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On the interactive complexity of graph reliability 

J e a n - M a r c  C O U V E I G N E S  * J u a n  Francisco  D I A Z - F R I A S  t 

Michel de R O U G E M O N T  ~ Miklos S A N T H A  w 

Abstract 

We give an interactive protocol for s - t RELIABILITY~ the well known reliability 
problem on graphs. Ottr protocol shows that  if IP(~(n)) denotes the class of languages 
whose interactive complexity is O(](n)),  that is the set of languages which can be accepted 
by an interactive proof system with O(f(n)) number of rounds, then s - t RELIABILITY 
E ZP(n). This complexity is significantly smaller than what one could get via reduction 
to QBF, the standard PSPACE-complete language. Another interesting aspect of our 
protocol is that it includes a general method to deal with rational numbers in interactive 
proof systems. 

1 Introduction 

The notion of an interactive proof system or interactive protocol was introduced by Goldwasser, 
Micali and Rackoff [6] and independently by Babal [1]. Intuitively, it is a way by which an 
infinitely powerful prover can convince using interaction a polynomially power~fl probabilistic 
verifier about  the  membership of elements in some language, bu t  only for those elements, which 
are indeed in the language. More formally, a language L belongs to the class IP, if there is 
a probabilistic polynomial time verifier V, and a prover 7) such tha t  for every x E L, 7 ) can 
con~fince ~2 to accept x with overwhelming probability, bu t  for every z g L, .no prover 7)t can 
convince ~2 to accept x with more t han  negligible probability. 

For several years the exact computat ional  power of the class I P  was an  open problem. Then 
in 1990 two breakthrough papers gave a precise answer to this question. First  Lund, Fortnow, 
Karloff and Nisan [7] have proved t ha t  every language in the class # P  has an interactive proof 
system. Soon afterwards~ Shamir [8] extended their  technique to prove tha t  t P  coincides with 
the complexity class PSPACE.  

One of the impor tant  parameters of an interactive proof system is the number  of rounds, 
t ha t  is the number  of messages exchanged between the prover and the verifier. Babai and 
Moran have proven [3] tha t  the number  of rounds in an unbounded interactive proof system 
can be reduced by a constant factor. Babai  [1] has shown tha t  bounded round interactive 
proof systems can be simulated by a protocol in jus t  two round, where the first message is 
sent by the verifier. I t  is highly unlikely t ha t  it is possible to obtain a bounded  round protocol 
for ~P-comple te  functions~ since the existence of such a protocol would imply by a result of 
Boppana, Hastad and Zachos [4] tha t  the polynomial t ime hierarchy collapses. Indeed, the first 
example of a proof system with an unbounded number  of rounds was given for a #P-comple te  
problem in [7]. 
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For a function f (n) ,  let us denote by IP(](r~)) the set of languages which can be accepted 
by an interactive proof system with O(f(r~)) number of rounds. For languages in IP(f(n)), 
we will say that  their interactive complerity is of O(f(n)). Lund, Fortnow, Karloff and Nisan 
actually have shown that  PERMANENT ~ IP(n), where PERMANENT is the problem of 
computing the permanent of an n • n matrix. The result of Sh~mlr can be restated as QBF 
E IP(n2), where QBF is the PSPACE-complete language of quantified boolean formulas on 
n variables. " F r o m  the result of Shamir it is easy to deduce that  ~ S A T  E IP(n), where # S A T  
is the ~P-comple te  problem of computing the number of satisfying assignments for a CNF 
formula. This result was also obtained by Bahai and Fortnow [2]. 

In this paper we will give an interactive protocol for the following graph reliability problem. 

* s - t R E L I A B I L I T Y  

I n p u t :  An undirected graph G = (V,E) with n vertices; s,t E V; and for every edge e, 
a rational number r(e) representing the probability that  the edge e exists (does not fail). 

O u t p u t :  The probability that there is a path from s to t consisting exclusively of edges 
that  have not failed. 

Our protocol will have a linear number of rounds as a function of the number of vertices, that 
is we will prove the following result about its interactive complexity: 

M a i n  T h e o r e m :  s - t RELIABILITY E IP(n). 

It  is well known [9] that s - t RELIABILITY is in the class P#P.  Since P # P  is included in 
PSPACE, Sb~mir's result implies that there exists an interactive protocol for s - t  RELIABILITY. 
Nonetheless we think that the construction of a direct protocol for this problem is important 
for the following reasons: 

1. The problem s - t  RELIABILITY is hard for # P ,  but it is not in that  class [9]. Also, it is 
not believed to be PSPACE-complete. As far as we know, the #P -ha rd  problems 
for which protocols were designed were either #P-complete  or PSPACE-complete. 
Therefore we believe that our protocol is interesting on its own. 

