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Schoof’s algorithm and isogeny cycles
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Université de Bordeaux, 351 Cours de la Libération, F-33400 Talence, France
& GRECC, D.M.I., E.N.S., 45 rue d’Ulm, F-75230 Paris Cedex 05, France
2 Laboratoire d’Informatique, Ecole Polytechnique
F-91128 Palaiseau Cedex, France

Abstract. The heart of Schoof’s algorithm for computing the cardinal-
ity m of an elliptic curve over a finite field is the computation of m
modulo small primes £. Elkies and Atkin have designed practical im-
provements to the basic algorithm, that make use of “good” primes £.
We show how to use powers of good primes in an efficient way. This is
done by computing isogenies between curves over the ground field. A new
structure appears, called “isogeny cycle”. We investigate some properties
of this structure.

1 Introduction

Let £ be an elliptic curve over a primitive finite field [F, where p is a large
prime integer. (We are not dealing with the case of small characteristic here.)
The curve is given by some equation £(X,Y) = 0 in Weierstrass form

EX,Y)=Y*-X?-AX-B

so that a generic point on the curve is given by (X,Y)mod £. Let m be the
number of points of E. It is well known that m = p + 1 — ¢, with ¢ an integer
satisfying |t| < 2,/p. If p is small the problem of computing the cardinality of
E is easy: one can simply enumerate all the points on E. When p is moderately
large, say p & 10% (see [5]), one can use Shanks’s baby-steps giant-steps method.
When p is larger, say p up to 102°°, one must use Schoof’s algorithm, or more
precisely the improvements of Atkin and Elkies to the basic scheme.

As a matter of fact, Schoof’s algorithm computes ¢t mod ¢ for sufficiently
many small primes ¢, performing arithmetic modulo polynomials of degree (¢ —
1)/2. The basic algorithm can be extended to the case of prime powers " as
well. In Elkies’s improvements, a prime ¢ can be either good or bad. When ¢ is
good, one can compute ¢ mod £ more rapidly than in Schoof’s basic approach,
performing arithmetic modulo polynomials of degree (¢ — 1)/2. Moreover, one
can in this case compute ¢ mod £? pretty much as in Schoof’s case. However,
one can do better in this case. The purpose of this paper is to explain how one
can compute ¢ mod £* within the same time complexity as the original ¢t mod £,
in the case of good primes. For this, we need to review first Schoof’s algorithm,
then we give a rough explanation of the improvements of Elkies and Atkin. After



that, we explain the role of isogenies and deduce from that an algorithm that
enables one to compute ¢ mod ¢*. We note that our method has some common
points with that of [10], but in a different context.

From a historical point of view, we note that Atkin gave some improvements
to Schoof’s algorithm as early as 1986 [1], coming up with the match and sort
approach in 1988 [2]. In 1989, Elkies [8], described the use of good primes,
some details of which were given in [6]. Then, in 1992, Atkin [3] gave the major
improvements to Elkies’s scheme and made it very practical, his record (March
1994) being computing the cardinality of £y : Y2 = X3 + 105X + 78153 modulo
1027 4 693. Morain has also recently implemented the algorithm and obtained
similar results using a distributed implementation [12]; his record (December
1993) is the computation of the cardinality of Ex : Y? = X3 +4589.X + 91128
modulo 10%%° + 1291. We give a table explaining this record at the end of the
paper. Recently, Schoof has written an account of the relevant theory in [14].
Some algorithmic details are given in [11].

2 A rough description of the Schoof-Atkin-Elkies ideas

2.1 The basic scheme

We refer to [13]. Let £ be some small prime number. For theoretical reasons we
need that ¢ < p. (In practice, p is around 102°° while ¢ is always smaller than
500.)

We recall that if 7= denotes the Frobenius action on the curve, 7 induces
an automorphism of the f-torsion space E[f] which extends to Tate’s module
Ty(E). The ring of endomorphisms of the curve contains Z[n] and = satisfies the
following degree 2 equation

T —tr4+p=0,
where ¢ is related to the cardinality of the curve by
#E=p+1-—t.

