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Abstract—Computers are increasingly being used to help
researchers write up mathematical proofs, sometimes by auto-
matically writing out parts of it. In this paper we present different
computer-assisted approaches and provide some use cases. Using
the Mixed-Integer Linear Programming (MILP) approach, we
demonstrate that e is rational, contrary to what has already been
proved by hand and with interactive proof assistants. This is the
opportunity to dive into the numerical instabilities problems and
to discuss limitations of MILP solvers. These tools have some
advantages over other approaches, so we propose to explore
methods to verify the solutions obtained. To this end, we develop
a Julia package to automatically check whether solutions meet
the initial requirements or not.

Index Terms—computer-assisted proofs, mixed-integer linear
programming, numerical instabilities, mathematical model

I. INTRODUCTION

In 1976, computers were used for the first time to prove
a mathematical theorem, the four color theorem [1]. This
first computer-assisted proof relied on lengthy computations
in which all the possible cases were enumerated. Since then,
there were many improvements in proof assistants following
at least these two trends:

o Proofs-by-exhaustion with heuristic searches to reduce
the search-space, e. g., using automatic solvers such as
Mixed-Integer Linear Programming (MILP) or verified
NonLinear Programming using Interval Arithmetic;

« Interactive proof assistants to help mathematicians de-
velop and verify proofs, e. g., the Coq proof assistant.

These two trends are not incompatible as interactive proof
assistants can include proofs-by-exhaustion parts. However,
the formalism required to prove theorems with these tools is
heavy, in particular when using interactive proof assistants.

Despite mathematicians are very careful, it is well-known
that humans might fail [2], [3], [4], [5]. For this reason,
interactive proof assistants, to develop automatic proofs and to
verify ours, are essential tools. Since 1976, interactive proof
assistants and proofs-by-exhaustion have helped researchers
obtaining important results in various ways. A possible, and
common, use of these tools is to rely on automatic solvers for
proofs-by-exhaustion approaches.

Using an MILP solver, we will provide a computer-assisted
proof that e is rational, in contrast to what was previously
accepted by the scientific community [6], [7], [8], [9]. An
irrational number is one that cannot be written as the fraction
of two integer numbers, such has v/2 which is easily proven
irrational by contradiction. For centuries, we have believed that
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the number e is irrational too as this was first proved by Euler
in 1737, published in 1744 [10], and proved again differently
more recently [6]. Furthermore, in 2001, an automatic proof
generation to demonstrate the irrationality of e has been
proposed [7].

In the following, we will provide a few examples of proofs
which can be obtained relying on computers, using proof as-
sistants in Section II-A, NonLinear Programming and interval
arithmetic in Section II-B and MILP solvers in Section II-C.
In Section III, we demonstrate that e is rational. Finally, in
Section IV, we present possible numerically-robust alternatives
to MILP solvers and our approach to verify their results.

II. CLASSICAL COMPUTER ASSISTED PROOFS
A. Interactive proofs assistants

Transcendental numbers are a subset of irrational numbers.
It corresponds to numbers that are not the root of any nonzero
polynomial using only integer coefficients. As, a/b is a root
of the polynomial bx — a, it directly follows that if ¢ is
(not ir)rational, then ¢ is not transcendental. Hence, if ¢
is transcendental, then ¢ is irrational. However, there are
irrational numbers that are not transcendental. For example,
V/2 is irrational and is a root of the polynomial z2 — 2, thus
not transcendental.

Proved by hand first by Hermite in 1874 [11], at least two
computer assisted formal proofs of transcendence for e have
been provided using HOL Light [8] and Coq [9] proofs assis-
tants. As we demonstrate the opposite in Section III, we do not
provide details of these so-called proofs. However, interactive
proofs assistants are generally very useful and we propose to
demonstrate it with a proof in Coq of Cantor’s theorem.

Cantor’s theorem states that for any set A, the set of all
subsets of A, P(A), has a strictly greater cardinality than A
itself. Proving that any map f : A — P(A) is not surjective
is enough as it leads to card(A) < card(P(A)). Then, the
proof with Coq starts by defining surjectivity:

Definition surj(X Y : Type) (f: X = Y):P:=Vy, 3%,
fx=y.

We can then state Cantor’s theorem with its proof:

Theorem Cantor X : =3 f: X - X —- P, surj f.

Proof.
intros [f A].
pose (g := fun x = ~ f x x).
destruct (A g) as [x B].



Fig. 1. Tinkerbell map’s strange attractor.

assert (C:g x <> £ x x).

{

rewrite B. tauto.

unfold g in C. tauto.
Qed.