2. The protocol establishes a far better bound on the number of rounds than one could get 
by using the generic reduction to QBF. Let us suppose that s - t RELIABILITY can 
be solved in space O(r~) by a deterministic Turing Machine M (we don't  know of any 
algorithm which would use less space than that). By the generic reduction to QBF, it 
is possible to associate in polynomial time to an input graph G with n vertices and a 
rational number q a boolean formula CG,s on O(n 2) variables such that the probability of 
G being s - t connected is q if and only if ~G,q is in QBF. By the result of Shamir, QBF 
on O(n 2) variables is in IP(r~4). Therefore our direct protocol establishes a far better 
bound for the interactive complexity. 

Another possibility to obtain an efficient interactive protocol would be to consider direct 
reduction to QBF. Nonetheless such a reductions seems to be technically quite complicated. 

3. A novel aspect of our protocol is that we have to deal with rational numbers since an 
instance of s - t RELIABILITY involves probability values. In all the known interactive 
protocols computations are done over the integers modulo p where p is some well chosen 
prime number. It  is not at all obvious how rational numbers can be treated in such a 
finite field. We solve this problem by defining a homomorphism from an appropriately 
chosen subring of the rationals to the integers modulo p. We believe that  this technique 
is new and that in can also be useful in other context as well. 

4. Finally an IP protocol for the s - t RELIABILITY problem has the following practical 
application : consider a graph with uncertainty defined by the function r : E --* (0,1),  
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and some external agent who claims he can traverse the graph with probability greater 
than  q, for some constant q :> 0. How can we check he is right? Just  consider him as a 
prover, and run  the protocol. This idea is used in [5] to test  the robustness of planning in 
robotics and obtain an efficient method to compare strategies controlling mobile robots. 
In general it is a method to study problems with uncertainty, and test  the  realizability 
of various hypotheses. 

The s - ~  RELIABILITY problem is closely related to the following graph enumerat ion problem: 

�9 s - ~ C O N N E C T E D N E S S  

I n p u t :  An undirected graph G = (V, E)  with n vertices; s, ~ E 1/'. 

O u t p u t :  sub(G, s, t),  the number  of subgraphs of G in which there is a pa th  from s to t. 

Indeed, the  connectivity problem is a special ease of the reliability problem. If  all the  probabilities 
are 1/2 then  the number  of connected subgraphs is jus t  the  probabili ty of the  graph being 

s - ~ connected multiplied by 2(~'). Nonetheless a generalization of the enumerat ion problem 
to multi-graphs, tha t  is graphs where the  edges have integer weights, already captures all the 
combinatorial difficulty an interactive protocol has to address in the case of the reliability 
problem. Therefore we will first give an interactive protocol for this  generalized enumeration 
problem which we call MULTI s - ~ CONNECTEDNESS. Then  we will define INTEGER s - t 
RELIABILITY, a version of the reliability problem for multi-graphs. In opposition to tha t ,  
we will call PROBABILISTIC s -  t RELIABILITY the original reliability problem. It  will 
be easy to modify the protocol for MULTI s - t CONNECTEDNESS to get a protocol for 
INTEGER s - t RELIABILITY. Finally we will make a reduction from PROBABILISTIC 
s - t RELIABILITY to INTEGER s - t RELL~BILITY so tha t  the  protocol for the later  can 
be used for the former. 

The rest of the paper  is organized as follows: In Section 2 we describe the  s tructure of our 
protocols. We also give here some basic definitions about  multi-graphs. Section 3 contains 
the protocol for MULTI s - ~ CONNECTEDNESS. Section 4.1 explain the construction of 
INTEGER s - t RELIABILITY from PROBABILISTIC s - t P~ELIABILITY. Section 4.2 
has the protocol for INTEGER s - t RELIABILITY, and Section 4.3 shows how to reduce 
PROBABILISTIC s - t RELIABILITY to it. 

2 T h e  s t r u c t u r e  o f  t h e  p r o t o c o l s  

Throughout  the paper  every integer computat ion will be done in the  field Z v whose base set 
is {0 ,1 , . . .  ,p - 1}, where p is an appropriately chosen prime number  of exponential value in 
the size of the problem (the size of p is therefore polynomial). This prime can be given to 
the verifier by the prover who can also certify it in polynomial t ime with high probability. 
We denote by Zv[z ] the ring of univariate polynomials over Zp. The  rational numbers  will be 
denoted by Q, and the  natural  numbers by N.  

The overall s t ructure of our protocols is the same as the  s t ructure  of all existing protocols 
for other ~r problems, such as PER.MANENT or ~SAT.  One way to look at it is to 
say t ha t  the verifier maintains during the protocol a list of s ta tements ,  each about  an instance 
of the problem. Initially this list contains the proverbs original claim. At the  end, the list. 
contains a s ta tement  about  a small instance which can be checked directly by the verifier. The 
protocol guarantees tha t  if the original claim is t rue then  the last  statement, will also be true. 
However~ if the original claim was false, then  whatever is done by the prover, the verifier will 
end up with overwhelming probability also with a false s ta tement .  