Of course, the same equality holds if we consider 7 as an element of GL(E[{]) or
GL(T;(E)). This remark leads to Schoof’s idea: compute ¢t modulo £ by looking
at the action of 7 on the ¢-torsion.
To achieve this goal, one first needs to compute the ¢-torsion polynomial of
E, fE(X), using the recurrence formulae. Then, a non zero {-torsion point on
E is given by
(X.¥)mod (£(X,Y), /£ (),

so that, for any Amod £ a residue modulo £, one can test whether the trace of
7 is A by checking the following identity, written in homogeneous coordinates:

(X?" yP' 1) e [A(XP, VP, 1) & [p](X,Y,1) = (0,1,0) mod (£, £F).



For some A the above equality will hold thus giving tmod £. If one does the
same computation for enough primes ¢; (i.e., such that [[; £; > 4,/p), then one
knows the cardinality of .

This leads to a polynomial time algorithm. From a practical point of view,
the problem is the size of the torsion polynomials. Indeed, fZ(X) is of degree
(£2 — 1)/2. In practice one cannot hope to compute ¢ mod ¢ for £ > 31.

2.2 Elkies’s 1ideas

The whole theoretical background for this section can be found in [9], particularly
chapters 12 and 13.

The center of Elkies’s ideas [8] is that if disc(7) = ¢? —4p is a non-zero square
modulo £ (the zero case works as well but in a slightly different way) then # has
two rational distinct eigenvalues 7y and 73 in IF, and even in Z,. Then, Tate’s
module decomposes as a sum of the two corresponding rational eigensubspaces

TW(E)=TF & TF

and the /-torsion as well. Such a prime £ is called good, and bad in the other
case.
We know that there exist £+ 1 isogenies of degree ¢

Elp, 1<u<t+1

and we are looking for some explicit knowledge about these isogenies, such as
their field of definition or their kernel for example. The kernel of those isogenies
are the one dimensional subspaces of the ¢-torsion. Furthermore, their definition
field is the definition field of their kernel. Indeed, E, is just defined to be the
quotient of E by the corresponding linear subspace. So, the existence of two
rational eigenvalues for the Frobenius implies the existence of two isogenies de-
fined over the base field. Namely, the ¢-torsion polynomial will have two (non
necessarily irreducible) factors hy and hg of degree (£—1)/2, each corresponding
to a eigenvalue. We have two isogeneous curves F;, for ¢ = 1, 2, given by some
equations &(X,Y) = 0 where

S(X,Y)=Y? - X3 4;X — B

together with two isogenies I) : £ — Ey and I : E — E3, with kernel TZ N E[¢]
and TF N E[¢]. And for P = (X,Y)mod £ a point on E,

_ k(X)) gi(X)
147 = (v iy mod

(3

fori=1, 2.

All along the paper, we represent the ¢-torsion on some elliptic curve as a
parallelogram with sides the “rational directions”. The picture for £ = 5 is given
in Figure 1.
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Fig. 1. The 5-torsion structure

A non zero point in T N E[f] is given by (X,Y)mod (£(X,Y), hi(X)),
which is much nicer than the above, because of the degree of h;. In view of
those considerations, one would like to replace, in Schoof’s algorithm, the torsion
polynomial by some rational factor h; when it exists. Or, more conceptually, the
[£]-isogeny by some isogeny of degree £.

We now need to compute the I;’s, and firstly the h;’s. Brute force factorization
of fZE would be even more difficult than the whole Schoof’s method since we
would need to compute

X =D/2m0d fF

for some integer d. Nevertheless, the coefficients of hy and hs are modular func-
tions over Iy(¢) and thus can be computed from analytic evaluation in C. Indeed,
one considers their Fourier expansion at infinity to find out some modular equa-
tion of degree £ + 1. The coefficients of those equations being integers can be
reduced modulo p. The existence of some rational eigenvalues to the Frobenius
implies the existence of some roots in I, to the modular equations. In fact,
we have even better, since the modulo p decomposition type of such modular
equations gives the permutation type of 7 seen as a permutation of P1(F,) thus
providing some knowledge about the (non necessarily rational) eigenvalues: the
multiplicative order of their quotient. This is the original remark of Atkin. One
gets conditions over the residues modulo #; of the cardinality and then tries to
glue up all this knowledge thanks to a sieving process. Note that this is heavier
but it works all the time, even if all the small primes we choose are bad.
Note that the whole method splits in two steps:

— Look for some rational root modulo p of the degree ¢+ 1 modular equations,
and build h; from it if there is some. Otherwise factor the modular equation
completely and deduce the (several) possible values of tmod ¢ (bad case).

