux tensor, thus we will simply use uℓ (and thus the dual variables rℓ) and F̂ℓr .369

After dot multiplying the semi-discrete system (78) by the dual variables rℓ , and adding and subtracting the terms370

1
2 rr · F̂ℓr · nℓr , 1

2 rr ·Drℓ · nrℓ and 1
2 rr · Gℓr · nℓr , we obtain371

𝜕Sℓ

𝜕𝑡
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(rℓ + rr) · F̂ℓr · nℓr + (rℓ − rr) · F̂ℓr · nℓr

)
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
rℓ ·Dℓr · nℓr + rr ·Drℓ · nrℓ + rℓ ·Dℓr · nℓr − rr ·Drℓ · nrℓ

)
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(rℓ + rr) · Gℓr · nℓr + (rℓ − rr) · Gℓr · nℓr

)
= rℓ · S(uℓ).

(82)

We analyze the compatibility of the source terms, which explicitly write372

rℓ · S(uℓ) = −
𝛼ℓ
𝑖𝑘

𝑇ℓ

(
−

𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)

)
−

𝛽ℓ
𝑘

𝑇ℓ

(
−

𝛽ℓ
𝑘

𝜃2 (𝜏2)

)
− 𝛼ℓ

𝑖𝑘Π
ℓ
A

𝑤ℓ
𝑖𝑘

𝑤ℓ
𝑖𝑘
𝑤ℓ
𝑖𝑘︸             ︷︷             ︸

=0

=
𝛼ℓ
𝑖𝑘
𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)𝑇ℓ
+

𝛽ℓ
𝑘
𝛽ℓ
𝑘

𝜃2 (𝜏2)𝑇ℓ
, (83)

where the production term vanishes thanks to the relation 𝛼ℓ
𝑖𝑘
𝑤ℓ
𝑖𝑘

= 0 as proven for the geometric compatibility (see373

Appendix A). Thus we retrieve the source terms of the entropy balance law (79). Back to equation (82), we use the374

compatibility condition (69) to rewrite the term (rℓ − rr) · F̂ℓr · nℓr , and we get375

𝜕Sℓ

𝜕𝑡
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(rℓ + rr) · F̂ℓr · nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

((
(S𝑣𝑘 + 𝛽𝑘)r − (S𝑣𝑘 + 𝛽𝑘)ℓ

)
+

(
rℓ · fℓ𝑘 − rr · fr𝑘

))
𝑛ℓr𝑘

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
rℓ ·Dℓr + rr ·Drℓ

)
· nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(rℓ + rr) · Gℓr · nℓr + (rℓ − rr) · Gℓr · nℓr

)
=

𝛼ℓ
𝑖𝑘
𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)𝑇ℓ
+

𝛽ℓ
𝑘
𝛽ℓ
𝑘

𝜃2 (𝜏2)𝑇ℓ
.

(84)

Adding on the left hand side term

1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(S𝑣𝑘 + 𝛽𝑘)ℓ − rℓ · fℓ𝑘

)
𝑛ℓr𝑘 = 0,
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which corresponds to a zero contribution thanks to the property (58), leads to376

𝜕Sℓ

𝜕𝑡
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(rℓ + rr) · F̂ℓr · nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(S𝑣𝑘 + 𝛽𝑘)r + (S𝑣𝑘 + 𝛽𝑘)ℓ

)
𝑛ℓr𝑘

− 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
rℓ · fℓ𝑘 + rr · fr𝑘

)
𝑛ℓr𝑘

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
rℓ ·Dℓr + rr ·Drℓ

)
· nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(rℓ + rr) · Gℓr · nℓr + (rℓ − rr) · Gℓr · nℓr

)
=

𝛼ℓ
𝑖𝑘
𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)𝑇ℓ
+

𝛽ℓ
𝑘
𝛽ℓ
𝑘

𝜃2 (𝜏2)𝑇ℓ
.

(85)

Relying on the same reasoning applied for the geometric compatibility, the dissipation terms rℓ · Gℓr · nℓr can be377

rearranged as in (47), that is378

rℓ · Gℓr · nℓr =
1
2
(rr − rℓ) · 𝜖ℓr (ur − uℓ) − 1

2
(rr + rℓ) · 𝜖ℓr (ur − uℓ). (86)

Likewise in (48), due to the path integral379

ur∫
uℓ

r · 𝑑u =

ur∫
uℓ

𝜕uS · 𝑑u = Sr − Sℓ , (87)

we interpret the second term on the right hand side as an approximation of the jump term in the entropy variables,380

thus381

−1
2
(rr + rℓ) · 𝜖ℓr (ur − uℓ) ≈ −𝜖ℓr (Sr − Sℓ). (88)

The jump in the dual variables present in the first term in (86) is converted into a jump in the state variables by382

introducing the Hessian matrix 𝜕2
uuS

ℓr which verifies the Roe property383

𝜕2
uuS

ℓr · (ur − uℓ) = rr − rℓ . (89)

Therefore, using (88) and (89) in (85), we arrive at384

𝜕Sℓ

𝜕𝑡
+ 1

2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(rℓ + rr) · F̂ℓr · nℓr

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
(S𝑣𝑘 + 𝛽𝑘)r + (S𝑣𝑘 + 𝛽𝑘)ℓ

)
𝑛ℓr𝑘

− 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
rℓ · fℓ𝑘 + rr · fr𝑘

)
𝑛ℓr𝑘

+ 1
2

∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

(
rℓ ·Dℓr + rr ·Drℓ

)
· nℓr

−
∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

𝜖ℓr (Sr − Sℓ)

= Πℓ +
𝛼ℓ
𝑖𝑘
𝛼ℓ
𝑖𝑘

𝜃1 (𝜏1)𝑇ℓ
+

𝛽ℓ
𝑘
𝛽ℓ
𝑘

𝜃2 (𝜏2)𝑇ℓ
,

(90)
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with the production term given by385

Πℓ = −
∑︁
r∈Nℓ

|𝜕𝜔ℓr |
|𝜔ℓ |

1
2
𝜖ℓr (ur − uℓ) · 𝜕2

uuS
ℓr (ur − uℓ). (91)

The compatibility with the extra conservation law (1c) is then achieved by defining the following fluxes in the semi-386

discrete finite volume scheme (79):387

𝐹ℓ
S · nℓr = ((S𝑣𝑘 + 𝛽𝑘)ℓ − rℓ · fℓ𝑘) 𝑛

ℓr
𝑘 + rℓ ·

(
F̂ℓr +Dℓr

)
· nℓr + 2 𝜖ℓr Sℓ ,

𝐹r
S · nℓr = ((S𝑣𝑘 + 𝛽𝑘)r − rr · fr𝑘) 𝑛

ℓr
𝑘 + rr ·

(
F̂ℓr +Drℓ

)
· nℓr − 2 𝜖ℓr Sr .

