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Abstract 8 

Modern society pays further and further attention to environmental protection 9 

and the promotion of sustainable energy solutions. Heterogeneous photocatalysis is 10 

widely recognized as one of the most economically viable and ecologically sound 11 

technologies to combat environmental pollution and the global energy crisis. One 12 

challenge is finding a suitable photocatalytic material for an efficient process. 13 

Inorganic nanotubes have garnered attention as potential candidates due to their 14 

optoelectronic properties, which differ from their bulk equivalents. Among them, clay 15 

nanotubes (halloysite, imogolite, and chrysotile) are attracting renewed interest for 16 

photocatalysis applications thanks to their low production costs, their unique physical 17 

and chemical properties, and the possibility to functionalize or dope their structure to 18 

enhance charge-carriers separation into their structure. In this review, we provide 19 

new insights into the potential of these inorganic nanotubes in photocatalysis. We 20 

first discuss the structural and morphological features of clay nanotubes. 21 

Applications of photocatalysts based on clay nanotubes across a range of 22 

photocatalytic reactions, including the decomposition of organic pollutants, 23 

elimination of NOx, production of hydrogen, and disinfection of bacteria, are 24 

discussed. Finally, we highlight the obstacles and outline potential avenues for 25 

advancing the current photocatalytic system based on clay nanotubes. Our aim is 26 

that this review can offer researchers new opportunities to advance further research 27 

in the field of clay nanotubes-based photocatalysis with other vital applications in the 28 

future. 29 

Keywords: Photocatalyst; clay nanotubes; imogolite; halloysite; chrysotile. 30 
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 32 

Introduction 33 

The hasty growth of the global economy and industrialization over the past 34 

century has also led to severe problems worldwide. The world’s reserve of natural 35 

energy is expected to be depleted within the next 50 years [1]. Experts consider 36 

global warming and climate change to be a direct consequence of the exponential 37 

increase in the consumption of fossil fuels. The increase in industrial pollutants is 38 

another consequence of the extensive use of these resources [2–4]. Requirement for 39 

developing environmentally friendly and energy-conserving solutions to address 40 

environmental remediation. 41 

Solar energy represents a highly promising resource due to its unique 42 

advantages. It offers an abundant and inexhaustible source of power, surpassing 43 

global energy consumption by several times [5–7]. Furthermore, solar energy is 44 

environmentally friendly, emitting minimal greenhouse gases, thereby helping to 45 

mitigate climate change. According to United Nations Development Programme 46 

data, the annual solar energy potential ranges from 1575 to 49387 exajoules (EJ) [8], 47 

which greatly exceeds our global annual energy consumption of 559.8 EJ. This 48 

remarkable surplus makes solar energy a viable and sustainable solution for driving 49 

human development. Numerous fields use solar energy, such as photovoltaics, 50 

thermal energy, artificial photosynthesis, solar architecture, and photocatalysis [9–51 

13]. Among them, photocatalysis emerges as a cutting-edge method for harnessing 52 

sunlight and expediting molecular conversions to generate solar-derived fuels, 53 

primarily hydrogen (H2), paving the way to a clean and renewable energy source 54 

[14,15].  55 
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In photocatalysis applications, the extensively used photocatalysts such as 56 

TiO2 and ZnO face two primary challenges [16–19]. They have a limited spectral 57 

response interval, only capturing a minor portion of the solar spectrum (less than 58 

5%), confined to the UV region [4,20]. Additionally, their high charge carrier 59 

recombination leads to poor quantum yield [21–25]. As a result, researchers are 60 

exploring alternative materials to overcome these limitations. Recent focus has been 61 

on 1D nanostructures, whose unique properties hold promise for enhancing 62 

photocatalytic activity and expanding its applications. 63 

Since the emergence of carbon (C) nanotubes (NTs) at the beginning of the 64 

’90s [26], a considerable part of the literature has focused on applying one-65 

dimensional (1D) tubular nanomaterials in numerous fields, including photocatalysis 66 

[27–29]. Carbon nanotubes and their inorganic (oxides, sulfides…) analogs have 67 

distinctive electronic characteristics such as exceptional electron mobility, the 68 

quantum confinement effect, and an extraordinarily large specific surface area [30–69 

32]. The reverse movement of holes and electrons can be promoted by the existence 70 

of polarization within the photocatalytic material [33–35]. Numerous studies have 71 

reported that the tubular structure led to improved properties. Among them, titania 72 

nanotubes exhibited enhanced photocatalytic activity compared to other titania 73 

structures [36,37]. Thus, targeting photocatalysts with tubular structures should 74 

result in enhanced photocatalytic performance.  75 

Although carbon is probably the most studied nanotube material [38–40], 76 

various nanotube materials, such as natural clays, have garnered significant interest 77 

because of their intriguing characteristics and attributes [41–44]. When referring to 78 

clay minerals (or phyllosilicate), we mostly talk about low-dimensional 2D 79 

nanostructures. However, clay minerals can adopt also 1D tubular structures.The 80 
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importance of tubular clay materials as a substituent for expensive CNTs and other 81 

nanomaterials is universally recognized [45,46]. Hydrosilicates are considered the 82 

most promising nanotube clays minerals due to their ability to scroll spontaneously: 83 

chrysotile (Mg3Si2O5(OH)4) [47], halloysite (Al2Si2O5(OH)4) [48–50] and imogolite 84 

(Al2SiO3(OH)4) [51–54]. The crystal structures of imogolite and halloysite combine an 85 

aluminum-oxygen dioctahedral sheet covalently bonded to a silicon-oxygen 86 

tetrahedra layer for halloysite or to isolated silicon-oxygen tetrahedral in the case of 87 

imogolite. For chrysotile, the sheet is classified as trioctahedral as it is mainly 88 

composed of magnesium [55]. The differences in the size of sheets and structure led 89 

to a bending momentum, transforming the layers into single-walled or multi-walled 90 

tubular [56–58]. Additionally, it's worth noting that the unique bending energy of 91 

these nanotubes is a key factor in their remarkable stability and mechanical 92 

properties, with a Young modulus around approximately 150 GPa for chrysotile [59], 93 

140 GPa for halloysite [60], and between 200-600 GPa for imogolite [61]. Recent 94 

research on imogolite nanotubes and hydroxyl vacancies in aluminosilicate and 95 

aluminogermanate nanotubes has further highlighted the significance of bending 96 

energy in influencing their overall mechanical behavior [57,58]. Understanding the 97 

bending energy of these nanotubes opens up exciting possibilities for tailored 98 

applications in various scientific and engineering fields. 99 

Due to their unique properties (e.g., improved light scattering and harvesting, 100 

shorter distances for charge transfer, and direct charge separation), materials with a 101 

tubular structure have recently found potential in the photocatalysis field [62]. 102 

Consequently, tubular clay minerals such as imogolite, chrysotile, and halloysite hold 103 

the potential to be used, in principle, for such applications. The energy gaps of these 104 

nanotubes vary between 4.2 eV to 5.2 eV [63,64], which refers to the minimum 105 
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energy to excite and separate an electron (e-) and a hole (h+) toward the conduction 106 

and valence bands, respectively. Additionally, the 1D structure facilitated the 107 

effective diffusion of photogenerated electrons and holes [65]. For imogolite 108 

nanotubes, recent theoretical investigations have revealed that the curvature of the 109 

nanotube wall generates an electronic density distribution and increases the internal 110 

electric field, which causes a static force and facilitates the separation of electron-111 

hole pairs [65,66]. Thus, the synergy between polarization and the one-dimensional 112 

structure of these photocatalysts is beneficial, as it can enhance the spatial 113 

separation of the charge carriers.  114 

These clay materials (imogolite, chrysotile, and halloysite) can also be applied 115 

as support materials or in conjunction with other photocatalysts to improve the 116 

performance of the hybrid structures in degrading numerous pollutants [47,67,68]. 117 

The improved photocatalytic efficiency results from the synergistic interaction of the 118 

unique characteristics of these clay materials, such as their exceptional light 119 

absorption, large specific surface area, and visible light absorption ability. It was 120 

noted that the halloysite was used in broader applications than the chrysolite and 121 

imogolite. This is due to the advantageous attributes of halloysite, such as its 122 

affordability and low toxicity, which surpass those of chrysolite [69]. While imogolite 123 

is not produced in large quantities yet their efficiency is greater than halloysite. The 124 

increasing fascination with halloysite is evident in the rising count of scientific 125 

publications and patents over the past decade (Fig.1). 126 

As far as we know, this review is the first attempt to thoroughly examine 127 

recent advances in synthesizing and applying nanosized tubular clay, specifically 128 

halloysites, chrysolite and imogolites, as true photocatalysts, or in combination with 129 

other semiconductors for heterogeneous photocatalysis, with a particular focus on 130 
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their properties for energy and environmental applications. After a brief preamble on 131 

the principles of photocatalysis, we focus on analyzing the synthesis, structural, 132 

physiochemical properties, and photocatalytic activity of clay nanotubes (imogolite 133 

nanotubes (INTs), halloysite nanotubes (HNTs) and chrysolite (CINTs)). We 134 

introduce the significance of using nanotube architectures in photocatalysis and 135 

discuss the polarization effect's role. This review subsequently addresses the 136 

processes that improve photocatalyst performance when combined with tubular clay. 137 

Lastly, research opportunities for tubular clay photocatalyst material are proposed. 138 

 139 

Fig.1. Yearly scientific publications and patents on A) halloysite, B) imogolite and C) 140 

chrysolite nanotubes. The data displays the last decade (Data from the “Web of 141 

Science”). 142 

2. Semiconductor photocatalysis: General principles and mechanism 143 

Photocatalytic reactions are regarded as one of the most effective methods for 144 

harnessing solar power. In addition to the established techniques of generating solar fuels 145 

by splitting water and reducing carbon dioxide, photocatalysis has found applications 146 

across a wide range of fields [27,67,70–73], varying from pollutant degradation to fine 147 

chemical production (Fig.2A) [74].  148 

Generally, the photocatalysis downhill thermodynamics (Gibbs free energy change 149 

G<0) is purely enhanced by the induced reactive oxygen species (ROS) from the 150 

photocatalysts' excitation under light irradiation (Fig.2B) [75]. However, the unfavorable 151 
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photosynthesis reaction (G>0), an uphill reaction, is primarily determined by 152 

photogenerated holes and electrons characterized by high redox potentials (Fig.2B) that 153 

need to be assured by the correct positioning of the conduction and valence bands [76]. 154 

From a thermodynamic point of view, photocatalytic degradation is much more feasible 155 

than the challenging artificial photosynthesis processes, such as photocatalytic hydrogen 156 