— If you have found some hj, compute (X?,Y?)mod (€, hy) and then, look for
some 7mod £ such that (X?,Y?) = [7](X,Y)mod (&, h1(X)) which gives
the actual value of #mod ¢ (good case).
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Fig. 2. Isogenies for £ =5

Note that in both steps we are dealing with polynomials of degree ¢ + 1 and
(£ — 1)/2 which is much smaller than (¢2 — 1)/2.
Remark: We are not very explicit here about which equation to use. One may
think about using the classical modular equation (or rather its quotient by Atkin-
Lehner’s involution). In this case, the solutions to those equations stand for the
isogeneous curves and not for the isogenies themselves. It may be that there are
two isogenies with distinct kernel and of the same degree, going to the same
isogeneous curve. In this case, the endomorphism ring of £ must have a non-
integer element of norm ¢2, which is rather unlikely. Anyway, we can then use
another modular equation, such as those given in [6].

2.3 Computing hq(X)

Over C. Let ¢ be a fixed odd prime. Suppose first that we are dealing with a
complex curve E = C/(Z + 7Z), of invariant j(7) with &(7) > 0. The equation



of Fis Y? = X3+ AX + B. Let p(z) denote the Weierstrass function of E:
1 .- 2%
SETRES S
k=1

where the ¢j, are in Q(A4, B): ¢; = —A/5,¢ca = —B/7, and for k >3 :
k-2

3
Ch = 7T ChCh—1—h-
(k — 2)(2k + 3) hzzl

The £-th division polynomial is then simply

fFexy=¢ I X —pl(r+sm)/0)

1<r<(2—1)/2
0<s<L

and is in fact in Q(A, B)[X]. This polynomial has a factor

(e-1)/2
mx)= [[ X-pr/0)

which has coefficients in an extension of degree £+ 1 of Q(A, B). We let

(£—1)/2
Pr = Z K)(T’/f)k~

r=1

Elkies shows how to compute all pt’s using only p1, p2 and ps. He also shows that
p1 can be obtained as a root of a degree £+ 1 equation, whereas ps and ps can be
obtained from the coefficients A; and B; of the curve F; = C/(%Z—i— 77Z) which
is isogenous to . We make the important remark that the periods of E; are the
image of that of E by the Atkin-Lehner involution, Wy(F (7)) = F(—1/¢r) for
any function F', and in particular We(j(7)) = j(—=1/¢1) = j(¢r).

In Atkin’s approach, one first determines a modular equation for Xg(¢), that
is to say an algebraic relation

(X, Y)=0

which relates a function F(q) on I'y(¢) and the modular invariant j(¢) (with
q = exp(2iwT)). One knows that

41
(X,Y) =Y CoY)XT
r=1
where the C,’s have integer coefficients and Cy41(Y) = 1. Starting from
$y(X,j(r)) =0

one can compute F'(7) and then all quantities p;, A; and B; can be deduced
from this in an algebraic way.



Remark. Atkin distinguishes between two types of modular equations: the
“canonical” one and the “star” one. In the first case, one uses the function
Fo(r) = £(nlr)/n(r))* where s = 12/ ged(12,£ — 1). As Atkin shows, with
this function, it is easy to compute j; = j(¢7) using Fy = Fy(7) without finding
the roots of &y(Wy(F1),Y) = $,(¢°/F1,Y), but on the other hand the valence
of Fy grows linearly as a function of £. In the star case, one uses a function
with smallest possible valence on X§(€) = Xg(¢)/W,. This has the advan-
tage of having a very small valence, but we have then to compute the roots

of @z(Wg(Fl), Y) = @g(Fl,Y).

Over F,. Now, modulo p, if £ is a good prime, then @,(X, j(E)) = 0mod p has
(in general) two distinct roots and we can use the previous algebraic relations

modulo p and deduce from this an isogeneous curve E; and the polynomial
h1(X) which is the desired factor of f¥(X) modulo p.