(92)

Finally, in the presence of numerical viscosity, i.e. when 𝜖ℓr > 0, the entropy inequality is retrieved since the resulting388

term on the right hand side of (90) is non-negative, meaning that the positivity condition (80) is fulfilled due to the389

assumptions 𝜃1 > 0, 𝜃2 > 0, 𝑇ℓ > 0 and 𝜕2
uuS

ℓr ≤ 0. The cell entropy inequality is thus satisfied at the semi-discrete390

level by the finite volume scheme (78). □391

3.4. Time discretization392

The explicit time marching algorithm is given by Runge-Kutta schemes that are listed in Appendix B for order393

one, two and four. The associated time step is computed according to a classical CFL-type stability condition based394

on the maximum hyperbolic eigenvalue estimate given by (9) and the maximum viscous eigenvalue related to the395

parabolic dissipative terms:396

Δ𝑡 ≤ CFL
min
ℓ∈𝑁ℓ

ℎℓ

max
ℓ∈𝑁ℓ

(
|𝜆ℓ | + 2 𝜖 ℓ

ℎℓ

) , (93)

where CFL is the Courant-Friedrichs-Lewy number and ℎℓ =
√︁
|𝜔ℓ | is the characteristic cell size. In the case of stiff397

source terms, i.e. when 𝜏1 → 0 or 𝜏2 → 0, the time step must be reduced according to the time scale imposed by the398

sources because of the explicit time discretization.399

4. Numerical results400

In this section, we propose a suite of test cases aiming at validating the accuracy and the robustness of the novel401

Hyperbolic Geometrically and Thermodynamically Compatible finite volume schemes (78), which will be labeled402

as HGTC. We demonstrate that the compatibility is preserved at the semi-discrete level up to the order of the time403

integrator, and we systematically measure the errors of mass conservation (𝜀𝐴) and total entropy balance (𝜀𝑆). More404

precisely, we monitor over time the following quantities in 𝐿∞ norm over the entire computational domain Ω:405

𝛿A = ∥ |A| − 𝜌/𝜌0 ∥∞ , 𝛿𝑆 = ∥ S − S(𝜌, 𝑝) ∥∞ . (94)

For 𝛿𝐴, the quantity |A| is computed by evaluating the determinant of the distortion tensor A by using the components406

𝐴𝑖𝑘 that are evolved according to the semi-discrete scheme (56), whereas the quantity 𝜌/𝜌0 is obtained with |A| taken407

from the solution of the extra conservation law (25) discretized by the scheme (57) with fluxes (65). For 𝛿𝑆 , S is408

the total entropy computed from the entropy equation (1c) solved as an extra conservation law with the semi-discrete409

scheme (79), while S(𝜌, 𝑝) is evaluated from the equation of state given by E1 in (3), namely410

S(𝜌, 𝑝) = 𝜌 log
(
𝑝

𝜌𝛾
𝑐𝑣

)
, 𝜌 = 𝜌0 |A|. (95)

As such, the structure-preserving properties of the scheme are numerically investigated. If not stated otherwise, we411

set the CFL number to CFL = 0.5 in (93) and the polytropic index of the gas is assumed to be 𝛾 = 7/5, whereas412

the specific heat at constant volume is always chosen to be 𝑐𝑣 = 2.5. Whenever a viscosity coefficient 𝜇 is specified,413
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the relaxation time 𝜏1 is computed according to 𝜇 = 1
6 𝜌0𝑐

2
𝑠𝜏1. Likewise, if a heat conduction coefficient 𝜅 is set,414

the corresponding relaxation time 𝜏2 is evaluated from the asymptotic relation 𝜅 = 𝜌0𝑇0𝑐
2
ℎ
𝜏2. In the other cases, no415

source terms are considered, thus we set 𝜏1 = 𝜏2 = 1020 hence retrieving the behavior of elastic solids without heat416

conduction. The distortion matrix is always initialized as A = I, and the thermal impulse is initially given J = 0. The417

reference density and temperature are set to 𝜌0 = 𝜌(x, 𝑡 = 0) and 𝑇0 = 1, if not specified. We depict the absolute418

values of the correction factors 𝛼A and 𝛼𝑆 in (45) and (70), respectively, in order to better appreciate the order of419

magnitude and the location of the structure-preserving corrections. If not specified otherwise, we use the fourth order420

Runge-Kutta scheme for time integration.421

4.1. Numerical convergence studies422

The accuracy of the new HGTC schemes is verified on the isentropic vortex problem forwarded in [37]. The423

computational domain is the square Ω = [0; 10]2 with periodic boundaries, and the generic radial position is 𝑟 =424 √︁
(𝑥1 − 5)2 + (𝑥2 − 5)2. The parameters of the model are such that an ideal inviscid fluid is retrieved, hence we425

set 𝑐𝑠 = 𝑐ℎ = 0, and the initial condition is prescribed in terms of some perturbations that are superimposed on a426

background constant state:427

𝜌(𝑡 = 0, x) = (1 + 𝛿𝑇)
1

𝛾−1 , v(𝑡 = 0, x) = 0, 𝑝(𝑡 = 0, x) = (1 + 𝛿𝑇)
𝛾

𝛾−1 , (96)

with the perturbations for temperature 𝛿𝑇 given by428

𝛿𝑇 = − (𝛾 − 1)𝜖2

8𝛾𝜋2 𝑒1−𝑟2
. (97)

The simulation is carried out until the final time 𝑡 𝑓 = 0.25 on a sequence of successively refined Voronoi meshes, and429

the errors are measured in 𝐿2 norms and reported in Table 1, showing that the formal order of accuracy is retrieved.430

No numerical dissipation is added to the scheme because the flow does not exhibit any discontinuity, thus 𝜖ℓr = 0 in431

(41).432

Table 1: Numerical convergence results for the isentropic vortex problem using the HGTC scheme. The errors are measured in the 𝐿2 norm and
refer to the variables 𝜌 = 𝜌0 |A | (density), 𝑣1 (horizontal velocity) and pressure 𝑝 at time 𝑡 𝑓 = 0.25.