(H2) evolution and the production of hydrocarbon fuels from carbon dioxide (CO2) 157 

reduction.  158 

 159 

Fig. 2. A) Water splitting, solar cell, pollutants photocatalytic degradation, and 160 
photocatalytic reduction of CO2 mechanisms. Adapted with permission from [74], 161 

Copyright (2014), Wiley. B) Schematic illustration of natural and artificial 162 
photosynthetic systems [77], Copyright (2019), American Chemical Society. 163 

 164 

Fig.3A displays the redox mechanism for semiconductors (SCs) used as 165 

photocatalysts. The mechanism involves three successive steps [78,79]. Initially, the 166 

SC photocatalyst absorbs photons, and this causes electrons (e-) in the valence 167 

band (VB) to jump to the conduction band (CB) when the photon energy (hν) 168 

exceeds the bandgap energy (Eg) of the semiconductor. Consequently, holes (h+) 169 

are left behind in the VB. These electrons and holes are crucial in driving reduction 170 

and oxidation reactions to yield the desired product [79]. The subsequent step 171 

involves separating and transferring photogenerated electron-hole pairs, directing 172 

them toward the semiconductor's surface, although some of these pairs may 173 

https://www.sciencedirect.com/topics/chemistry/photocatalytic-reduction
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recombine within the bulk of the photocatalyst [80]. The last step comprises surface-174 

based reduction and oxidation reactions. The photogenerated charges located on 175 

the surface of the semiconductor engage with chemical species, thus initiating the 176 

desired chemical reactions. However, on the surface, certain photogenerated 177 

electrons (e-) and holes (h+) may recombine without actively engaging in chemical 178 

reactions. Fig.3B displays a schematic representation of the time scale 179 

characteristics associated with the various phenomena related to charge carriers that 180 

were previously discussed [81]. 181 

With the modern insight into the photocatalytic mechanisms, enhancing the 182 

effectiveness of semiconductor photocatalysts involves expediting the production, 183 

mobility, and reactivity of photo-induced charge carriers while minimizing electron-184 

hole recombination. Semiconductor materials with suitable bandgap structures for 185 

solar light absorption, efficient conductivity for charge transport, minimal defects as 186 

recombination sites, and rapid kinetics for surface reactions are highly favored 187 

[82,83]. In general, for the reaction to proceed effectively, the reduction potential 188 

should be lower than the bottom edge of the semiconductor's conduction band (CB), 189 

enabling the transfer of electrons from the CB to the reactant. Furthermore, the 190 

oxidation potential must exceed the VB of the catalyst to ensure the reactant can 191 

readily accept holes. 192 

 193 
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Fig. 3. A) Schematic diagram illustrating principle of photocatalyst photocatalysis. B) 194 
Time intervals between "elementary steps" in a typical photocatalytic reaction. 195 

Adapted with permission from [81], Copyright (2012), American Chemical Society. 196 

 197 

Adsorption plays a pivotal role in heterogeneous photocatalysis [84–86], 198 

particularly in the degradation and transformation of organic molecules or gases, 199 

where clay catalysts have emerged as significant contributors. Clay minerals, with 200 

their abundant surface area and reactive sites, offer a favorable environment for 201 

adsorption and catalytic processes [50,53,87]. Organic molecules or gas reactants 202 

adhere to the surface or interlayer spaces of clay catalysts through electrostatic 203 

interactions and other surface phenomena, initiating photocatalytic reactions. The 204 

subsequent generation of superoxide and hydroxyl radicals facilitates the breakdown 205 

of adsorbed molecules, leading to the desired transformations [88,89]. Despite the 206 

essential role of adsorption, competitive interactions among water molecules, other 207 

reactants, and target molecules may influence the photocatalytic efficiency, 208 

impacting active site availability and photogenerated species migration. While 209 

adsorption enhances catalytic efficiency by promoting reactant-catalyst interactions, 210 

excessive adsorption of certain compounds or intermediates can impede the process 211 

by acting as catalyst poisons [90]. Nonetheless, adsorption serves as the initial step 212 

in catalysis, concentrating reactants near active sites, and reducing the activation 213 

energy required for chemical transformations to occur. The versatility of clay 214 

catalysts allows for tailored surface properties and selective adsorption, enabling the 215 

direction of reactions toward desired pathways and improving overall process 216 

performance in terms of reaction rates, selectivity, and yield for various organic 217 

molecules or gas reactants [89]. 218 

Recently, several studies demonstrated that tube morphology is one of the 219 

crucial parameters that can significantly influence the performance of the 220 
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photocatalyst [27,91,92]. In particular, there is compelling evidence that materials 221 

featuring nanotubes display improved photocatalytic activity compared to 222 

nanoparticles. Moreover, materials with tubular structures have been reported to 223 

exhibit much better photocatalytic performance than nanoparticulate systems. For 224 

instance, a study by Jiang et al [93] demonstrated that halloysite exhibits superior 225 

photocatalytic activity in photodegradation processes of different organic 226 

contaminents (rhodamine B, malachite green and ciprofloxacin) compared to their 227 

2D polymorph (kaolinite nanosheets). Their results highlight the enhancement of 228 

photocatalytic activity due to the tubular morphology of halloysite. The extended axis 229 

of nanotube photocatalysts provides a straight path for carrier transport [94], thus 230 

lowering photoinduced electron-hole pairs' trapping and recombination kinetics [95]. 231 

This compares sharply with the transporting of the electron-hole pairs between 232 

nanoparticles. Moreover, nanotubes can provide a strong light-scattering effect, 233 

improving the light-harvesting properties [94]. Additionally, polarization can improve 234 

charge separation within a photocatalyst material by facilitating the movement of 235 

electrons and holes in opposite directions [96]. The nanotubes' geometry reduces 236 

the diffusion distance between the degrading compounds in the solution and the 237 

nanotubes' active surface area. Whereas the porous structure of nanoparticles 238 

imparts longer diffusion lengths [95]. These advantages can be applied to nanosized 239 

tubular clay minerals (halloysite, imogolite, and chrysotile). Fig. 4A and Fig. 4B 240 

outline the electron transport in two distinct architectures of the photocatalyst and 241 

schematic illustrations of some pros of nanotubular architecture for photocatalytic 242 

reaction, respectively. 243 

We can summarize and highlight the action mechanism of clay nanotubes in 244 

altering photocatalytic properties as follows: The tubular architecture of these clay 245 
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variants provides a confined environment that boosts the efficiency of photocatalytic 246 

reactions by facilitating the adsorption of reactant molecules and promotes proximity 247 

to active sites and catalytic centers [93,97]. Additionally, the high surface area-to-248 

volume ratio of clay nanotubes allows for increased contact between catalysts and 249 

reactants, enhancing reaction kinetics [93]. Moreover, their structural characteristics 250 

enable efficient light harvesting and photon utilization, while surface chemistry 251 

facilitates charge transfer processes crucial in photocatalytic reactions [98,99]. The 252 

polarization effect within tubular clay minerals further aligns molecules and charge 253 

carriers, streamlining charge transfer and reducing recombination rates, thus 254 

amplifying overall photocatalytic activity [100,101]. 255 

 256 

 257 

Fig. 4. A) A comparison of the electron pathways through nanoparticle and 258 
nanotubular structured TiO2. Reproduced with permission from [102], Copyright 259 
(2009). The Royal Society of Chemistry. B) Schematic illustration of some 260 

advantages of nanotubular architecture for photocatalytic reactions. Reproduced with 261 
permission from [103], Copyright (2019) Wiley. 262 

 263 

3. Structural and physiochemical properties of the nanosized tubular 264 

clay minerals. 265 

Compared to other nanomaterials with spherical or platy shapes, nanotubes, 266 

such as chrysotile, halloysite, and imogolite, offer a larger surface area due to their 267 

unique hollow tubular structure [104]. In the following discussion, we will examine the 268 

detailed aspects of these nanosized tubular clay minerals, exploring their 269 
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composition, structure, and exceptional physiochemical properties that distinguish 270 

them in materials science. 271 

 272 

 273 

3.1. Structural and physiochemical properties of Halloysite 274 

Halloysite nanotubes (HNTs) represent an exciting source of 1D clay material 275 

that can be extracted in large quantities from deposits, making them economically 276 

viable. The most widely available halloysite supplies are from Dragon Mine (Utah-277 

USA) and Northland (New Zealand) deposits [105,106]. Due to its distinctive tubular 278 

nanostructure, HNTs has garnered significant attention across various fields in 279 

recent years. Its applications range from controlled release of functional compounds, 280 

anticorrosion, adsorbents, catalysis supports and nanotemplate/nanoreactor 281 

[93,97,107–110]. 282 

 Halloysite is a dioctahedral 1:1 clay mineral with a chemical formula of 283 

Al2(OH)4Si2O5.nH2O, belonging to the kaolin group with a nanoscroll shape formed 284 

by rolling 5-20 aluminosilicate layers [111,112] (Fig. 5A). When n = 2, halloysite is 285 

referred to as halloysite-10 Å due to the average spacing of 10 Å between the unit 286 

layers. Water can be removed almost permanently by heating the halloysite samples 287 

at 120 °C, leading to halloysite-7 Å (with an interlayer spacing of 7Å) [87]. The 288 

structure of halloysite is known as monoclinic with unit cell parameters as follows: a 289 

= 5.14, b = 8.9, c = 17.7 Å with angles α ranging from 97 to 104 degrees, β from 90 290 

to 91.8 degrees, and γ fixed at 90 degrees. The halloysite is characterized by a 291 

hollow spiral structure [113] as illustrated by images using AFM and TEM techniques 292 

(Fig. 5B). The length of HNTs ranges typically within 0.5-1.5 μm [111,112]. The outer 293 
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diameter ranges between 50 to 70 nm, while the inner cavity, also called lumen, has 294 

a 10 to 20 nm diameter. In addition, halloysite exhibits distinct internal and external 295 

chemistry. The inner lumen surface features an array of Al-OH groups resembling 296 

gibbsite and carries a positive charge, whereas the outer surface consists of 297 

Si−O−Si groups and bears a negative charge [41]. This characteristic of a different 298 

surface charge outside and inside the tube makes the incorporation of ligands and 299 

nanomaterials feasible in the desired location. Joo et al. [114] observed that 300 

changing the pH in a water suspension containing HNTs allowed the tailoring of the 301 

pore surface area, pore diameter, and pore volume of the recovered halloysite 302 

powder (Fig. 5C). Indeed, in an acidic solution, bundles of halloysite nanotubes are 303 

formed (blocking the halloysite nanotube inner pore). In contrast, HNTs are well 304 

dispersed in basic solution, and the end of each HNTs was separated from other 305 

