Well-written Knowledge Graphs Most Effective RDF Syntaxes for Triple Linearization in End-to-End Extraction of Relations from Text (Student Abstract)
Celian Ringwald, Fabien Gandon, Catherine Faron, Franck Michel, Hanna Abi Akl

To cite this version:
Celian Ringwald, Fabien Gandon, Catherine Faron, Franck Michel, Hanna Abi Akl. Well-written Knowledge Graphs Most Effective RDF Syntaxes for Triple Linearization in End-to-End Extraction of Relations from Text (Student Abstract). AAAI 24 - 38th Annual AAAI Conference on Artificial Intelligence, Feb 2024, Vancouver, Canada. hal-04526132

HAL Id: hal-04526132
https://hal.science/hal-04526132
Submitted on 29 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Well-written Knowledge Graphs
Most Effective RDF Syntaxes for Triple Linearization in End-to-End Extraction of Relations from Text
(Student Abstract)
Célian Ringwald1, Fabien Gandon1,2, Catherine Faron1, Franck Michel1, Hanna Abi Akl1,2
1Université Côte d’Azur, Inria, CNRS, I3S 2Data ScienceTech Institute

Abstract
Large generative language models recently gained attention for solving relation extraction tasks, notably because of their flexibility. This is in contrast to encoder-only models that require the definition of predefined output patterns. There has been little research into the impact of the syntax chosen to represent a graph as a sequence of tokens. Moreover, few approaches have been proposed to extract ready-to-load knowledge graphs following the RDF standard. In this paper, we consider that a set of RDF triples can be linearized in many ways and we evaluate the combined impact of language model size as well as different RDF syntaxes on the task of relation extraction from Wikipedia abstracts.

Experimental setup

Dataset: dbo:Person instances from English DBpedia + SHACL Validation including the following datatype properties: rdfs:label, dbo:birthDate, dbo:deathDate, dbo:birthYear, dbo:deathYear. + Checking values in the Wikipedia Abstract.

Seven benchmarked syntaxes:

- Proposed by the W3C: RDF-XML, JSON-LD, Ntriples, Turtle.
- Proposed in the literature
 - List of relations:
 - `('Homer_Simpson', 'type', 'Person'),
 - `('Homer_Simpson', 'label', 'Homer Simpson')...`
 - A tagged sequence:
 - `<subj>Homer_Simpson<rel>type<obj>Person<et>`
 - `<subj>Homer_Simpson<rel>label<obj>Homer Simpson<et>...

- Proposed by our work: Turtle Light:
 - `:Homer_Simpson a Person ;
 :label "Homer Simpson";
 :birthDate "1987-04-19" ;

Model: BART [Lewis et al. 2020] Base & Large FineTuned on each syntax. Train: 10 000 examples - Eval and Test: 3 000 examples. In Early stop mode: patience 5 training steps

Results & Discussions

Regarding the syntax:
- Turtle Light outperforms all the other syntaxes in every aspect
- Tags and List are easy to learn, but List needs more training epochs on BART-large;
- Turtle requires the same number of epochs for BART-base and BART-large;
- JSON-LD and XML are learnable syntaxes, that need more resources
- BART has difficulty learning N-Triples.

Overall: The size of the model AND the chosen syntax impact the time needed to train an extractor of datatype relations but also impact the performance of the model itself.

Figure 1. Micro-F1 performance of the models by size and syntax after a first epoch

Figure 2. Number of epochs needed before reaching Micro-F1 saturation (\(>0.9\))

Future work

Improving the evaluation + Conducting a comprehensive analysis of the syntax variations + Adding the Syntax vocabulary into the tokenizer + Benchmarking other models from T5 and GPT families.

References