The main idea is to have a proof by contradiction where we
first assumed that f is surjective. Coq automatically derives
parts of the proof using tauto and, this way, permits to
simplify the process of writing proofs.

B. Interval arithmetic

Many computer assisted proofs consist in verifying numer-
ical hypothesis of some mathematical theorems. A typical
numerical hypothesis is f(z) > 0 for all values of = in some
domain. This can be carried out using the so-called interval
arithmetic [12], which performs operations on intervals in
such a way that the range of some mathematical expressions
over an interval is enclosed by the interval evaluation of this
expression. For example, one can enclose the range of f(z) =
2% — 2 + 1 over the interval [1,2] by evaluating the function
with interval arithmetic: [1,2] x [1,2] — [1,2] + 1 = [0,4] is
a superset of the range {f(x) : = € [1,2]} = [1,3]. This
simple interval evaluation proves in particular that f(x) is
nonnegative inside the interval [1,2]. When performed with
computers, which work with floating point numbers, interval
arithmetic must be implemented with correct rounding so as
to enforce its containment property.

Among several fields presenting theorems that are suited
to the verification using interval computations, one of the
most impressive is the computer assisted proof of the presence
of chaos in dynamical systems. The most simple sufficient
condition for the presence of chaos for a dynamical system
Zg+1 = f(x), with f : I — I a map of the interval I, is given
by the celebrated Period Three Implies Chaos theorem [13]:
if the map possesses a period 3 orbit, i.e., f(f(f(z))) = x,
and not a period 2 nor a period 1 orbit, i. e., f(f(x)) # = and
f(x) # x, then the map [ gives rise to a chaotic dynamical

Fig. 2. Example of TSP instance and solution.

system of the interval I. These hypotheses are perfectly suited
to verification using interval computations.

Consider for example the quadratic map f(z) =1 —4(z —
1/2)? of the interval [0,1] and the interval [0.4,0.42]. Using
floating point interval arithmetic with correct rounding we
prove that f([0.4,0.42]) C [0.9,1] and f(f(]0.4,0.42])) C
[0.0,0.2]. As a consequence, the interval [0.4,0.42] does not
contain any period 2 nor period 1 orbit. Now, again using float-
ing point interval arithmetic with correct rounding we evaluate
f(f(f(x))) — « for the intervals [0.4,0.4] and [0.42,0.42]
and obtain the enclosures [0.12,0.13] and [—0.07,—0.06]
respectively. As a consequence, the intermediate value theorem
proves that f(f(f(z))) — = has a zero inside the interval
[0.4,0.42], that is f has a period 3 orbit in this interval. We
obtain a numerical certificate that the hypothesis of the Period
Three Implies Chaos theorem holds true for this map, hence
proving that the corresponding dynamical system is chaotic.

Computer assisted proofs of the presence of chaos in maps
of higher dimension are more involved, e. g., the computer
assisted proof that the Tinkerbell map is chaotic in [14],
see Tinkerbell’s strange attractor in Fig. 1. Also, continuous
time dynamical systems are in the scope of interval computa-
tions, e. g., the computer assisted proof that Lorenz attractor
is strange by Warwick Tucker [12], hence solving Smale’s
14th problem.

C. Computer-assisted proofs Birds

Our formal approach, which we call Birds (proofs Based on
mlxed-integeR linear programming Solvers), relies on Mixed-
Integer Linear Programming (MILP) solvers to prove various
theorems. The MILP formalism consists in describing prob-
lems as linear equations, called constraints, which continuous
and/or discrete variables have to verify. MILP solvers also
handle objective functions and it is then possible to define
problems in which we search for variable values that minimize
or maximize a linear objective.

By limiting the possibilities to linear equations only, this
ensures a simple formalism: users are less prone to errors when
describing their problem. Although this limits the theorems we
are able to prove with MILP solvers, it still permitted to obtain
interesting results which were probably out-of-reach with other
tools. Furthermore, in Section III, we will demonstrate that
MILP solvers are actually able to help proving theorems that
could certainly have a significant impact on mathematics.

But first, we will discuss the traveling salesman problem and
the influence of the MILP approach to solve it [15]. Basically,



the problem consists in, given a set of point of interest, finding
the shortest possible route that visits every point of interest and
that returns to the first visited one. We illustrated this with an
instance (set of red dots) and a solution (black line) in Fig. 2.
The starting/ending point is not represented as the choice of
this point does not impact the solution.

This problem is well studied and was already mentioned
in a handbook from the 19th century. Although, this prob-
lem has been proven to be NP-hard [16], MacGregor and
Ormerod [17] showed that human performance on such prob-
lems is very high. However, on very large instances, using
computers is mandatory and we are actually able to solve these
instances with dedicated approaches and MILP solvers.