HNTs. An important point it that the synthesis of halloysite remains an ongoing 306 

challenge due to the absence of well-established procedures. Research efforts in 307 

this area have been underway since the mid-20th century. However, to date, 308 

developing a reliable and efficient method for synthesizing halloysite in the laboratory 309 

continues to be an urgent and unresolved issue [115]. 310 

Continuing the research on the properties of the HNTs, Gianni et al [116]. 311 

conducted a comprehensive theoretical study using DFT calculations to examine the 312 

electronic characteristics of halloysite nanotube models (Fig. 5D). Their study 313 

revealed that the pristine halloysite nanotube exhibits a band gap of 5.14 eV (Fig. 314 

5E). Through the analysis of the total density of states (TDOS) and projected density 315 

of states (PDOS) of halloysite, they highlighted that the lower and upper sections of 316 

the valence band consist primarily of oxygen 2s and oxygen 2p states, respectively. 317 

The oxygen atoms forming Al-O bonds significantly contribute to the valence band 318 
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compared to those involved in Si-O bonds [116,117]. The conduction band minimum 319 

primarily comprises H 1s, Si 3s 3p, and partly O 2p, Al 3s 3p states. The same 320 

calculations were confirmed by independent researchers [116,117].  321 

The hollow structure of HNT acts as a nanoreactor, providing a confined 322 

environment that enhances the effectiveness of catalysts. Recently, Jiang and 323 

colleagues [93] investigated the use of natural HNT as a nanoreactor to improve 324 

photochemical reactions. Their research demonstrated that introducing Fe doping 325 

into the interior surface of HNT resulted in enhanced activity and adsorption 326 

capabilities compared to the exterior surface. Notably, the unique photochemical 327 

properties exhibited by the two surfaces of HNT led to spatial confinement effects, 328 

resulting in superior photodegradation of organic species compared to kaolinite 329 

nanosheets. 330 

 331 

Fig. 5. A) Detailed structure of halloysite nanotubes. Reproduced with permission 332 
[93]. Copyright (2021), American Chemical Society. B) Scheme of the rolling of 333 

alumosilicate sheets to create halloysite nanotubes, with alumina forming on the 334 
interior (green), silica on the outside and representative TEM and AFM images of 335 
HNTs. Reproduced with permission from [41]. Copyright (2015), Wiley. C) Schematic 336 
representation of the inner space of halloysite nanotubes and the inter-space 337 
between them following treatment with various pH solutions. Reproduced with 338 

permission from [114], Copyright (2013), Royal Society of Chemistry. D) The 339 
calculated band gaps for and E): The calculated TDOS and PDOS of respective 340 
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atoms for the the halloysite. Reproduced with permission from [116] Copyright 341 
(2023), Elsevier. 342 

 343 

3.2. Structural and physiochemical properties of imogolite 344 

Yoshinaga and Aomine first discovered imogolite (INT) from volcanic ash in 345 

1962. INT is a naturally occurring aluminosilicate nanotube [118], characterized by 346 

the chemical formula (OH)3Al2O3SiOH, extending from the outer to the inner surface 347 

of these nanotubes [53,119]. This particular nanotube features an inner and outer 348 

diameter of about 1.0 nanometers and approximately 2 nanometers, respectively 349 

[54], while the length varies from hundreds of nanometres to the micrometer scale 350 

(Fig. 6A). The interior of imogolite exhibits silanol (SiOH) groups, while the exterior 351 

showcases both Al–O–Al and Al–OH–Al groups, providing imogolite nanotubes with 352 

amphoteric properties [120]. The spontaneous rolling of an Al-O and Si-O bond into 353 

a single-walled nanotube is caused by the difference in bond length. More 354 

interestingly, these configurations exhibit a clearly defined minimum in strain energy 355 

[57,58,121], facilitating monodispersity in nanotube diameter and chirality [122]. It is 356 

worth highlighting that the structure of imogolite differs significantly from that of 357 

halloysite. In imogolite, the curved octahedral [Al(OH)3] layer shapes the inner 358 

surface of the nanotubes, whereas the outer surface is composed by Si-O-Si group 359 

[53]. These distinctions are at the core of the unique characteristics of imogolite 360 

nanotubes. Moreover, INTs are often regarded as the clay equivalent of carbon 361 

nanotubes, exhibiting remarkable resemblances in aspect ratios, rigidity, and 362 

dimensions [112].  363 

The major limitation of INTs, from an industrial point of view, is their inability to 364 

create extensive deposits [123]. However, its synthesis was established quite rapidly 365 

after its discovery. In 1977, for the first time, Farmer et al. [124] synthesized 366 



16 

 

imogolite nanotubes by coprecipitating silicon and aluminum in an aqueous solution. 367 

They established that the yield and rate of formation of imogolite nanotubes are 368 

optimal for (i) a pH of 4.5, (ii) low reactant concentrations, and (iii) a temperature 369 

between 90 and 100 ◦C [125]. 370 

The electronic characteristics of INTs depend on their diameter, chemical 371 

composition, and chirality. An indicator of a promising photocatalyst is its band gap. 372 

Bursill et al. [126] were the first to predict a relatively wide band gap for these 373 

nanotubes. Subsequent band gap values for imogolite nanotubes have been shown 374 

to range from 3.6 to 5.3 eV [57,58,64,127,128]. Moreover, Li and co-workers [127] 375 

demonstrated that the structure of the energy band and the electron density of states 376 

were near the Fermi level (set at E= 0) for a single-walled imogolite (Fig. 6B). Their 377 

findings indicated a direct band gap with an Eg of approximately 3.67 eV. Moreover, 378 

the energy gap shown in the DOS (Fig. 6B) corresponds to the energy band gap 379 

shown in Fig. 6C.  380 

 381 

Fig. 6. A) Structural illustration of imogolite. Reproduced with permission from [129], 382 
Copyright (2014), Royal Society of Chemistry. B) The energy bands of the single-383 
walled imogolite nanotube and C) the electron density of states. Reproduced with 384 

permission from [127] .Copyright (2008), IOP Publishing. 385 

 386 

3.2.1. Synthesis and physiochemical properties of compounds 387 

analogous to imogolites 388 
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Chemically tuning synthetic materials primarily aims to expand the range of 389 

potential industrial applications. Similarly, synthetic procedures often allow for better 390 

control over reproducibility, composition, purity, and specific desired characteristics, 391 

unlike natural clay specimens, which frequently contain impurities and can be less 392 

readily available. Notably, in the case of nanotubular structures, it is essential to 393 

establish practical approaches for controlling the functionality of both their inner and 394 

outer surfaces. 395 

Wada and co-workers successfully substituted the silicon atoms with 396 

germanium in the imogolite structure by modifying the precursors of the synthesis 397 

[130]: By using electron microscopy and X-ray scattering analysis, they found that 398 

the diameter of imogolite nanotubes increases as the [Ge]/([Ge]+[Si]) ratio increases. 399 

Conversely, they also observed a reduction in the length of the tubes with the 400 

increase in this substitution rate. It's worth mentioning that by replacing NaOH with 401 

urea in the synthesis procedure, some researchers substantially increased the length 402 

of Ge tubes [131,132]. However, Maillet et al. [133] observed in their study that the 403 

nanotube shape is regulated by the initial aluminum salt (CAl) concentration, 404 

generating either single-walled nanotubes (Ge-SWINT, CAl > 0.75 mol L−1) or double-405 

walled (Ge-DWINT, CAl < 0.4 mol L−1) (Fig. 7A) [53]. These structures (Ge-SWINT 406 

and Ge-DWINT) have been thoroughly investigated through experimental and 407 

computational studies [65]. The results of this study proved that the Ge-DWINT 408 

structure exhibits more excellent stability compared to Ge-SWINT, possibly 409 

attributable to hydrogen bonding stabilization. It has also been deduced that while 410 

aluminosilicate nanotubes exhibit insulating properties, their dehydroxylation can 411 

alter them into semiconductor materials [133]. On the other hand,  Alvarez-Ramirez 412 
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[128] performed ab initio simulations, from which they estimated a band gap range of 413 

4.3-4.8 eV for Ge-Imo.  414 

Surface modification has also been applied to Imogolite nanotubes. Bottero et 415 

al. [134] were the first to report the synthesis of silicon-based imogolite with a fully 416 

methylated inner wall (Fig. 7B) [135]. A few years later, the technique was 417 

successfully transposed to germanium imogolite nanotubes (Fig. 7C) [136,137]. It 418 

was worth mentioning that the methylation of imogolite nanotubes was confirmed to 419 

induce a significant increase in their affinity with molecules such as CH4, CO2, or N2 420 

[138]. Curiously, Pignié et al. [100] recently reported that the imogolite IMO-CH3 (5.4 421 

± 0.2) has a smaller energy gap than the pure imogolite IMO-OH (5.85 ± 0.30) (Fig. 422 

7D). This value is similar to the band gap related to ZrO2 (Fig. 7E), whose 423 

photocatalytic activity has been extensively studied. Given the similarity in band gaps 424 

and valence/conduction bands between ZnO2 and imogolite variants (IMO-CH3 and 425 

MO-OH) [100] and the successful use of ZnO2 in harnessing solar energy [139–141], 426 

it suggests imogolite holds promise as a viable candidate for effective photocatalytic 427 

applications. Furthermore, the versatility of imogolite nanotube functionalization 428 

opens exciting opportunities in the field of photocatalysis. 429 

Finally, focused on these encouraging findings, other isomorphic substitutions 430 

have been studied lately, especially regarding the partial replacement of Al3+ with 431 

Fe3+ in the outer wall [142–144]. Despite these enhancements, they do not 432 

substantially alter the nanotube diameter, with doping rates remaining below 1% 433 

[142]. Alvarez-Ramírez's work has shown that the incorporation of Fe alters the 434 

electronic characteristics of the nanotubes, consequently causing the band gap 435 

value to decrease. This decrease is observed from 4.7 eV to 2.0-1.4 eV for the Fe-436 

silicon nanotubes and from 4.2 eV to 2.6-1.0 eV for the Fe-germanium imogolite-like 437 
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nanotube [63]. "In addition to iron substitution, other trivalent dopants or cation 438 

vacancies have been theoretically contemplated, which have the potential to bring 439 

about substantial alterations in the band structure of these nanotubes [145–148]. 440 

Therefore, these different perspectives on the optical and electronic properties of 441 

modified imogolite nanotubes open the way to their practical use as a photochemical 442 

nano-reactor. 443 

 444 

 445 

Fig. 7. Inner diameter size for A) Si-SWINT, Ge-SWINT and Ge-DWINT. 446 

Reproduced with permission from [53], Copyright (2018) MDPI. B) Methylated 447 
imogolite (IMO-CH3). Reproduced with permission from [137], Copyright (2017) 448 
Elsevier. C) SW Ge-IMO-CH3. Reproduced with permission from [135], Copyright 449 