ℎ ∥𝜌0 |A|∥2 𝑂 (𝜌0 |A|) ∥𝑣1∥2 O(𝑣1) ∥𝑝∥2 O(𝑝)
3.20E-01 6.2483E-02 - 1.5675E-01 - 7.9011E-02 -
1.65E-01 3.1941E-02 1.01 7.9131E-02 1.03 4.0536E-02 1.01
1.09E-01 2.1427E-02 0.97 5.3292E-02 0.96 2.7139E-02 0.98
8.57E-02 1.6231E-02 1.14 3.9863E-02 1.19 2.0620E-02 1.13

We also use this test case to analyze the time convergence which ultimately affects the preservation of the deter-433

minant and the entropy compatibility. Therefore we measure the errors of the total mass and entropy conservation434

according to (94) while running this simulation until the time 𝑡 𝑓 = 1 on one single unstructured mesh with character-435

istic size of ℎ = 1/3. Three different Runge-Kutta time integrators are used of order 𝑁 = {1, 2, 4} (see Appendix B),436

and the results are collected in Table 2. We observe that the convergence rates for the entropy conservation exhibits437

order of accuracy O(𝑁 + 1), and convergence of order O(𝑁 + 2) is achieved for the total mass conservation. The time438

evolution of the mass and entropy conservation errors are plot in Figure 3, where we also show the map of the scalar439

correction factors 𝛼A and 𝛼𝑆 at the final time.440

4.2. Riemann problems441

The novel HGTC scheme is here validated against three one-dimensional Riemann problems taken from [59, 2].442

The computational domain is the rectangular box Ω = [−0.5; 0.5] × [−0.05; 0.05] with periodic boundaries in the443

𝑦−direction and transmissive boundaries along the 𝑥−direction. The computational mesh is unstructured made of444
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Figure 3: Isentropic vortex problem at time 𝑡 𝑓 = 0.25. Top: map of the geometric correction factor |𝛼A | (left) and of the thermodynamic correction
factor |𝛼𝑆 | (right) with mesh size ℎ = 1/6. Bottom: time evolution of the mass (left) and entropy (right) conservation errors for Runge-Kutta time
integration schemes of order 1 (black line), 2 (red line) and 4 (blue line).
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Table 2: Time convergence study related to total mass and entropy conservation for the isentropic vortex problem at time 𝑡 𝑓 = 1 with three
different Runge-Kutta time integration schemes on a mesh with size ℎ = 1/3. The errors are measured in the 𝐿∞ norm and refer to the geometric
thermodynamic errors given by (94).

Runge-Kutta O(1)
Δ𝑡 𝛿A 𝛿𝑆

8.00E-03 5.1415E-05 - 2.2516E-02 -
4.00E-03 1.2874E-05 2.00 1.1238E-02 1.00
2.00E-03 3.2211E-06 2.00 5.6138E-03 1.00

Runge-Kutta O(2)
Δ𝑡 𝛿A 𝛿𝑆

8.00E-03 3.3043E-09 - 1.3195E-06 -
4.00E-03 3.3385E-10 3.31 2.5736E-07 2.36
2.00E-03 3.6793E-11 3.18 5.5271E-08 2.22

Runge-Kutta O(4)
Δ𝑡 𝛿A 𝛿𝑆

8.00E-03 2.9510E-13 - 6.6099E-11 -
4.00E-03 9.1038E-15 5.02 4.1208E-12 4.00
2.00E-03 2.8818E-16 4.98 2.5709E-13 4.00

polygons and it has a characteristic size of ℎ = 1/4096 and all the simulations are run in 2D, thus the properties of445

symmetry preservation of the numerical solution are verified as well. Indeed, despite the one-dimensional setting of446

the Riemann problems, these test cases become fully multidimensional in the case of unstructured Voronoi meshes,447

where no mesh edges are in principle aligned with the flow. The initial condition is given in terms of a left and a right448

state separated at position 𝑥 = 𝑥𝑑 . Table 3 summarizes the setup of the three Riemann problems considered here.449

Table 3: Initialization of Riemann problems. Initial states left (L) and right (R) are reported as well as the final time of the simulation 𝑡 𝑓 and the
position of the initial discontinuity 𝑥𝑑 .

Name 𝑡 𝑓 𝑥𝑑 𝜌𝐿 𝑣1,𝐿 𝑣2,𝐿 𝑝𝐿 𝜌𝑅 𝑣1,𝑅 𝑣2,𝑅 𝑝𝑅
RP1 0.035 -0.2 5.99924 19.5975 0.0 460.894 5.99924 -6.19633 0.0 46.095
RP2 0.15 0.0 1.0 -2.0 0.0 0.4 1.0 2.0 0.0 0.4
RP3 0.20 0.0 1.0 0.0 -0.2 1.0 0.5 0.0 0.2 0.5

The first two Riemann problems RP1 and RP2 involve the Euler equations for compressible gas dynamics (i.e.450

𝑐𝑠 = 𝑐ℎ = 0), and the reference solution is computed with the exact Riemann solver detailed in [59]. The last Riemann451

problem is concerned with the full model (1) and we set 𝜇 = 𝜅 = 10−5, so that the stiff relaxation limit of the model is452

retrieved and numerically assessed. The reference solution is obtained numerically using a second order TVD finite453

volume method on a very fine mesh of 100000 control volumes. The results are collected in Figures 4-6, showing454

a good agreement with the reference solution in all cases. To appreciate that the one-dimensional symmetry of455

the solution is well preserved, we show in Figure 7 a three-dimensional view of the solution for the three Riemann456

problems considered here.457

4.3. Circular explosion problem458

We consider a cylindrical explosion problem to test the HGTC schemes with numerical dissipation, which is459

here activated since the solution exhibits an outward traveling shock wave. The computational domain is given by460
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Figure 4: Riemann problem RP1 at final time 𝑡 𝑓 = 0.035. Comparison of density, horizontal velocity and pressure against the reference solution
extracted with a one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0.
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Figure 5: Riemann problem RP2 at final time 𝑡 𝑓 = 0.15. Comparison of density, horizontal velocity and temperature against the reference solution
extracted with a one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0.
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Figure 6: Riemann problem RP3 at final time 𝑡 𝑓 = 0.2. Comparison of density, vertical velocity and pressure against the reference solution for the
compressible Euler equations extracted with a one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0.
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Figure 7: Three-dimensional view of density for RP1 (left), horizontal velocity for RP2 (middle) and density for RP3 (right) at their corresponding
final times.

