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A MODULAR FRAMEWORK FOR THE BACKWARD ERROR

ANALYSIS OF GMRES

ALFREDO BUTTARI 1, NICHOLAS J. HIGHAM 2, THEO MARY 3, AND BASTIEN VIEUBLÉ 4

Abstract. The Generalized Minimal Residual methods (GMRES) for the solution of

general square linear systems is a class of Krylov-based iterative solvers for which there
exist backward error analyses that guarantee the computed solution in inexact arithmetic

to reach certain attainable accuracies. Unfortunately, these existing backward error

analyses cover a relatively small subset of the possible GMRES variants and cannot be
used straightforwardly in general to derive new backward error analyses for variants that

do not yet have one. We propose a backward error analysis framework for GMRES that

substantially simplifies the process of determining error bounds of most existing and
future variants of GMRES. This framework describes modular bounds for the attainable

normwise backward and forward errors of the computed solution that can be specialized

for a given GMRES variant under minimal assumptions. To assess the relevance of our
framework we first show that it is compatible with the previous rounding error analyses

of GMRES in the sense that it delivers (almost) the same error bounds under (almost)
the same conditions. Second, we explain how to use this framework to determine new

error bounds for GMRES algorithms that do not have yet a backward error analysis,

such as simpler GMRES, CGS2-GMRES, mixed precision GMRES, and more.

1. Introduction

The Generalized Minimal Residual method (GMRES), introduced by Saad and Schultz
[41], aims to solve a nonsingular general square linear system

Ax = b, A ∈ Rn×n, 0 ̸= b ∈ Rn, (1.1)

by iteratively building optimal approximate solutions xk from a nested sequence of Krylov
subspaces Kk(A, r0) = span{r0, Ar0, . . . , A

k−1r0}. The process chooses the kth iterate xk ∈
x0+Kk(A, r0) to minimize the 2-norm of the linear system residual rk = Axk−b and delivers
the exact solution in at most k = n iterations in exact arithmetic.

In practice, GMRES is implemented in floating-point arithmetic and the true solution
cannot be computed exactly (see [10] for an up-to-date survey of floating-point arithmetic).
Therefore, to derive bounds on the attainable backward and forward errors of GMRES, that
is, bounds on the smallest backward and forward errors that can be obtained, we need a
backward error analysis of GMRES.

The first backward error analysis of GMRES is presented by Drkošová et al. [18] and
appears in the Ph.D. thesis of Rozložńık [39]. In their analysis, the authors of [18] proved that
GMRES with Householder orthogonalization (HH-GMRES) is normwise backward stable,
meaning that it produces a computed solution whose normwise backward error is of order the
unit roundoff of the floating-point arithmetic. To the best of our knowledge, this is the first
backward error analysis of GMRES. A subsequent backward stability result on HH-GMRES
with relaxed accuracy on the matrix–vector product was given in [19].

The second significant backward error analysis of GMRES concerns GMRES with modi-
fied Gram-Schmidt orthogonalization (MGS-GMRES). It is stated in the concluding remarks
of the analysis of HH-GMRES [18] that, even though numerical experiments suggested that
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MGS-GMRES was also backward stable, the analysis of HH-GMRES cannot be straight-
forwardly extended to MGS-GMRES. The underlying reason for this difficulty is the loss of
orthogonality in the computed Krylov basis generated by the MGS orthogonalization pro-
cess. It required ten years and different keystone results, including but not limited to those
in [20] and [37], for the MGS-GMRES algorithm to be finally proven backward stable by
Paige et al. [36]. Because MGS-GMRES is generally preferred over HH-GMRES in practice,
and because of the technicality of the proof and the various sub-results needed that widen
our understanding of other algorithms, the work [36] is an important milestone in backward
error analysis.

The third and last major backward error analysis of GMRES was proposed by Arioli et
al. in [4] and [5]. It covers flexible GMRES (FGMRES), a variant of right-preconditioned
GMRES accommodating variable preconditioners [40]. The first study [5] bounds the back-
ward error of FGMRES with arbitrary preconditioners and, subsequently, uses this result to
prove the normwise backward stability of FGMRES preconditioned by the LU factors of A
computed with an unstable pivoting strategy. The second study [4] completes the previous
one by improving the earlier backward error bound with arbitrary preconditioners and by
demonstrating that FGMRES preconditioned by the LU factors computed in low precision
is normwise backward stable.

Other more recent backward error analyses of GMRES exist in the literature but are
strongly based on one of the abovementioned analyses. For example, the authors of [3]
derived a backward error bound for MGS-GMRES using an arbitrary matrix–vector product
by relying on the analysis of Paige et al. [36]. The authors of [13] proposed a backward error
analysis of a split-preconditioned FGMRES in mixed precision by extending the work of
Arioli et al. [4] and [5].

Our motivation for designing a new backward error analysis for GMRES lies in one
striking aspect of this algorithm: its large number of possible variants. It is not relevant to
enumerate them all in this article and, in the following, we only provide an idea of the scale
of this number. We redirect the reader to the recent survey [51] or the book of Saad [42]
for more details on the various implementations of GMRES. The reason for the extensive
number of variants of GMRES lies in the number of options available in each part of this
algorithm:

• At the preconditioner level we have a wide range of choices of preconditioners to
pick from. These include partial or approximate factorizations of A, approximate
inverses, polynomials, or iterative solvers, to quote a few. In addition, we need
to consider the four main ways to apply them: right-, left-, split-, or flexible-
preconditioning. More information about preconditioning can be found in [50].

• At the orthogonalization level we can pick from a range of algorithms that offer
different tradeoffs between numerical stability and performance. The most common
choices are Householder and classical or modified Gram-Schmidt with or without
reorthogonalization. Numerical comparison of these algorithms can be found in [25,
chap. 19], [21], or [32].

• At the restart level we need to choose whether or not to stop and restart GMRES
periodically and under which criteria. In doing so, we limit the size of the Krylov
subspaces and we can reduce resource consumption, but it comes at the risk of
harming the convergence.

• Finally, we need to consider all the remaining techniques that change one or multiple
of these parts. For instance, employing mixed precision arithmetic [3] or random-
ization [6], approximating the matrix–vector product [22], compressing the basis [2],
or using block orthogonalization and communication avoiding approaches [16, 28].

Unfortunately, and importantly, among the many possible variants of GMRES only a small
number are covered by one of the previous backward error analyses. In addition, because
these previous analyses are long, sophisticated, and were not made to be modular, extending
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one of them to derive a new backward error analysis for a given variant of GMRES is generally
far from straightforward.

Motivated by this issue, the core objective of this article is to present a backward error
analysis framework which simplifies the process of deriving bounds for the attainable norm-
wise backward and forward errors of the computed solutions by many GMRES algorithms,
in particular, those which do not yet have backward error analyses. To do so, in section 2,
we list the set of notations and mathematical tools we will use throughout the article. In
section 3, we develop our backward error analysis framework consisting of: an abstract
modular algorithm that can be specialized to most of the possible and popular GMRES
algorithms; parametric error bounds and minimal assumptions on the operations of this ab-
stract algorithm; modular bounds for the attainable normwise backward and forward errors
resulting from the error analysis of this abstract algorithm. In section 4, we consider an ex-
tension of this framework for taking into account restarted variants of GMRES. In section 5,
we explain how to use our framework by applying it to HH-GMRES, MGS-GMRES, and
FGMRES, showing in addition that it provides (almost) the same results under (almost) the
same conditions as the previously mentioned existing backward error analyses of GMRES.
Finally, in section 6, we use this framework to derive error bounds for simpler GMRES, GM-
RES using classical Gram-Schmidt with reorthogonalization, and mixed precision restarted
GMRES for which no bounds existed previously in the literature. We further discuss how
this framework could be applied to deflated GMRES, randomized Gram-Schmidt GMRES,
and block GMRES.

2. Notations

In this section we introduce our notation and briefly recall the essential mathematical
concepts and tools that we will use throughout the article.

We use the standard model of floating-point arithmetic [25, sect. 2.2], we use the notation
fl(·) to denote the computed value of a given expression, and we put a hat on variables to
denote that they represent computed quantities. For any integer k, we define

γk =
ku

1− ku
.

A superscript on γ denotes that u carries that superscript as a subscript; thus γf
k = kuf/(1−

kuf ), for example. We also use the notation γ̃k = γηk to hide modest constants η.
Our analysis is a traditional worst case analysis and the error bounds obtained depend

on some constants related to the problem dimension n and the size of the basis k. We
gather these constants into generic functions c(n, k). For the sake of readability, as these
constants are known to be pessimistic (see [17, 26, 27]), we do not always keep track of the
precise values of the functions c(n, k). Instead, we guarantee that those functions c(n, k) are
polynomials in n and k of low degree.

We use the notation ≲ and ≈ when dropping negligible second order terms in the error
bounds, and the notation Θ1 ≫ Θ2 to indicate that Θ1 is much greater than Θ2. In
particular, we consider that if Θ1 ≫ Θ2 we can safely assess that Θ1 ≫ c(n, k)Θ2, where
c(n, k) is a polynomial in n and k of low degree. We also use the notation ≡, which means
that we can take the quantity on the left, which is in our control and is not fixed, to be
equal to the quantity on the right.

We define the normwise condition number of a square nonsingular n × n matrix M by
κ(M) = ∥M−1∥∥M∥ for a given norm, and M−1 is replaced by the pseudoinverse if M is not
square. We represent the set of singular values of M by σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M),
where we define σmin(M) = σn(M) and σmax(M) = σ1(M).

Our error analysis uses both the 2-norm and the Frobenius norm, denoted by ∥ · ∥2 and
∥ · ∥F , respectively. The 2-norm of M refers to the induced norm

∥M∥2 = maxx
∥Mx∥2
∥x∥2

= σmax(M), ∥M−1∥−1
2 = minx

∥Mx∥2
∥x∥2

= σmin(M).
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We write κ2(M) and κF (M) for the corresponding condition numbers of M .
The forward error of a computed solution x̂ of the linear system (1.1) is defined as

∥x− x̂∥2
∥x∥2

,

while the normwise backward error of x̂ we are using is defined as [25, sect. 7.1]

min
{
ε : (A+∆A)x̂ = b+∆b, ∥∆A∥F ≤ ε∥A∥F , ∥∆b∥2 ≤ ε∥b∥2

}
=

∥b−Ax̂∥2
∥A∥F ∥x̂∥2 + ∥b∥2

.

In the remainder of this article, “backward error” will refer implicitly to the “normwise
backward error”.

3. Backward error analysis framework

In this section, we develop our backward error analysis framework for GMRES. This
framework is built upon an abstract algorithm which we call modular GMRES and that
is composed of four elemental operations on which we require minimal assumptions. By
specializing these operations and meeting these assumptions, modular GMRES can describe
most of the GMRES implementations and variants. We perform a backward error analysis
of this algorithm resulting in modular bounds on its attainable backward and forward errors.
These modular bounds can be used to derive error bounds for any specializations of modular
GMRES. This abstract algorithm, its associated assumptions, and its modular error bounds
constitute the backward error analysis framework for GMRES.

3.1. The modular GMRES algorithm and its error model. We define modular GM-
RES (MOD-GMRES) by Algorithm 1 which delivers an approximation to the solution of the
linear system (1.1). To do so, the algorithm minimizes the residual of the left-preconditioned

linear system Ãx = b̃, where Ã = M−1
L A and b̃ = M−1

L b, over a subspace Z spanned by the
given full-rank basis Zk = [z1, . . . , zk]. In other words, MOD-GMRES can be viewed as a
general subspace projection method computing an approximation to the solution of Ax = b

in the space Z under the orthogonality constraint b̃ − Ãxk ⊥ ÃZ, where ⊥ is the orthogo-
nality relation induced by the ℓ2-inner-product.

A few comments are in order. First, note that MOD-GMRES initializes implicitly the
first guess of the solution to zero, namely x0 = 0. Doing so lightens our notation without
losing generality; our conclusions still straightforwardly hold with x0 ̸= 0. Note also that in
Algorithm 1 the matrix ML stands for the potential use of a left-preconditioner. Naturally,
setting ML = I amounts to no left-preconditioner used in the algorithm. The potential use
of a right-preconditioner is carried by the basis Zk which, in exact arithmetic, can take the
form Zk ≡ M−1

R Vk where MR ∈ Rn×n and Vk = [v1, . . . , vk] are the Krylov basis vectors

obtained from an Arnoldi process. If we define Zk ≡ [M−1
R,1v1, . . . ,M

−1
R,kvk] with possibly

MR,i ̸= MR,j for all i ̸= j ≤ k we can even account for non-constant right-preconditioners
and flexible variants of GMRES [40]. Finally, note that since MOD-GMRES describes a more
general subspace projection method which is, for instance, not necessarily implemented with
an Arnoldi procedure (more is said about this in the coming paragraphs), referring to it as
“GMRES” might sound surprising. This choice is motivated by the fact that we solely
focus on applying our framework to GMRES algorithms in the context of this article. For
this reason, we call Algorithm 1 a GMRES method which is consistent with the rest of the
content developed in this document.

MOD-GMRES is an abstract modular algorithm in the sense that we are making very
few assumptions on the basis Zk, the left-preconditioner ML, and the operations at lines 1
to 4 of Algorithm 1. By specializing these different elements (or modules) and meeting their
assumptions, MOD-GMRES can describe most of the GMRES algorithms in the literature
and implemented in software. The following is about listing those minimal assumptions that
are mostly parametric error bounds associated with each operation and that are necessary
to derive our backward error analysis. We will later showcase in section 5 how to specialize
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Algorithm 1 Modular GMRES (MOD-GMRES)

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, a basis Zk ∈ Rn×k, and a left-
preconditioner ML ∈ Rn×n.

Output: a computed solution xk to Ax = b.

1: Compute Ck = ÃZk ∈ Rn×k where Ã = M−1
L A ∈ Rn×n.

2: Compute b̃ = M−1
L b ∈ Rn.

3: Solve yk = argminy ∥b̃− Cky∥2.
4: Compute the solution approximation xk = Zkyk.