One of the classic MILP formulations for the TSP is called
the Miller-Tucker—Zemlin (MTZ) formulation and relies on
binary variables, x; ; € {0,1}, where x;; = 1 indicates that
the path (or the solution) goes from point ¢ to point j. Integer
variables u; € [1,n] are also necessary to keep track of the
order in which the n points of interest are visited.

Then, with ¢; ; being the distance between point 4 and point
7, the complete model is as follows:

n n
minz Z CijTij, (1)

i=1j=1,j#i
st Y @y =1, vie[l,n], (2
i=1,i#j
o owig=1, Vie[l,n], )
J=1,j7#i

w—u+1<(n-1)1Q-mz,;), 2<i#j<n @)
These constraints ensure that each point as a unique input
and a unique output and that the direct precedence between
consecutive points is verified.

The above MILP-based model can be used to find the
shortest path going through a set of points of interest and
solvers are usually able to demonstrate that the provided path
is optimal. For example, in 2007, an approach relying on MILP
solvers proved that a travel of at least 7,512,218,268 meters
is necessary to visit the 1,904,711 cities aggregated for the
World TSP Challenge'. This theoretical result, proven with
Birds, is important as it permits to know that actual solutions
obtained with dedicated approaches and MILP solvers are very
close to this bound, hence almost optimal. Note that various
applications, such as printed circuit design, require solving a
TSP instance, thus Birds is not limited to theoretical results.

Thanks to technical advances on MILP solvers [18], the
Birds approach will be better with time and we will be able
to prove more and more TSP results just by giving today’s
mathematical models to tomorrow’s MILP solvers. Obviously,
the Birds approach is not limited to solving TSP and in the
next section we will demonstrate its efficiency on proving
theoretical results.

Uhttps://www.math.uwaterloo.ca/tsp/world/

III. e 1S ACTUALLY RATIONAL

Using the Birds approach, we demonstrate that e is rational.
To do so, we define an MILP-based mathematical model
which, once solved, would lead to conclude that e = x/y
where x,y € N. The main idea is to have a constraint in the
model which corresponds to

€= -, (5)
Y
where x and y are integer variables. However, divisions cannot
be used in MILP-based model and we have to rewrite it as

z—exy=0, (6)

where y # 0.
This constraint should not hold as e is believed to be rational
[6], [71, [8], [9]. Hence, we replace (6) with

mint (7
st |z —exy| <t (8)

where ¢ € R, is a continuous variable. This way, we are sure
to have a feasible model in any case. Then, the number e is
rational if and only if the minimum of this problem is 0.

An absolute value is used in (8) and this nonlinear operation
needs to be linearized as follows:

r—exy<t and —(x—exy)<t. (9

This way, we have a linear model which we solved with
CPLEX 22.1.1 [19] using the JuMP [20] modeling language
(Julia) on a computer with an Intel® Core™ i7-1365U CPU.

In less than a second, the solver returns that O is an optimal
solution for this model, i. e., the solution corresponds to ¢ = 0
thus * — e X y = 0 and e is rational. Although unexpected,
Birds definitely proved that previous research on the rationality
of e was wrong as the simplicity of our model makes it easy
to understand and check for correctness.

Unfortunately, a closer look at the results shows that the
solver returned x = 49170.99999499567 ¢ N. MILP solvers
have, generally harmless, integrality tolerance to speed up
internal computations. Hence, any real number close enough
to an integer is considered to be an integer. This tolerance level
can be set with a parameter and for mathematical proofs, zero
tolerance is necessary, thus we fixed the solver parameter to
0. We solved the model with this new parameter and obtained
0 as an optimal solution, again. However, this time, the model
correctly returned =,y € N.

This means that, with the Birds approach, we demonstrated
that e is actually rational and that centuries of research on this
topic were wrong. Furthermore, we have the exact values for
2 and y such that e = x/y:

r = 1084483, y = 398959. (10)

Regrettably, although this may go unnoticed since few
people know more than a few digits of the number e, z/y
differs from the exact value of e:

- 2.7182818284585633, (11)
Y

e = 2.718281828459045. (12)



For the second time, Birds failed us.

In addition to integrality tolerance, MILP solvers usually
have multiple other tolerances. Some of them cannot be com-
pletely removed but we fixed them to the least possible value.
We have therefore set the simplex feasibility and optimality
tolerances to 10~ and the absolute MIP gap tolerance to
0. This permits to enhance the working precision of internal
subroutines and to ensure that the solver will not stop until the
best known solution and the best possible solution are equal.