Ω = [−1; 1]2 with transmissive boundaries, and the fluid is initially assigned as follows:461

(𝜌, 𝑣1, 𝑣2, 𝑣3, 𝑝) =
{

(1, 0, 0, 0, 1) 𝑟 < 𝑅

(0.125, 0, 0, 0, 0.1) 𝑟 ≥ 𝑅
, 𝑡 = 0, x ∈ Ω, (98)

where 𝑅 = 0.5 denotes the radius of the initial discontinuity and 𝑟 =

√︃
𝑥2

1 + 𝑥2
2 represents the generic radial coordinate.462

An inviscid fluid is considered by setting 𝑐𝑠 = 𝑐ℎ = 0 and the final time of the simulation is chosen to be 𝑡 𝑓 = 0.25. We463

run this test on three different Voronoi meshes with characteristic mesh size of ℎ = 1/256, ℎ = 1/128 and ℎ = 1/64.464

The numerical results are compared against the reference solution that has been computed by solving the compressible465

Euler equations with geometric sources [59] employing a classical second order TVD finite volume scheme on a very466

fine mesh composed of 20000 cells. An overall very good agreement can be observed in Figure 8, that numerically467

confirms the convergence of the new HGTC schemes as the mesh resolution gets finer. Figure 9 depicts a map of468

the correction factor 𝛼A as well as the time evolution of the total mass conservation errors for all the simulations.469

The solution preserves an excellent cylindrical symmetry despite the unstructured nature of the mesh, as shown by470

the three-dimensional density distribution plot in Figure 9. Furthermore, we notice that the highest correction for the471

preservation of the determinant constraint occurs across the contact wave.472

4.4. Viscous shock profile473

Next, we model compressible heat-conducting viscous flows by setting 𝑐𝑠 = 𝑐ℎ = 10, 𝜇 = 2 · 10−2 and474

𝜅 = 9.3333 · 10−2. The computational domain is the channel Ω = [0; 1] × [0; 0.2] that is paved with Voronoi poly-475

gons of characteristic size of ℎ = 1/1024. Periodic boundaries are imposed in 𝑦−direction, while a constant inflow476

velocity is prescribed for 𝑥 = 0 and outflow boundary conditions are set at 𝑥 = 1. In [5], an exact solution of the one-477

dimensional compressible Navier-Stokes equations is derived for Prandtl number Pr = 0.75 and constant viscosity that478

involves a stationary viscous shock wave at a shock mach number 𝑀𝑠 . The Reynolds number is Re𝑠 = 𝜌0𝑐0𝑀𝑠𝐿𝜇
−1,479

with the reference length that is assumed to be 𝐿 = 1. This is an interesting test case since all the terms characteristics480

of the one-dimensional compressible Navier-Stokes equations can be verified, including viscous stress and heat con-481

duction. According to [5], the exact solution is given in terms of dimensionless density, pressure and velocity. The482

dimensionless velocity 𝑣̄ = 𝑣
𝑀𝑠 𝑐0

is related to the stationary shock wave, which can be determined as the root of the483

following equation:484

|𝑣̄ − 1|
|𝑣̄ − 𝜆2 |𝜆2 =

����1 − 𝜆2

2

����(1−𝜆2 )
exp

(
3
4

Re𝑠
𝑀2

𝑠 − 1
𝛾𝑀2

𝑠

𝑥

)
, (99)

with485

𝜆2 =
1 + 𝛾−1

2 𝑀2
𝑠

𝛾+1
2 𝑀2

𝑠

. (100)
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Figure 8: Explosion problem at time 𝑡 𝑓 = 0.25. Numerical results for density, horizontal velocity, pressure and temperature (from top left to bottom
right) compared against the reference solution extracted with a one-dimensional cut of 200 equidistant points along the 𝑥-direction at 𝑦 = 0. Mesh
convergence analysis with characteristic mesh size ℎ = 1/256 (red line), ℎ = 1/128 (red line) and ℎ = 1/64 (green line).
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for the results obtained with ℎ = 1/256. Right: time evolution of the mass conservation errors for ℎ = 1/256 (red line), ℎ = 1/128 (blue line) and
ℎ = 1/64 (green line).

Once the solution of equation (99) is computed, the dimensionless velocity 𝑣̄ is expressed as a function of 𝑥. The form486

of the viscous profile of the dimensionless pressure 𝑝 =
𝑝−𝑝0

𝜌0𝑐
2
0𝑀

2
𝑠

is given by the relation487

𝑝 = 1 − 𝑣̄ + 1
2𝛾

𝛾 + 1
𝛾 − 1

(𝑣̄ − 1)
𝑣̄

(𝑣̄ − 𝜆2). (101)

Finally, the profile of the dimensionless density 𝜌̄ =
𝜌

𝜌0
is derived from the integrated continuity equation: 𝜌̄𝑣̄ = 1.488

Here, we make the simulation unsteady by adding a constant velocity background field 𝑣 = 𝑀𝑠𝑐0. The initial condition489

is given by a shock wave centered at 𝑥 = 0.25 which is propagating at Mach 𝑀𝑠 = 2 with Re𝑠 = 100. The upstream490

shock state is defined by491

𝜌(𝑡 = 0, x) = 𝜌0, v(𝑡 = 0, x) = 0, 𝑝0 (𝑡 = 0, x) = 1/𝛾, (102)

with 𝑐0 = 1. The numerical solution obtained with the HGTC schemes without numerical dissipation at the final time492

𝑡 𝑓 = 0.2 is compared against the reference solution of the one-dimensional compressible Navier-Stokes equations.493

The numerical solutions for the main primitive variables are plot in Figure 10. An excellent agreement is obtained,494

demonstrating the capability of the HGTC schemes of retrieving the correct physical solution for heat-conducting495

viscous fluids.496

We also plot the correction factor 𝛼A in Figure 11 as well as the time evolution of the total mass conservation497

errors 𝛿A for the simulations run with and without numerical dissipation. In both cases, the 𝐿∞ determinant error498

remains at machine accuracy.499

4.5. 2D Taylor-Green vortex500

The two-dimensional Taylor-Green vortex problem is a well-known test case for the incompressible Navier-Stokes501

equations. The exact solution writes502

𝑢(𝑡, x) = sin(𝑥1) cos(𝑥2) 𝑒−2𝜈𝑡 ,

𝑣(𝑡, x) = − cos(𝑥1) sin(𝑥2) 𝑒−2𝜈𝑡 ,

𝑝(𝑡, x) = 𝐶 + 1
4
(cos(2𝑥1) + cos(2𝑥2)) 𝑒−4𝜈𝑡 , (103)
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where 𝜈 = 𝜇/𝜌 denotes the kinematic viscosity of the fluid and the density is 𝜌(𝑡, x) = 1. To model an incompressible503

viscous fluid, we set 𝑐𝑠 = 10 and 𝜇 = 10−2, and the additive constant to the pressure is chosen to be 𝐶 = 100/𝛾 so that504

a maximum Mach number of 0.1 is retrieved. Heat conduction is neglected, thus we set 𝑐ℎ = 0. The initial condition is505

provided by the exact solution (103) at time 𝑡 = 0. The computational domain is given by Ω = [0; 2𝜋]2 with periodic506

boundary conditions everywhere, and it is paved with a Voronoi grid of characteristic mesh size ℎ = 2𝜋/200. Figure507