MOD-GMRES and how to meet its assumptions for the three previously mentioned GMRES
algorithms on which we already have backward error analyses: HH-GMRES, MGS-GMRES,
and FGMRES.
Matrix–matrix product (line 1). For nonsingular ML ∈ Rn×n, A ∈ Rn×n, and Zk ∈ Rn×k

we assume that the computed left-preconditioned matrix–matrix product Ĉk at line 1 of
Algorithm 1 satisfies

Ĉk = fl(ÃZk) = ÃZk +∆c, ∥∆c∥F ≤ εc∥ÃZk∥F , (3.1)

where ∆c ∈ Rn×k is the computing error generated during the computation of the matrix–
matrix product and εc is a parameter bounding the magnitude of this error. The product
itself can take many forms and be implemented in many ways as long as assumption (3.1)
is satisfied for a given εc. For instance, if Algorithm 1 is implemented using the Arnoldi
process, the matrix–matrix product is performed iteratively through a succession of matrix–

vector products involving the computed Arnoldi Krylov basis vectors V̂k = [v̂1, . . . , v̂k]. If,

in addition, a left-preconditioner is used we have ML ̸= I, Ã ̸= A, and Zk ≡ V̂k. In this

situation, the preconditioned matrix Ã is rarely fully formed in practice, and its application
to a vector is made by the successive applications of A and M−1

L . The linear action of the
preconditioner to a vector can be performed by explicitly forming M−1

L and computing a
standard matrix–vector product or by decomposing ML into triangular factors subsequently
used in substitution algorithms. In some cases, M−1

L might not be available as a matrix
or as a matrix decomposition, and we might only be able to compute its linear action to
a vector by another means. If a right-preconditioner is used instead, we have ML = I,

Ã = A, and Zk ≡ f l(M−1
R V̂k), where MR ∈ Rn×n is nonsingular; it is worth noticing that the

basis Zk is defined as the computed product f l(M−1
R V̂k) rather than the exact one M−1

R V̂k.
Naturally, the same previous comments we made on the left-preconditioned product apply

to the computation of the right-preconditioned product AM−1
R V̂k. Overall, MOD-GMRES

allows for different possibilities of product implementations for line 1 that potentially deliver
different backward error results leading to different values for εc.
Preconditioned right-hand-side (line 2). For nonsingular ML ∈ Rn×n and b ∈ Rn we assume

that the computed preconditioned right-hand side b̂ at line 2 of Algorithm 1 satisfies

b̂ = fl(M−1
L b) = b̃+∆b, ∥∆b∥2 ≤ εb∥b̃∥2, (3.2)

where ∆b ∈ Rn is the computing error introduced by the application of M−1
L on b and

εb is a parameter bounding the magnitude of this error. Just as for the computation of
the matrix–matrix product at line 1, the preconditioner application can be implemented in
various ways as long as assumption (3.2) is met.

Least squares solver (line 3). For Ĉk ∈ Rn×k and 0 ̸= b̂ ∈ Rn we assume that the computed
solution ŷk of the least squares problem at line 3 of Algorithm 1 satisfies

ŷk = argminy ∥b̂+∆b
ls − (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≤ εls∥

[̂
b, Ĉk

]
ej∥2 ∀j ≤ k + 1,

(3.3)
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where ∆b
ls ∈ Rn and ∆c

ls ∈ Rn×k are the computing errors generated by the least squares
solver and εls is a parameter bounding the magnitude of these errors. Assumption (3.3) does
not enforce specific methods for solving the least squares problem. In particular, we do not
require using the Arnoldi algorithm as classically done in GMRES. In that sense, the MOD-
GMRES process is not necessarily iterative. Nevertheless, all the examples of application
of our framework throughout this article employ an Arnoldi algorithm. For instance, we
will show in section 5 that the solutions of the least squares problem via MGS [41] and
Householder [48] Arnoldi meet assumption (3.3) for specific εls. Moreover, in section 6 we
discuss various other variants of the Arnoldi algorithm for the solution of the least squares
problem at line 3 and how they meet this assumption.
Computation of the solution approximation (line 4). For Zk ∈ Rn×k and ŷk ∈ Rn we assume
that the computed approximate solution x̂k at line 4 of Algorithm 1 verifies

x̂k = fl(Zkŷk) = Zkŷk +∆x, ∥∆x∥2 ≤ εx∥Zk∥F ∥ŷk∥2, (3.4)

where ∆x ∈ Rn is the error introduced while computing the matrix–vector product and εx
is a parameter bounding the magnitude of this error. The implementation of this operation
can take different forms, which yield potentially different values for εx. In particular, with

right-preconditioned GMRES where Zk ≡ f l(M−1
R V̂k), the application of Zk might not be a

standard matrix–vector product. In that case, Zk might not be stored explicitly and line 4

consists of a matrix–vector product with V̂k and the application of M−1
R .

Additional assumptions. Finally, in addition to the previous assumptions on lines 1 to 4, we
require the basis Zk not to be numerically singular to the accuracy εx, that is,

σmin(Zk)≫ εx∥Zk∥F . (3.5)

In particular, this assumption means that if Zk is ill-conditioned we need correspondingly
high accuracy in computing line 4. We also require all the accuracy parameters to be
substantially less than 1; that is,

0 ≤ εc, εb, εls, εx ≪ 1. (3.6)

The role of assumption (3.6) is mostly to ensure that second order terms can be dropped
safely in our inequalities. We emphasize that the accuracy parameters do not need to be
smaller than 1 by many orders of magnitude. Guaranteeing the parameters to be equal or
lower than 0.01 for instance is likely enough for the results of this article to be valid.

3.2. The key dimension. A significant challenge in determining attainable forward and
backward errors for MOD-GMRES lies in the fact that the quality of the computed solution
depends strongly on the chosen basis Zk. As for the operations used within MOD-GMRES,
we require few assumptions on the basis Zk. In particular, the basis does not have to be
a Krylov basis or to be constructed from an Arnoldi process. That being said, it is trivial
that good errors on the computed solution are not achieved in general for a very small basis
Zk that would span a subspace Z not descriptive enough. Therefore, we shall answer the
question: what are minimal conditions on the basis Zk such that the computed solution is
guaranteed to have reached small backward and forward errors? Thinking of the dimension
k of the basis as increasing, we can reformulate the question as: at which dimension k ≤ n
is the computed solution guaranteed to have reached small errors? We define such a key
dimension as the first k ≤ n for which Zk satisfies

σmin

([̃
bϕ, ÃZk

])
≤ c(n, k)(εc + εb + εls)∥

[̃
bϕ, ÃZk

]
∥F (3.7)

and

σmin

(
ÃZk

)
≫ (εc + εb + εls)∥ÃZk∥F (3.8)

for all scalar ϕ > 0 and where c(n, k) is a polynomial of low degree in n and k. The role

of conditions (3.7) and (3.8) is to capture the exact moment where b̃ lies in the range of

ÃZk, that is, the moment where our basis Zk contains the solution. Indeed, condition (3.7)
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requires [̃bϕ, ÃZk] to be nearby rank deficient while condition (3.8) enforces ÃZk to be

full-rank. The combination of the two conditions imposes b̃ to be in the range of ÃZk.

Even though condition (3.8) imposes the smallest singular value of ÃZk to be sufficiently
higher than the accuracy parameters associated with the matrix–matrix product (line 1),
the preconditioned right-hand side (line 2), and the least squares problem (line 3), it is
important to note that it does not require the quantities A, ML, or Zk to have, individu-
ally, a high enough smallest singular value relative to these accuracies. That would be a

substantially stronger assumption since ÃZk generally tends to be better conditioned than
A if the preconditioners are well-chosen.

This key dimension definition expressed by conditions (3.7) and (3.8) has been heavily
inspired by the analysis of Paige , Rozlozńık, and Strakos [36]. In that work, the condi-
tions (3.7) and (3.8) do not appear as “conditions” or in this exact form but can be found
indirectly in [36, eq. (8.6)]. Overall, the approach is the same but it is shaped differently.
Note also that the introduction of a scalar ϕ in condition (3.7), also present in [36], becomes
necessary for the proof of Theorem 3.1 where it is used alongside [36, Thm. 2.4] to bound
the residual of the left-preconditioned linear systems.

A difficulty in applying our framework is showing that a dimension k exists such that con-
ditions (3.7) and (3.8) hold. Fortunately, for the most stable orthogonalization algorithms,
such as the Householder orthogonalization, the existence of such an iteration is relatively
direct as we will show in section 5.2. When the orthogonalization method faces loss of or-
thogonality, the proof of the existence of the key dimension is less direct. We explain how the
MGS orthogonalization, which faces such loss of orthogonality, still meets conditions (3.7)
and (3.8) in section 5.3.

3.3. Backward error analysis of MOD-GMRES. This section is dedicated to the cen-
tral theorem of this article which establishes bounds on the errors of the computed solution
to (1.1) by MOD-GMRES. In more detail, Theorem 3.1 shows that under the assumptions
made in section 3.1 and the existence of a key dimension k defined in section 3.2, the for-
ward and backward errors of the computed solution x̂k at this dimension k are bounded by
functions of the accuracy parameters εc, εb, εls, and εx.

Theorem 3.1. Suppose Algorithm 1 is applied with a basis Zk ∈ Rn×k and a left-preconditioner
ML ∈ Rn×n to solve (1.1), where conditions (3.1) to (3.8) are satisfied for given parameters
εc, εb, εls, and εx. Then the computed solution x̂k of Ax = b has backward and forward
errors satisfying respectively

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)ξκF (ML), (3.9)

and
∥x̂k − x∥2
∥x∥2

≲ c(n, k)ξκF (Ã), (3.10)

where

ξ = αεc + βεb + βεls + λεx (3.11)

with

α = σ−1
min(Zk)

∥ÃZk∥F
∥Ã∥F

, β = max

(
1, σ−1

min(Zk)
∥ÃZk∥F
∥Ã∥F

)
,

λ = σ−1
min(Zk)∥Zk∥F ,

(3.12)

and where c(n, k) is a polynomial in n and k of low degree.
Proof. The proof is split into four parts. We will first show that the computed solution
ŷk of the least squares problem obtained at line 3 of Algorithm 1 is an accurate solution
for this least squares problem. We then show that the residual of the left-preconditioned
linear system, associated with the computed solution ŷk of the least squares problem, is
small. We subsequently use the bound on the residual to determine the backward error of
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the left-preconditioned linear system from which we finally deduce bounds on the forward
and backward errors of the original linear system (1.1).
1. Backward error of the least squares problem computed solution. Given a basis Zk of rank
k ≤ n for which conditions (3.1) to (3.8) are satisfied, we begin the proof by bounding the

backward error of the computed solution ŷk for the least squares problem miny ∥b̃− ÃZky∥
at line 3 of Algorithm 1. The least squares solver, satisfying condition (3.3), is applied on

the least squares problem miny ∥b̂− Ĉky∥F which accounts for the errors generated during

the computations of the product ÃZk and the preconditioned right-hand-side at line 1 and 2.
The computed solution ŷk at line 3 therefore satisfies

ŷk = argminy ∥b̃+∆b̃(1) − (ÃZk +∆Ck)y∥2,

∥∆Ck∥F = ∥∆c +∆c
ls∥F ≲ (εc + εls)∥ÃZk∥F ,

∥∆b̃(1)∥2 = ∥∆b +∆b
ls∥2 ≲ (εb + εls)∥b̃∥2.

(3.13)

The bound on ∥∆Ck∥F comes from the combination of the errors in computing the matrix–

matrix product (3.1) and the solution of the least squares problem miny ∥b̂− Ĉky∥F ; these
errors are bounded by, respectively,

∥∆c∥F ≤ εc∥ÃZk∥F and ∥∆c
ls∥F ≤ εls∥ f l(ÃZk)∥F ≈ εls∥ÃZk∥F .

Equivalently, the bound on ∥∆b̃(1)∥2 comes from conditions (3.2) and (3.3).
2. Bound on the left-preconditioned linear system residual. The second part of the proof
consists of demonstrating that the computed solution ŷk of the least squares problem (3.13)
achieves a small enough residual

rk = b̃+∆b̃(1) − (ÃZk +∆Ck)ŷk (3.14)

for the left-preconditioned linear system. This is the most challenging part of the proof.
Fortunately, Paige et al. [36] opened a pathway to achieve this and our approach follows in
their footsteps. The core idea is to use the key dimension conditions (3.7) and (3.8) which
we developed in section 3.2. The proof then relies on the very useful [36, Thm. 2.4] which
gives an upper bound on the residual (3.14). This theorem applied to the inexact least
squares problem (3.13) gives for all ϕ > 0 such that

δk =
σmin

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])
σmin

([
ÃZk +∆Ck

]) < 1, (3.15)

∥rk∥22 ≤ σ2
min

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])(
ϕ−2 + ∥ŷk∥22/[1− δ2k]

)
. (3.16)

Essentially, the following is about choosing a proper ϕ for which we can show that the
residual is “small enough”. We proceed as in [36, sect. 8.2] and we wish to choose this ϕ
such that it satisfies

ϕ−2 = ∥ŷk∥22/[1− δ2k] (3.17)

which allows a direct simplification of the expression (ϕ−2 + ∥ŷk∥22/[1− δ2k]) in the residual
bound (3.16). The previous definition (3.17) is equivalent to the following

LHS(ϕ) = RHS(ϕ),

LHS(ϕ) ≡ σ2
min

(
ÃZk +∆Ck

)
− σ2

min

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])
,

RHS(ϕ) ≡ σ2
min

(
ÃZk +∆Ck

)
∥ŷkϕ∥22.

We now need to show that their exist a ϕ verifying the above and at the same time satisfies
ϕ > 0 and δk < 1 such that the quantities are well-defined and the theorem is applicable.
For ϕ = 0, LHS(ϕ) > RHS(ϕ), while for ϕ = ∥ŷk∥−1

2 , LHS(ϕ) < RHS(ϕ), so by continuity,
there exists ϕ ∈ (0, ∥ŷk∥−1

2 ) satisfying both (3.17) and

δk < 1, 0 < ϕ < ∥ŷk∥−1
2 . (3.18)
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The remainder will be about to show that for this value of ϕ the scaled right-hand side

satisfies ∥b̃ϕ∥2 ≈ ∥ÃZk∥F , and the quantites σ2
min([(̃b + ∆b̃(1))ϕ, ÃZk + ∆Ck]) and δk are

small. From (3.7) and (3.13), we obtain

σmin

([
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

])
= min∥w∥2=1 ∥

[
(̃b+∆b̃(1))ϕ, ÃZk +∆Ck

]
w∥2

≤ min∥w∥2=1 ∥
[̃
bϕ, ÃZk

]
w∥2 +max∥w∥2=1 ∥

[
∆b̃(1)ϕ,∆Ck

]
w∥2

≤ σmin

([̃
bϕ, ÃZk

])
+ ∥
[
∆b̃(1)ϕ,∆Ck

]
∥F

≲ c(n, k)(εc + εb + εls)∥
[̃
bϕ, ÃZk

]
∥F + (εb + εls)∥b̃ϕ∥2

+ (εc + εls)∥ÃZk∥F
≤ c(n, k)(εc + εb + εls)(∥b̃ϕ∥2 + ∥ÃZk∥F ), (3.19)

from which, in addition of (3.17), we revisit (3.16) to give the following bound on the residual

∥rk∥22 ≲ c(n, k)(εc + εb + εls)
2(∥b̃ϕ∥2 + ∥ÃZk∥F )2ϕ−2. (3.20)

Observing that b̃ = rk + (ÃZk +∆Ck)ŷk −∆b̃(1) from (3.14) and using (3.13), (3.18), and
(3.20) yields

∥b̃ϕ∥2 ≤ ∥rkϕ∥2 + ∥ÃZkŷkϕ∥2 + ∥∆Ckŷkϕ∥2 + ∥∆b̃(1)ϕ∥2
≲ c(n, k)(εc + εb + εls)(∥b̃ϕ∥2 + ∥ÃZk∥F ) + ∥ÃZk∥F ,

from which we obtain

∥b̃ϕ∥2 ≲
(1 + c(n, k)(εc + εb + εls))

(1− c(n, k)(εc + εb + εls))
∥ÃZk∥F ≈ ∥ÃZk∥F . (3.21)

Using (3.21), bound (3.19), and the nonsingularity condition (3.8) gives

δk ≲
c(n, k)(εc + εb + εls)(∥b̃ϕ∥2 + ∥ÃZk∥F )

σmin(ÃZk)− ∥∆Ck∥F

≲
c(n, k)(εc + εb + εls)∥ÃZk∥F
σmin(ÃZk)− (εc + εls)∥ÃZk∥F

≪ 1,

(3.22)

Finally, we can now refine our bound on the residual (3.20); using (3.17), (3.21) and (3.22),
we can state

∥rk∥2 ≲ c(n, k)(εc + εb + εls)∥ÃZk∥F ∥ŷk∥2. (3.23)

3. Backward error of the left-preconditioned linear system. Now that we have a bound on

the residual expressed in terms of Ã, Zk, and ŷk, the third part of the proof will be about

retrieving the backward error of the preconditioned system Ãx = b̃. To achieve this, we first
want to substitute ŷk in (3.23) by x̂k = fl(Zkŷk) = Zkŷk + ∆x. Using assumptions (3.4)
and (3.5), we can conclude that

∥x̂k∥2 = ∥Zkŷk +∆x∥2 ≥
(
∥Zkŷk∥2
∥ŷk∥2

− ∥∆x∥2
∥ŷk∥2

)
∥ŷk∥2

≥
(
miny

∥Zky∥2
∥y∥2

− εx∥Zk∥F
)
∥ŷk∥2 ≈ σmin(Zk)∥ŷk∥2,

(3.24)

which allows us to rework (3.23) as

∥rk∥2 ≲ c(n, k)(εc + εb + εls)σ
−1
min(Zk)∥ÃZk∥F ∥x̂k∥2

≤ c(n, k)(εc + εb + εls)σ
−1
min(Zk)

∥ÃZk∥F
∥Ã∥F

(∥Ã∥F ∥x̂k∥2 + ∥b̃∥2).
(3.25)

In addition, we define

∆Ã(1) = (∆Ckŷk − Ã∆x)∥x̂k∥−2
2 x̂T

k ,
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which gives, using (3.4),

(Ã+∆Ã(1))x̂k = Ãx̂k +∆Ckŷk − Ã∆x = Ã(Zkŷk +∆x) + ∆Ckŷk − Ã∆x,

= (ÃZk +∆Ck)ŷk.