In the verifier's handling of its list we will distinguish two kinds of steps. When the list 
contains just  one s ta tement ,  then in an  e~tension step W will create several instances. These 
instances will have the same size, and in some combinatorial sense, they wi]] be smaller than  
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the instance of the single statement. Then P asks the prover to give him the solution for all 
these new instances. ]) runs a simple consistency test on the original statement and the new 
ones, and if the test is passed~ he replaces the original statement by the list of the answers of 
the verifier. Every extension step will satisfy, that whenever the single statement on the list of 
the verifier is false, one of the new statements of the prover will also be false. 

When the list of V contains several statements~ then first he creates in a reduction step an 
instance of the problem in which some numerical data are replaced by low degree polynomials 
in the same variable. We call this instance a polynomial instance, and the process of creating it 
mizing. The polynomial instance will encode the numerical instances on the list of the verifier. 
Its size will be the same as the size of the instances in the list, and it will not be harder in the 
particular combinatorial sense than the numerical instances. The solution for the polynomial 
instance will be a low degree polynomial, and V will ask 7~ to give him the coefficients of this 
polynomial. Then he checks if the polynomial given by the prover does indeed encode the 
original instances. If this is the case~ he creates a new numerical instance by replacing the 
variable in the polynomial instance by a randomly generated integer. He also computes the 
value of the polynomial at this integer point. His new list will consist of the single statement 
claiming that  the solution of the new numerical instance is this value. For a reduction step it 
will be true, that if at least one of the original statements was false, then with overwhelming 
probability the new statement will also be false. 

The idea of mixing several numerical instances into one polynomial instance whose solution 
is a low degree polynomial was probably the main ingredient which led to interactive protocols 
for ~P-complete  and PSPACE-comple te  problems. The reduction step and its probabilistic 
analysis are now well known and standard procedures. In this aspect our protocols will be 
standard~ and therefore we will not elaborate in detail on this part. On the other hand, the 
extension step requires new ideas for graph problems, and in the description of our protocols 
we will put the emphasis on it. 

We now give some definitions which will be needed in the protocols. Pirst we generalize 
the notion of graphs to multi-graphs, which will be graphs with weights on the edges. In 
polynomial multi-graphs the weights will be polynomials. Then we also extend the definition 
of a path to this new concept. Finally we define the necessary operations for the mixing of 
multi-graphs. 
De f i n i t i on :  A multi-graph (m-graph) ~ is a pair (V,l). The finite set V is the set of vertices. 
The subsets of cardinality two of the vertices are called edge slots, the set of edge slots will 
be denoted by V(2). The multiplicity function I : V(2) --* Zp defines for each edge slot {u,v},  
its multiplicity. The set E = {e ~ V(z) : l(e) ~ 0} is the set of edges of ~. We will write 

= (V, E,  l) rather than G = (V, l), when we want to refer explicitly to the set of edges of G. 
In a polynomial m-graph the multiplicity function maps the edge slots into Z~[z]. The set of 
edges in this case consists of those edge slots whose multiplicity is not the zero polynomial. 
Def in i t ion :  An s - t multi.path (s - ~ m-path) in an m-graph or polynomial m-graph Q = 
(V,E,I) is a sequence of vertices p = <  v0 ,v l , . . . , vk - l , vk  > for some integer k such that 
s = v0, t = vk, all the vertices in the sequence are distinct~ and for every 1 < i < k, we have 
{v~-l,v~} ~ ]3. 
Def in i t ion :  Let G = (V,l) be an m-graph, and let g(z) be a polynomial over Zp. Then 
g(z)G = (V, la) is a polynomial m-graph where Ig(e) is the polynomial l(e)g(z) for every edge 
slot e. Let ~ = (V~l) and 7-/= (V,l') be m-graphs, or polynomial m-graphs. The sum o f ~  and 
7-/is Q + ~ = (V,l + l'), where (l § l')(e) = l(e) + l'(e) for every edge slot e. 

Every graph G = (V~ E) can be conceived as an m-graph # = (V, E,  l), where the edges have 
unit multiplicity. Also, for technical reasons we will associate to every m-graph or polynomial 
m-graph a graph whose edges are the edges of the m-graph. The operations for converting a 
graph to an m-graph and vice versa are formally: 
Def in i t ion :  Given an m-graph or a polynomial m-graph ~ = (V,E,I) ,  the associated graph ~* 
is defined as G = (V,E). Given a graph G = (V,E),  the associated m-graph G* is the m-graph 
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(V,I) where for every edge slot {u,v} ,  l ( (u,v})  -- 1 if {u,v}  E E,  and 0 otherwise. 