12 depicts the numerical results at the final time 𝑡 𝑓 = 0.2 that are compared against the reference solution, obtaining508

an excellent matching. Furthermore, we also show the time evolution of the mass and entropy conservation errors,509

that remain bounded and preserved thanks to the compatibility corrections of our novel HGTC schemes.510

4.6. Solid rotor problem511

Finally, a test case for solid mechanics is solved, namely the solid rotor problem introduced in [50, 8]. The512

relaxation times of the mathematical model are set to 𝜏1 = 𝜏2 = 1020, hence nonlinear hyperelastic solids are genuinely513

modeled by the governing PDE presented in [49]. We fix 𝑐𝑠 = 𝑐ℎ = 1 and the final time of the simulation is 𝑡 𝑓 = 0.3.514

The computational domain is Ω = [−1; 1]2 with periodic boundaries, and the initial condition of the material writes515

(𝜌, 𝑣1, 𝑣2, 𝑣3, 𝑝) =
{

(1, −𝑥2/𝑅, 𝑥1/𝑅, 0, 1) 𝑟 < 𝑅

(1, 0, 0, 0, 1) 𝑟 ≥ 𝑅
, 𝑡 = 0, x ∈ Ω, (104)

with the initial discontinuity located at 𝑅 = 0.2 and 𝑟 =

√︃
𝑥2

1 + 𝑥2
2. To show mesh convergence, we run the solid rotor516

problem on two different meshes with characteristic size of ℎ = 1/256 and ℎ = 1/128. The results are compared with517

each other in Figure 13, where the horizontal velocity distribution is plot. The maps of the scalar correction factors 𝛼A518

and 𝛼𝑆 at the final time level are also depicted. We observe that both corrections may act at the same spatial locations519

without negatively interfering between each other.520

5. Conclusions521

In this paper we have presented a novel finite volume scheme on unstructured Voronoi meshes for the solution522

of a reduced unified model for continuum mechanics, where the mass conservation equation is discarded. This has523

been achieved enforcing the compatibility of the new schemes with the Geometric Conservation Law that links the524

distortion tensor to the density within each control volume. The geometric compatibility is obtained by introducing525
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Figure 13: Solid rotor problem at time 𝑡 𝑓 = 0.3. Top: numerical results for the horizontal velocity 𝑣1 with ℎ = 1/128 (left) and ℎ = 1/256 (right).
Bottom: numerical results for the thermal impulse component 𝐽1 with ℎ = 1/128 (left) and ℎ = 1/256 (right).
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Figure 14: Solid rotor problem at time 𝑡 𝑓 = 0.3. Map of the geometric correction factor |𝛼A | (left) and of the thermodynamic correction factor
|𝛼𝑆 | (right) obtained with a characteristic mesh size of ℎ = 1/512.

a new generalized concept of potential, that is assumed to be the determinant of the distortion tensor. Consequently,526

a set of associated pseudo-dual variables is retrieved, which play the role of the thermodynamic variables for the527

total energy potential. By means of a conservative correction directly embedded in the numerical fluxes, the novel528

schemes are proven to be compliant with the GCL at the semi-discrete level. Once the geometric compatibility is529

achieved, thermodynamic compatibility is also guaranteed using the same strategy that derives from the formalism of530

symmetric and hyperbolic thermodynamically compatible (SHTC) systems introduced by Godunov in 1961. These531

two corrections can coexist at the discrete level and they do not interfere with each other, hence making it possible532

for the first time on unstructured fixed grids to ensure geometric and thermodynamic compatibility at the same time.533

Two theorems demonstrate that these properties are respected at the semi-discrete level. A two-dimensional first order534

finite volume scheme with up to fourth order Runge-Kutta time integrators has been implemented and tested. A large535

suite of test cases is shown to numerically assess the structure preserving properties of the new schemes.536

In the future we plan to exploit this strategy to tackle other types of constraints, namely involution-constraints537

like the solenoidal property of the magnetic field in magnetohydrodynamics or the irrotational behavior of the de-538

formation gradient and the thermal impulse vector in reversible processes in solid mechanics. Finally, the extension539

of the proposed approach to high order discontinuous Galerkin schemes is also foreseen as well as the development540

of implicit-explicit [9, 8] asymptotic preserving discretizations to make the numerical schemes consistent with the541

Navier-Stokes-Fourier limit exhibited by the governing equations.542
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Appendix A. Geometric Conservation Law derived from the determinant potential658

In this appendix we show that the pseudo-Gibbs relation (26) holds true. The starting point is the evolution659

equation of the distortion tensor A = {𝐴𝑖𝑘}, in which the viscous terms are neglected. Let us explicitly compute the660

dual variables w of the potential |A|:661

w := {𝑤𝑖𝑘} = 𝜕𝐴𝑖𝑘
|A| =

©­­­«
𝐴22𝐴33 − 𝐴23𝐴32 −𝐴21𝐴33 + 𝐴23𝐴31 𝐴21𝐴32 − 𝐴22𝐴31

−𝐴12𝐴33 + 𝐴13𝐴32 𝐴11𝐴33 − 𝐴13𝐴31 −𝐴11𝐴32 + 𝐴12𝐴31

𝐴12𝐴23 − 𝐴13𝐴22 −𝐴11𝐴23 + 𝐴13𝐴21 𝐴11𝐴22 − 𝐴12𝐴21

ª®®®¬ . (A.1)

The determinant of the distortion tensor A is explicitly given by662

|A| = 𝐴11𝐴22𝐴33 − 𝐴11𝐴23𝐴32 − 𝐴12𝐴21𝐴33 + 𝐴12𝐴23𝐴31 + 𝐴13𝐴21𝐴32 − 𝐴13𝐴22𝐴31. (A.2)

Firstly, we investigate the compatibility with the source terms which are present in the equations (30c). The source663

terms SA = {𝑆A,𝑖𝑘} are given by664

𝑆A,𝑖𝑘 = − 3
𝜏1

|A| 5
3 𝐴𝑖𝑚 𝐺̊𝑚𝑘 , 𝐺̊𝑚𝑘 = 𝐺𝑚𝑘 −

1
3
𝐺 𝑗 𝑗𝛿𝑚𝑘 , 𝐺𝑚𝑘 = 𝐴 𝑗𝑚𝐴 𝑗𝑘 . (A.3)
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Multiplication of the source terms with the dual variables yields the contributions {𝑆A,𝑖𝑘} = {𝑤𝑖𝑘 𝑆A,𝑖𝑘}, which write665