Hence, using (3.14),

rk = b̃+∆b̃(1) − (Ã+∆Ã(1))x̂k, (3.26)

and, using (3.4), (3.13), and (3.24),

∥∆Ã(1)∥F ≲

(
εc + εls +

∥Ã∥F ∥Zk∥F
∥ÃZk∥F

εx

)
∥ÃZk∥F ∥ŷk∥2/∥x̂k∥2

≲

(
εc + εls +

∥Ã∥F ∥Zk∥F
∥ÃZk∥F

εx

)
σ−1
min(Zk)∥ÃZk∥F .

(3.27)

We now form the quantities

∆b̃(2) = − ∥b̃∥2
∥Ã∥F ∥x̂k∥2 + ∥b̃∥2

rk and ∆Ã(2) =
∥Ã∥F ∥x̂k∥2

∥Ã∥F ∥x̂k∥2 + ∥b̃∥2
rk

x̂T
k

∥x̂k∥22

verifying rk = ∆Ã(2)x̂k −∆b̃(2) and which can be bounded using (3.25) such that

∥∆b̃(2)∥2 ≲ c(n, k)(εc + εb + εls)σ
−1
min(Zk)

∥ÃZk∥F
∥Ã∥F

∥b̃∥2,

∥∆Ã(2)∥F ≲ c(n, k)(εc + εb + εls)σ
−1
min(Zk)

∥ÃZk∥F
∥Ã∥F

∥Ã∥2.
(3.28)

Finally, by replacing rk by ∆Ã(2)x̂k −∆b̃(2) in (3.26), we can conclude that MOD-GMRES
will deliver a computed solution x̂k that is the exact solution of the perturbed linear system

(Ã+∆Ã)x̂k = b̃+∆b̃ where

∆Ã ≡ ∆Ã(1) +∆Ã(2) and ∆b̃ ≡ ∆b̃(1) +∆b̃(2).

In addition, the errors ∆Ã and ∆b̃ satisfy from the bounds (3.13), (3.27), and (3.28)

∥∆Ã∥F ≲ c(n, k)(αεc + αεb + αεls + λεx)∥Ã∥F ,

∥∆b̃∥F ≲ c(n, k)(αεc + βεb + βεls)∥b̃∥2,

with

α = σ−1
min(Zk)

∥ÃZk∥F
∥Ã∥F

, β = max

(
1, σ−1

min(Zk)
∥ÃZk∥F
∥Ã∥F

)
, λ = σ−1

min(Zk)∥Zk∥F .

The backward error of the preconditioned system therefore satisfies the bound

∥Ãx̂k − b̃∥2
∥Ã∥F ∥x̂k∥2 + ∥b̃∥2

≲ c(n, k)ξ, (3.29)

with

ξ = αεc + βεb + βεls + λεx.

4. Forward and backward errors of the original linear system. The last part of the proof
consists in deriving bounds on the forward and backward errors of the original system. We
can bound the forward error with the backward error (3.29) and the condition number of
the preconditioned system. We obtain

∥x̂k − x∥2
∥x∥2

≲ c(n, k)ξκF (Ã). (3.30)
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Additionally, the backward error of the original system can be bounded by using b−Ax̂k =

ML(̃b− Ãx̂k); we have

∥b−Ax̂k∥2 ≲ c(n, k)ξ∥ML∥F (∥b̃∥2 + ∥Ã∥F ∥x̂k∥2)

≤ c(n, k)ξ

(
κF (ML)∥b∥2 +

∥ML∥F ∥Ã∥F
∥A∥F

∥A∥F ∥x̂k∥2

)
.

(3.31)

This last bound in addition to the fact that ∥ML∥F ∥Ã∥F /∥A∥F ≤ κF (ML) implies in
particular

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)ξκF (ML). (3.32)

which ends the proof. □

A few points are worth noticing from the forward and backward error bounds (3.9)
and (3.10) in Theorem 3.1. First, these bounds depend on the accuracy parameters εc,
εb, εls, and εx associated with each operation in Algorithm 1. While this conclusion was
expected, it is interesting to confirm that the errors made in each of the four operations
at lines 1 to 4 play a relatively identical role in the final attainable errors of the computed
solution to (1.1) and that, therefore, none of them should be neglected. Second, right- and
left-preconditioning badly affect the bounds for both forward and backward errors. Indeed,
the terms κF (ML) and σ−1

min(Zk)∥Zk∥F can be substantially larger than 1 and increase the
bounds (3.9) and (3.10). This key observation that preconditioning deteriorates the attain-
able accuracies might sound counterintuitive. This is because preconditioning is generally
associated with improved numerical behavior in the sense that it accelerates convergence if
the preconditioners are well-chosen. This benefit still applies in the finite precision world
but comes at the cost of a loss of stability: we converge faster but not further. To illus-
trate this loss of stability, let us assume that the accuracy parameters are of order the unit
roundoff of the machine precision (i.e., εc ≡ εb ≡ εls ≡ εx ≡ c(n, k)u), that the absence of

preconditioning implies ML ≡ I and Zk ≡ V̂k where V̂k is the near orthogonal computed
Arnoldi Krylov basis, and that we meet all the required assumptions of Theorem 3.1. The
bound on the backward error becomes

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (3.33)

and the process is therefore backward stable. Now consider that we apply in a split-
preconditioning fashion a left- and a right-preconditioner such that ML ̸= I and Zk ≡
f l(M−1

R V̂k) ≈M−1
R V̂k, whereML,MR ∈ Rn×n are nonsingular. Observing that σ−1

min(Zk)∥Zk∥F ≲
κF (MR), the backward error bound becomes

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)uκF (MR)κF (ML),

which is substantially higher than the previous bound (3.33). In particular, we lost the
backward stability property since the backward error is not guaranteed anymore to be of
order u. Fortunately, this problem can be overcome, and we explain in section 4 how a
restart process can recover the backward stability.

4. Backward error analysis of restarted MOD-GMRES

The cost in execution time and memory consumption of GMRES algorithms grows with
the size k of the basis Zk. By reframing GMRES to make use of multiple smaller bases,
restarted GMRES algorithms intend to bound this cost while still providing a good approx-
imation to the solution of (1.1). For instance, restarting can be very convenient or even
necessary for solving extremely large sparse linear systems where only a few dense vectors
can be stored in memory at once.

The MOD-GMRES framework alone, presented and studied in section 3, cannot cover
restarted variants of GMRES. Therefore, for our framework to account for restarted GMRES
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algorithms, we introduce and study a new abstract algorithm called restarted MOD-GMRES
represented by Algorithm 2. Roughly, the algorithm consists of the successive applications
of MOD-GMRES where the (i+1)th call of MOD-GMRES uses the solution of the ith call as
a starting vector. It can also be interpreted as the computation of successive corrections di
obtained as the solutions of the linear systems Adi = ri solved through MOD-GMRES. We
repeat the process until we are satisfied with the quality of the computed solution. Note that
with restarted MOD-GMRES the bases Z(i)

ki ∈ Rn×ki , their sizes ki, the left-preconditioners
M (i)

L ∈ Rn×n, and the accuracy parameters ε(i)
c , ε(i)

b , ε(i)

ls , and ε(i)
x are allowed to differ from

a restart iteration to another.

Algorithm 2 Restarted MOD-GMRES

Input: a matrix A ∈ Rn×n, a right-hand side b ∈ Rn, a set of bases (Z
(i)
ki

)i of size n × ki,

and a set of left-preconditioners (M
(i)
L )i of size n× n.

Output: a computed solution to Ax = b.
1: Initialize x0

2: repeat
3: Compute the residual ri = b−Axi.

4: Compute C
(i)
ki

= Ã(i)Z
(i)
ki

where Ã(i) = (M
(i)
L )−1A.

5: Compute r̃i = (M
(i)
L )−1ri.

6: Solve yi = argminy ∥r̃i − C
(i)
ki

y∥2.
7: Compute the correction di = Z

(i)
ki

yi.
8: Compute the next iterate xi+1 = xi + di.
9: i = i+ 1

10: until convergence

Equivalently as for MOD-GMRES, deriving a backward error analysis for restarted MOD-
GMRES requires some assumptions on the operations in Algorithm 2. Lines 4 to 7 in
Algorithm 2 correspond to the applications of MOD-GMRES to the linear systems Adi = ri.
We need these lines to satisfy the assumptions (3.1) to (3.8) described in section 3 at a key
dimension ki for all restart iterations i ≥ 1 and for given accuracy parameters ε(i)

c , ε(i)

b ,
ε(i)

ls , and ε(i)
x . In addition, we require the following two assumptions for, respectively, the

computation of the residual at line 3 and the computation of the next iterate at line 8.
For b, x̂i ∈ Rn and A ∈ Rn×n we suppose that the computed residual r̂i at line 3 of

Algorithm 2 satisfies for all i ≥ 1

r̂i = b−Ax̂i +∆ri, ∥∆ri∥2 ≤ εr(∥b∥2 + ∥A∥F ∥x̂i∥2), (4.1)

where ∆ri ∈ Rn is the error introduced while computing the matrix–vector product and the
vector subtraction and εr is a parameter bounding the magnitude of this error.

In addition, for x̂i, d̂i ∈ Rn we suppose that the computation of the next iterate x̂i+1 at
line 8 of Algorithm 2 yields for all i ≥ 1

x̂i+1 = x̂i + d̂i +∆xi, ∥∆xi∥2 ≤ εu∥x̂i+1∥2, (4.2)

where ∆xi ∈ Rn is the computing error generated from the vector addition and εu is a
parameter bounding the magnitude of this error. It is very likely that εu ≡ u where u is
the unit roundoff of the arithmetic precision used to compute line 8. We are not aware of a
relevant implementation of restarted MOD-GMRES that would provide a different outcome
for εu, but we let our framework the possibility to handle this eventuality.

Finally, for the same reasons we require condition (3.6) for MOD-GMRES, we also require

0 ≤ εr, εu ≪ 1. (4.3)

Under these previous assumptions, we can guarantee that restarted MOD-GMRES will
provide a solution whose backward and forward errors are bounded by functions of the
accuracy parameters εr and εu. We summarize this result in the following Theorem 4.1.
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Theorem 4.1. Consider the solution of Ax = b with Algorithm 2. Suppose that for all
i ≥ 1 lines 3 and 8 of Algorithm 2 satisfy conditions (4.1) to (4.3) for given parameters εr
and εu, and lines 4 to 7 satisfy conditions (3.1)–(3.8) of Theorem 3.1 for given parameters
ε(i)
c , ε(i)

b , ε(i)

ls , and ε(i)
x . Then as long as

Λ
(i)
1 = c(n, k)ξ(i)∥M (i)

L ∥F ∥Ã
(i)∥F ∥A−1∥F ≪ 1 (4.4)

and

Λ
(i)
2 = c(n, k)ξ(i)κF (Ã

(i))≪ 1, (4.5)

the backward and forward errors are reduced at the iteration i, respectively, by factors (at

least) Λ
(i)
1 and Λ

(i)
2 until they satisfy

∥b−Ax̂∥2
∥b∥2 + ∥A∥F ∥x̂∥2

≲ c(n, k)εr + εu (4.6)

and
∥x̂− x∥2
∥x∥2

≲ c(n, k)εrκF (A) + εu, (4.7)

where

ξ(i) = α(i)ε(i)c + β(i)ε
(i)
b + β(i)ε

(i)
ls + λ(i)ε(i)x (4.8)

with

α(i) = σ−1
min(Z

(i)
ki

)
∥Ã(i)Z

(i)
ki
∥F

∥Ã(i)∥F
, β(i) = max

(
1, σ−1

min(Z
(i)
ki

)
∥Ã(i)Z

(i)
ki
∥F

∥Ã(i)∥F

)
,

λ(i) = σ−1
min(Z

(i)
ki

)∥Z(i)
ki
∥F ,

(4.9)

and where c(n, k) accounts for polynomials in n and k of low degrees.
Proof. The proof consists in noticing that Algorithm 2 is an iterative refinement process
since it can be directly rewritten as the repetition of the three following steps:

1: Compute the residual ri = b−Axi.

2: Solve Adi = ri with MOD-GMRES for given M
(i)
L and Z

(i)
ki

.
3: Update the solution xi+1 = xi + di.

Hence, iterative refinement backward error analyses are applicable to Algorithm 2. For this
proof, we use the backward error analysis of Carson and Higham [14]. More specifically, we
shall apply [14, Thm. 3.2] and [14, Thm. 4.1] on Algorithm 2 to prove that the restarted
MOD-GMRES process delivers the attainable backward and forward errors (4.6) and (4.7)
under the convergence conditions (4.4) and (4.5).