3 Walking along the rational cycles of isogeneous curves

3.1 Theory

We now suppose that 7 € GL(T};) has two distinct rational eigenvalues 7 and
72. We notice that, since the two isogenies I; and I are rational, they commute
with w. This implies that on the isogeneous curves, the eigenvalues of the Frobe-
nius are the same. Since the eigenspaces T and TF are independent, I; induces
a bijection between T and the corresponding eigensubspace on E; and recip-
rocally I5 induces a bijection between T and the corresponding eigensubspace
on Fs.

The existence of two distincts rational eigenvalues has another interesting
consequence. It is that E; again has two rational isogenies of degree ¢, one
associated to each of the two eigenvalues. We call I7; and 115 those isogenies
and E7; and Fj5 the image curves. On the other hand, we know that, since
I; is rational, the dual isogeny Iy must be rational as well (by uniqueness of
it). Therefore I either equals I;; either equals I;5. By consideration of the
restriction to T'F we see that

If = L.

We could express that by saying that the two rational directions are not only
independent but dual.
We show all that on Figure 1.

Now, if £ is a curve over [F, such that ¢* — 4p is a non zero square mod ¢ we
can build two periodic sequences of isogeneous curves over [F,. These sequences
define two permutations 7; and Z, on the set of elliptic curves over IF,,, classified
up to [Fp-isomorphisms. The permutation Z; is generated by the quotient of F
by 7; and the two permutations are inverse of each other.

I I I
E—1>E1J>E11ﬂ>~~
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Fig. 3. Action of the isogenies



I I I
E—2>E2ﬁ>E22ﬂ>~~

These series are computed in the following way. We use some modular equa-
tion @,(X,Y). Let’s call jo the invariant of E and let’s solve @,(X, jo) = 0 over
IF,. If we are in the “good case” we have two rational distinct simple roots F;
and Fy, from which we compute two curves E; and E of respective invariants j;
and jo. Let’s now solve the equation ®,(X, j1) = 0 over [F,. We find two rational
distinct simple roots, one of them being W,(F;) and corresponding to the dual
isogeny I¥. We choose the other one and call it Fyq, yielding Eq1. We go on,
solving the equation @¢(X, ji1) = 0, etc.

Since the field is finite, the two series of curves are periodic and they provide
an explicit description of the two rational subspaces of Tate’s module.

3.2 Example

Let p = 101 and consider all the (classes of) curves F for which have (p+ 1) —
#E =t = 3. There are 8 of them and the following table gives their invariant
and a representative for each class. These curves were obtained by brute force,
but they could have been obtained by noting that 32 —4 x 101 = —395, implying
that all curves have complex multiplication by the ring of integers of Q(+/—395)
and therefore their j-invariant are the roots of the 8-degree Weber polynomial
as in [4].

JE JlE JE JlE
2[[68, 79] |[10[[19, 59] |[15][56, 41] |[20[[27, 18]
34|[13,51] ||56][3,2]  ||82|[53,37] ||90[49, 100]

Starting from Ey = [68,79], Jo = 2, using £ = 7, one first finds
DX, 2) = (F+84)(F+64)(FO+82F°+81F*+49F°4+32F?+34F +68) mod 101.

We choose F} = 17 and find 7y = 6. The permutation Z; is then given in

£ i(B)|F(E)
[68,79]] 2] 17
[27,68]| 82| 14
[50,89]| 56| 33
[31,28)] 10/ 9
[45,15]| 34| 20
[47,87)| 90| 100
[42,63]| 20| 43
[97,32)| 15| 45
[56,31]] 2

The other permutation starts using F; = 37 and corresponds to 7 = 4.



3.3 Application to Schoof’s algorithm

For example, the factor of f¥(X) corresponding to T2 NE[f] is hy, the denomina-
tor of I;. Now, if we want the factor of fﬁ corresponding to T'FNE[¢?], we proceed
in the following way. We first compute the polynomial A1; which is the denomina-
tor of 11, in the same way we computed hy except that we replace £ by F; and
pay attention not to confuse I11 with I7 = I12. Indeed we consider the isogeny
from E; associated with 7. We then note that 7%F N E[¢?] = I7Y(TF* 0 E1[4])
so that the factor we are looking for is obtained by plugging I into h1;. And so
on ...

In this way one can compute factors of degree ££~1(¢—1)/2 to the polynomial
ffk and then, using Schoof’s idea compute the cardinality of £ modulo £* rather
than just £. This allows us to take more advantage of the small good primes.