3 A p r o t o c o l  f o r  M U L T I  s - t C O N N E C T E D N E S S  

Def i n i t i on :  The m-graph ~t -~ (V,I ~) is a multi-subgraph (m-subgraph) of the m-graph ~ = 
(V,l) if for every edge slot e~ we have le(e) ~ l(e). 

The generalized connectedness problem for which we will give first an interactive protocol 
is the following: 

�9 M U L T I  s - t  C O N N E C T l g D N E S S  

I n p u t :  (~,8,t) ,  where ~ = (V,l) is a mult i-graph with n vertices, and 8, t  e V. 

O u t p u t :  sub(~,  8, t),  the number  of mult i-subgraphs of ~ which contain a mult i-path 
from 8 to t. 

Clearly, sub(G, 8~ $) = sub(G*, 8, t) for every graph G, therefore we have indeed generalized the 
original cormectedness problem. Before explaining our protocol we state  a proposition about  
the number  of 8 - t connected m-subgraphs,  which gives a way of defining the number  of 
polynomial m-subgraphs in a polynomial m-graph. 
De f i n i t i on :  Let G -- (V,E) be a graph, s and t two vertices~ and l a multiplicity function 
from V(2) to Z~o or Z~o[x]. We define the value of G with respect to I as val(G, I) -- 1-I~eE l(e). 
Also, let the function con(G, s, t) be 1 if there is a 8 - ~ pa th  in G, and 0 otherwise. 

P r o p o s i t i o n  1 Let ~ = (V, I) be an m-graph, s and $ two vertices. Then 

sub(G,s , t )  = ~ con(G',  s~ t)~-~l(G', 0 .  
G' is a ~ubgmph of g- 

Proof." Let G t be a subgraph of g*. In fact., val(G ~, 0 is the  number  of m-subgraphs of G whose 
associated graph is G p. In addition, if there is a 8 - $ pa th  in GP~ then  there is a s - t m-pa th  
in all of the  m-subgraphs of g whose associated graph is G t, and the result follows. [3 
De f i n i t i on :  The number of polynomial m-subgraphs in a polynomial m-graph g = (V, 1) is 

sub (g, 8, ~) = Z conCC', ~,*)val(C', 0- 
G ~ ~s ~ subg~aph of 6 ~ 

The hard  pazt of our protocol will be the extension step~ Its basic idea is t ha t  the value of 
sub(~, s , t) ,  can be divided into two terms. We can pick up any edge e, and can consider on the 
one hand  all the s - t connected m-subgraphs which do not  contain e, and on the other hand  
all the s - t connected m-subgraphs which do contain e. The computat ion of the first t e rm is 
simply another  instance of MULTI s - t CONNECTEDNESS,  which is given by the following 
proposition. 
D e f i n i t i o n :  Let. ~ ~ (V,I) be an m-graph and e an edge of ~. We define the m-graph ~ as 
(V, l~), where l~(e) ~ 0, and l~(e p) -~ l(e I) for every other edge slot e t. 

P r o p o s i t i o n 2  Let ~ = (V~l) be an m-graph and let e be an edge. The number of s - t 
connected m-subgraphs which do not contain e is sub(.C~e). 

Proof. '  Immediate.  [] 
The calculation of the number  of s - t connected m-subgraphs which contain a given edge 

e is more complicated. The main technical contribution of this protocol is to reduce this 
computat ion also to another instance of MULTI s - t CONNECTEDNESS.  The crucial notion 
for achieving this will be the contraction of a~ m-graph by an edge. 
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Definit ion: Let ~ = (V, E,  l) be an m-graph, and let e = {u, v} E E be an edge, with v ~ {s, t}. 
We define ~e,r the contraction of # by e with respect to the vertex v, as the m-graph (V,/e,v) 
where for an edge slot {x,y}, 

{ l({~,y}) if {~,y} n {~,v} = r 
lo,,({x,y}) = 0 if v e {~,~}, 

l ({x,u))  + l({z,v}) + l ( { x , u } ) l ( { x , v } )  i f  y = u and  x ~ v. 

The edge e is called the contraction edge, and v is its isolation point. When G is a graph, its 
contraztion Ge,~ is defined as ((G*)e,~)*. 

For the ease of notation, when it is clear from the context that which vertex is the isolation 
point of the contraction edge, we will use #e instead of #e,v, and l e instead of le,v. We proceed 
similarly in the case of graphs. The following proposition relates the number of s - t connected 
m-subgraphs in Ge,~ to the number of s - t connected m-subgraphs in # which contain e. 