(2019) American Chemical Society. D)  Band gap energy of IMO-OH and IMO-CH3 450 
and E) Comparison of the gap band of the imogolite with other selected compounds. 451 
Reproduced with permission from [100], Copyright (2021) Royal Society of 452 

Chemistry. 453 

 454 

3.2.2. The role of polarization of imogolite in photocatalysis 455 

As mentioned, a fundamental challenge in photocatalysis lies in rapidly 456 

recombining electron-hole pairs within photocatalysts. While the charge migration 457 
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requires hundreds of ps, bulk charge recombination occurs much faster, taking only 458 

a few ps.  which is considerably swifter than charge transport [149]. For that reason, 459 

Therefore, suppressing the process of electron-hole pairs recombining (e-/h+) stands 460 

as a crucial factor in improving the performance of photocatalysts. The electric field 461 

inside the substance induces a static force on the charges in the opposite direction, 462 

which makes it possible to increase their lifetime by limiting their recombination 463 

[101]. This electric field also promotes their transport to the interfaces where the 464 

chemical reactions of interest occur (Fig. 8). Discussions regarding the potential role 465 

of persistent polarizations in facilitating efficient separation of electrons (e-) and holes 466 

(h+) have started to appear in the literature [150–152]. 467 

However, it is essential to note that in the case of imogolite, the nanotube 468 

serves a unique dual role, acting as both a polar material and a photocatalyst, 469 

distinguishing it from the scenario presented here [53,65,100,119]. The inherent 470 

polarization of imogolite nanotubes, coupled with their photocatalytic activity, creates 471 

a synergetic effect that significantly enhances their performance in light-driven 472 

catalytic reactions. This dual functionality showcases how imogolite seamlessly 473 

integrates both the roles of a polar medium and a photocatalyst, offering a unique 474 

and promising platform for efficient photoinduced catalysis, where the material's 475 

polar nature finely tunes charge separation and transport. 476 
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 477 

Fig. 8. The scheme for polarization promoted surface charge separation. 478 
Reproduced with permission from [101] .Copyright (2019), Wiley. 479 

 480 

In this context, Gustafsson and co-workers first discussed the intrinsic 481 

polarization in natural imogolite in 2001 [153]. They explained that the pKa of the 482 

hydroxyl functions that compose the inner and outer surfaces could not justify the 483 

evolution of the charge of the outer surface of INTs as a function of pH. In general, in 484 

aluminum oxides, the aluminol functions, similar to imogolite, remain uncharged over 485 

a broad pH range, from 0 to 11.9 [153]. Moreover, surface complexation of ions by 486 

these groups is not considered possible. Consequently, they assumed that the outer 487 

tube walls are unreactive toward ions. The authors, therefore, proposed a model in 488 

which negative and positive charges accumulate on the internal and external 489 

surfaces of the nanotube, respectively. These charges are not dependent on the pH. 490 

They thus defended the existence of polarization through the wall.  491 

Teobaldi’s group conducted density functional theory (DFT) calculations 492 

concerning INTs, focusing on various physico-chemical structures [57,154]. These 493 

simulations have shown that INTs exhibit a persistent polarization corresponding to a 494 
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spatial separation of the VB and CB in real space (Fig. 9) [57,154]. This separation 495 

enhances the separation of holes (h+) and electrons (e-) through optical charge-496 

transfer excitations inside the walls of the nanotubes.  497 

 498 

Fig. 9. Front image of armchair methylated INTs (OH)3Al2O3Y(CH3) showing the real-499 
space separation between the boundaries of the conduction band (red) and valence 500 
band (green). Y = Si in (A) and Ge in (B). The direction of the permanent dipole 501 

surface density µσ of the nanotube wall is indicated by the black arrow. Reproduced 502 
with permission from [122], Copyright (2018) Nature.  503 

 504 

Furthermore, the excellent chemical separation characteristics of hybrid 505 

hydrophobic/hydrophilic Imo NTs, along with their ease of modification 506 

[136,138,155,156] could be very favorable for the effective separation of photo-507 

oxidized and photo-reduced reactants and products (Fig. 10A and Fig. 10B). Articles 508 

discussing the potential beneficial impact of permanent polarizations on the effective 509 

separation of holes (h+) and electrons (e-) have started to appear in the literature 510 

[65,100,154,157], prompting increasing interest in this field.  511 

Although INTs have been utilized as catalyst supports (as discussed in 512 

section 4) and initial findings have been reported regarding their efficacy in the 513 

photocatalytic decomposition of organic dyes [40,97,98], this subject is yet to be 514 

explored.  515 
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 516 

Fig. 10. A) Schematic of the reaction mechanisms at play in two types of 517 
imogolites (IMO-CH3 and IMO-OH). For clarity, water radiolysis was left out. The 518 
intra-wall electric field (ΔV), which drives charge separation, is schematically 519 
represented. Reproduced with permission from [66], Copyright (2021) The Royal 520 

Society of Chemistry. B) Illustration of potential key photodegradation pathways for 521 
DBAN enclosed in Imo-CH3 nanotubes in an aqueous medium. Reproduced with 522 

permission from [96], Copyright (2021) The Royal Society of Chemistry. 523 

 524 

 525 

3.3. Structural and physiochemical properties of chrysotile 526 

Chrysolite is a hydrated magnesium silicate with a stoichiometric composition 527 

of Mg3Si2O5(OH)4. Natural chrysotile, commonly known as white asbestos [158,159], 528 

is part of the serpentine group of minerals. It has found extensive applications across 529 

diverse industries thanks to its remarkable properties, including high tensile strength, 530 

flexibility, and excellent resistance to heat and chemicals. However, despite its 531 

extensive use, there are growing concerns about the potential health risks of 532 

exposure to chrysotile fibers. Inhalation of these tiny fibers can result in severe 533 

respiratory problems, including lung diseases like asbestosis and mesothelioma, 534 

which is a rare and aggressive form of cancer [159–161].  535 
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Chrysolite consists of a silicate sheet (Si2O5)n
2n-, where the neighboring 536 

tetrahedra share the oxygen atoms present in the tetrahedron,  and a non-silicate 537 

sheet [Mg3O2(OH)4]n
2n+ [162]. The curvature of the sheets spreads along a favored 538 

axis, giving rise to the tubular chrysotile structure similar to that seen for halloysite 539 

(Fig. 11A) . The concentric sheets developing the fibers exhibit a curvature radius 540 

ranging from 2.5 to 3.0 nanometers for the inner layers, expanding to approximately 541 

25 nanometers for the outer layers. As a result, unit fibers (fibrils) have external 542 

diameters that vary between 20 and 50 nanometers [163]. Researchers have tried to 543 

refine chrysotile's structure through the Rietveld method. In a study conducted by 544 

Falini et al. [164], they refined nano-chrysotile within the monoclinic Cc space group, 545 

determining lattice constants a=5.340(1), b=9.241(1), c=14.689 (2) Å, and β=93.66 546 

(3)° [165]. The chemical composition of chrysotile differs depending on the mineral 547 

deposit. In fact, the substitution of silicon and magnesium can occur in chrysotile. In 548 

the brucite layer, it is possible to substitute magnesium with Mn2+, Fe2+, or Ni2+ [166]. 549 

Conversely, in the silicate layer, silicon can be replaced by Al3+ or rarely Fe3+ [167] 550 

(Fig. 11B). 551 

Chrysotile exhibits chemical stability, incombustibility, and exceptional thermal 552 

insulation properties [168]. Additionally, its fibrils are known for their strength and 553 

remarkable flexibility. These fibers exhibit low thermal conductivity (0.3-0.4 W/(m K)), 554 

exceptional ability to withstand high temperatures, and a high melting point 555 

(approximately 1500 °C). They possess greater rigidity compared to steel, are 556 

impressive, resistant to corrosion, and not expensive compared to synthetic fibers 557 

[169]. 558 

The investigation conducted by Lourenço et al [171].  on the electronic 559 

properties of Single-Walled Chrysotile Nanotubes (NTs) using the self-consistent 560 
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charge density-functional tight-binding method (SCC-DFTB) sheds light on the 561 

intricate electronic structure of chrysotile. Their findings reveal intriguing insights into 562 

the total (DOS) and partial density of states (PDOS) of zigzag (40,0) and armchair 563 

(25,25) chrysotile NTs (Fig. 11C). Surprisingly, they discovered that the chirality and 564 

size of the NTs do not significantly alter their electronic structure, as evidenced by 565 

the similarity in DOS and PDOS profiles (Figure 5). Specifically, in the valence band, 566 

the predominant states are attributed to oxygen atoms, while in the conduction band, 567 

electronic states of silicon atoms play a pivotal role in shaping the total DOS. 568 

Interestingly, the contribution of magnesium and hydrogen atoms to the total DOS is 569 

comparatively smaller than that of silicon and oxygen in both valence and conduction 570 

bands. 571 

 572 

 573 

Fig. 11. A) structure of chrysotile. Reproduced with permission from [170], Copyright 574 

(2013) Scientific research. B) Depiction of magnesium and silicon substitution by iron 575 
in the chrysotile fiber structure. Reproduced with permission from [167], Copyright 576 
(2020) MDPI. C) Total and partial density of states (PDOS) of the (a) zigzag (40,0) 577 
and (b) armchair (25,25) chrysotile nanotubes. Reproduced with permission from 578 
[171], Copyright (2012), American Chemical Society. 579 

 580 
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An electron-microscopic study of chrysolite by Voitylov et al. showed diverse 581 

morphologies of nanotubes: cones, cylinders, and socket tubes (Fig. 12). ). Conical 582 

nanotubes exhibit external diameters between 20 and 50 nm, while cylindrical 583 

nanotubes have external diameters between 20 and 70 nm. The inner diameter of 584 

cylindrical nanotubes is 35 nm. Notably, various other forms of chrysotile can also be 585 

found in nature (e.g., cylinder-in-cylinder, tube twins, rectilinear cylinders, cone-in-586 

cone tubes, and cylinders with cup-like ends) [169]. It was revealed that synthesis 587 

conditions, including factors like temperature, hydrothermal treatment duration, and 588 

the composition of the precursor solution, influence specific morphological 589 

characteristics of the nanotubes [172].  590 

Chrysotile has attracted significant attention due to its catalytic activity. The 591 

abundance of active sites and its high surface area make chrysotile-based catalysts 592 

highly promising for various chemical reactions [173]. These catalysts have 593 

demonstrated remarkable efficiency in numerous processes, such as polymerization, 594 

hydrolysis, reduction, and oxidation [174–177], making them versatile tools for 595 

organic synthesis and industrial applications. The distinctive fibrous morphology of 596 

chrysotile nanotubes creates an environment conducive to catalytic reactions, 597 

leading to improved selectivity and reaction kinetics. 598 
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 599 