Technically, the results of these theorems are based on the assumption that the residual
at line 3 is computed through a standard matrix–vector product in precision of unit roundoff
ur and satisfies

r̂i = b−Ax̂i +∆ri, |∆ri| ≤ γr
n(|b|+ |A||x̂i|). (4.10)

Identically, the computation of the next iterate at line 8 is assumed to be computed in
precision of unit roundoff u and satisfies

x̂i+1 = x̂i + d̂i +∆xi, |∆xi| ≤ u|x̂i+1|. (4.11)

In addition, these theorems deliver convergence conditions and bounds on the attainable
errors in the infinity norm. This departs from our conditions (4.1) and (4.2) on the com-
putation of the residual and the next iterate which are normwise instead of componentwise,
and with accuracy parameters εr and εu instead of unit roundoffs ur and u. It also departs
from our resulting convergence conditions (4.4) and (4.5), and our bounds on the attainable
errors (4.6) and (4.7) which are in 2-norm and Frobenius norm instead of infinity norm. Nev-
ertheless, the theorems and the analysis of [14] can be straightforwardly adapted to the case
where (4.10) and (4.11) are exchanged with (4.1) and (4.2), and to the case where Frobenius
norm is used instead of infinity norm. We assume these adjustments in the following.
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To apply [14, Thm. 3.2] and [14, Thm. 4.1], we need to show that the computed correction

d̂i by MOD-GMRES satisfies, for all i ≥ 1,

d̂i = (I + uiEi)di, ui∥Ei∥F < 1,

∥r̂i −Ad̂i∥2 ≤ ui(ωi∥A∥F ∥d̂i∥2 + wi∥r̂i∥2),
(4.12)

for given ui, Ei, ωi, and wi; see conditions [14, eqs. (2.3) and (2.4)]. Under these conditions,
supposing in addition that ωiκF (A)ui ≪ 1, and using a quantity µi defined as ∥A(x−x̂i)∥2 =
µi∥A∥F ∥x− x̂i∥2, [14, Thm. 3.2] guarantees that the computed solution x̂i+1 at the (i+1)th
restart satisfies

∥x− x̂i+1∥2 ≤ Λ
(i)
2 ∥x− x̂i∥2 + λ

(i)
2 ,

Λ
(i)
2 = 2uiκF (A)µi + ui∥Ei∥F , (4.13)

λ
(i)
2 = 2(1 + ui)εrκF (A)(∥x∥2 + ∥x̂i∥2) + εu∥x̂i+1∥2,

and [14, Thm. 4.1] guarantees

∥b−Ax̂i+1∥2 ≤ Λ
(i)
1 ∥b−Ax̂i∥2 + λ

(i)
1 ,

Λ
(i)
1 = ui

(
1 + (1 + ui)

ωiκF (A) + wi

1− ωiκF (A)ui

)
, (4.14)

λ
(i)
1 =

(
1 +

ui(ωiκF (A) + wi)

1− ωiκF (A)ui

)
(1 + ui)εr(∥b∥2 + ∥A∥F ∥x̂i∥2) + εu∥A∥F ∥x̂i+1∥2.

It is explained in [14] or [47, sect. 4.2.2] that µi is expected to be small and that 2uiκF (A)µi

is negligible in front of ui∥Ei∥F in the expression of Λ
(i)
2 in (4.13). Assuming that ui ≪ 1

for all i ≥ 1 and by dropping second order terms in (4.13) and (4.14), we guarantee that if
for all i ≥ 1

Λ
(i)
2 ≈ ui∥Ei∥F ≪ 1 and Λ

(i)
1 ≈ ui(ωiκF (A) + wi)≪ 1, (4.15)

then the forward and backward errors are improved respectively by factors (at least) Λ(i)
2

and Λ(i)
1 at each iteration i until they reach their bounds on the attainable errors

∥x̂− x∥2
∥x∥2

≲ c(n, k)εrκF (A) + εu and
∥b−Ax̂∥2

∥b∥2 + ∥A∥F ∥x̂∥2
≲ c(n, k)εr + εu.

From (3.30), (3.31), and (3.32) we conclude that condition (4.12) is met for

ui ≡ ξ(i), ∥Ei∥F ≡ c(n, k)κF (Ã
(i)), ωi ≡ c(n, k)

∥M (i)
L ∥F ∥Ã(i)∥F
∥A∥F

,

wi ≡ c(n, k)κF (M
(i)
L ),

where ξ(i) is defined by (4.8). Hence, by using these values of ui, Ei, ωi, and wi in (4.15)
and by observing that ωiκF (A) ≥ wi, we identify

Λ
(i)
2 ≈ c(n, k)ξ(i)κF (Ã

(i))≪ 1 and Λ
(i)
1 ≈ c(n, k)ξ(i)∥M (i)

L ∥F ∥Ã
(i)∥F ∥A−1∥F ≪ 1,

which ends the proof. □

The result of Theorem 4.1 can be interpreted as follows: if at each restart MOD-GMRES

can compute a correction d̂i with a few correct digits, Algorithm 2 will eventually improve
the computed solution x̂i to its maximal attainable accuracy defined by (4.6) and (4.7).
In addition, because the model allows M (i)

L , Z(i)

ki , ε
(i)
c , ε(i)

b , ε(i)

ls , and ε(i)
x to change from an

iteration to another, the theorem is applicable to algorithms where the GMRES variant can
be modified between each restart iteration (e.g., switch from MGS-GMRES to FGMRES
after a restart).

It is essential to remark that the bounds on the attainable errors of MOD-GMRES ((3.9)
and (3.10)) and restarted MOD-GMRES ((4.6) and (4.7)) are different. Namely, compared
with MOD-GMRES, the bounds of restarted MOD-GMRES depends solely on the accuracy
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parameters εr and εu, and not on M (i)

L , Z(i)

ki , ε
(i)
c , ε(i)

b , ε(i)

ls , and ε(i)
x which only affect the

convergence conditions (4.4) and (4.5). This has major implications, namely if εr and εu are
of order the unit roundoff of the machine precision u and if the convergence condition (4.4)
as well as the other assumptions of Theorem 4.1 are met, restarted MOD-GMRES is back-
ward stable regardless of the used preconditioners and the accuracies at which lines 4 to 7
are computed. In other words, restarting can make a non-backward stable GMRES variant
backward stable. One can also exploit this property to enhance the computing performance
of GMRES algorithms. For instance, computing lines 4 to 7 in cheaper IEEE fp32 sin-
gle precision while computing lines 3 and 8 in IEEE fp64 double precision would enable
the algorithm to deliver a double precision accuracy solution in potentially less time and
memory, regardless of the fact that most of the flops are carried out in low accuracy IEEE
fp32 arithmetic. This type of mixed precision approach has been proposed by Turner and
Walker [46] and we provide more details on how to apply our framework to this particular
mixed precision GMRES in section 6.3.

The statement that restarted GMRES is more stable than GMRES without restart might
appear contradictory at first. Indeed, compared with restarted GMRES, GMRES can build
higher dimensional Krylov subspace better fitted to deal with numerically difficult problems.
Moreover, it is well-known that implementations of restarted GMRES imposing a fixed
maximum size m (ki ≤ m ≪ n) on the bases Z(i)

ki are not always able to provide correct
solutions for those difficult problems due to the limited size of the Krylov spaces used.
It is however important to understand that our claim is different and does not invalidate
the previous statement. In particular, those “classical” restarted GMRES implementations
using a fixed maximum number of iterations m as a stopping criterion do not meet the
key dimension conditions (3.7) and (3.8) and ultimately do not enjoy the stability results
of Theorem 4.1. The reason stems from the fact that we cannot guarantee the solution to
be improved under a given fixed number of iterations since “any nonincreasing convergence
curve is possible for GMRES” [23]. However, with slightly less practical restart criteria, we
can build stable restarted versions of GMRES. It is the case, for example, when the restart
criterion is based on a tolerance τ on the backward error of the (left-preconditioned) linear

system, that is, we restart when we have computed d̂i satisfying

∥r̃i − Ã(i)d̂i∥2
∥r̃i∥2 + ∥Ã(i)∥F ∥d̂i∥2

≤ τ ;

see [47, Thm. 5.3] for an example of stability result with a restarted left-preconditioned
GMRES with tolerance. While this criterion cannot ensure that the size of the bases will
stay bounded, the tolerance τ can be set to a very large value such that the bases can still be
expected to remain empirically small. Overall, while our result cannot be directly applied
to implementations of restarted GMRES using a fixed maximum number of iterations m as
a restart criterion, it instead participates in the better understanding of those methods. In
particular, it can give stability results for a very close restarted GMRES algorithm where
this criterion is relaxed.

5. Application and compatibility of the framework with previous error
analyses

In this section, we show how our framework can be used to derive backward error anal-
yses for HH-GMRES, MGS-GMRES, and FGMRES mentioned in section 1 and for which
we already have analyses in the literature. Our aim is twofold: firstly, we want to demon-
strate pedagogically how Theorem 3.1 can be used and, secondly, we want to show that our
framework is compatible with all the major existing analyses, namely it delivers (almost)
the same error bounds under (almost) the same conditions up to some differences in the
constants related to the problem dimension n and the size of the basis k.

5.1. On the application of the MOD-GMRES framework. In order to apply the
MOD-GMRES framework, the basis Zk, the left-preconditioner ML, and the operations at
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lines 1 to 4 of Algorithm 1 have to be specialized to describe the GMRES algorithm of
interest. Once MOD-GMRES is specialized, we have access to more information on Zk, ML,
and how the operations are computed, and we can determine the accuracy parameters εc,
εb, εls, and εx. The task of determining these accuracy parameters requires backward error
analysis results for the given specialized operations used at each line in Algorithm 1. Note
that, since rounding error analyses of the most “standard” matrix–matrix product, least
squares solver, and matrix–vector product algorithms already exist in the literature, this
process can be relatively straightforward. With these accuracy parameters determined, we
can check whether the framework assumptions (3.1) to (3.8) are met. Under those assump-
tions, Theorem 3.1 holds and can be used to derive bounds for the attainable backward and
forward errors of the GMRES algorithm of interest. To this end the modular backward and
forward error bounds (3.9) and (3.10) of Theorem 3.1 are to be specialized by using the
determined εc, εb, εls, εx, Zk and ML.

Overall, our framework reduces the process of deriving new error bounds for GMRES
to the four following tasks: (1) specialize the four operations of MOD-GMRES to describe
the algorithm of interest; (2) determine the parameters εc, εb, εls, and εx for each of these
operations; (3) verify that the assumptions (3.1) to (3.8) are met; (4) apply Theorem 3.1
and specialize the backward and forward error bounds (3.9) and (3.10). The approach is
identical for the restarted MOD-GMRES framework.

5.2. HH-GMRES. As in [18], we study HH-GMRES run in precision of unit roundoff u.
To apply our framework, we can specialize MOD-GMRES to HH-GMRES as follows. We

specify ML ≡ I and Zk ≡ V̂k since we assume no preconditioning. The matrix V̂k is the
Krylov basis computed by the Arnoldi process using the Householder orthogonalization. In
exact arithmetic, the kth step of the Arnoldi process can be viewed as a column-oriented
Householder QR factorization of the matrix [b, AVk] delivering the following recurrence[

b, AVk

]
= Vk+1Rk+1, Rk+1 =

[
βe1, H̄k

]
, (5.1)

where H̄k ∈ R(k+1)×k is upper Hessenberg and β = ∥b∥2. The least squares problem at
line 3 of Algorithm 1 is then solved by computing the solution of the transformed least

squares problem miny ∥βe1 − H̄ky∥2 with Givens rotations. Assuming that V̂k is explicitly
formed and stored in memory, the products at lines 1 and 4 are made from standard matrix–

vector products with A and V̂k, respectively. Using our framework, we recover the result
of Drkošová et al. [18] and show, in particular, that HH-GMRES is backward stable; we
summarize our conclusion by the following theorem.

Theorem 5.1. Consider solving Ax = b with HH-GMRES run in precision of unit roundoff
u≪ 1. As long as the system is not numerically singular, that is,

σmin(A)≫ u∥A∥F , (5.2)

then there exists an iteration k ≤ n such that

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (5.3)

where c(n, k) is a polynomial in n and k of low degree.
Proof. To use Theorem 3.1 to derive (5.3) under (5.2), we need to show that the condi-
tions (3.1) to (3.8) are met for given accuracy parameters εc, εb, εls, and εx at a given
iteration k. We will first show that conditions (3.1) to (3.6) and (3.8) are met for all it-
erations k ≤ n and for accuracy parameters that we will identify. Subsequently, we will
demonstrate that at k = n we meet condition (3.7) and Theorem 3.1 is applicable.

1. Orthogonality of V̂k. First and foremost, we need to exploit one major property of the

Householder orthogonalization: it preserves the orthogonality of the computed basis V̂k for
all k ≤ n. From [25, Thm. 19.4] and the rest of the comments in [25, p. 360] the basis

Zk ≡ V̂k, which corresponds to the computed “reduced-size” Q-factor by the Householder
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orthogonalization process, satisfies for all k ≤ n

V̂k = Ṽk(Ik +∆Ik), ∥∆Ikej∥2 ≤ γ̃n2 , ∀j = 1 : k, (5.4)

where Ṽk is an exactly orthogonal matrix and Ik,∆Ik ∈ Rk×k. It follows that the smallest

singular value of V̂k stays close to 1. More precisely we have

σmin(V̂k) = min
∥x∥2=1

∥Ṽk(Ik +∆Ik)x∥2 ≥ σmin(Ṽk)− ∥Ṽk∆Ik∥F ≥ 1− n
1
2 γ̃n2 ,

σmin(V̂k) ≤ σmin(Ṽk) + ∥Ṽk∆Ik∥F ≤ 1 + n
1
2 γ̃n2 ,

(5.5)

from which we deduce, by dropping second order terms,

∀k ≤ n σmin(V̂k) ≈ 1, ∥V̂k∥F ≈ k
1
2 , and ∥AV̂k∥F ≈ ∥A∥F . (5.6)

2. Identifying εc. Let us now consider the standard matrix–matrix product Ĉk = fl(AV̂k)

corresponding to line 1 of Algorithm 1. We note V̇k = [v̇1, . . . , v̇k] which is V̂k with its
columns correctly normalized; that is, for j ≤ k,

v̂j = v̇j +∆vj , ∥∆vj∥2 ≤ γ̃n,

V̂k = V̇k +∆Vk, ∆Vk = [∆v1, . . . ,∆vk],
(5.7)

where ∆vj is the error for the normalization of v̂j and ∆Vk is the accumulated error for the
normalization of the basis at step k. By [25, eq. (3.11)] and (5.7), we have

ĉj = fl(Av̂j) = (A+∆A)v̂j = Av̂j +∆cj ,

where

∥∆cj∥2 ≤ γ̃n∥A(v̇j +∆vj)∥2 ≲ γ̃n∥A∥F
since ∥v̇j∥2 = 1. We therefore obtain for all k ≤ n

Ĉk = AV̂k +∆c, ∥∆c∥F ≲ k
1
2 γ̃n∥A∥F , (5.8)

where ∆c is the error on the matrix–matrix product at line 1. From (5.8), we identify

εc ≡ k1/2γ̃n∥A∥F /∥AV̂k∥F for which assumption (3.1) is satisfied.
3. Identifying εb. In HH-GMRES, no left-preconditioner is used (i.e., ML = I). Therefore,
there is no error in forming the left-preconditioned right-hand side at line 2. We have ∆b = 0
and εb ≡ 0, and assumption (3.2) is straightforwardly satisfied.
4. Identifying εls. We turn our attention to the error generated while solving the least

squares problem miny ∥b − Ĉky∥2 at line 3 with the Householder Arnoldi algorithm. For
conciseness and readability, we present the outcome of the backward error analysis of this

process in Theorem A.1 in the appendix. For all k ≤ n, accounting for (5.2) and (5.6), Ĉk

satisfies condition (A.2) of Theorem A.1 which is therefore applicable. Hence, the computed
solution ŷk satisfies