With these settings, we solved our model again and for
the third time, the solver returned O as an optimal solution.
However, although the integrality tolerance is equal to 0, the
provided y is not an integer:

z = 28245729,
y = 10391023 + 1.8626 - - x 1079 ¢ N.

13)
(14)

This inconsistency between the integrality tolerance setting
and the solver result might be a bug of the solver or come
from limits of modern computers. In any case, it seems that
our approach failed again and that maybe “Birds aren’t real”.

IV. MATHEMATICALLY-SOUND TOOLS

In previous section, we used MILP solvers and tried to prove
that e is rational by solving an MILP-based model. At first
glance, it seemed that Birds were able to prove the rationality
of e but we found errors in the results each time.

Interestingly, it was not even possible to remove some
numerical tolerances of the solver and, in our last experiment,
the solver actually returned results that were inconsistent with
its parameters. We believe that these problems have their origin
in floating-point arithmetic [21], [22].

We usually consider MILP-based approaches as mathemat-
ical concepts with continuous variables [23], e.g., t € R in
previous section. Nevertheless, models will be implemented on
computers and actually solved using floating-point numbers.
In many cases, this has no negative impact on the solution
returned by the solver. In some cases, however, classic MILP
solvers fail to deliver correct solutions and/or termination
certificates, i. e., certificates that the problem is infeasible or
that the returned solution is optimal, for example.

Guarantees on solutions is possible and a few solvers have
them to ensure reliable results. For example, SoPlex [24] is
a linear programming solver which “provides special support
for the exact solution of LPs with rational input data.” The
SCIP MILP solver [25] can use SoPlex as a back-end to port
exact solutions to MILP-based model.

However, exact solutions will not suffice in the case pre-
sented in Section III: techniques outside of the scope of MILP
solvers are necessary to detect that ¢, although bounded, can
always be closer to 0. In an ideal world where infinite precision
is possible everywhere, exact solvers will not be able to
terminate when optimizing the proposed model.

Interval arithmetic could be a second approach to explore.
For example, ibex? is a library that provides solutions using

Zhttps://github.com/ibex-team/ibex-lib

reliable algorithms handling nonlinear constraints. In the case
of our model for proving the (ir)rationality of e, using interval
arithmetic will always lead to ¢ € [0,¢] as the returned
solution, i. e., the optimal value for ¢ could be 0 but might
also never reach 0. Thus, the statement “e is rational” remains
a possibility but is not guaranteed nor excluded.

We believe that limits of exact and interval arithmetic meth-
ods call for additional checks. However, detecting beforehand
all the cases for which the solver will not terminate or return
unsatisfactory solutions is certainly not possible and outside
checks seem preferable. Another benefit of outside checks is
that using efficient MILP solvers, which work correctly in
most cases, remains a reasonable choice.

Working on checking and repairing solutions (with post-
processing) has been proposed previously [26]. However,
repairing solutions is not always possible, in particular in our
example with e as [26] requires reasonable bounds on integer
variables, which we do not have. Instead, we propose that
solvers integrate a simple solution-checking post-process to
return a “bug” certificate if necessary. Although hard to admit,
one way or another, bugs will always occur and we think it is
important to acknowledge this possibility.

To help this solution-checking, we propose a Julia package
built on top of JuMP, CheckSolve?, to automatically check
if the provided solution meets the model’s constraints. With
the model presented in Section III, using CheckSolve we
were able to tell that the obtained solutions did not met the
constraints by around 10~7, or 10~ once limiting all the
numerical tolerances.

V. CONCLUSION

Starting in 1976, computers have been used to verify
existing proofs, to automatically derive proofs or part of
them. We also rely on their processing power to perform
enumerations which could not be handled by hand. In this
work, we presented a way to use an MILP-based approach in
order to prove that e is rational. This result is not consistent
with existing works which have proven with reliable methods
that e is irrational and even transcendental.

A closer look at our result permits to highlight limitations
of MILP solvers which, we believe, cannot be easily avoided.
This calls for using different approaches such as interval
arithmetic or exact solvers. However, in most cases MILP
solvers have no issue and efficiently provide interesting results,
thus we want to keep using them despite their flaws.

This led us to propose a Julia package, CheckSolve, to auto-
matically verify solutions obtained with solvers. Our approach
does not currently permit to verify that a solution said to be
optimal is actually so. This is a perspective for future work.
Furthermore, we currently rely on floating-point arithmetic for
the solution checking while verified interval arithmetic would
be preferable.

3https://github.com/remi- garcia/CheckSolve
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