Fig. 12. The hypothetical models of the chrysotile nanotubes. Reproduced 600 
with permission from [169], Copyright (2011) Elsevier. 601 

 602 

4. Applications in photocatalysis 603 

In the realm of phototcatalysis, the interface interaction between tubular clay 604 

carriers and active components emerges as a pivotal determinant of performance 605 

and efficacy. Photocatalysis relies on the intricate interplay between light-absorbing 606 

materials and catalytic species to drive chemical transformations for environmental 607 

remediation and energy conversion [178,179]. Within this context, the interface 608 

interaction orchestrates the spatial arrangement, charge transfer dynamics, and 609 

surface chemistry crucial for photogenerated charge carrier migration and surface 610 

redox reactions [178–180]. Physical adsorption of photocatalytic species onto the 611 

tubular clay surfaces establishes localized reaction sites, amplifying photon capture 612 

efficiency and catalytic activity [180–184]. Chemical bonding between the active 613 

components and the clay matrices bolsters stability, mitigates photocorrosion, and 614 

prolongs catalyst lifespan under harsh irradiation conditions. Electrostatic 615 
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interactions, in turn, regulate the distribution and orientation of photoactive species, 616 

optimizing interfacial charge transfer processes and redox kinetics [180–185]. 617 

Surface coordination phenomena further fine-tune the electronic structure and 618 

surface reactivity of the catalyst, tailoring its performance to specific phototcatalytic 619 

applications [181–185]. 620 

 Due to clay's excellent structural properties and surface areas, nanotubes 621 

(chrysotile, halloysite, and imogolite) can be used as a catalyst or co-catalyst in 622 

photocatalytic systems. This section summarizes the application of clay nanotubes in 623 

photocatalysis from four aspects: Pollutant degradation in the water and air, 624 

photocatalytic hydrogen evolution reactions, disinfection of bacteria, and 625 

photocatalytic nitrogen fixation. 626 

4.1. Degradation of organic pollutants by photocatalysis 627 

With the development of modern industry, a wide range of toxic pollutants, 628 

including synthetic dyes, phenol, and pharmaceutical substances, have been 629 

discharged into the air, water, and soil, resulting in substantial harm to the 630 

environment and living organisms. Thus, various approaches, including chemical 631 

degradation, physical adsorption, and biodegradation methods, have been employed 632 

for environmental restoration [186–193]. However, many traditional approaches to 633 

environmental remediation were deemed ineffective and had the potential to result in 634 

secondary pollution. In recent years, solar-driven photocatalysis technology has 635 

emerged as an environmentally friendly, efficient, and cost-effective solution for 636 

addressing environmental pollution removal. Due to their excellent structural 637 

properties and surface areas, clay nanotubes have been attractive candidates for 638 

utilizing eco-friendly waste treatment in air and water environments. 639 
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For instance, Katsumata et al [67]. successfully crafted a nanotubular 640 

imogolite structure through a hydrothermal process, subsequently employing it to 641 

fabricate composites of imogolite/TiO2 and imogolite/Cu(II)-grafted TiO2 (Fig, 13A). 642 

The authors reported that, under visible light illumination, the composite 643 

imogolite/Cu(II)-grafted TiO2 demonstrated a notable improvement in its efficiency for 644 

the photodegradation of acetaldehyde when compared to both TiO2 and Cu(II)-645 

grafted TiO2. Furthermore, this enhanced activity appeared less influenced by the 646 

relative humidity. This result suggests a unique role of imogolite in effectively 647 

adsorbing acetaldehyde. The researchers found that imogolite adsorbs acetaldehyde 648 

and captures intermediates, including CH3COOH, during the acetaldehyde 649 

decomposition process. These intermediates are subsequently degraded to CO2 650 

through the action of radical species generated on the catalyst surface. The authors 651 

suggested the imogolite-containing composite as a highly efficient photocatalyst and 652 

could utterly eliminate the VOCs [67]. 653 

Similarly, Liu et al. [45] created a novel chrysotile@ZnO nanocomposite by 654 

coating ZnO on the surface of chrysotile, as illustrated in (Fig 13B). The 655 

photocatalytic performance of the chrysotile@ZnO nanocomposite was evaluated 656 

under UV light irradiation (365 nm), focusing on its capability for the photocatalytic 657 

decomposition of methylene blue (MB) dye. It has been stated that ZnO 658 

nanoparticles are homogeneously distributed across the chrysotile surface (Fig, 659 

13C). The team achieved up to 99.5% MB dye degradation after 60 min illumination 660 

compared with only 76% obtained with the ZnO, showing that the composite 661 

displayed improved light absorption and charge transport. Furthermore, it showcased 662 

a capacity for efficient recycling, retaining effectiveness even during the third cycle. 663 

The bandgap and photon-hole recombination rate of ZnO nanoparticles are lowered 664 
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by the combined effects of surface passivation and chrysotile's interfacial action. This 665 

improvement results in enhanced photodegradation of organic pollutants, introducing 666 

a new level of performance to chrysotile (Fig, 13D). 667 

 668 

 669 

Fig. 13. A) Cu(II)-grafted TiO2-imogolite composite: Potential photodegradation 670 
mechanisms of acetaldehyde under visible light irradiation. Reproduced with 671 

permission from [67]. Copyright (2013) Elsevier. B). Graph illustrating the 672 

chrysotile@ZnO nanocomposites' formation process. C) SEM images of 673 
chrysotile@ZnO nanocomposites. D) Diagrammatic representation of MB's 674 
photocatalytic degradation process over chrysotile@ZnO nanocomposites in the 675 

presence of UV light. Reproduced with permission from [45], Copyright (2020) 676 
Elsevier. 677 

 678 

In a captivating study conducted by Wu and his colleagues [194], they 679 

explored the potential of novel hetero-structural g-C3N4/TiO2/commercial halloysite 680 

composites in the elimination of ciprofloxacin from wastewater (Fig, 14A). Their 681 

findings reveal that the introduction of halloysite nanotubes (HNTs) and the g-C3N4-682 

TiO2 heterojunction significantly augmented the efficiency of charge transfer and 683 
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separation among photogenerated electron-hole pairs. This enhancement endowed 684 

the g-C3N4/TiO2/HNTs hybrid material with remarkable photoelectric performance 685 

and stability. Notably, the composite achieved an impressive 87% degradation of 686 

ciprofloxacin within 60 minutes, owing its rapid photoelectron-hole pair transfer and 687 

separation capabilities. The most significant result was the remarkable reusability of 688 

the C3N4/TiO2/HNTs nanocomposites even after 4 cycles. 689 

In a related investigation, Li et al. [195] investigated the photocatalytic 690 

degradation of chlortetracycline, a common antibiotic, under visible light irradiation. 691 

They achieved this by immobilizing LaFeO3,  one of the most important  perovskite-692 

type semiconductor, onto the surface of halloysite nanotubes (HNTs) through a 693 

simple sol-gel method (Fig, 14B). Thier findings indicated that untreated halloysite 694 

lacked photocatalytic activity. However, when chlortetracycline was exposed to pure 695 

LaFeO3, 74% of the drug degraded within a 90 min. Notably, the degradation rate 696 

increased to 87% with the use of LaFeO3/HNTs as catalyst, underscoring the 697 

enhanced performance facilitated by this composite. The improved efficacy was 698 

attributed to the adsorptive capacity of HNTs and the augmented electron transfer 699 

capacity of LaFeO3, providing insights into the synergistic mechanisms underlying 700 

the composite's photocatalytic behavior. 701 

In the other study, Mishra et al [99]. developed a TiO2@HNT photocatalyst 702 

through a combination of sol-gel and phase inversion methods, yielding a stable and 703 

highly efficient photocatalyst (Fig, 14C). This composite exhibited enhanced 704 

photocatalytic activity attributed to the electrostatic interaction between TiO2 and the 705 

HNT surface. Under UV light, the nanocomposite effectively degraded 87.47% and 706 

96.87% of methylene blue and rhodamine B, respectively. The strong electrostatic 707 

interaction between TiO2 and HNTs facilitated the generation of more electron-hole 708 
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pairs, thereby increasing photocatalytic activity. Particularly for methylene blue and 709 

rhodamine B dyes, which carry positive charges, HNTs improved the stability and 710 

supply of photo-generated charges, enhancing dye molecule absorption on the 711 

photocatalyst. This effect stemmed from electrostatic attractive and repulsive forces 712 

originating from the negatively charged HNTs surface. Crucially, the TiO2@HNTs 713 

photocatalyst demonstrated non-photo-corrosive behavior during three consecutive 714 

cycles of photocatalytic degradation, highlighting its suitability for practical 715 

applications. 716 

 717 

Fig. 14. A) Schematic of possible mechanism for photodegradation of CIP 718 

over g-C3N4/TiO2/HNTs heterojunction composites. Reproduced with permission 719 
from [194]. Copyright (2018) Elsevier. B). Schematic illustration of photocatalysis 720 

mechanism for La0.7Ce0.3FeO3/HNTs. Reproduced with permission from [195]. 721 
Copyright (2016) springer. C). Schematic representation of the photocatalytic activity 722 
of TiO2@HNTs photocatalyst. Reproduced with permission from [99]. Copyright 723 

(2019) springer.  724 

 725 
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Jatav et al. [196] recently conducted a hydrothermal growth of In2S3 on 726 

aluminogermanate double-walled imogolite nanotubes. Their investigation involved 727 

using methyl orange (MO) as the target pollutant for assessing photocatalytic 728 

performance. The findings demonstrated that the presence of INT facilitated the 729 

growth of In2S3 on its surface, while the morphology of In2S3 was significantly 730 

affected by the reaction time. When the reaction time extended to three and five 731 

hours, the tubular morphology of INT transformed into elongated sheets. 732 

Remarkably, the photocatalytic study revealed that the In2S3-decorated INT showed 733 

an improvement in the rate of MO photocatalytic degradation of about 400% when 734 

compared to pristine In2S3, despite the composite showing a 14% increase in 735 

bandgap. This improvement in photocatalytic performance was ascribed to the 736 

exceptional mobility of photogenerated holes, which sped up MO's oxidative 737 

processes directly. 738 

A literature survey reveals that using tubular clay minerals increases the 739 

photocatalytic activity of several photocatalyst materials [47,197–200]. Among these 740 

tubular clay materials, Halloysite stands out as one of the most widely used for 741 

photocatalytic applications. Due to its tubular structure and large specific surface 742 

area, it is used as a stabilizer to inhibit nanoparticle aggregation. Christoforidis et al. 743 