P r o p o s i t i o n  3 Let  # = (V, E ,  l) be an m-graph and let e = {u, v}  E E be an edge with isolation 
poin t  v. The  number  o r s  - t connected m-subgraphs o f #  which contain e is l(e)sub(#~). 

P roo f :  It  is given in the Appendix. [] 
From Proposition 2 and Proposition 3 we get immediately the following proposition which 

will constitute the basis of the consistency test of the verifier: 

P r o p o s i t i o n  4 Le t  G = (V, E ,  l) be an m-graph and let e = {u, v}  E E be an edge with isolation 
po in t  v. Then  we have: 

sub(#, s, t) = sub(_~e, s, t) + l(e)sub(#~, s, t). 

I.f the above proposition were used as the consistency test~ it would yield a protocol of interactive 
complexity O(n2). An easy iteration of this proposition can give a consistency test which yields 
a protocol of linear interactive complexity. The idea is to contract the m-graph by all the edges 
which are incident to some vertex v. This was first proposed by Yuri Matiyasevich. 
Def in i t ion :  Let # = (V, E, l) be an m-graph and v a vertex. Let el = {ul, v} , . . . ,  ea = {ua, v} 
the edges incident to v, enumerated in an arbitrary order, where d : d(v) is the degree of v. 

#~,o = (...  (-~r,~)~...)~, 

~,~ = ((.. .  (#~)~r...),-z:r-,)~,. 
for { = 1 , . . . ,  d, i.e. the graph where el, eg, . . ,  el-1 are removed, and ei is contracted on v. 

If we iterate Proposition 4, we get : 

P r o p o s i t i o n  5 Le t  # = (V, E ,  l) be an m-graph and v a vertex of  degree d. Then we have 

d 
sub(#, s, t) = sub(#,,0, s, t) + ~ l(ei)sub(#, , i ,  s, t). 

The instances #,,0, �9 �9 �9 #,,a are smaller than ~ in the sense that the vertex v is isolated in 
them and therefore it can be disregarded. We describe now the protocol. 
E x t e n s i o n  s tep :  At the beginning the list of the verifier contains a statement of the form 
((#, s, t), q). If the only non isolated vertices o f~  are s and t, he checks directly ffsub(#, s, t) = q. 
Otherwise he chooses a non isolated vertex v different from s and t. Let d be the degree of v. 
The verifier asks the prover for sub(G,,i,s,t) and gets back qi for i = 0 , . . .  ,d. He cheeks if 

d 
a = q0 + ~l (e i )q~.  

i=1 
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If the equality does not hold he halts the protocol. Otherwise he replaces his list by < 
((O,,0, s, t), q0) . . . . .  ((~,d, s, ,) ,  q~) > .  
R e d u c t i o n  s tep :  Let < ((G~,o,s,t),qo),..., ((G~,d,s,t),q~) > be the list of the verifier. For 
0 < i < d let us define the polynomials 

(~ - j) 
II 

o<j<_dd#i 

The polynomial m-graph created by V is (~(x),s,~), where ~(z)  = ~d=O6i(z)~v,i. Then he 
asks for the coefficients of the polynomial sub((G(~), s,t)) whose degree is of O(na). From the 
answer of P he creates the polynomial h(x) and cheeks if for every i, h(i) = q~. If this is not 
true, ~J rejects. Otherwise, he randomly generates an element a E Zp, and creates the list 
< ((~(a),s,t),h(a)) >.  

T h e o r e m  1 MULTI s - t CONNECTEDNESS 6 IP(n).  

Proof :  The correctness of the consistency test of the verifier follows from Proposition 5. The 
probabilistic analysis of the protocol is standard. In every reduction step a new vertex becomes 
isolated, therefore the number of rounds is indeed O(n). [] 

4 z -  t R E L I A B I L I T Y  

4.1 I N T E G E R  v e r s u s  P R O B A B I L I S T I C  s - t  R E L I A B I L I T Y  

The draw a parallel between MULTI s - i  CONNECTEDNESS and the reliability problem, first 
we will define the the notion of a probabilistic graph. Like an m-graph, it will be a graph with 
a function on the edges, except that  in this ease the values of the function will be probabilities, 
that is rational numbers between 0 and 1. We also state t h e ,  - t RELIABILITY problem in 
terms of probabilistic graphs and therefore will call it from now on PROBABILISTIC s - t 
RELIABILITY. In the definition we make precise the representation of rational numbers. 
Def in i t ion :  A probabilistie graph (p-graph) ~ is a pair (V,r). As for m-graphs, V is the set of 
vertices, and V (2) is the set of edge slots. The probability function r : V(2) ---* Q f3 [0,1] defines 
for each edge slot its probability of existence. For every edge slot e, the rational number r(e) 
is represented as a/b with a,b 6 N and gcd(a~b) = 1. The set E = {e 6 V (2) : r(e) ~ 0} is the 
set of edges of G. 