ŷk = argminy ∥(b+∆b
ls)− (Ĉk +∆c

ls)y∥2,

∥[∆b
ls,∆

c
ls]ej∥2 ≲ γ̃nk+2(n+k)−2∥[b, Ĉk]ej∥2, j ≤ k + 1,

from which we identify εls ≡ γ̃nk+2(n+k)−2 such that assumption (3.3) is satisfied.
5. Identifying εx. Then, we consider the error made while computing the action of the basis

V̂k on ŷk at line 4. Depending on the implementation of HH-GMRES, this operation might

be computed from the Householder vectors without the need to store the basis V̂k explicitly

in memory. However, for simplicity we consider the case where the computed basis V̂k is
formed explicitly and where line 4 is computed by a standard matrix–vector product with

V̂k. In this case, from [25, eq. (3.11)] the product V̂kŷk satisfies for all k ≤ n

f l(V̂kŷk) = (V̂k +∆Vk)ŷk, ∥∆Vk∥F ≤ γn∥V̂k∥F ,

and we identify ∆x ≡ ∆Vkŷk and εx ≡ γn for which assumption (3.4) is satisfied.
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6. Existence of the key dimension. Condition (3.5) is guaranteed by (5.6). Using (5.6) again
we obtain for all k ≤ n,

εc ≡ k
1
2 γ̃n∥A∥F /∥AV̂k∥F ≈ k

1
2 γ̃n ≪ 1,

which guarantees that condition (3.6) is met. Finally, since σmin(AV̂k) ≥ σmin(A)σmin(V̂k) ≈
σmin(A) from (5.6), condition (3.8) is met for all k ≤ n under assumption (5.2). Moreover,

[bϕ,AV̂k] is rank deficient for k = n since it is composed of n + 1 vectors of dimension n,
and condition (3.7) is trivially met.
7. Application of Theorem 3.1. Therefore, at the iteration k = n HH-GMRES meets all the
conditions of Theorem 3.1 which is applicable for εc ≈ k1/2γ̃n, εb ≡ 0, εls ≡ γ̃nk+2(n+k)−2,
and εx ≡ γn. Using (5.6) we identify in (3.11)

α ≈ β ≈ 1, λ ≈ k
1
2 , and ξ ≈ c(n, k)u,

which reduces the backward error bound (3.9) of Theorem 3.1 to (5.3) and ends the proof. □

5.3. MGS-GMRES. Compared with HH-GMRES, MGS-GMRES uses the MGS orthog-
onalization instead of the Householder one to solve the least squares problem at line 3 of
Algorithm 1 and, apart from this slight variation, the operations of MGS-GMRES are identi-
cal to those of HH-GMRES described in section 5.2. However, this change is not insignificant

since, unlike HH-GMRES, the computed Krylov basis V̂k by MGS-GMRES faces loss of or-
thogonality. This phenomenon can be explained as follows. The Krylov basis computed by

MGS-GMRES satisfies the Arnoldi iterative process (5.1), where V̂k+1 is the Q-factor of the

QR decomposition of [b, Ĉk] computed by MGS. Assuming the MGS orthogonalization is

run in precision of unit roundoff u, [25, Thm. 19.13] ensures that the computed V̂k+1 satisfies

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)uκF

([
b, Ĉk

])
, (5.9)

whereas the Householder orthogonalization provides

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)u. (5.10)

As can be seen, the orthogonality of V̂k+1 is dependent on the condition number of [b, Ĉk]
with MGS. Unfortunately, as we get closer to the solution the right-hand side b lies more

and more in the range of AZk, the matrix [b, Ĉk] becomes nearly singular, its condition
number grows, and the upper bound in (5.9) becomes very large. Overall, as MGS-GMRES
converges to the solution its computed basis will most likely fully lose its orthogonality.
This phenomenon is a major challenge to proving the backward stability of MGS-GMRES.
To relate to the proof of Theorem 5.1 on the backward stability of HH-GMRES, the loss
of orthogonality invalidates the statement (5.4) and ultimately (5.6) is not guaranteed to
hold anymore for all k ≤ n. As a result, the reasoning carried out for HH-GMRES does not
extend straightforwardly to MGS-GMRES.

In the remainder of this section, we apply our framework on MGS-GMRES and we recover
the backward stability result of Paige et al. [36]. In particular, we demonstrate how we can
account for the loss of orthogonality and prove the following theorem on the backward
stability of MGS-GMRES, which embodies the conclusion of [36].

Theorem 5.2. Consider solving Ax = b with MGS-GMRES run in precision of unit round-
off u≪ 1. As long as the system is not numerically singular, that is,

σmin(A)≫ u∥A∥F , (5.11)

then there exists an iteration k ≤ n such that

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (5.12)

where c(n, k) is a polynomial in n and k of low degree.
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Proof. Similarly to the proof of Theorem 5.1 for HH-GMRES, we shall demonstrate that
conditions (3.1) to (3.8) are met at a certain iteration k and for certain accuracy parameters
in order to apply Theorem 3.1. As in this previous proof, conditions (3.1), (3.2), and (3.4)

are met for εc ≡ k1/2γ̃n∥A∥F /∥AV̂k∥F , εb ≡ 0, and εx ≡ γn for all k ≤ n because the
implementations of lines 1, 2, and 4 are left unchanged compared with HH-GMRES. The
remainder of this proof consists in demonstrating that the rest of the conditions are still
met.
1. Identifying εls. The least squares problem miny ∥b − Ĉky∥2 at line 3 is solved with the
MGS Arnoldi algorithm. Using the result developed in [36, sect. 7], and more particularly
referring to [36, eq. (7.13)] which is a similar result to (A.3) for Householder Arnoldi, we
have

ŷk = argminy ∥(b+∆b
ls)− (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≲ jγ̃n∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1,

(5.13)

and condition (3.3) is met for εls ≡ γ̃n(k+1) as long as Ĉk is numerically full-rank, namely

σmin(Ĉk)≫ u∥Ĉk∥F . This full-rank condition is satisfied at the specific iteration k we will
define below.

As a first remark, Theorem A.1, which assesses the error on the least squares prob-
lem solved by Householder Arnoldi, could be adapted relatively straightforwardly to MGS
Arnoldi. It would require a few modifications in its proof, namely exchanging (A.5) with [25,
Thm. (19.13)], adapting the constants, and adapting the text since MGS computes the
“reduced-size” QR factorization instead of the “full-size” one as for the Householder orthog-
onalization. As a second remark, meeting (5.13) either in [36, sect. 7] or from adapting
Theorem A.1, is substantially simplified by the MGS’s Householder equivalence developed

in [9] which leads to the existence of a perfectly orthogonal matrix Ṽk+1 associated with the

computed R-factor [β̂e1, Ĥk] of [b, Ĉk] by MGS such that[
b, Ĉk

]
+
[
∆b

qr,∆
c
qr

]
= Ṽk+1[β̂e1, Ĥk], ∥

[
∆b

qr,∆
c
qr

]
ej∥F ≤ c(n, k)∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1;

(5.14)
see also [25, Thm. (19.13)]. Under this result, the difference between the original least
squares problem and the Arnoldi transformed least squares problem does not suffer from

the loss of orthogonality of V̂k+1 and we have

miny ∥
[
b, Ĉk

] [ 1
−y

]
∥2 = miny ∥

(
Ṽk+1

[
β̂e1, Ĥk

]
−
[
∆b

qr,∆
c
qr

]) [ 1
−y

]
∥2

= miny ∥(β̂e1 − Ṽ T
k+1∆

b
qr)− (Ĥk − Ṽ T

k+1∆
c
qr)y∥2.

2. Addressing the loss of orthogonality. We now identify a key iteration k ≤ n for which
conditions (3.7) and (3.8) are met. This is where the loss of orthogonality brings some
challenges. A successful approach proposed in [36] consists in exploiting [20, Thm. 3.1]

that assesses that as long as [b, AV̂k] is not nearly singular to machine precision, the set of

computed vectors V̂k+1 by MGS, which forms the next basis, is very well-conditioned. This

result stems from the observation that a growing condition number for V̂k+1 is associated
with a full loss of orthogonality. In our own proof, we will use the reworking of this theorem
by [36, sect. 6] and make a slight simplification. Namely, the results in [36, sect. 6] are derived

for V̇k which is V̂k with its columns correctly normalized, but for the sake of conciseness we

consider that these results hold for V̂k; it accounts for ignoring second order terms which
are harmless to our analysis.

First, we consider the case where we never fully lose the orthogonality of the basis; that

is, for all k ≤ n, we keep κ2(V̂k) ≤ 4/3 and, since σmin(V̂k) ≤ ∥v̂1∥2 ≈ 1 ≤ σmax(V̂k), we
have

κ2(V̂k) ≤ 4/3, σ−1
min(V̂k) ≤ 4/3, σmax(V̂k) ≤ 4/3. (5.15)

In this case, similarly to HH-GMRES, conditions (3.7) and (3.8) are met for k = n since

σmin(AV̂n) ≥ 3σmin(A)/4 ≫ u∥A∥F by assumption (5.11) and [bϕ,AV̂n] is singular for
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all ϕ > 0. Conversely, consider that there is an iteration where the basis fully loses its

orthogonality and that, therefore, κ2(V̂k) ≤ 4/3 is not valid for all k ≤ n. For the first k ≤ n

such that κ2(V̂k+1) > 4/3, we have κ2(V̂k) ≤ 4/3 and, hence, V̂k satisfies (5.15). Using [36,
sects. 5 and 6] which develop an equivalent result to [20, Thm. 3.1], and more particularly

using [36, eqs. (6.2) and (6.3)], we guarantee that since κ2(V̂k+1) > 4/3 then

σmin

([
bϕ, Ĉk

])
< c(n, k)u∥

[
bϕ, Ĉk

]
∥F , ∀ϕ > 0. (5.16)

The assertion (5.16) is stating that if the computed Q-factor V̂k+1 of [b, Ĉk] by MGS is ill-

conditioned, then [b, Ĉk] itself must be ill-conditioned; this is the converse of [20, Thm. 3.1].
Using (3.1) and (5.16) we obtain for all ϕ > 0

σmin

([
bϕ,AV̂k

])
= σmin([bϕ,AV̂k +∆c −∆c]) < c(n, k)u∥

[
bϕ, Ĉk

]
∥F + ∥∆c∥F

≲ c(n, k)(u+ εc)∥
[
bϕ,AV̂k

]
∥F ,

(5.17)

and using (5.15) we obtain

σmin(AV̂k) ≥ σmin(A)σmin(V̂k) ≥ 3/4σmin(A). (5.18)

Hence, at this specific iteration k ≤ n condition (3.5) is met by (5.15), and from (5.18)
and (5.11) we have

εc ≡ k
1
2 γ̃n∥A∥F /∥AV̂k∥F ≤ k

1
2 γ̃n∥A∥F /σmin(AV̂k)≪ 1,

and condition (3.6) is met. Moreover, (5.17) and (5.18) guarantee, respectively, that con-
ditions (3.7) and (3.8) are met. Then, at the key iteration k, which is defined as the first

iteration where κ2(V̂k+1) > 4/3, the conditions (3.1) to (3.8) are met.
3. Application of Theorem 3.1. Thus, Theorem 3.1 is applicable under conditions that reduce
to those of [36]. Observing that

σ−1
min(V̂k)∥AV̂k∥F /∥A∥F ≤ σ−1

min(V̂k)∥V̂k∥F ≤ κF (V̂k) ≤ 4k/3

by using (5.15), we obtain ξ ≲ c(n, k)u from which we deduce the backward error bound (5.12)
and which concludes the proof. □

5.4. Flexible GMRES. Flexible GMRES (FGMRES) is a variant of right-preconditioned
GMRES allowing for non-constant preconditioners. More precisely, it uses a basis Zk ≡
[f l(M−1

R,1v̂1), . . . , f l(M
−1
R,kv̂k)], where V̂k = [v̂1, . . . , v̂k] is the computed Krylov basis by the

Arnoldi algorithm and {MR,j}j is a set of right-preconditioners; possibly MR,i ̸= MR,j for
all i ̸= j ≤ k. Backward error analyses of FGMRES using the MGS orthogonalization
were carried out by Arioli et al. in [4] and [5], and we are specifically interested in [4,
Thm 3.1] which bounds the backward error of FGMRES for an unspecified set of right-
preconditioners {MR,j}j . This result is subsequently used to prove the backward stability

of FGMRES when MR,j ≡ MR ≡ L̂Û for all j ≤ k, where L̂ and Û are the LU factors of
A computed approximately. Except the fact that the basis Zk is not the computed Krylov

basis V̂k anymore but is rather unspecified, the operations at lines 1to 4 of Algorithm 1
are identical to those of MGS-GMRES. Accounting for different assumptions that we will
comment on later in this section and minor differences in the constants depending on n and
k, we recover closely the results of [4, Thm. 3.1] when we apply our framework to FGMRES.
We summarize our conclusions in the following theorem.

Theorem 5.3. Consider solving Ax = b with FGMRES run in precision of unit roundoff
u≪ 1. As long as the basis Zk is not numerically singular, that is,

σmin(Zk)≫ u∥Zk∥F , (5.19)

and if their exists an iteration k ≤ n such that for all ϕ > 0 we have

σmin([bϕ,AZk]) ≤ c(n, k)u
∥A∥F ∥Zk∥F
∥AZk∥F

∥
[
bϕ,AZk

]
∥F (5.20)
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and

σmin(AZk)≫ u∥A∥F ∥Zk∥F , (5.21)

then, at this iteration k, the backward error of x̂k satisfies

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)uσ−1
min(Zk)∥Zk∥F , (5.22)

where c(n, k) accounts for polynomials in n and k of low degrees.
Proof. We proceed identically as for the proofs of Theorem 5.1 and 5.2 where we are looking
for meeting the conditions of Theorem 3.1 in order to apply it. For the same reasons as for
these previous proofs, conditions (3.2) and (3.4) are met for εb ≡ 0 and εx ≡ γn. We shall
now demonstrate that the other conditions are met.
1. Identifying εc. The matrix–matrix product AZk is computed through a succession of
standard matrix–vector products Azj and satisfies

f l(AZk) = AZk +∆c, ∥∆c∥F ≤ γn∥A∥F ∥Zk∥F .