4 Implementation

4.1 Computing h; and I

The way Atkin’s approach works, one first solves $;(X, jo) = 0 mod p for a root
F and then one computes j; as a root of

Gy(We(F1),Y) =0mod p.

Each solution y yields a putative factor h,(X) of fF(X). We check this factor
by checking that [{](X,Y) = 0mod (£(X,Y), hy(X)). Once we know a proper
factor hy of fZE, we proceed to find I;. We know that

k(X)) g1(X)
hxr) = <h1<X>2’ m(X)B)

where k1(X) is a polynomial of degree ¢ with coefficients in IF,,. Let p1(z) denote
the Weierstrass function of F;. Then

_ kel2)
SIS

Replacing ¢, g1 and h; by their value, one deduces easily from this the coeffi-
clents of kj.

4.2 Examples

Let us work out an example. Let’s take £ : Y2 = X3 4+ 2X 4 3mod 97. We
use the so-called “canonical” equation of Xy(5), namely the relation between

Fs(z) = 5°(n(57)/n(7))® = 125(x + 62% + - --) and j(z), which is
5(X,Y) =125 - Y X + X° + 30X° + 315X* 4+ 1300X° + 1575X° + 750X.
One computes jo = j(F) = 36 and ®5(X, 36) factors as
(X +25)(X + 10)(X* + 92X° + 46 X7 + 67X + 49).



We choose F; = 87 and find easily that j; is the root of
&5(5%/Fy,Y)mod p

that is j; = 48, from which we deduce from that £} : Y? = X3 4+ 96X 4 83. We
also find that
hi(X) = X*+ 16X + 30.

Now, one has
p(z) = 272 +192% + 552 + 882° 4+ 912% + O(21),
p1(2) = 272 4+ 3922 + 22% 4+ 2225 + 8328 + 0(2')
so that
p1(2)h1(p(2))? = 2710 + 32278 + 4327° + 83274 + 93272 + 76 + O(2?)
from which we recognize that
ki(X) = X° +32X* +45X3 4+ 92X% + 18X + 35.
A factor of fE£(X) is then the numerator of hy([;(X)) namely
X'+ 48X° + 77X% + 54X 7 + 38X° 4+ 36X* + 40X° + 3X7 + 90X +5.
Now, we want to compute E7; and so we want to solve
D5(X, j1) = (X +61)(X +5)(X* +61X%+58X% 4+ 13X +2) = Omod p.

We note that a solution to this is Wy(F1) = £3/F; = 36 mod p. We must discard
this one, since we would go back to Ey. So, we take Fy; = 92 and find Eq; :
Y2 = X3+ 95X + 66, together with
X% +65X*+75X3 +85X? 46X + 71
n(X) = 4 3 2 :
X4+ 65X3+36X2+28X + 72

4.3 An improved strategy

It is easy to see that the algorithm works also if we replace h; by a factor of
hy. In that case, a factor of degree d of ffl can be lifted to a factor of degree
dl of fﬁ A good strategy for using the isogeny idea is given in the following
algorithm. We suppose that E is given modulo p and ¢ is an odd prime.

1. find the roots of @,(X, j(E));
2. if @, has two distinct rational roots then
(a) compute a factor hy of fZ;
(b) find the eigenvalue 7 and deduce 73 from it;
(c) find the order d; of 7, modulo ¢; if d; is even, divide by 2; [d; is now the
smallest field F q; containing abscissa of points of £-division]
(d) let d = min(dy, da) and 7 the associated eigenvalue; [d is now the degree
of a factor of fF of minimal degree, see [3]]
(e) if d is small enough, then factor the factor associated with d and compute
t mod £" for small n using arithmetic modulo a polynomial hs(X) of
degree d¢™~! using the fact that the eigenvalue k is congruent to 7
modulo £.



4.4 Experimental results

The second author has implemented the Schoof-Elkies-Atkin algorithm in C,
using the BigNum package. The details of this implementation will be described
in a forthcoming article [12].

His latest record (March 1994) concerns the curve:

Ex :Y?=X34+4580% X + 91128

modulo p = 10249 4 1291. Its cardinality is m = p 4+ 1 — t where t is

812863330901169485115745076523086320636188340265983567
8383607032008620595243247600658124603970833311581801435393008665561929.