The notions of p-path, associated graph and associated p-graph are defined as in the case of 
m-graphs. On the contrary, we will change the definition of the value of a probabilistic graph. 
Def in i t ion :  Let G = (V, E) be a graph, and r : V(2) --~ Q n [0,1] a function. We define 
pval(G,r),  the probabilistic value of G with respect to r as 

p ~ ( G , , )  = I-I r(e) 1-[ (1 - r(e)). 
eeE etE 

We state now the origina/s - t RELIABILITY problem in terms of probabilistic graphs. 

| P R O B A B I L I S T I C  s -  t R E L I A B I L I T Y  

I n p u t :  (~,s,t), where G = (V,r) is a probabilistic graph with n vertices, and s,~ 6 V. 

O u t p u t :  rely(Q, s,t) ,  the probability that there exists a p-path from s to t. 

Since the probability that  there exists a p-path from s to t in G is clearly equal to the sum of 
t.he probabilistic values of all s -  t connected subgraphs of G, we have the following proposition. 

P r o p o s i t i o n  6 Let G = (V,r) be a p-graph, s and ~ two vertices. Then 

rely(Q, s, t) = Z con(G', s, *)pval(a' ,  r). 
G' is a subgzaph of ~* 
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I t  is not easy to give a direct protocol for PROBABILISTIC s - t RELIABILITY since we 
have to deal with the additional problem due to the probabilities which are rational numbers  
and which can not  be directly interpreted in a field Zp. The first idea is to work instead of Zp 
directly in the field of the rat ional  numbers.  But  this is not  a satisfying solution since during 
the reduction step the  verifier should then generate random rational numbers  which is clearly 
impossible. Instead we will define I N T E G E R  s - t RELIABILITY, which is the same problem 
as PROBABILISTIC s - t RELIABILITY but  defined on m-graphs. Naturally we can not  
define probabilities when the  multiplicities of the edges are integer numbers  but  Proposition 
6 actually gives a way to extend the function rely to tha t  case. Then we will obtain an 
interactive protocol for PROBABILISTIC s - t  RELIABILITY in two steps. First  we will give 
a protocol for I N T E G E R  s - t RELIABILITY. This will not  be hard  since the combinatorial 
structure of this problem is very similar to the s tructure of MULTI s - t CONNECTEDNESS 
and therefore the protocol for the later  will be easily modifiable to give a protocol for this 
problem. Then we will make a polynomial t ime many one reduction from PROBABILISTIC 
s - t RELIABILITY to I N T E G E R  s - t RELIABILITY. This implies tha t  the protocol for 
INTEGER s - t RELIABILITY can also be used for PROBABILISTIC s - t RELIABILITY. 
D e f i n i t i o n :  Let G = (V,E) be a graph, and l : V (2) --+ Zp a function. We define the  
probabilistic value of G with respect  to l as pval(G,l)  =- 1-[,e~ l(e) [ I , r  - l(e)). 

The definition of I N T E G E R  s - t RELIABILITY is the following: 

�9 I N T E G E R  s -  t R E L I A B I L I T Y  

I n p u t :  (G,s,t) ,  where G = (V,1) is an m-graph with n vertices, and s, t  E V. 

O u t p u t :  rely(G, s, t), where by definition 

rely(a ,  s , t )  = y ~  con(a' ,s, t)pval(G',l) .  
G t i~ a subgmph of 9" 

4.2 A p r o t o c o l  f o r  I N T E G E R  s - t R E L I A B I L I T Y  

The protocol for I N T E G E R  s - t RELIABILITY follows strongly the protocol for MULTI s - t 
CONNECTEDNESS. The only impor tan t  difference is tha t  we change the definition of the 
contraction of the  mult i-graph in order to reflect the difference between the functions val and 
pval. 
Def in i t i on :  Let V = (V,E,I)  be an m-graph, and let e = {u,v} E E be an edge, with 
v ~g {s,t},  and let d be the degree of v. We define V~,, the probabilistic contraction of V by e 
with respect to the vertex v, as the  m-graph (V, r~,v) where 

{ r ( {~ ,y} )  if {x ,y}  n {~ ,v}  =r 
,~ ,~({~,y))  = 0 if v e {~ ,y} ,  

r ( {~ ,~} )  + r ( {x ,~} )  - , ( { x , ~ } ) r ( { ~ , v } )  if y = ~ and �9 ~ v. 

The m-graph V~ is defined as _~r For i = 0 , . . .  ,d, the m-graphs V~,i are defined as V,,r except 
tha t  we take probabilistic contraction. 

The following two propositions are respectively analogous to Propositions 4 and 5. 