Hence, we meet condition (3.1) for εc ≡ γn∥A∥F ∥Zk∥F /∥AZk∥F , and εc ≪ 1 by assump-
tion (5.21).
2. Identifying εls. The least squares problem at line 3 is solved through MGS Arnoldi. As
for the proof of Theorem 5.2 on MGS-GMRES, we rely on the analysis of [36, sect. 7]. By
assumption (5.21) we have

σmin(Ĉk) ≥ σmin(AZk)− ∥∆c∥F ≫ u∥A∥F ∥Zk∥F ≳ u∥Ĉk∥F ,

and so Ĉk is full-rank. The result of [36, sect. 7] are applicable on the least squares problem

miny ∥b− Ĉky∥2, and from [36, eq. (7.13)] condition (3.3) is met for εls ≡ γ̃n(k+1).
3. Other conditions and application of Theorem 3.1. Condition (3.5) is verified by assump-
tion (5.19), and condition (3.6) is satisfied since all the accuracy parameters are sufficiently
less than 1. Finally, by assumptions (5.20) and (5.21) conditions (3.7) and (3.8) are met.
Observing that σ−1

min(Zk)∥AZk∥F /∥A∥F ≤ σ−1
min(Zk)∥Zk∥F , we can apply Theorem 3.1 with

ξ ≤ c(n, k)uσ−1
min(Zk)∥Zk∥F which concludes the proof. □

As Theorem 5.3 slightly differs in its result and assumptions from [4, Thm 3.1], we
comment on these differences. The major discrepancy between the two is the presence
of assumptions (5.20) and (5.21) in Theorem 5.3 which are not in [4, Thm. 3.1]. These
assumptions can hardly be simplified without more knowledge on the basis Zk. In particular,
assumption (5.21) requires

σmin(AZk)

∥A∥F ∥Zk∥F
=

∥AZk∥2
∥A∥F ∥Zk∥F

κ2(AZk)
−1 ≫ u,

which will be met if:

• The right-preconditioners {Mr,j}j are good approximations of the inverse of A such
that κ2(AZk) ≥ 1 is small enough.
• The cancellation occurring in the productAZk is small, that is, ∥AZk∥F / ∥A∥F ∥Zk∥F
≈ 1. Unfortunately, this tends to conflict with the previous point since, for a
good preconditioner, we expect AMr,j ≈ I potentially leading to ∥AMrj∥F ≪
∥A∥F ∥Mrj∥F .
• In all cases, if A and Zk are relatively well-conditioned, and the unit roundoff of the
machine precision is small enough, the previous condition should be met.

Nevertheless, assumptions (5.20) and (5.21) are not more restrictive than the ones in [4,
Thm. 3.1]. What makes the comparison complex is that the assumption [4, eq. (3.5)] of
[4, Thm. 3.1] is too optimistic in general because it requires [b, AZk] to be full-rank for all
k ≤ n. As explained in section 3.2, a good approximation to the solution is reached when b
lies in the range of AZk, and therefore when [b, AZk] is nearby rank deficient, which makes
assumption [4, eq. (3.5)] unlikely. In particular, this assumption never holds in the case
k = n, where [b, AZn] is always rank deficient.
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Another difference between Theorem 5.3 and [4, Thm 3.1] is the form of their error
bounds. The error bound provided by [4, Thm. 3.1] is

∥b−Ax̂k∥ ≲ c(n, k)u
(
∥b∥2 + ∥A∥F ∥x0∥+ ∥A∥F ∥|Zk||ŷk|∥+ ∥AZk∥F ∥ŷk∥2

)
, (5.23)

where ŷk is the computed solution of the least squares problem at line 3 of Algorithm 1 and
x0 is an initial guess of the solution. By using (3.24) in (5.23) and assuming x0 = 0, we
recover the error bound (5.22) of Theorem 5.3 and, therefore, (5.23) implies (5.22). In [4], the

error bound (5.23) is further specialized for the case where FGMRES uses MR,j ≡MR ≡ L̂Û

for all j ≤ k, where L̂ and Û are the LU factors of A computed in single precision. It is
shown, using (5.23) and under good conditions, that this process is backward stable, that
is, the backward error is bounded by c(n, k)u. This might be a source of confusion since the
bound (5.22) resulting from our analysis cannot actually lead to this conclusion; it provides
instead

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)uκF (L̂Û),

assuming Zk ≈ Û\L̂\V̂k and ∥V̂k∥F ≈ k1/2. This difference between the two analyses stems
from exploiting the fact that the LU preconditioner computed in single precision is very
close to the original matrix A, up to the single precision accuracy if the growth factor is
small. This is something that we cannot exploit in our analysis without loss of generality. In
addition of the non numerical singularity hypothesis [4, eq. (3.29)] and the initialization of

the first guess of the solution to x0 = Û\L̂\b, whereas we use x0 = 0, it leads to substantial
simplifications in the reasoning of [4], mainly from [4, eq. (3.27)] to [4, eq. (3.28)], that we
cannot do in our own analysis.

6. New backward error analyses of GMRES algorithms

In this section we use our modular framework to derive error bounds on several GMRES
algorithms for which a backward error analysis has not yet been proposed. We cover simpler
GMRES, CGS2-GMRES, and a mixed precision strategy for restarted GMRES. In addition,
we provide insights on how our framework might be used to derive error bounds for deflated
GMRES, randomized Gram-Schmidt GMRES, and block GMRES.

6.1. Simpler GMRES. Simpler GMRES is a variant of GMRES that uses a “simpler”
approach to solve the least squares problem at step 3 of Algorithm 1. It has been first
described in [49], but we will consider the more general form proposed by Jiránek et al. [30]
which uses an unspecified basis Zk and which is referred in their work as the “generalized
simpler approach”.

In exact arithmetic, a “standard” GMRES factorizes[
b, AZk

]
= Vk+1Rk+1, Rk+1 =

[
βe1, H̄k

]
,

and triangularizes the resulting Hessenberg matrix H̄k with Givens rotations to solve the
Arnoldi transformed least squares problem miny ∥βe1−H̄ky∥2 equivalent to the original least
squares problem miny ∥b−AZky∥2. Instead of computing a QR factorization of [b, AZk] as
for a standard GMRES, simpler GMRES factorizes AZk as

AZk = VkRk, (6.1)

where Vk ∈ Rn×k is orthogonal and Rk ∈ Rk×k is triangular. The least squares problem
at line 3 of Algorithm 1 is then solved by forming yk = R−1

k V T
k b. This leads to a more

traditional or “simpler” approach to solve the least squares problem miny ∥b−AZky∥2 that
does not involve upper Hessenberg factorization.

To derive a backward error analysis of simpler GMRES, we suppose that there is no
left-preconditioner (i.e., ML = I), that lines 1 and 4 of Algorithm 1 are computed from
standard matrix–vector products, and that the QR factorization (6.1) is obtained from the
MGS orthogonalization. It should be noted that with the MGS method, the least squares

problem should not be solved by forming explicitly the products yk = R̂−1
k V̂ T

k b which would
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lead to stability issues. Instead, as explained in [25, sect. 20.3], the augmented matrix
technique proposed by Björck [8] should be employed. Applying our framework to simpler
GMRES yields the following theorem.

Theorem 6.1. Consider solving Ax = b with simpler GMRES run in precision of unit
roundoff u ≪ 1. Under the same assumptions as Theorem 5.3, the backward error at the
key iteration k satisfies

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)uσ−1
min(Zk)∥Zk∥F , (6.2)

where c(n, k) is a polynomial in n and k.
Proof. The proof is almost identical to the one of Theorem 5.3 for FGMRES. The only
difference lies in the fact that the least squares problem at line 3 of Algorithm 1

min
y
∥b− Ĉky∥2 (6.3)

is now solved by the MGS QR factorization of Ĉk. The backward error analysis of this
process is covered by [25, Thm. 20.3]. Actually, [25, Thm. 20.3] concerns the Householder
orthogonalization, but it is explained in [25, sect. 20.3] that it holds for MGS with the
augmented matrix technique of Björck [8]. Using this previous result guarantees that the
computed solution ŷk of the least squares problem satisfies

ŷk = argminy ∥b+∆b
ls − (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≤ c(n, k)u∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1.

Therefore, condition (3.3) is met for εls ≡ c(n, k)u. The rest of the proof is identical to the
one of Theorem 5.3 for FGMRES. □

The original form of simpler GMRES, which is described in [49], uses a basis Zk ≡
[b/∥b∥2, V̂k−1] which spans the Krylov subspace Kk(A, b) and where V̂k−1 are the k − 1
first Arnoldi vectors computed iteratively through the orthogonalization process (6.1). In

this case, the Arnoldi process starts with v1 = Ab/∥Ab∥ and V̂k−1 spans the subspace
AKk−1(A, b).

Unfortunately, for this particular choice of basis Zk, the key dimension conditions (5.20)
and (5.21) will hardly be met. This is because the convergence of the solution amounts to b

lying in the range of V̂k and, thus, the basis Zk becomes rank-deficient as we converge to the
solution. In particular, it is explained in [30] that κF (Zk) is of the same order of magnitude
as the ratio ∥b∥2/∥rk−1∥2 (see [30, Thm. 3.2] and comments around). Hence, supposing
∥b∥2 ≈ 1 and taking the lower bound σmin(AZk) ≥ σmin(A)σmin(Zk), we deduce from
condition (5.21) the following more stringent condition for the application of Theorem 6.1

σmin(A)∥A∥−1
F σmin(Zk)∥Zk∥−1

F ≥ κF (A)−1κF (Zk)
−1 ≫ u, (6.4)

which will break once the residual is of order uκF (A). Condition (6.4) is not expected to
be significantly pessimistic compared with (5.21) since we have no reason to expect large
cancellations in the matrix–matrix product AZk, and is therefore a good indication of the
difficulty to meet condition (5.21). Note that this problem is independent of the orthogo-
nalization process used, and simpler GMRES with Householder or MGS orthogonalization
face the same issue.

Jiránek et al. [30] proposed a basis based on the normalized residuals Zk ≡ [r0/∥r0∥, . . . ,
rk−1/∥rk−1∥] in exact arithmetic. In particular, it is explained that as long as there is no
stagnation of the computed solution, namely rj ̸≈ rj+1 for all j < k, the vectors of the
basis Zk will stay linearly independent which prevents the previous issue. The conditions of
Theorem 6.1 are more likely to be met for this choice of basis under good non-stagnation
conditions; note that, however, we do not provide further investigations on the applicability
of Theorem 6.1 for this choice of basis Zk in this article.
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6.2. CGS2-GMRES. Compared with the MGS or Householder orthogonalization, the
classical Gram-Schmidt orthogonalization (CGS) preserves the least the orthogonality of
the computed Krylov basis vectors. Indeed, CGS run in precision of unit roundoff u com-

putes V̂k+1 satisfying

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)uκF

([
b, f l(AV̂k)

])2
, (6.5)

which is substantially worse than (5.9) and (5.10) for MGS and Householder, respectively;
see [21, Thm. 1]. For this reason, the CGS-GMRES variant suffers from stability issues.
A common remedy is to reapply the CGS process a second time. The resulting classi-
cal Gram-Schmidt with reorthogonalization algorithm (CGS2) has been shown to preserve
the orthogonality of the computed vectors close to the machine precision level as long as

[b, f l(AV̂k)] is numerically full-rank, namely

∥I − V̂ T
k+1V̂k+1∥F ≤ c(n, k)u; (6.6)

see [21, Thm. 2]. We say in this case that V̂k+1 is “orthogonal to machine precision”.
Naturally, this increased stability comes at the cost of increased flops. However, it is

important to remark that while CGS2 requires twice as many flops as MGS, it can leverage
higher-level BLAS kernels and requires less communication in distributed computing. For
these reasons, CGS2-GMRES can achieve better overall computing performance than MGS-
GMRES depending on the hardware and the problem. For instance, it has been remarked
in [33] that CGS2-GMRES is more competitive on GPU accelerators than MGS-GMRES.

Interestingly, while CGS2 better preserves the orthogonality than MGS and while CGS2-
GMRES is a popular variant of GMRES often used in practice, the backward stability of
CGS2-GMRES has not yet been proven.

In the following we study CGS2-GMRES and prove the backward stability of this al-
gorithm for solving (1.1). To carry out the backward error analysis, we suppose that the
operations at lines 1, 2, and 4 of Algorithm 1 are identical to those of MGS-GMRES studied
in section 5.3. Compared with this previous algorithm, the only difference is that line 3
is now computed with the CGS2 orthogonalization process. Applying our framework on
CGS2-GMRES yields the following theorem.

Theorem 6.2. Consider solving Ax = b with CGS2-GMRES run in precision of unit round-
off u ≪ 1. Under the same assumptions as Theorem 5.2, the backward error at the key
iteration k satisfies

∥b−Ax̂k∥2
∥b∥2 + ∥A∥F ∥x̂k∥2

≲ c(n, k)u, (6.7)

where c(n, k) is a polynomial in n and k of low degree.
Proof. The approach is very similar to proving Theorem 5.2 on the backward stability
of MGS-GMRES. Nonetheless, CGS2-GMRES offers new difficulties compared with MGS-
GMRES; specifically, the MGS’s Householder equivalence [9] does not extend to the CGS2
orthogonalization, and certain useful simplifications made in the proof of Theorem 5.2 are
now impossible. In addition, the proof also requires a range of side results on the CGS2
orthogonalization that are developed in the appendix but whose absence in the main text of
this proof should not be critical for the well-understanding of our reasoning. Most of these
side results are relatively straightforward to obtain but, to our knowledge, are not present in
the literature and need proper attention and development. The differences with the proof of
MGS-GMRES mostly concern conditions (3.3), (3.7), and (3.8) which we rework as follows.
1. Existence of the key dimension. Demonstrating the existence of a key iteration k ≤ n
at which conditions (3.7) and (3.8) are met can be done very similarly to the proof of
Theorem 5.2 for MGS-GMRES. In this previous proof, we defined the key iteration with the

condition number of the computed Arnoldi bases V̂k. To be more precise, we chose the key

iteration to be the first k ≤ n such that κ2(V̂k+1) > 4/3 and κ2(V̂k) ≤ 4/3, which amounts

to the full loss of orthogonality of V̂k+1. For this proof, our description of the key iteration
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is slightly different but conveys the same meaning. We consider the first k ≤ n such that

the basis V̂k+1 has lost its orthogonality to the level of machine precision, that is,

∥I − V̂ T
k+1V̂k+1∥F > c(n, k)u and ∥I − V̂ T

k V̂k∥F ≤ c(n, k)u, (6.8)

where c(n, k) accounts for polynomials of low degree in n and k; it is not critical for the rest
of the reasoning to identify the specific values of these c(n, k).

To show that we meet conditions (3.7) and (3.8) at this iteration k verifying (6.8), we
will show that (5.15) and (5.16) in the MGS-GMRES proof also hold for CGS2-GMRES
such that the rest of the reasoning is properly identical to the MGS-GMRES proof. We first

use Lemma C.2 developed in the appendix, which guarantees that the computed basis V̂k is

(very) well-conditioned as long as V̂k is orthogonal to machine precision. Namely under (6.8)
we have

σmin(V̂k) ≈ σmax(V̂k) ≈ κ2(V̂k) ≈ 1; (6.9)

from this we recover (5.15). To recover (5.16), we use Corollary C.4 also developed in the

appendix, which shows that if CGS2 computes V̂k+1 not orthogonal to the machine precision

level then the orthogonalized matrix [bϕ, Ĉk] must be numerically singular. More precisely,
under (6.8) the assumptions of Corollary C.4 are met at the key iteration k ≤ n and (C.18)
guarantees

σmin(
[
bϕ, Ĉk

]
) < c(n, k)u∥

[
bϕ, Ĉk

]
∥F , ∀ϕ > 0;

thus (5.16) is met. The rest of the reasoning of the paragraph “Addressing the loss of
orthogonality” in the proof of Theorem 5.2 holds, we similarly recover (5.17) and (5.18), and
conditions (3.7) and (3.8) are satisfied. In the case where we never lose the orthogonality

we have ∥I− V̂ T
k V̂k∥F ≤ c(n, k)u for all k ≤ n, we meet condition (3.7) and (3.8) at least for

k = n by knowing that V̂k satisfies (6.9) and by using the same reasoning as in the proof of
Theorem 5.2.
2. Identifying εls. The least squares problem miny ∥b− Ĉky∥2 at line 3 is solved with CGS2

Arnoldi. If Ĉk is numerically full-rank, which is the case at the key iteration k by using (6.9)
and assumption (5.11), this process provides a backward stable solution to the least squares
problem as for Householder or MGS Arnoldi; namely the computed solution ŷk satisfies

ŷk = argminy ∥(b+∆b
ls)− (Ĉk +∆c

ls)y∥2,

∥
[
∆b

ls,∆
c
ls

]
ej∥2 ≲ c(n, k)u∥

[
b, Ĉk

]
ej∥2, j ≤ k + 1.