𝑆A,11 = − (−2𝐴3
11+(−2𝐴2

12−2𝐴2
13−2𝐴2

21+𝐴
2
22+𝐴

2
23−2𝐴2

31+𝐴
2
32+𝐴

2
33 )𝐴11+(−3𝐴21𝐴22−3𝐴31𝐴32 )𝐴12−3𝐴13 (𝐴21𝐴23+𝐴31𝐴33 ) ) (−𝐴22𝐴33+𝐴23𝐴32 ) |A |

5
3

𝜏1
,

𝑆A,12 =
2(𝐴3

12+(𝐴
2
32−

𝐴2
33
2 +𝐴2

11+𝐴
2
13−

𝐴2
21
2 +𝐴2

22−
𝐴2

23
2 −

𝐴2
31
2 )𝐴12+(

3𝐴31𝐴32
2 + 3𝐴21𝐴22

2 )𝐴11+
3𝐴13 (𝐴22𝐴23+𝐴32𝐴33 )

2 ) (𝐴21𝐴33−𝐴23𝐴31 ) |A |
5
3

𝜏1
,

𝑆A,13 =
(−2𝐴3

13+(−2𝐴2
11−2𝐴2

12+𝐴
2
21+𝐴

2
22−2𝐴2

23+𝐴
2
31+𝐴

2
32−2𝐴2

33 )𝐴13+(−3𝐴21𝐴23−3𝐴31𝐴33 )𝐴11−3𝐴12 (𝐴22𝐴23+𝐴32𝐴33 ) ) (𝐴21𝐴32−𝐴22𝐴31 ) |A |
5
3

𝜏1
,

𝑆A,21 =
(−2𝐴3

21+(−2𝐴2
11+𝐴

2
12+𝐴

2
13−2𝐴2

22−2𝐴2
23−2𝐴2

31+𝐴
2
32+𝐴

2
33 )𝐴21+(−3𝐴12𝐴22−3𝐴13𝐴23 )𝐴11−3𝐴31 (𝐴22𝐴32+𝐴23𝐴33 ) ) (−𝐴12𝐴33+𝐴13𝐴32 ) |A |

5
3

𝜏1
,

𝑆A,22 = − 2(𝐴11𝐴33−𝐴13𝐴31 ) (𝐴3
22+(𝐴

2
32−

𝐴2
33
2 −

𝐴2
11
2 +𝐴2

12−
𝐴2

13
2 +𝐴2

21+𝐴
2
23−

𝐴2
31
2 )𝐴22+

3𝐴11𝐴12𝐴21
2 + 3𝐴12𝐴13𝐴23

2 + 3𝐴32 (𝐴21𝐴31+𝐴23𝐴33 )
2 ) |A |

5
3

𝜏1
,

𝑆A,23 = − (𝐴11𝐴32−𝐴12𝐴31 ) (−2𝐴3
23+(𝐴

2
11+𝐴

2
12−2𝐴2

13−2𝐴2
21−2𝐴2

22+𝐴
2
31+𝐴

2
32−2𝐴2

33 )𝐴23−3𝐴11𝐴13𝐴21−3𝐴12𝐴13𝐴22−3𝐴33 (𝐴21𝐴31+𝐴22𝐴32 ) ) |A |
5
3

𝜏1
,

𝑆A,31 = − 2(𝐴12𝐴23−𝐴13𝐴22 ) (𝐴3
31+(𝐴

2
32+𝐴

2
33+𝐴

2
11−

𝐴2
12
2 −

𝐴2
13
2 +𝐴2

21−
𝐴2

22
2 −

𝐴2
23
2 )𝐴31+(

3𝐴32𝐴12
2 + 3𝐴33𝐴13

2 )𝐴11+
3𝐴21 (𝐴22𝐴32+𝐴23𝐴33 )

2 ) |A |
5
3

𝜏1
,

𝑆A,32 =
2(𝐴3

32+(𝐴
2
33−

𝐴2
11
2 +𝐴2

12−
𝐴2

13
2 −

𝐴2
21
2 +𝐴2

22−
𝐴2

23
2 +𝐴2

31 )𝐴32+
3𝐴11𝐴12𝐴31

2 + 3𝐴12𝐴13𝐴33
2 + 3𝐴22 (𝐴21𝐴31+𝐴23𝐴33 )

2 ) (𝐴11𝐴23−𝐴13𝐴21 ) |A |
5
3

𝜏1
,

𝑆A,33 = −
2(𝐴11𝐴22−𝐴12𝐴21 )

(
𝐴3

33+
(
𝐴2

32−
𝐴2

11
2 −

𝐴2
12
2 +𝐴2

13−
𝐴2

21
2 −

𝐴2
22
2 +𝐴2

23+𝐴
2
31

)
𝐴33+

3𝐴11𝐴13𝐴31
2 + 3𝐴12𝐴13𝐴32

2 + 3𝐴23 (𝐴21𝐴31+𝐴22𝐴32 )
2

)
|A |

5
3

𝜏1
.

(A.4)
At the aid of a linear algebra software [46], by summing up all the above terms, i.e. dot multiplying the source terms666

with the dual variables, one obtains667

𝑆A,𝑖𝑘 = −𝑤𝑖𝑘 ·
𝛼𝑖𝑘

𝜃 (𝜏1)
= 0. (A.5)

Thus, we retrieve no source on the right hand side of the GCL (25) as expected.668

Next, the compatibility with the flux and non-conservative terms on the left hand side of (1d) has to be verified.669

To that aim, the equation of the distortion tensor as well as the GCL are written in fully non-conservative form as670

follows:671

𝜕𝐴𝑖𝑘

𝜕𝑡
+ 𝐴𝑖𝑚

𝜕𝑣𝑚

𝜕𝑥𝑘
+ 𝑣𝑚

𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
= − 𝛼𝑖𝑘

𝜃1 (𝜏1)
, (A.6)

𝜕 |A|
𝜕𝑡

+ |A| 𝜕𝑣𝑘
𝜕𝑥𝑘

+ 𝑣𝑘 ·
𝜕 |A|
𝜕𝑥𝑘

= 0. (A.7)

The non-conservative terms in (A.6) for each component of the distortion tensor A, i.e. 𝐷𝑖𝑘 = 𝐴𝑖𝑚
𝜕𝑣𝑚
𝜕𝑥𝑘