P r o p o s i t i o n  7 Let ~ ---- (V, E,  l) be an m-graph and let e = {u, v} E E be an edge with isolation 
point v. Then we have: 

rely(V, s, t) = (1 - r (e))rely(Gg p, s, ~) + r (e)rely(~r p, s, t).  

P r o p o s i t i o n  8 Let 9 = (V, E,  l) be an m-graph, v a vertex of degree d, and el = {Ul, v } , . . . ,  ed = 
{ud, v} the edges incident to v. Then we have 

d d i - 1  

rely(V, s, t) = 17I(1 - l(ei))rely(G~,o) + ~ l(ei) H (1 - l(es))relyiV~,i). 
i=1  i=1 ~=1 
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T h e o r e m  2 I N T E G E R  s - t RELIABILITY 6 IP(n).  

P r o o f :  The protocol is the same as for MULTI s - t CONNECTEDNESS except t h a t  we 
change the consistency test  according to Proposition 8. [] 

4 .3  T h e  r e d u c t i o n  

We can now tu rn  to the question of reducing PROBABILISTIC s - t RELIABILITY to 
INTEGER s - t RELIABILITY. The m S  idea is to define a homomorphism from a subring 
of the rationals containing all the input probabilities to a field Z~. Let p be a prime number.  
We define the  set Q~, as 

Qp = { a / b : a  6 Z,b 6 N,  gcd(b~p) = 1}. 

Clearly Qp is a ring. We also define the function fp : Qp --* Zp as 

:p(a/b) = ab -1  modp. 

L e m m a  1 The function fp is a ring homomorphism. 

We call fp the canonical homomorphism. This function is not  injective since it maps an infinite 
domain into a finite one. However, i t  is injective on a subset of Q~ whose elements have small 
numerator  and denominator  compared to p. This property is crucial for the  reduction, and is 
expressed in the  following lemma. 

L e m r a a  2 Let 0 <_ at,a2 < vfp and 0 < bt,b2 < vlp. • we have 

:(a~/b~) =/(~2/b2),  

then 
a l / b l  = a2/b2. 

P r o o f :  The  hypothesis implies tha t  

alb2 rood p = a2bl mod p. 

Since 0 < alb2,a2bl < p, we also have 

alb2 = a2bi~ 

which implies the  result. [] 
We axe now ready to explain the reduction of PROBABILISTIC s - t RELIABILITY to 

INTE G E R  s - t RELIABILITY. Let Q = (V,E , r )  be a p-graph, with IV[ = n, and s , t  two 
vertices. Let N = max{denominator(r(e))  : e 6 E}, where denominator(a/b) = b for a, b 6 N. 

Let p > N 2(~) be a prime number.  Let ]~ be the canonical homomorphism from Qio to Zp. We 
will define an m-graph denoted with some abuse of notat ion fp(G) as follows: fp(G) = (V, I), 
where l(e) = f~(r  (e)). 

T h e o r e m  3 Let 0 < a < vrfi and 0 < b < v/ft. Then we have 

rdy(Q, s, t) = , / b  ~ ,  rely(/p(a), s,~) = :~(~/b). 

P r o o f :  First  we show tha t  

rely(Q, s , t )  = a/b tee fp(rely(Q,s,*)) = fp(a/b). 

Let rely(Q, s, Q = a'/b', with gcd(a',  b') = 1. Clearly a' _< b ~ since a'/b' is a probability. We will 
show tha t  0 < b' < v ~  and then apply Lemma 2. Let e = 1-l~eE denominator(r(e)) .  For every 
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subgraph G'  of g*, the denominator of val(G' ,r)  is a divisor of e. Since rely(~, s, t) is the sum 
of val(G r, r) for all s - t connected G t, b I is also a divisor of c. Using that and the definition of 

N, we have b' < c < N(~) < v/~. 
For the rest it is sufficient to show that 

fp(rely(~, 8, t)) = rely(fr,(~), s, t). 

But this is actually an easy consequence of the definition of fp (~) and Lemma 1. [] 

T h e o r e m  4 PROBABILISTIC 8 - t RELIABILITY E IP(n). 

P r o o f :  Let g = (V,E,r) be a p-graph, with IV[ = n, and s,t two vertices. Let N = 
max{denominator(r(e)):e E E}. Let the prover's statement be "rely(G, s, t) = a/b", with 

gcd(a, b) = 1. The two parties agree on a prime p such that N2(~) < p < 2N2(g). Observe 
that  size of such a prime is polynomial in the size of ~. The verifier checks if 0 < a < v/~ and 
0 < b < v~" If this is not satisfied, he rejects. Otherwise the two parties run the protocol for 
INTEGER s - t RELIABILITY on fp(G) and fp(a/b). The correctness of this protocol follows 
from Theorems 2 and 3. [] 
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A p p e n d i x  - P r o o f  o f  P r o p o s i t i o n  3 