(6.10)

Proving this statement at the key iteration k verifying (6.8) can be done almost identically
as in the proof of Theorem A.1 for Householder Arnoldi. For this reason, we do not provide
the full details but rather highlight the main differences. Adapting this proof to CGS2
mainly consists in replacing (A.5), which holds for the Householder orthogonalization, by[

b, Ĉk

]
+
[
∆b,∆C

(1)
k

]
= V̂k+1

[
β̂e1, Ĥk

]
,

∥
[
∆b,∆C

(1)
k

]
ej∥2 ≤ c(n, k)u∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(6.11)

obtained from Theorem B.1 developed in the appendix and which is a columnwise extension

of [21, eq. (8)], where β̂ ≈ ∥b∥2 and Ĥk ∈ R(k+1)×k. This result holds for CGS and a fortiori
for CGS2. A subtle but yet crucial difference to notice between (A.5) and (6.11) is that, in

the former, Ṽk+1 is perfectly orthogonal whereas, in the latter, V̂k+1 is not even orthogonal
to the machine precision level. It stems from the fact that the CGS2 orthogonalization does
not enjoy the Householder equivalence as for MGS [9]; the benefits of the MGS’s Householder
equivalence were briefly evoked in the proof of Theorem 5.2 for the backward stability of
MGS-GMRES. It makes the proof substantially more difficult since it prevents multiple
convenient simplifications in, for instance, (A.6) or in the transition from (A.8) to (A.9).

However, this can be overcome by observing that at the key iteration k ≤ n satisfy-
ing (6.8), CGS2-GMRES computes

Ĉk +∆C
(1)
k = V̂k+1Ĥk = V̂kĤ

⋆
k + ŵk+1e

T
k ≈ V̂kĤ

⋆
k , ∥ŵk+1∥2 < c(n, k)u∥ĉk∥2, (6.12)
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where Ĥ⋆
k ∈ Rk×k is Ĥk with its last row removed, and ŵk+1 is the result of the two

consecutive applications of the projection (I − V̂kV̂
T
k ) on ĉk = Ĉkek = fl(Av̂k) meant to

orthonormalize the vector ĉk against the vectors of V̂k; see [42, prop. 6.5]. The key approach

to prove (6.12) is to relate the loss of orthogonality of the basis V̂k+1 to a GMRES numerical
happy breakdown; that is, at the moment where the orthogonality is lost to machine preci-

sion, the vector ŵk+1 vanishes such that Ĥk(k+1, k) = ∥ŵk+1∥2 is at the machine precision
level. To achieve this, we can use another outcome of the application of Corollary C.4 in

the appendix which states that if CGS2 does not keep the orthogonality of V̂k to machine
precision from an iteration k to the next (k + 1), then necessarily ĉk lies in the range of

V̂k, yielding a very small projection (I − V̂kV̂
T
k )ĉk in the orthogonal complement of V̂k. Un-

der (6.8), the conditions of application of Corollary C.4 are met at the key iteration k, and
we conclude from (C.16) that CGS2 computes ŵk+1 satisfying (6.12).

Using (6.12) we rewrite (6.11) as[
b, Ĉk

]
+
[
∆b,∆C

(2)
k

]
= V̂k

[
β̂e1, Ĥ

⋆
k

]
, ∆C

(2)
k = ∆C

(1)
k − ŵk+1e

T
k ,

∥
[
∆b,∆C

(2)
k

]
ej∥2 ≤ c(n, k)u∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(6.13)

and replace (A.5) by (6.13) in the proof of Theorem A.1. The rest of the proof of Theorem A.1

can be easily adapted by applying Givens rotations on the square Hessenberg matrix Ĥ⋆
k

and taking into account the error on the orthogonality of V̂k defined by (6.8). For the latter,

we can consider the polar decomposition V̂k = UH, where U ∈ Rn×k is orthogonal and

H ∈ Rk×k is symmetric positive-semidefinite. We can show that the difference E = V̂k − U
has small norm by using [24, Lem. 5.1] and (6.8), which directly provide the following bound

∥E∥F ≤ ∥I − V̂ T
k V̂k∥F ≤ c(n, k)u.

Then, we replace V̂k by U+E and we account for the error of order ∥E∥F in the proof of The-
orem A.1. Hence, an equivalent theorem can be derived for CGS2 Arnoldi, we recover (6.10),
and condition (3.3) is met for εls ≡ c(n, k)u. □

6.3. Mixed precision restarted GMRES. One of the oldest and most successful mixed
precision implementations of GMRES has been described by Turner and Walker [46] and
subsequently investigated at great length in, for instance, [14], [3], or [33]. This mixed
precision strategy, which we simply refer to as mixed precision GMRES in this article, uses

M (i)

L ≡ I and Z(i)

ki ≡ V̂ (i)

ki for all i in Algorithm 2, where V̂ (i)

ki is the Krylov basis computed
by MGS Arnoldi at the ith restart and is fully formed and stored in memory. The residual
and the update at lines 3 and 8 of Algorithm 2 are computed with standard matrix–vector
product and vector addition/subtraction in high precision, while the rest of the operations
from lines 4 to 7 are identical to those of MGS-GMRES already described in section 5.3
and are computed in low precision. This process delivers high precision accuracy solution
after a suitable number of restarts. Moreover, as the residual and update computed in high
precision are expected to be of negligible cost compared with the rest of the operations
computed in low precision, mixed precision GMRES can substantially reduce time and
memory consumption with respect to a full high precision restarted MGS-GMRES while
providing the same solution accuracy.

Backward error analyses providing error bounds for mixed precision restarted left- pre-
conditioned MGS-GMRES can be found in the literature [14], [3], or [15]. Interestingly,
while these analyses cover restarted GMRES variants up to five precisions, their bounds
are too dependent on the preconditioners used to cover the unpreconditioned case that we
analyze in this section.

To carry out the backward error analysis we allow an unbounded number of Arnoldi
iterations at each restart. Applying our framework on mixed precision GMRES yields the
following theorem.
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Theorem 6.3. Consider solving Ax = b with mixed precision GMRES which computes
the residual and update in precision of unit roundoff uhigh and the rest of its operations in
precision of unit roundoff ulow. As long as

Λ = c(n, k)ulowκF (A)≪ 1, (6.14)

the backward and forward errors reduce at each iteration by a factor (at least) Λ until they
reach

∥b−Ax̂∥2
∥b∥2 + ∥A∥F ∥x̂∥2

≲ c(n, k)uhigh and
∥x̂− x∥2
∥x∥2

≲ c(n, k)uhighκF (A), (6.15)

where c(n, k) accounts for polynomials in n and k of low degree.
Proof. Applying Theorem 4.1 on mixed precision GMRES requires conditions (4.1) to (4.3)
and (3.1) to (3.8) to be met for all restart iterations i and for given parameters εr, εu, ε

(i)
c ,

ε(i)

b , ε(i)

ls , and ε(i)
x .

The computation of the residual and update at lines 3 and 8 are standard matrix–vector
product and vector addition/subtraction computed in high precision, they satisfy respec-
tively

r̂i = b−Ax̂i +∆ri, |∆ri| ≤ γhigh
n (|b|+ |A||x̂i|), (6.16)

and

x̂i+1 = x̂i + d̂i +∆xi, |∆xi| ≤ uhigh|x̂i+1|, (6.17)

where we identify εr ≡ γhigh
n and εu ≡ uhigh and for which conditions (4.1) to (4.3) are met.

The remaining conditions (3.1) to (3.8) concern the computation of the correction d̂i by
MGS-GMRES in low precision of unit roundoff ulow. Fortunately, the work has already
been done in the analysis of MGS-GMRES in section 5.3. From the proof of Theorem 5.2
we know that there exists key iterations ki at which these conditions are met as long as
σmin(A)≫ ulow∥A∥F , which is guaranteed by assumption (6.14), and we have

ξ(i) = ξ ≲ c(n, k)ulow. (6.18)

Since M (i)

L ≡ML ≡ I, we can simplify Λ(i)
1 and Λ(i)

2 in Theorem 4.1 and obtain

max(Λ
(i)
1 ,Λ

(i)
2 ) ≤ Λ = c(n, k)ulowκF (A)

for a given c(n, k). From assumption (6.14) we have Λ≪ 1, and applying Theorem 4.1 ends
the proof. □

6.4. Discussion around other GMRES algorithms. To conclude this section we discuss
other popular variants of GMRES on which our framework might be conclusive. These
discussions do not intend to give error bounds on these algorithms nor give suitable backward
error analyses. Instead, we discuss how our framework might be used and aim at identifying
potential difficulties in proving error bounds for these algorithms as well as giving a few
indications on how these difficulties might be addressed.
Deflated GMRES.. The convergence of GMRES is affected by the distribution of the eigen-
values of A. In particular, deflating small eigenvalues by having its corresponding eigen-
vector in the subspace Z spanned by Zk can substantially improve the convergence rate of
the method. This is the base idea of deflated GMRES algorithms. In this paragraph we
consider the deflated GMRES algorithm presented by Morgan [35] which can be seen as a
variant of restarted GMRES. In a nutshell, the process of deflated GMRES consists in:

• At the end of the (i− 1)th restart, computing the jth smallest harmonic Ritz pairs.
• Building an orthogonal basis V (i)

j+1 ∈ Rn×(j+1) which is a Krylov subspace containing
the smallest Ritz vectors previously computed and its associated matrix H̄(i)

j ∈
R(j+1)×j such that AV (i)

j = V (i)
j+1H̄

(i)
j holds. It is important to remark that the

process does not yield H̄(i)
j as a Hessenberg matrix.

• Restarting GMRES by starting from the (j + 1)th iteration and computing the
remaining ki − j − 1 vectors of the basis V (i)

ki with the usual Arnoldi process, where
ki is the size of the basis at the end of the ith restart.
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• Solving the least squares problem miny ∥(V (i)

ki+1)
T b − H̄(i)

ki y∥, updating the solution,
and repeating the process.

To derive a backward error analysis of deflated GMRES one should use Theorem 4.1. How-
ever, showing that we meet the conditions of application of the theorem is not straightforward
and, in the following, we briefly identify the difficulties that one should address to use our
framework on deflated GMRES.

Compared with restarted MGS-GMRES, deflated GMRES mainly differs in how the
Krylov basis V (i)

ki is built and how the least squares problem at line 6 of Algorithm 2 is
solved. These changes mainly affect conditions (3.3), (3.7), and (3.8) which need further
work to be proven. In more detail, the j + 1 first vectors of the basis at the ith restart are
obtained from the deflation process and, therefore, the Arnoldi process does not construct
V (i)

ki+1 as the Q-factor of the matrix [b, AV (i)

ki ] anymore; it is true in exact arithmetic. In
particular, the resulting matrix H̄(i)

ki used to solve the transformed least squares problem
miny ∥(V (i)

ki+1)
T b − H̄(i)

ki y∥ is not Hessenberg. As a result, the process used to compute a
solution to the least squares problem at line 6 is slightly different and, for this reason, it
needs its own backward error analysis which would guarantee that condition (3.3) is still
met. Moreover, to prove that conditions (3.7) and (3.8) are met, one might want to relate,
as in the proof of MGS-GMRES in section 5.3 or the proof of CGS2-GMRES in section 6.2,

the loss of orthogonality of the computed basis V̂ (i)

ki+1 to the near-singularity of [bϕ, Ĉ(i)

ki ]. To

achieve this, these previous proofs relied on the fact that V̂ (i)

ki+1 is the computed Q-factor

of [b, Ĉ(i)

ki ] by the MGS or CGS2 orthogonalization process. However, since V̂ (i)

ki+1 is not a
Q-factor with deflated GMRES, the reasoning carried out for MGS-GMRES or for CGS2-
GMRES has to be adequately revised and, in particular, it needs to consider the first (j+1)
vectors obtained through the deflation process.
Randomized Gram-Schmidt GMRES.. A successful implementation of GMRES taking ad-
vantage of random sketching techniques is proposed by Balabanov and Grigori [6]. The so-
called RGS-GMRES is built upon a randomized Gram-Schmidt process (RGS) and reduces
computational resources by computing the expensive inner-products of the Gram-Schmidt
orthogonalization in a lower-dimensional space. The resulting basis is orthogonal in the
sketched space but no longer orthogonal with respect to the usual ℓ2-inner-product in exact
arithmetic. Namely (ΘVk)

T (ΘVk) = I but V T
k Vk ̸= I for all k ≤ n, where Θ ∈ Rs×n is the

sketched matrix with s≪ n.
Error bounds on the solution computed by RGS-GMRES could be derived using Theo-

rem 3.1. The proof would follow closely, for instance, the one of MGS-GMRES developed in
section 5.3. As the operations at lines 1, 2, and 4 of Algorithm 1 are specialized identically
as for MGS-GMRES, the conditions associated to those lines still hold. The difference with
the MGS-GMRES proof would concern conditions (3.3), (3.7), and (3.8) that are affected
by the use of the RGS orthogonalization process. One should use the extensive resources
provided in [6] to prove that these conditions are still met. In particular, for the key iter-
ation conditions (3.7) and (3.8), [6, Thm. 3.2] could be used to show that RGS computes

a well-conditioned basis V̂k+1 as long as [b, Ĉk] is not numerically singular. Assuming that

this result can be reworked to consider the scaled matrix [bϕ, Ĉk] instead, we could show

that if V̂k+1 is not well-conditioned therefore [bϕ, Ĉk] is numerically singular, allowing an
identical reasoning as in the proof of MGS-GMRES (or CGS2-GMRES). Finally, to prove
condition (3.3) one might want to adapt the proof of Theorem A.1 for Householder Arnoldi
to the RGS Arnoldi process. In that regard, the backward error result for the RGS QR
factorization described in [6, Thm. 3.2] should be made columnwise and substitute (A.5) in
the proof of Theorem A.1. In addition, as the basis Vk is not orthogonal anymore in exact
arithmetic, the transformed least squares problem miny ∥βe1 − H̄ky∥2 is not exactly equiv-
alent to the original one miny ∥b−Cky∥2. To adapt the proof of Theorem A.1, which relies
on showing that those two least squares problem are near equivalent under rounding errors,
one might want to use [6, sect. 4.2] that links the solutions of the RGS Arnoldi transformed
least squares problem to the original one.
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Block GMRES.. Computing a linear system with multiple right-hand sides AX = B with
B,X ∈ Rn×b can be done efficiently through block GMRES; see for instance [43, 31, 38, 7].
In exact arithmetic, this algorithm builds at each iteration k the optimal set of approximate
solutions Xk ∈ Rn×b that minimizes the norm of the residuals associated with each right-
hand side Rk = AXk−B in the block Krylov subspace Kk(A,B) = span{B,AB, . . . , Ak−1B}
spanned by the full-rank block Arnoldi basis Vk = [V1, . . . , Vk] with Vj ∈ Rn×bj and bj ≤ b.
It has the advantage over a GMRES applied on each individual linear system to rely on
BLAS-3 operations that are more cache-friendly and can offer improved performance. In
addition, this version of GMRES enables the solution vectors associated with each right-
hand side to share their Krylov spaces leading to potentially faster convergence. We explain
how one might try to use our framework to derive backward and forward error bounds on
each individual solution of the system solved by block GMRES.