[200] exploited the self-assembly method to generate a hetero-architecture of 744 

Halloysite-graphitic carbon nitride (gC3N4) with different mass ratios 2, 4, 6, and 10 745 

wt.% of Halloysite (denoted by CNH-x). Utilizing both pure visible light and solar light 746 

simulation, the composites were then tested for the photodegradation of neutral, 747 

positively, and negatively charged pollutants, including  methyl orange (MO), phenol, 748 

and MB. TEM images (Fig, 15A) proved that the deposition of small-sized g-C3N4 749 

sheets onto the halloysite surface showed no apparent aggregation. It has been 750 
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experimentally provided that various compositions of Hall@gC3N4 composites 751 

exhibited photocatalytic activities greater than bare Halloysite and gC3N4. The best 752 

composite, CNH-2 catalyst (the one containing 4 wt% of HNTs), was able to degrade 753 

MB dye within 4h under solar light (Fig, 15B). Moreover, after four cycles of MB 754 

degradation under solar-like light irradiation, the CNH-2 composite displayed no 755 

noticeable decline in photocatalytic activity, signifying its remarkable photostability. 756 

Moreover, adding HNTs into gC3N4 led to an improvement in photocatalytic activity 757 

compared to gC3N4 alone for the degradation of neutral and positively charged 758 

pollutants. This enhancement was attributed to the electrostatic interaction between 759 

the negatively charged Halloysite surface and the photogenerated e-/h+ in gC3N4, 760 

which reduced charge carrier recombination rate (Fig, 15C). The negatively charged 761 

surface of Hal served two purposes in the case of the positively charged pollutant, 762 

such as MB: it enhanced MB adsorption and moved it close to graphitic carbon 763 

nitride. Conversely, the photocatalytic degradation of the negatively charged 764 

substrate, like MO, was similar to that of g-C3N4. In this case, while the repulsion 765 

between the negatively charged Halloysite and the negatively charged substrate 766 

(MO) had an adverse impact, it actually led to improved charge separation, 767 

consequently boosting the overall activity. Overall, Halloysite nanotubes (HNTs) had 768 

demonstrated to have a double function: (a) improving the abundance and stability of 769 

the photogenerated charges; (b) enhancing the adsorption of MB dye on the 770 

nanocomposite. These two functions are induced by electrostatic forces, combining 771 

attraction and repulsion, stemming from the negatively charged surface of HNTs. 772 

Likewise, the negatively charged halloysite nanotube surface combined with 773 

the electrostatic interactions of Ag cations served as a starting point to synthesize a 774 

core‐shell structured photocatalyst based on halloysite [199]. Subsequently, the 775 
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nucleation and growth of Ag3PO4 led to the formation of Ag3PO4@halloysite 776 

nanotubes (Ag3PO4@HNTs) nanocomposite (Fig, 15D). The nanocomposites 777 

exhibited remarkable photocatalytic effectiveness in decomposing RhB dye under 778 

ultraviolet illumination. The outstanding photocatalytic capabilities of these 779 

photocatalysts were attributed to both halloysite and Ag3PO4; mainly, halloysite 780 

shells' presence guarantees rapid dye adsorption onto the catalyst surface and 781 

concurrently reduces the band gap of Ag3PO4, as well as minimizing the 782 

recombination rate. The decrease in recombination was attributed to the lowered 783 

interface defect density and the field-effect passivation produced by the negative 784 

fixed charge within the halloysite shell. 785 

Many works have been conducted on the photocatalytic activities of clays 786 

nanotube photocatalysts to remove different types of organic pollutants, as 787 

summarised in Table 1. 788 



36 

 

 789 

Fig. 15. A) TEM images of Halloysite nanotubes@g-C3N4, B) Photocatalytic 790 
degradation of MB dye over Halloysite nanotubes@g-C3N4 under solar light 791 
irradiation. C) Proposed mechanism of the enhanced charge carries separation in 792 
the Halloysite nanotubes@g-C3N4 nanocomposites. Reproduced with permission 793 
from [200], Copyright (2016) Royal Society of Chemistry. D) Schematic Illustration of 794 

core-shell structured Ag3PO4@Hal nanocomposites formation process Ag3PO4@Hal 795 
nanocomposites. Reproduced with permission from [199], Copyright (2017) Elsevier. 796 

 797 
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Table. 1. Studies of clay nanotubes photocatalysts for various pollutants 798 

degradations 799 

Clay 
nanotube 

Photocatalyst light source Pollutants Photocatalytic 
degradation activity 

Ref 

 
 
 

Chrysotile 

Chrysotile@SnO2 Hg lamp (centered 
at 450 nm, 250 W) 

MB dye 99% (90 min) [47] 

Chrysotile@ZnO 250 W high-voltage 
Hg lamp (365 nm) 

MB dye 99.5% (60 min) [45] 

Chrysotile@ZnO 365 nm UV light 4-nitrophenol 39% (300 min) [98] 

 Chrysotile@TiO2 Xe light source CV dye ~66% (240 min) [201] 

 
 
 
 

Imogolite 

Fe-0.050-MeIMO 8 W mercury vapor 
lamp emitting at 254 

nm 

TRZ dye 100% (300min) [202] 

Me-IMO 8 W mercury vapor 
lamp emitting at 254 

nm 

TRZ dye 80% (300min) [202] 

INT-In2S3   300 W Xe lamp  MO dye 90% (120min) [196] 

TiO2-IMO UV light lamp (1.0 
mW/cm2) 

CH3CH2 90% (60min) [67] 

 
 
 
 
 
 
 
 
 
 
 

Halloysite 
 
 
 

Halloysite@Fe2O3 UV low pressure Hg 
immersion lamp 

TNN 15/32 

2,6-
dichloroaniline 

(26DCA) 

84.6% (300 min) [203] 

Halloysite@TiO2 UV low pressure Hg 
immersion lamp 

TNN 15/32 

2-chloroaniline 
(2CA) 

84.9% (300 min) [203] 

Ag3PO4-25 wt% HNTs 26 W Sylvania 
visible 
lamp. 

naproxen 
sodium 

~80% (10 min) [204] 

La2O3/CeVO4@halloysite 300 W Xenon lamp 
(λ ≥ 420 nm) 

TC dye 87.1% (60 min) [205] 

N-TiO2/ Ηalloysite xenon lamp, PLS-
SXE300, 300W 

phenol 70% (150 min) [206] 

Ag2CO3-75 wt.% Ηalloysite 26 W Sylvania 
visible lamp 

RhB dye 97 % (40 min) [207] 

CdS@Ηalloysite xenon lamp, 500W TC dye 93% (60 min) [208] 

Ag@ Ηalloysite 500 W mercury 
lamp 

TC dye 95.81% (80 min) [209] 

Ag/AgBr/ Ηalloysite 200 W xenon lamp 
with a UV cutoff 

filter 

RhB dye 98%% (30 min) [210] 

AgNPs@N-Ηalloysite 500 W xenon lamp MB dye 90% (60 min) [211] 

Co3O4@ Ηalloysite 60 W high-pressure 
mercury lamp 

MB dye 97 % (120 min) [197] 

Halloysite@W18O49 300 W Mercury 
lamp 

MO dye 99 % (120 min) [198] 

Bi
3+

- CdS/Halloysite 500 W xenon lamp TC dye 90% (30 min) [212] 

Ce-TiO2/HNT 300 W Xe lamp (λ > 

 420) 

Tetracycline 78% (60 min) [213] 

Carbon-TiO2-HNT (8%) 50 W UV lamps 

(λ < 420 nm) 

MB dye 81% (90 min) [214] 

Pani-TiO2-HNT 

(0.5 g/L) 

XPA-7 

photochemical 

system (800 W Xe 

lamp) 

RhB dye 76.49 % (360 min) [215] 

Amylose-HNT-TiO2 12 W UV lamp (λ = 

253 nm) 

4-nitrophenol 90% (240 min) [216] 

 800 
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4.2. Photocatalytic water splitting 801 

Photocatalytic water splitting has been widely explored as a vital clean energy 802 

source. Photogenerated electrons and holes are simultaneously generated when 803 

exposed to light in the general mechanism of photocatalytic water splitting for 804 

hydrogen production. Following this, electrons and holes migrate to the 805 

photocatalyst's surface to participate in the reaction. The photocatalyst's potential 806 

and valence band level should be positioned at a lower energy level than H+/H2 and 807 

higher than OH-/O2 potential [9,15,217]. To ensure a successful H2 evolution 808 

reaction, the photocatalyst's conduction band (CB) energy level must be below 0 V 809 

versus the normal hydrogen electrode (NHE) at pH 7. Similarly, for effective H2O 810 

oxidation, the valence band (VB) energy level should be above 1.23 V versus NHE. 811 

Therefore, theoretically, for water splitting, the lowest bandgap is 1.23 eV. These 812 

energy level requirements are vital to promote favorable redox processes during 813 

photocatalysis. Recently, it was proven that using clay nanotubes could improve 814 

photocatalytic activity and facilitate separation and recycling [205,208]. 815 

Hojamberdiev and co-workers [218] stated that the synthesis of a novel Ni(OH)2@g-816 

C3N4/halloysite composite photocatalyst by mixing an easily prepared gC3N4 with 817 

low-cost Ni(OH)2 nanoplatelets, inexpensive and earth-abundant halloysite 818 

nanotubes. The obtained composite was used as an efficient photocatalyst for 819 

hydrogen evolution. As-prepared photocatalysts' hydrogen evolution reaction activity 820 

was assessed using an aqueous solution with 10 vol% methanol as a sacrificial 821 

agent. The investigation of the Ni(OH)2 loading effect showed that the 1 wt% 822 

Ni(OH)2@g-C3N4/halloysite photocatalyst exhibited the maximum photocatalytic 823 

hydrogen evolution rate (18.42 µmol·h-1) compared to Ni(OH)2@g-C3N4 (9.12 824 

µmol·h-1) and was 40 times higher than g-C3N4 alone (0.43 µmol h-1) (Fig. 16A). 825 

Furthermore, 1 wt% Ni(OH)2@g-C3N4/halloysite photocatalyst showed negligible 826 
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decrease in H2 evolution activity after three cycles (Fig. 16B). The halloysite's 827 

negatively charged surface, which effectively traps photogenerated holes, lowers the 828 

rate of electron-hole recombination, and lengthens the electron lifespan, provided an 829 

explanation for these results (Fig. 16C). Moreover, a computational model was 830 

employed to assess the adsorption properties of H2O and MeOH molecules on the 831 

catalyst surface. The findings indicated that the presence of halloysite, g-C3N4 and 832 