It took 1027 CPU hours on several DecAlpha’s to perform the job, 641 of which
were needed for the computation of various X? mod f(X). We give in Table 1 the
£-primes used, together with a code, which says that ¢ was an Atkin prime, an
Elkies prime of a Schoof prime (a Schoof prime is a small Atkin prime for which
the original algorithm could be used). If £ is an Elkies prime, the third column
contains the values (¢ mod €7, k1, 01, k2, 02) where k1 and ks are the eigenvalues
and o; and o3 their respective orders. If £ is an Atkin prime, then we put the
ratio of the possible number of t modulo £ versus £—1. (See [3] for the importance
of that quantity.) More details will be given in [12].

5 The case £ = 2

5.1 The equation X2 —tX 4 p = 0 mod 2"
Let us first consider the set of solutions X,, of the equation

(R,) X?—tX +p=0mod?2" (1)
with p odd. The following tables give the solutions of this equation for small n.

Lemma 1. Equation (Ry) has solutions modulo 2 if and only ift = 0 mod 2 and
in this case X1 = {1}.

Lemma 2. Equation (Ry) has solutions if and only if t = p+ 1 mod 4, in which
case Xy = {1,3}.

As is customary, one wants to compute the solutions of (R,41) starting from
(Ryn). Let z,, be a solution of (R,) and put

t, =tmod2"”,0< ¢, <2" p,=pmod2”,0<p, <2".

We look for a solution z,4+1 = z, + £27, £ € {0,1}. The following result is
immediate.



£7|type £7|type L™ |type

2°[ E [(9) 89 A o0.27 211 A [0.50

3% S |(26) 97| A |0.44 223 A |0.03

521 S |(4) 101| E |(75,66,100,9,50) |[|227| £ |(201,160,113,41, 226)
71 S |(0) 103| A [0.02 233 A [0.31

11°| E |(730,1,1,3,5) 107| A [0.17 239| E |(120, 46,238, 74,238)
13| S |(8) 109| E |(47,9,27,38,9) 257| E |(231,196,128, 35, 64)
17°| E |(707,11,16,16,2) ||113| £ [(93,27,112,66,112)|(269| £ |(256, 76,268, 180, 67)
19] S |(9) 127| E [(38,119, 14, 46,126)(/(281| £ [(92, 42, 280, 50 35)
23| S |(12) 131] A [0.15 283| E |(53,123,282,213,282)
2921 E |(91,24,7,9,14) 137| E |(6,110,136,33,136)(/[293| £ [(211,81,73,130 292)
312| E |(104,29,10,13,30)|(|139| E |(45,7,69,38,69) 311| E |(117,51,62, 66 310)
37| A ]0.50 149 A [0.27 317| E |(112,308,79,121,79)
41| A [0.30 151| A [0.48 331| E |(175,19,165,156, 165)
43%| E |(375,11,7,20,42) ||[157| E |(17,71,39,103,52) [|[347| E |(267, 56,173,211, 346)
47| E |(38,8,23,30,46) ||[163| E |(35,155,27,43,81) ||[353| E (335,303,176, 32, 88)
53| E |(4,18,52,39,52) ||[167| E |(73,30,166,43,166)|[373| E (325 266,186, 59, 186)
59| E [(23,3,29,20,29) ||[173] E |(152,56,86,96,43) [|[379| E |(364, 333,189, 31, 378)
61| A [0.50 179| E |(2,64,89,117,89) |(|[383| £ |(349, 308,382, 41, 382)
67| E |(14,40,11,41,66) ||[181] A |0.40 431| E (56,171,215, 316, 430)
71| E |(40,4,35,36,35) ||[191] A |0.17 439 E (24,200,219, 263, 438)
73| A (0.50 193] A [0.50 443| E |(338,72,442, 266, 442)
79%| E |(2660,55,3,77,78)|1197| A |0.03 449| E (333,384,448, 398,112)
83| A [0.15 199| A [0.40

Table 1. Data for Ex mod 10%*° 4+ 1291

Proposition 3. Let n > 1. Write

2
and x;,

Pn+l = Pn + W'Qna e {Oa 1}:

tn+1 =t, + 7_271’ TE {0, 1}

—tnn +pn = K2". Then &py1 is a solution of (Ry41) (for any choice

of £} if and only if

K+ 7+ 7=0mod 2.