We define S* = {G : G is a subgraph of G* containing e}. Also by definition, let (S,)* = {G : 
G is a subgraph of (~e)*}, and (S*), = {G : G is a subgraph of (G*)e}. By Proposition 1 it 
will be sufficient to prove the following equation: 

EGEs" con(G)val(G, l) = l(e) EGe(S.)- con(G)val(G, le). (1) 

Our first observation is that in equation 4.3 we can consider the subgraphs of (g*)e instead of 
the subgraphs of (~,)*. We have indeed 

Z eon(G)~(C, lo )  = ~ c o n ( a ) ~ ( G ,  lo), (2) 
ae(s,)* a~(S-)~ 

since (Se)* C (S*)e, and every G E (S*), \ (Se)* contains an edge e' for which by definition 
le(e') = 0. Equation 4.3 therefore will follow from the following one: 

con(G)val(a, t)=l(e)  ~ con(G)val(G,l,). (3) 
aes = a6(s-), 

The rest of the proof is devoted to the proof of Equation 3~ 

We define an equivalence relation -=e on S* as follows: For two graphs G1,G2 6 S*, we 
say that G1 =e G2 if (G1)e = (G2)e. We would like to characterize the equivalence classes of 
~r . For a graph G = (V, Eo) in S*, and for a vertex z such that x r {u,v}, let E~ be the set 
{{x, u}, {x, v}} N Eo. The cardinality of such a set is between 0 and 2. 

L e m m a  3 Let G1 = (V, E1), and G2 = (V, E2) two graphs in S*. Then G1 ~e G2 if and only 
i~ the following two conditions are satisfied: 

i .  for every e@e sto~ {~,y} s~eh tha~ {~,y} n {u,,} = O we ha~e 

2. for every vertex ~ ~ {u,v}~ we have 

Proof: Let G = (V;Eo) be a graph in S*, and set (G)e = (V,e~). Then it follows from the 
definition of contraction that. the following two conditions are satisfied: 

1. for every edge slot {x ,y}  such that {x,y}  N {u,v} -= $ we have 

{~,y} e z0 *=~ {~,y} e 4 ,  

2. for every vertex z g {u,v},  we have 

The next lemma relates the s - ~ connectedness of graphs in S* to the s - t connectedness of 
their contraction. 

L e m m a  4 Let G be a graph in S*. Then G is s - t  connected if and only ifGe is s - t  connected. 
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P r o o f :  If there is no pa th  in G between s and t then there is not either in Ge- I f  there is an 
s - t pa th  in G which does not go through v then the same path  exists in Ge. If there is a 
pa th  in G which contains v then it is of the form < s, v l , . . . ,  o ~ - l , v , v k , . . .  , t  > In this case 
either < s, '~l~...  ,vk_~,a~,-- .  ,~ > or < s , ~ , - .  ~v~_ l , u , v~ , . . .  , t  > is ~ pa th  Lu G, .  I~deed, 
~he former one exist~ whe,~ vk-1 = u ~ d  th~ ~utter one w h ~  ,~-1 # u. [] 

Next, we show tha t  the there is a bijection between the equivalence classes in S* and the 

elements of (S*)e. 

L e m m a  5 We have 

is'/=-A = l~c)~l. 

Proof: We define an application .f~ : S* ~ (S*)~ by .f~(G) = G~. We show that f~ is surjective. 

Let q' = (V, 4) C (S*),. It follows from Lemma i that for every vertex z such that {x, u} ~ 4, 
in ~* at  least one of the  edges {z ,u} ,{z ,~}  exists. Let e(z) denote such an edge slot. We 

define G = (V, E0) as f~llows: 

Then we have y,(G) = G'. [] 

For a graph G ~ ~ (S*)r let < G' > denote the equivalence class which contains the graphs 
w h ~ e  c~ntraction is G'. 

] ~ e ~ m ~  ~} For e w r y  G' E (S*)e, we h~w 

G~<G'> 

P r o o f  Let G'  = (V,C) ~ (S*)~, and let X = {z~, . . .  ,z~} be ~he set of vertice~ aAj~cent to u 
i~ G'- T ~ert 

~ a ( G ' , l ~ ) =  Yl ~(e ' )  I ]  l~H ~ ' ' ~ ) )  
e'Er~',~ge' l <i <_k 

and 

E 
GE <~i~ 

By 1he definition of ~h~ hmct ion 1~ thes~ ~wb products axe ~quM. [] 

Equation 3 and therefore Proposition 3 is ~ direct consequence Lemmas 4, 5 and 6. 

~a(a ,O= I I  l(e') I I  (l({.,, .)) + l((.,, .}) + /({~, ~})/((~. .}). 
r  t 5i<_~ 