Ni(OH)2 enhanced the adsorption of water and methanol on the co-catalyst surface. 833 

 834 

Fig. 16. A) Ni(OH)2@g-C3N4/halloysite nanocomposites: reaction time courses of 835 
visible light-driven hydrogen evolution. B) Reaction time courses of visible-light-836 
driven hydrogen evolution on 1.0Ni(OH)2@g-C3N4/halloysite nanocomposite for three 837 
successive runs. C) Graphical representation of the evolution of photocatalytic 838 
hydrogen evolution over developed nanocomposites, showing the separation and 839 
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transfer of photogenerated charge carriers. Reproduced with permission from [218], 840 
Copyright (2019) Elsevier.  841 

  842 

Recently, Lu et al. [219] successfully synthesized several 843 

K0.5Na0.5NbO3/halloysite nanocomposites by changing the halloysite concentration 844 

from 0 to 25 wt.% via a solid phase reaction process. These hybrid samples were 845 

then used to analyze the photocatalytic hydrogen evolution performance under UV 846 

light illumination (Xenon arc lamp). The authors demonstrated that by incorporating 847 

halloysite (HNTs), the absorption spectrum of K0.5Na0.5NbO3 (KNN) exhibited a 848 

substantial enhancement in the UV region, with the absorption intensity in the 200-849 

300 nm range increasing approximately two-fold (Fig. 17A). Introducing HNTs into 850 

KNN reduced the band gaps from 3.03 eV to 2.64 eV (Fig. 17B). Moreover, the 851 

authors demonstrated that the conduction band (ECB) of KNN-5wt%HNTs 852 

nanocomposite was changed to a lesser value from -1.13 eV to -1.18 eV compared 853 

with the pure K0.5Na0.5NbO3, providing more straightforward water reduction to 854 

hydrogen. Notably, the composite material KNN-5wt%HNTs demonstrated an 855 

excellent hydrogen production performance (31.28 µmol·g-1 h-1) under UV light 856 

irradiation, producing 4.48 times as much H2 as K0.5Na0.5NbO3. (Fig. 17C). The 857 

findings of this study confirm that the judicious incorporation of halloysite can 858 

improve H2 production efficiency. 859 

 860 

Fig. 17. K0.5Na0.5NbO3-halloysite nanotubes composites. A) Spectra of optical 861 

absorption, B) illustrative sketch of the energy band structures and C) hydrogen 862 
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evolution reaction for different composites. Reproduced with permission from [219], 863 
Copyright (2022) Elsevier. 864 

 865 

In a recent research conducted by our research group [220], we achieved a 866 

milestone in literature by modifying double-walled aluminogermanate INTs through 867 

the incorporation of titanium into the NT walls. The precursor ratio, denoted as x = 868 

[Ti]/([Ge]+[Ti]), was varied between 0 and 1. The optical properties of the catalysts 869 

we prepared revealed a significant reduction in the band gap (Eg) energy from 4.35 870 

eV (for pristine Ge-DWINT) to 3.96 eV (x = 0.2) and further to 3.92 eV (x = 0.4). 871 

Increasing the Ti/Ge ratio consistently decreased the Eg to 3.85 eV. Additionally, Ti-872 

doping initially caused a downward shift of the VB edge (0.13 and 0.43 eV for ratios 873 

of 0.2 and 0.4, respectively), followed by an upward shift with further increases in the 874 

Ti/Ge ratio. A similar trend was observed for the CB edge, which shifted down to -875 

0.13 eV (for a ratio of 0.4) and up to -1.43 eV (Fig. 18A). Interestingly, this evolution, 876 

with an optimum around x = 0.4, coincided with the disappearance of nanotubes in 877 

favor of boehmite and anatase phases. We examined the photocatalytic properties of 878 

the prepared photocatalysts for H2 production under artificial solar-light irradiation to 879 

assess the impact of Ti-doping. Optimal ratios were determined at x = 0.2 and x = 880 

0.4, yielding H2 production rates of 1509 and 1472 μmol g-1, respectively (Fig. 18B). 881 

These rates surpassed those of the composites, bare reference, and TiO2 P25 882 

benchmark NP SC. The enhanced photoactivity stemmed from the narrowed band 883 

gap and downward shifts of the CB edges in both composites. As illustrated in Fig. 884 

18C, photogenerated charges (e−/h+) trigger dissociative adsorption of sacrificial 885 

electron donors (SED) and hole scavenging, leading to the release of hydrogen ions 886 

(H+) within the nanotube's internal cavity. Reduction, resulting in H2 formation, 887 

predominantly occurs on the outer surface of the nanotubes, while oxidation 888 

predominantly occurs within the nanotubes. 889 
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 890 

Fig. 18. A) energy diagram scheme of the Ti/Ge samples as a function of the 891 
substitution ratio. B) Hydrogen evolution reaction under solar-light irradiation for a) 892 
Ge-DWINT and Ti/Ge samples with different ratios. C) Schematic illustration of the 893 

proposed H2 production mechanism. Reproduced with permission from [220], 894 
Copyright (2023) wiley. 895 

 896 

In an intriguing study conducted by Zhang et al. [221], they fabricated a 897 

satellite-core structured Cd0.5Zn0.5S@halloysite hollow nanotubes with a 0D-1D 898 

configuration, modified by EDTA with varying amounts, denoted as CZS@HNTs-EX. 899 

This was achieved through a facile in-situ assembly approach for photocatalytic H2 900 

evolution. As depicted in Fig. 19A, the organic solvent EDTA was initially employed 901 

to modify the halloysite, rendering its surface negatively charged. Then,  because of  902 

the electrostatic attraction Cd2+ and Zn2+ cations were added and adsorbed onto the 903 

halloysite. The addition of thioacetamide finally caused the Cd0.5Zn0.5S nanospheres 904 

to grow in situ on the surface of the halloysite that had been modified by EDTA. It 905 

was highlighted in this work that the CZS@HNTs-E3% composite exhibited an 906 

appealing photocatalytic H2 evolution after 4 hours of illumination with a yield of 907 

102.67 mmol g−1 (Fig. 19B) and high apparent quantum efficiency (AQE) of 32.29% 908 

at λ = 420 nm, higher than majorities of H2 evolution photocatalysts (Fig. 19C). Only 909 

a slight decrease in H2 production was observed after five cycles, while maintaining 910 

the crystallinity and morphology of the CZS@HNTs-E3% hollow nanotubes. This 911 

highlights the potential of recyclable catalysts for industrial applications. 912 
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Furthermore, the authors demonstrated that the enhancement of the photocatalytic 913 

of CZS@HNTs-EX was attributed to the succeeding factors: I) the hollow 914 

architecture of halloysites caused by several reflections and scattering of light within 915 

the cavity, extending the optical transmission path and enhancing the light utilization. 916 

II) Halloysites allow an excellent dispersion of Cd0.5Zn0.5S, promoting the diffusion of 917 

charge carriers to the catalyst-solution interface. III) EDTA embedded on halloysites 918 

draws and uses considerable photogenerated h+, promoting the charge separation of 919 

e- and h+, permitting more e- to migrate to the surface of Cd0.5Zn0.5S for participation 920 

in the reductive reaction. IV) Owing to the h+ capture, the h+-dominated photo-921 

oxidation of S2- in Cd0.5Zn0.5S is hindered, causing excellent photochemical stability 922 

in CZS@HNTs-E3. 923 

As far as we are aware, no research has been conducted on the utilization of 924 

imogolite or chrysotile for photocatalytic water splitting. It is, therefore, important to 925 

pursue efforts in this direction. Given the success of halloysite-based composites in 926 

promoting photocatalytic hydrogen evolution, it is reasonable to believe that 927 

imogolite and chrysotile might exhibit similar or superior effects. 928 

 929 



44 

 

 930 

Fig. 19. A) Schematic representation of the EDTA-mediated CZS@HNT synthesis 931 

process. B) Hydrogen evolution time courses for CZS@HNTs-EX samples with 932 
varying EDTA to halloysite mass ratios. C) Photocatalytic performance of 933 

CZS@HNTs-E3 under monochromatic light irradiation: UV–vis spectrum and 934 
wavelength dependence. Reproduced with permission from [221], Copyright (2019) 935 

WILEY. 936 

 937 

4.3. Photocatalytic removal of NOx 938 

Nitric oxide (NOx) emission into the atmosphere is causing increasing concern. 939 

This pollutant is produced through fossil fuel utilization and combustion of industrial 940 

burners. The NOx emitted into the atmosphere causes acid rain [221–224], climate 941 

changes, and ozone layer destruction [222,223]. Thus, its quantitive removal or 942 

reduction is highly desired. In fact, numerous catalytic processes for the conversion 943 

of nitrogen gases (e.g., NO and NO2) into oxygen (O2), nitrogen (N2), or nitrate (NO3
-944 

) have been developed, including adsorption, selective catalytic reduction, 945 

nonselective catalytic reduction, wet scrubbing, and biofiltration. However, these 946 

mailto:CZS@HNTs.(B)
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techniques can only be used to treat NOx in extreme concentrations; their efficiency 947 

and economic benefits are reduced at lower NOx concentrations. Currently, for low-948 

concentration NOx in the air at room temperature, the photocatalytic removal of NOx 949 

is regarded as a green and low-cost technology and has attracted much attention. 950 

Indeed, some studies have removed or reduced the NOx through clay nanotube 951 

systems. For instance, to remove NOx in the presence of UV and Visible light 952 

irradiation, Papoulis et al. [224] reported a sol-gel approach for forming 953 

TiO2@halloysite nanocomposites. This was performed under hydrothermal 954 

conditions with a halloysite sample from Limnos Island in Greece. The TEM results 955 

of the as-prepared nanocomposite exhibited an excellent distribution of TiO2 on the 956 

external surfaces of the halloysite nanotube (Fig. 20A). The halloysite acts as a clay 957 

stabilizer, preventing the aggregation of nanoparticles because of its substantial 958 

specific surface area and its tubular surface [197,198]. The photocatalytic results 959 

clearly show that the as-prepared TiO2@halloysite nanocomposite has significantly 960 

better photocatalytic efficiency in decomposing NOx gas when exposed to UV (λ = 961 

290 nm) and visible light (λ = 510 nm) illumination: these are, respectively, 2.61 and 962 