For example, one obtains the following result for n = 3 starting from the solutions
corresponding to n = 2.

Lemma 4. For n =3, one gets

t D Xg t P Xg
0[{1,3,5} 0 4{1,5,7} 0

7 |{1,3,5,7} 3 |{1,3,5,7}
2[ 13,77 ] 6] {3,5] 0

1 {1,5} 1 {3,7}

5 {3,7} 5 {1,5}




It is clear from the result that if (R,) has a solution, this does not imply that
(Rn41) does. In some cases, one can do better.

Proposition5. Assume n > 3. If t, = 0mod 4 and z, is a solution of (R,),
then there exists € € {0,1} such that x,, + 2"~1¢ is a solution of (Rp41).

Proof. Writing z,41 = z, + 27~ !¢ and with the notations as above, one finds
that K +(1—t,/2)¢+ p+ 1 should be 0 modulo 2, which always yields a solution
in¢ift,/2=0mod 2. O

5.2 Computing I; and h;
We first note the important result.

Theorem 6. If X?—tX +p =0 mod 2" has a solution, then f£ (X) has a factor
of degree 272,

The methods described by Atkin enables one to compute the isogenous curve,
but not the factor of the division polynomial. However, one can compute the
Weierstrass function of the isogenous curve and deduce from this the isogeny I
as in [15] using continued fractions and thus h;.

The results of the preceding section has important consequences for our pur-
pose. As a matter of fact, using Atkin’s approach, one has to find the roots of
@5(X, J1) which is of degree 3, so has 1 or 3 roots. Since X = 212/ F; is already
a root, this leaves us with 0 or 2 roots for Fi;.If there are two roots, we can
proceed to find F11, but we are not sure which one it is, and sometimes we have
to backtrack. When there are no more roots for a certain depth, this means that
X? —tX + pmod 2" has no roots for this n. This implies new restrictions on t.
We will give examples next.

5.3 Example
Let p = 101, Ey = [77,69]. One finds that @, factors as
®5(X,22) = (X? 4+ 80X + 74)(X + 69) mod 101
and thus I} = 32. One finds E; = [58,34], J1 = 98 and the isogeny is

X2 44X +24
X +4

and X + 4 is indeed a factor of X3 4+ 77X + 69. We compute

I =

Bo(X,98) = (X + T4)(X + 98)(X + 78) mod 101.

We discard X = 27 = 212/ F} as usual and we have to choose between 3 and 23.
It turns out that we must take Fiy; = 23, thus obtaining Fq, = [42,43] and

X% 450X +84
W= ——F""—7—
X 450



Now, we compute the numerator of Iy + 50 and find it is (X + 27)% and X + 27
is indeed a factor of ff”. After that, F11; = 54, E111 = [85,11] and a factor of

fl is X + 86 so that a factor of ff“ is X2 4+ 90X +65.
In some other cases, we have to do more computations, as shown in the

following. Take £ = [1,3] modulo p = 1009. One finds that
B5(X,269) = (X — 484)(X — 994)(X — 492) mod p.

In what follows, we list the depth of the search, followed by the value of F'. Here
is the beginning of it

0(484),1(198),2(——), 1(446), 2(——), 0(492), 1(483),2(——), 1(281), 2(——),

0(994), 1(225), 2(649), 3(289), 4(644), 5(——), 4(233), 5(——), . ..

As a matter of fact, we cannot go deeper than 6 levels. This means we can
compute t mod 27, but not ¢ mod 28, which is coherent with the fact that ¢ = —50
and that X2 4 50X + 1009 mod 2" has no roots for n > 8.

The above example shows that the implementation of this part of the algo-
rithm is rather tricky: we first find the longest path in our tree, then compute
the isogenies and then the division polynomials. We also use the informations
we have gathered to perform the final computations.

6 Conclusions

We have shown how to use small prime powers in Schoof’s algorithms. This
raises interesting questions concerning isogeny cycles. Our approach should also
work for the new approach used by the first author for extending Atkin’s ideas
to small characteristic [7].

Also, we never considered the degenerate cases where the modular equation
has only one root modulo p, or splits completely modulo p. These cases can also
be treated, in some cases as in the ¢ = 2 case. We will describe this somewhere
else.
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