+ 𝑣𝑚
𝜕𝐴𝑖𝑘

𝜕𝑥𝑚
, are672
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given by673

D = {𝐷𝑖𝑘} =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

𝐴11

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴11
𝜕𝑥1

)
+ 𝐴12

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴11
𝜕𝑥2

)
+ 𝐴13

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴11
𝜕𝑥3

)
𝐴11

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴12
𝜕𝑥1

)
+ 𝐴12

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴12
𝜕𝑥2

)
+ 𝐴13

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴12
𝜕𝑥3

)
𝐴11

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴13
𝜕𝑥1

)
+ 𝐴12

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴13
𝜕𝑥2

)
+ 𝐴13

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴13
𝜕𝑥3

)
𝐴21

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴21
𝜕𝑥1

)
+ 𝐴22

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴21
𝜕𝑥2

)
+ 𝐴23

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴21
𝜕𝑥3

)
𝐴21

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴22
𝜕𝑥1

)
+ 𝐴22

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴22
𝜕𝑥2

)
+ 𝐴23

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴22
𝜕𝑥3

)
𝐴21

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴23
𝜕𝑥1

)
+ 𝐴22

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴23
𝜕𝑥2

)
+ 𝐴23

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴23
𝜕𝑥3

)
𝐴31

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴31
𝜕𝑥1

)
+ 𝐴32

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴31
𝜕𝑥2

)
+ 𝐴33

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴31
𝜕𝑥3

)
𝐴31

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴32
𝜕𝑥1

)
+ 𝐴32

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴32
𝜕𝑥2

)
+ 𝐴33

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴32
𝜕𝑥3

)
𝐴31

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴33
𝜕𝑥1

)
+ 𝐴32

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴33
𝜕𝑥2

)
+ 𝐴33

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴33
𝜕𝑥3

)

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

. (A.8)

Then, the product of the above terms with the dual variables leads to674

©­­­­­­­­­­­­­­­­­­­­«

𝑤11 𝐷11

𝑤12 𝐷12

𝑤13 𝐷13

𝑤21 𝐷21

𝑤22 𝐷22

𝑤23 𝐷23

𝑤31 𝐷31

𝑤32 𝐷32

𝑤33 𝐷33

ª®®®®®®®®®®®®®®®®®®®®¬

=
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(𝐴22𝐴33 − 𝐴23𝐴32)
(
𝐴11

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴11
𝜕𝑥1

)
+ 𝐴12

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴11
𝜕𝑥2

)
+ 𝐴13

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴11
𝜕𝑥3

))
(−𝐴21𝐴33 + 𝐴23𝐴31)

(
𝐴11

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴12
𝜕𝑥1

)
+ 𝐴12

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴12
𝜕𝑥2

)
+ 𝐴13

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴12
𝜕𝑥3

))
(𝐴21𝐴32 − 𝐴22𝐴31)

(
𝐴11

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴13
𝜕𝑥1

)
+ 𝐴12

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴13
𝜕𝑥2

)
+ 𝐴13

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴13
𝜕𝑥3

))
(−𝐴12𝐴33 + 𝐴13𝐴32)

(
𝐴21

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴21
𝜕𝑥1

)
+ 𝐴22

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴21
𝜕𝑥2

)
+ 𝐴23

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴21
𝜕𝑥3

))
(𝐴11𝐴33 − 𝐴13𝐴31)

(
𝐴21

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴22
𝜕𝑥1

)
+ 𝐴22

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴22
𝜕𝑥2

)
+ 𝐴23

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴22
𝜕𝑥3

))
(−𝐴11𝐴32 + 𝐴12𝐴31)

(
𝐴21

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴23
𝜕𝑥1

)
+ 𝐴22

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴23
𝜕𝑥2

)
+ 𝐴23

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴23
𝜕𝑥3

))
(𝐴12𝐴23 − 𝐴13𝐴22)

(
𝐴31

(
𝜕𝑣1
𝜕𝑥1

)
+ 𝑣1

(
𝜕𝐴31
𝜕𝑥1

)
+ 𝐴32

(
𝜕𝑣2
𝜕𝑥1

)
+ 𝑣2

(
𝜕𝐴31
𝜕𝑥2

)
+ 𝐴33

(
𝜕𝑣3
𝜕𝑥1

)
+ 𝑣3

(
𝜕𝐴31
𝜕𝑥3

))
(−𝐴11𝐴23 + 𝐴13𝐴21)

(
𝐴31

(
𝜕𝑣1
𝜕𝑥2

)
+ 𝑣1

(
𝜕𝐴32
𝜕𝑥1

)
+ 𝐴32

(
𝜕𝑣2
𝜕𝑥2

)
+ 𝑣2

(
𝜕𝐴32
𝜕𝑥2

)
+ 𝐴33

(
𝜕𝑣3
𝜕𝑥2

)
+ 𝑣3

(
𝜕𝐴32
𝜕𝑥3

))
(𝐴11𝐴22 − 𝐴12𝐴21)

(
𝐴31

(
𝜕𝑣1
𝜕𝑥3

)
+ 𝑣1

(
𝜕𝐴33
𝜕𝑥1

)
+ 𝐴32

(
𝜕𝑣2
𝜕𝑥3

)
+ 𝑣2

(
𝜕𝐴33
𝜕𝑥2

)
+ 𝐴33

(
𝜕𝑣3
𝜕𝑥3

)
+ 𝑣3

(
𝜕𝐴33
𝜕𝑥3

))

ª®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

(A.9)
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On the other side, the non-conservative products in (A.7) explicitly write675

|A| 𝜕𝑣𝑘
𝜕𝑥𝑘

= (𝐴11𝐴22𝐴33 − 𝐴11𝐴23𝐴32 − 𝐴12𝐴21𝐴33 + 𝐴12𝐴23𝐴31 + 𝐴13𝐴21𝐴32 − 𝐴13𝐴22𝐴31)
(
𝜕𝑣1
𝜕𝑥1

+ 𝜕𝑣2
𝜕𝑥2

+ 𝜕𝑣3
𝜕𝑥3

)
(A.10)

𝑣1
𝜕 |A|
𝜕𝑥1

= 𝑣1

(
𝐴22𝐴33

(
𝜕𝐴11
𝜕𝑥1

)
+ 𝐴11𝐴22

(
𝜕𝐴33
𝜕𝑥1

)
+ 𝐴11𝐴33

(
𝜕𝐴22
𝜕𝑥1

)
− 𝐴23𝐴32

(
𝜕𝐴11
𝜕𝑥1

)
− 𝐴11𝐴23

(
𝜕𝐴32
𝜕𝑥1

)
− 𝐴11𝐴32

(
𝜕𝐴23
𝜕𝑥1

)
− 𝐴21𝐴33

(
𝜕𝐴12
𝜕𝑥1

)
− 𝐴12𝐴21

(
𝜕𝐴33
𝜕𝑥1

)
− 𝐴12𝐴33

(
𝜕𝐴21
𝜕𝑥1

)
+ 𝐴23𝐴31

(
𝜕𝐴12
𝜕𝑥1

)
+ 𝐴12𝐴23

(
𝜕𝐴31
𝜕𝑥1

)
+ 𝐴12𝐴31

(
𝜕𝐴23
𝜕𝑥1

)
+𝐴21𝐴32

(
𝜕𝐴13
𝜕𝑥1

)
+ 𝐴13𝐴21

(
𝜕𝐴32
𝜕𝑥1

)
+ 𝐴13𝐴32

(
𝜕𝐴21
𝜕𝑥1

)
− 𝐴22𝐴31

(
𝜕𝐴13
𝜕𝑥1

)
− 𝐴13𝐴22

(
𝜕𝐴31
𝜕𝑥1

)
− 𝐴13𝐴31

(
𝜕𝐴22
𝜕𝑥1

))
(A.11)