1.15 times higher than pristine commercial TiO2 (P25), (Fig. 20B). The well-963 

dispersed TiO2 has explained this higher activity on the halloysite surface. The same 964 

research group used the same method to synthesize two TiO2@halloysite 965 

nanocomposites, utilizing halloysite from two distinct geographical regions: Greece 966 

and the USA [68]. The two clays showed a good dispersion of TiO2 NPs in their 967 

respective nanocomposites, and both had interparticle mesopores measuring 968 

approximately 5.7 nm. It was observed that both nanocomposites demonstrated 969 

promising photocatalytic performance for the NOx gas decomposition under visible 970 

light (λ = 510 nm) and UV light irradiation (λ = 290 nm) (Fig. 20C). The 971 
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TiO2@halloysite nanocomposite with halloysite from the USA demonstrated higher 972 

photocatalytic performance, likely due to its larger specific surface area. (187 m2/g).  973 

Furthermore, it also revealed considerably improved photocatalytic activity for 974 

NOx gas decomposition under visible light (λ = 510 nm) and UV light irradiation ( λ = 975 

290 nm), which are, respectively, 9.38 and 1. 69 times higher than pristine 976 

commercial TiO2 (P25) (Fig. 20C). In another study by the same research group 977 

[225], a three-phase nanocomposite was prepared using two distinct nanoclay 978 

minerals, halloysite, and palygorskite, in combination with TiO2 (denoted by Hal: 979 

PAL-TiO2) (Fig. 20D). The authors demonstrated that the Hal:PAL-TiO2 980 

nanocomposite exhibited a grey color with enhanced absorption in the visible light 981 

region compared to titania P25, which showed no absorption in the same region. The 982 

photocatalytic activity of theses systems was further evaluated in this system by 983 

decomposing the NOX gas as a function of irradiation time. The results 984 

demonstrated that the Hal:PAL-TiO2 nanocomposite displayed significantly higher 985 

activity than the commercial TiO2 P25 under both UV and visible light irradiation, with 986 

up to 8 times higher efficiency under UV light and 1.72 times higher efficiency under 987 

visible light (Fig. 20E).  988 
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 989 

Fig. 20. A) TEM images showing TiO2 grains of about 3–15 nm on halloysite tubes 990 
B) Photocatalytic activities in decomposing NOx gas by commercial titania P25, 991 

TiO2-treated halloysite (Ti-Hal) and TiO2-treated palygorskite. Reproduced with 992 
permission from [224], Copyright (2010) Elsevier. C) Photocatalytic activities in 993 

decomposing NOx gas by commercial titania P25, TiO2-treated halloysite (from 994 
Greece) and TiO2-treated halloysite (from USA). Reproduced with permission from 995 
[68], Copyright (2013) Elsevier. D) TEM micrographs showing the three-phase 996 

nanocomposites Hal10:Pal20-TiO2. E) Photocatalytic activity for NOx gas 997 

decomposition by commercial titania (P25), single clay–TiO2, and three-phase 998 
nanocomposites. Reproduced with permission from [225], Copyright (2014) Elsevier. 999 

 1000 

4.4. Photocatalytic disinfection of bacteria 1001 

Disinfection of bacteria is of particular importance. Numerous efforts have been 1002 

dedicated to developing environmentally friendly technologies for disinfecting 1003 

microorganisms in water [226–228]. However, despite traditional water disinfection 1004 

technologies such as ozone, chlorination, and ultraviolet methods, they have many 1005 

disadvantages. For example, they may be chemically or energy-demanding and 1006 

produce toxic by-products. Photocatalytic disinfection of bacteria, on the other hand, 1007 

is a non-toxic and eco-friendly process that does not create any harmful by-products. 1008 
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Escherichia coli is a reliable indicator of water quality concerns within the diverse 1009 

spectrum of bacteria, often signaling potential fecal contamination due to its 1010 

presence [226]. The performance of nanotube clay photocatalysts in such 1011 

applications has been recently investigated. For instance, Xu et al. [210] successfully 1012 

synthesized a novel composite consisting of Ag/AgBr/halloysite nanotube via a facile 1013 

sol-gel method and used it to kill gram-negative bacterium E. Coli when exposed to 1014 

visible light. This study's findings revealed that all Ag/AgBr/halloysite 1015 

nanocomposites exhibited strong absorption in the range of 300 to 1000 nm (Fig. 1016 

21A). Furthermore, according to the PL spectrum, the Ag/AgBr/halloysite nanotube 1017 

emitted relatively weak light compared to Ag/AgBr alone, signifying higher separation 1018 

of the photoexcited electron-hole pairs in the composites and indicating enhanced 1019 

photocatalytic activity. According to the findings of this study, it was found that when 1020 

the bacteria was treated with 45% Ag/AgBr/halloysite nanotube composite under 1021 

irradiation, up to 98% of E. Coli was killed, surpassing the efficacy of Ag/AgBr alone 1022 

under the same conditions (Fig. 21B and 21C). Based on this study's experimental 1023 

observation and characterization results, the formation of the composite is the key 1024 

factor behind the increased photocatalytic disinfection of bacteria. 1025 

In the presence of the Ag/AgBr/halloysite nanotube composite, the photocatalytic 1026 

mechanisms are as follows: first, the halloysite nanotube serves as the supporting 1027 

structure in the composite, preventing the decomposition ofAg/AgBr particles; then, 1028 

the charged surface of the halloysite efficiently improves the separation of electron-1029 

hole pairs and promotes the adsorption of E. Coli. 1030 

The earlier studies show that halloysite has received considerable attention as a 1031 

photocatalyst. However, it is essential to highlight that research concerning the use 1032 

of imogolite or chrysotile for photocatalytic bacterial disinfection has been scarcely 1033 
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explored. This is not so surprising in the case of chrysotile since these nanotubes 1034 

are known to be toxic, limiting their use. For imogolite nanotubes, some research 1035 

groups have explored their potential for treating pathogenic bacteria without 1036 

employing photocatalysis techniques [229,230]. While these investigations represent 1037 

a valuable exploration of imogolite's antimicrobial properties, they also emphasize 1038 

the need for additional research to unlock its full potential for combating bacterial 1039 

contamination. 1040 

 1041 

Fig. 21. A) UV–Vis absorption spectra of Ag/AgBr/Halloysite nanotube 1042 

nanocomposite. B) Photographs of colonies of E. coli treated with HNTs, Ag/AgBr, 1043 
and 45%Ag/AgBr/HNTs without and with visible light irradiation, respectively; C) 1044 

Histograms of E. coli viability. Reproduced with permission from [210], Copyright 1045 
(2021) Elsevier. 1046 

 1047 

5. Conclusion and future perspectives  1048 

Nanosized tubular clay materials have garnered significant interest due to 1049 

their distinctive physicochemical characteristics. The most representative examples 1050 

of tubular clay materials are imogolite, halloysite, and chrysotile. Although these 1051 

clays have similar morphology, their chemical structure and properties differ.  1052 

Considering that these nanotubular clay materials have a high surface area 1053 

arising from their nanotubular structure, large pore volumes, higher adsorption 1054 

capacity, and good mechanical properties, they could offer a wide range of promising 1055 

applications in photocatalysis. Moreover, these tubular clays also serve as easily 1056 
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obtainable and low-cost supports to prevent the aggregation of semiconductor 1057 

materials. However, the only drawback of using these materials as photocatalysts is 1058 

their wide band gap, which limits their potential in photocatalytic reactions. 1059 

Thus, the primary aim of this review has been to compile an extensive 1060 

overview over several decades, including the recent trends in the development of 1061 

imogolite, halloysite, and chrysotile, as well as their main physicochemical 1062 

properties. Furthermore, we have systemically provided an overview of current 1063 

research progress on these materials for photocatalytic applications, mainly focusing 1064 

on their intrinsic merits and the challenging aspects of photocatalysis. This review 1065 

has also elucidated their versatile photocatalytic applications, including the 1066 

decomposition of organic dye contaminants, selective organic transformation via 1067 

photocatalysis, hydrogen generation, bacterium disinfection, and reducing nitrogen 1068 

oxide (NOx) pollution.  1069 

Although research has been done on using clay nanotubes as photocatalysts, 1070 

substrates, or in combination with other photocatalysts in heterogeneous 1071 

photocatalysis, most investigations in this domain remain in their early stages. 1072 

Therefore, based on this review, future research should prioritize the following 1073 

aspects: 1074 

(i) Most current research combines imogolite, halloysite, and chrysotile with 1075 

traditional semiconductors (such as TiO2 and ZnO). Future research should 1076 

attempt to combine these clays with new semiconductors. For example, it is 1077 

possible to develop a co-catalyst without precious metals that can be added to 1078 

these clay nanotube-based photocatalysts. In addition, the cost should be 1079 

carefully considered for industrial applications. 1080 
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(ii) Although numerous studies have examined the photocatalytic capabilities of 1081 

clay nanotube-based nanocomposites in degrading dye pollutants, most of 1082 

these works have focused solely on MB, RhB, TC, and MO dyes. Therefore, it 1083 

is imperative to extend the range of organic pollutants like antibiotics, drug 1084 

components, and pesticides to assess the photocatalytic degradation potential 1085 

of such materials comprehensively.  1086 

(iii) This review also recommends using actual polluted water instead of 1087 

simulated wastewater and emphasizes the importance of measuring 1088 

degradation efficiency through parameters such as TOC removal 1089 

percentage. Standardization of measurements is also desirable in order to 1090 

compare the different systems, particularly in terms of stability. 1091 

(iv) Undoubtedly, there is a substantial need for in-depth research to elucidate 1092 

the detailed photocatalytic mechanism of clay nanotubes. This requires the 1093 

utilization of innovative characterization and computational methods, 1094 

including but not limited to density functional theory (DFT). Such 1095 

investigations are crucial for enhancing our understanding of these materials 1096 

and their photocatalytic processes. There are many more photocatalytic 1097 

experiments in reducing CO2 in the presence of imogolite, halloysite, and 1098 

chrysotile that can be done. This research field seems promising and, to our 1099 

knowledge, has not yet been investigated by any researcher, nor has there 1100 

been any published data.  1101 

(vi) Future experimental research will be motivated by imogolite's potential to 1102 

improve polarization in photocatalytic applications, given its natural 1103 

polarizability and ease of manufacture. This implies that imogolite will soon be 1104 

used for energy conversion, adding a new substance to the vast field of 1105 

photocatalysis. 1106 
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(vii) The current research on imogolite, halloysite, and chrysotile photocatalysts 1107 

predominantly centers around small-scale laboratory investigations. The focus 1108 

should shift towards creating environmentally friendly large-scale preparation 1109 

methods in the future. 1110 

Compared to similar nanotube materials, like CNTs, the current study of clay 1111 

nanotube photocatalysts still needs to be improved. From the number of applications 1112 

reported in our review article, we conclude that halloysite, chrysotile, and imogolite 1113 

are versatile materials that can provide new opportunities and directions in the field 1114 

of photocatalysis. 1115 
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