𝑣2
𝜕 |A|
𝜕𝑥2

= 𝑣2

(
𝐴22𝐴33

(
𝜕𝐴11
𝜕𝑥2

)
+ 𝐴11𝐴22

(
𝜕𝐴33
𝜕𝑥2

)
+ 𝐴11𝐴33

(
𝜕𝐴22
𝜕𝑥2

)
− 𝐴23𝐴32

(
𝜕𝐴11
𝜕𝑥2

)
− 𝐴11𝐴23

(
𝜕𝐴32
𝜕𝑥2

)
− 𝐴11𝐴32

(
𝜕𝐴23
𝜕𝑥2

)
− 𝐴21𝐴33

(
𝜕𝐴12
𝜕𝑥2

)
− 𝐴12𝐴21

(
𝜕𝐴33
𝜕𝑥2

)
− 𝐴12𝐴33

(
𝜕𝐴21
𝜕𝑥2

)
+ 𝐴23𝐴31

(
𝜕𝐴12
𝜕𝑥2

)
+ 𝐴12𝐴23

(
𝜕𝐴31
𝜕𝑥2

)
+ 𝐴12𝐴31

(
𝜕𝐴23
𝜕𝑥2

)
+𝐴21𝐴32

(
𝜕𝐴13
𝜕𝑥2

)
+ 𝐴13𝐴21

(
𝜕𝐴32
𝜕𝑥2

)
+ 𝐴13𝐴32

(
𝜕𝐴21
𝜕𝑥2

)
− 𝐴22𝐴31

(
𝜕𝐴13
𝜕𝑥2

)
− 𝐴13𝐴22

(
𝜕𝐴31
𝜕𝑥2

)
− 𝐴13𝐴31

(
𝜕𝐴22
𝜕𝑥2

))
(A.12)

𝑣3
𝜕 |A|
𝜕𝑥3

= 𝑣3

(
𝐴22𝐴33

(
𝜕𝐴11
𝜕𝑥3

)
+ 𝐴11𝐴22

(
𝜕𝐴33
𝜕𝑥3

)
+ 𝐴11𝐴33

(
𝜕𝐴22
𝜕𝑥3

)
− 𝐴23𝐴32

(
𝜕𝐴11
𝜕𝑥3

)
− 𝐴11𝐴23

(
𝜕𝐴32
𝜕𝑥3

)
− 𝐴11𝐴32

(
𝜕𝐴23
𝜕𝑥3

)
− 𝐴21𝐴33

(
𝜕𝐴12
𝜕𝑥3

)
− 𝐴12𝐴21

(
𝜕𝐴33
𝜕𝑥3

)
− 𝐴12𝐴33

(
𝜕𝐴21
𝜕𝑥3

)
+ 𝐴23𝐴31

(
𝜕𝐴12
𝜕𝑥3

)
+ 𝐴12𝐴23

(
𝜕𝐴31
𝜕𝑥3

)
+ 𝐴12𝐴31

(
𝜕𝐴23
𝜕𝑥3

)
+𝐴21𝐴32

(
𝜕𝐴13
𝜕𝑥3

)
+ 𝐴13𝐴21

(
𝜕𝐴32
𝜕𝑥3

)
+ 𝐴13𝐴32

(
𝜕𝐴21
𝜕𝑥3

)
− 𝐴22𝐴31

(
𝜕𝐴13
𝜕𝑥3

)
− 𝐴13𝐴22

(
𝜕𝐴31
𝜕𝑥3

)
− 𝐴13𝐴31

(
𝜕𝐴22
𝜕𝑥3

))
(A.13)

After some tedious algebraic manipulations, we arrive at the result676

𝑤𝑖𝑘 · 𝐷𝑖𝑘 = |A| 𝜕𝑣𝑘
𝜕𝑥𝑘

+ 𝑣𝑘
𝜕 |A|
𝜕𝑥𝑘

, (A.14)

(A.9) = (A.10) + (A.11) + (A.12) + (A.13),

therefore the GCL (25) is retrieved as the dot product of the dual variables w with the evolution equations of the677

distortion tensor A given by (1d).678

Appendix B. Runge-Kutta schemes679

Runge-Kutta methods represent a quite popular technique to carry out time integration and they are based on the680

method of lines (MOL) approach. The governing equations can be written in semi-discrete form as681

dU
d𝑡

= Lℎ (U), (B.1)

where Lℎ (U) contains the spatial discretization of the numerical fluxes, non-conservative products and source terms.682

A generic Runge-Kutta scheme with a total number of 𝑠 sub-stages is described by a Butcher tableau of the form683

shown in Table B.4. The numerical solution is determined at the next time step as684

U𝑛+1 = U𝑛 + Δ𝑡

𝑠∑︁
𝑖=1

𝑐𝑖 𝜅𝑖 . (B.2)

The generic Runge-Kutta stage 𝜅𝑖 is evaluated at the intermediate time level 𝑡 (𝑖) = 𝑡𝑛 + 𝛼𝑖Δ𝑡 by685

𝜅𝑖 = Lℎ
©­«U𝑛

ℎ + Δ𝑡

𝑖∑︁
𝑗=1

𝛽𝑖 𝑗 𝜅 𝑗
ª®¬ (B.3)
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Table B.4: Butcher tableau for Runge-Kutta explicit methods.

0
𝛼2 𝛽21
𝛼3 𝛽31 𝛽32
...

...
...

. . .

𝛼𝑠 𝛽𝑠1 𝛽𝑠2 ... 𝛽𝑠 (𝑠−1)
𝑐1 𝑐2 ... 𝑐𝑠−1 𝑐𝑠

with U𝑛
ℎ

denoting the numerical solution at the current time level 𝑡𝑛. In this work we consider three different Runge-686

Kutta schemes:687

• Euler method with accuracy O(1)688

0 0
1

689

• Heun method with accuracy O(2)690

0 0 0
1 1 0

1/2 1/2
691

• RK4 method with accuracy O(4)692

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

693
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