We consider a block GMRES implementation using a block modified Gram-Schmidt
(BMGS) scheme using the Householder orthogonalization to perform the intra-block QR
factorizations; we call this algorithm BMGS-GMRES. Other choices of block Gram-Schmidt
schemes or intra-block orthogonalizations could be used for implementing the block Arnoldi
process. We refer the reader to [16] for more information relative to block Gram-Schmidt
algorithms and their stability; in particular, we refer to [16, sect. 4.5] for a discussion on the
stability of BMGS with Householder intra-block orthogonalization.

Theorem 3.1 could be used to bound the errors of the computed solutions associated with
each right-hand side individually. Verifying conditions (3.1) and (3.4) should not raise any

particular difficulties. We have Zk ≡ V̂k with block GMRES, and analyzing the numerical

errors generated by computing the products AV̂k at line 1 and V̂kYk at line 4 of Algorithm 1
is direct if those products are standard matrix–matrix products. To prove condition (3.3),
one natural way would be to adapt the proof of Theorem A.1 for Householder Arnoldi to
BMGS Arnoldi. To that end, one could inject in (A.5) the backward error result on the
computed QR factors by BMGS [29, prop. 4.2], giving

[B, Ĉk] + ∆qr = V̂k+1R̂, Ĉk = fl(AV̂k), ∥∆qr∥F ≤ c(n, k)∥[B, Ĉk]∥Fu; (6.19)

it might be needed to rework (6.19) in columnwise or block-columnwise form. In [7], the
MGS’s Householder equivalence [9] is discussed and extended to some BMGS variants. For
those variants, (6.19) could take the form of (5.14) which holds for an exactly orthogonal

Q-factor Ṽk+1 instead of the non-orthogonal V̂k+1 in (6.19). The BMGS’s Householder
equivalence presented in [9] might be necessary to carry out the proof or, at least, would
simplify it. Adapting the remainder of the proof of Theorem A.1 to the “reduced-size” QR
factorization (because the proof of Theorem A.1 considers the “full-size” QR factors) and to

block operations (e.g., Ĥk is band-Hessenberg and has b subdiagonals instead of only one,
the triangular solve is now applied on a matrix, etc.) might deliver a similar bound to (A.3)
on each individual solution of the least squares problem.

Meeting conditions (3.7) and (3.8) is a substantial source of challenges for applying our
framework on BMGS-GMRES. The difficulty originates from the variation in convergence
rates of the solutions associated with each right-hand side. It means, in particular, that
some solutions will reach their attainable accuracies (or user-defined accuracies) earlier than
others. Naturally, BMGS-GMRES is completed when all those solutions have converged to
their required accuracies. To better understand the source of the problem, we can inter-

pret the block Arnoldi basis V̂k+1 at the (k + 1)th iteration as the computed Q-factor of

[B, f l(AV̂k)] by the BMGS QR factorization; see (6.19). Hence, because [B,AV̂k] becomes
numerically singular once the first solution has converged to the machine precision accuracy,

that is, when the associated right-hand side lies in the range of AV̂k, BMGS-GMRES yields

potentially numerically singular next computed iterate bases V̂k̄ for k < k̄. This phenom-
enon is evoked by Langou in his Ph.D. thesis [31, sect. 2.6.6.1.2]. Consequently, after the
convergence of the first solution, condition (3.8) becomes impracticable and Theorem 3.1
is not applicable on the remaining solutions. Fortunately, this issue can be prevented by
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modifying the Arnoldi procedure to account for the convergence variability of the set of so-
lutions. Those methods generally consist in discarding directions prone to instability during

the basis expansion to avoid V̂k becoming nearby rank-deficient. The strategy of Robbé and
Sadkane [38], for instance, is popular and has been reused in [1] and [45]. To successfully
apply our framework, it is likely that such a variant of BMGS-GMRES has to be considered.

7. Conclusion

We developed a modular framework for the backward error analyses of GMRES algo-
rithms. This framework is made of a set of minimal assumptions under which we obtain
modular normwise backward and forward error bounds that can be specialized to any GM-
RES algorithms meeting the framework assumptions. At the core of the framework are
Theorems 3.1 and 4.1 which result from the backward error analyses of the MOD-GMRES
and restarted MOD-GMRES abstract algorithms, respectively, and which should be used to
derive bounds on the attainable backward and forward errors of a given GMRES algorithm.
We dedicated a substantial amount of this article to applying these theorems to a wide range
of GMRES algorithms in order to prove our framework’s practicality and illustrate how it
can be used. To that end, we first assessed the correctness of our framework by showing that
it delivers (almost) identical error bounds under (almost) identical conditions as the major
already existing backward error analyses of GMRES. Second, we used this framework to
derive error bounds for three GMRES algorithms on which, to our knowledge, no conclusive
backward error analyses existed. We further discussed how our framework might be used on
three other GMRES algorithms without providing complete analyses; we gave insights into
the difficulties of analyzing these algorithms and proposed approaches to address them.

We believe that the framework we proposed and the various examples we reviewed can
help the community to derive error bounds for current and future GMRES algorithms. We
emphasize that many GMRES variants on which the application of our framework can be
considered have not been mentioned in this article. We give a quick acknowledgment to some
of them here: s-step communication-avoiding GMRES algorithms [28, 12] which are based on
block orthogonalization algorithms that we evoked in section 6.4 and on which more details
can be found in [16]; the Q-OR algorithm presented in [34] that generates a non-orthogonal
Krylov basis; mixed precision GMRES iterative refinement and split-preconditioned FGM-
RES covered respectively in [3] and [13] and on which we already have backward error
analyses; inner-outer FGMRES algorithms which are FGMRES preconditioned by another
GMRES algorithm, see for instance [44] or [11].
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Appendix A. Least squares problem via Householder Arnoldi

Theorem A.1. Consider the solution of the HH-GMRES least squares problem

min
y
∥b− Cky∥2, Ck ∈ Rn×k, 0 ̸= b ∈ Rn×n, (A.1)
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via the Householder Arnoldi process run in precision of unit roundoff u≪ 1. For all k ≤ n,
as long as Ck is numerically full-rank, that is,

σmin(Ck)≫ u∥Ck∥F , (A.2)

the computed solution satisfies

ŷk = argminy ∥(b+∆b)− (Ck +∆Ck)y∥2,
∥
[
∆b,∆Ck

]
ej∥2 ≲ γ̃nk+2(n+k)−2∥

[
b, Ck

]
ej∥2, j ≤ k + 1.

(A.3)

Proof. The least squares problem minimizing the Arnoldi residual solved by HH-GMRES
is not directly miny ∥b − Cky∥2 but is instead miny ∥βe1 − H̄ky∥2, where H̄k and β are
defined in (5.1). In exact arithmetic, the two share the same solution, but the second is
computationally less expensive to solve. Thus, we need to show that the computed solution
of the second least squares problem in floating-point is a backward stable solution of the
first. Proofs already exist in the literature in some forms, see [18]. However, they are not
compliant with our notations and not necessarily easy to appreciate by someone reading this
article. Therefore, for the sake of completeness, we present what we think is an elegant and
compact way to prove it.

As explained in section 5.2, the Householder Arnoldi process can be seen as a column-
oriented Householder QR factorization of the matrix [b, Ck] ∈ Rn×(k+1). The solution of the
least squares problem miny ∥βe1−H̄ky∥2 is then obtained by triangularizing the Hessenberg
matrix H̄k extracted from the resulting R-factor. This triangularization is simply another
QR factorization performed with Givens rotations. To carry out the proof, we need to
consider separately the cases k < n and k = n. This is because in the first case, the matrix
[b, Ck] is overdetermined, while in the second, it is underdetermined, leading to QR factors
of different shapes.

We first address the case k < n. Consider the solution of the least squares problem

min
y
∥R̂
[
1
−y

]
∥2, (A.4)

where R̂ ∈ R(k+1)×(k+1) is the computed R-factor from the QR factorization of [b, Ck] using
the Householder orthogonalization. From [25, Thm. 19.4], we know that the QR factors of
[b, Ck] satisfy [

b, Ck

]
+
[
∆b(1),∆C

(1)
k

]
=
[
Ṽk+1, Q̃2

] [R̂
0

]
∥
[
∆b(1),∆C

(1)
k

]
ej∥2 ≤ γ̃n(k+1)∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(A.5)

where Ṽk+1 ∈ Rn×(k+1) and Q̃2 ∈ Rn×(n−k−1) are orthogonal. In particular, R̂ is upper

triangular and can be decomposed as R̂ = [β̂e1, Ĥk], where β̂ ≈ ∥b∥2 and Ĥk ∈ R(k+1)×k is an
upper Hessenberg matrix. Hence, the least squares problem (A.4) is essentially miny ∥βe1−
H̄ky∥2, but where the quantities β and H̄k are replaced by their computed counterparts. To
solve (A.4), we transform the upper Hessenberg matrix in a trapezoidal matrix by applying
Givens rotations. We then compute the solution of the resulting triangular system. In the
following we aim to show that, accounting for the rounding errors, this process provides a
backward stable solution for (A.4). From [25, Thm. 19.10], we have

Q′T (R̂+∆R(1)) =

[
w T̂
ω 0

]
, ∥∆R(1)ej∥2 ≤ γ̃n+k−2∥R̂ej∥2,

where [T̂ , 0]T ∈ R(k+1)×k is the computed upper triangular R-factor of Ĥk, Q
′ ∈ R(k+1)×(k+1)

is orthogonal, w ∈ Rk is a vector, and ω is a scalar such that [w,ω]T = Q′T (βe1). The com-

puted solution of the least squares problem is obtained through a triangular solve with T̂

and satisfies (T̂ + ∆T )ŷk = w where ∥∆Tej∥2 ≤ γk∥Tej∥2 ≲ γk∥R̂ej+1∥2 for j = 1, . . . , k,

see [25, Thm. 8.5]. The triangular solve is well-defined since T̂ is nonsingular for all k.



32 BACKWARD ERROR ANALYSIS FRAMEWORK FOR GMRES

Indeed, from (A.5) and because R̂ = [β̂e1, Ĥk], we have

Ck +∆C
(1)
k = Ṽk+1Ĥk = Ṽk+1Q

′Q′T Ĥk = Ṽk+1Q
′(T̂ −Q′T∆R

(1)
2: ). (A.6)

As Ṽk+1 and Q′ are orthogonal, the rank of T̂ is that of Ck + ∆C
(1)
k + Ṽk+1∆R

(1)
2: , which

is full-rank by condition (A.2). Accounting for both errors in the Givens rotations and the
triangular solve, we conclude that ŷk is the exact solution of the following perturbed least
squares problem

ŷk = argminy ∥(R̂+∆R(2))

[
1
−y

]
∥2, ∥∆R̂(2)ej∥2 ≲ γ̃n+2k−2∥R̂ej∥2, (A.7)

which shows that ŷk is a backward stable solution of (A.4) for all k < n. It remains to
show that this is a backward stable solution of the original least squares problem (A.1).
From (A.5), we have

R̂+∆R(2) = Ṽ T
k+1(

[
b, Ck

]
+
[
∆b(1),∆C

(1)
k

]
+ Ṽk+1∆R(2)), (A.8)

which combined with (A.7) gives

ŷk = argminy ∥(
[
b, Ck

]
+
[
∆b(2),∆C

(2)
k

]
)

[
1
−y

]
∥2,

∥
[
∆b(2),∆C

(2)
k

]
ej∥2 ≲ γ̃nk+2(n+k)−2∥

[
b, Ck

]
ej∥2, j ≤ k + 1,

(A.9)

since ∥R̂ej∥2 ≈ ∥[b, Ck]ej∥2, which ends the proof for k < n.
The case k = n is slightly different because Householder orthogonalizes an underdeter-

mined system [b, Cn] ∈ Rn×(n+1). The application of HH-GMRES at step k = n produces[
b, Cn

]
+
[
∆b(1),∆C(1)

n

]
= ṼnR̂, (A.10)

where R̂ = [β̂e1, Ĥn] ∈ Rn×(n+1) is the computed upper trapezoidal R-factor, the errors

[∆b(1),∆C
(1)
n ] ∈ Rn×(n+1) are equivalently defined as in (A.5), Ṽn ∈ Rn×n is orthogonal

and is close to the computed Q-factor of the first n columns of [b, Cn], and Ĥn ∈ Rn×n is a

square Hessenberg matrix which is a subtle difference with the case k < n where Ĥk is not

square. As for the case k < n, we apply Givens rotations to Ĥn followed by a triangular
solve to obtain the solution. Carrying the same reasoning as for k < n, we can obtain an
equivalent result as (A.9) which ends the proof for k = n. □

Appendix B. Columnwise backward error result for CGS

Theorem B.1. Suppose that the CGS method run in floating-point arithmetic with unit

roundoff u ≪ 1 is applied to B ∈ Rn×k of rank k, yielding computed matrices Q̂ ∈ Rn×k

and R̂ ∈ Rk×k. Then the computed QR factors satisfy

B +∆B = Q̂R̂, ∥∆Bej∥2 ≲ c(n, k)u∥Bej∥2, j ≤ k, (B.1)

for some polynomial of low degree c(n, k) in n and k.
Proof. In exact arithmetic, the CGS algorithm computes the Q = [q1, . . . , qk] and R =
[r1, . . . , rk] factors of B = [b1, . . . , bk] with the following recurrence

vj =
[
I −Q1:j−1Q

T
1:j−1

]
bj , qj = vj/∥vj∥2,

r1:j−1,j = QT
1:j−1bj , rj,j = ∥vj∥2,

where Q1:j−1 ∈ Rn×(j−1) is the matrix composed of the (j−1)th vectors of Q and r1:j−1,j ∈
Rj−1 is the vector composed of the (j − 1)th entries of rj . Accounting for the floating-
point errors in computing the vector subtractions, norms, and ℓ2-inner-products, the process
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satisfies instead for all j ≤ n

v̂j = bj −
∑j−1

l=1
q̂lr̂l,j +∆vj , ∥∆vj∥2 ≤ c(n, k)u∥bj∥2, (B.2)

q̂j = v̂j/∥v̂j∥2 +∆qj , ∥∆qj∥2 ≤ c(n, k)u, (B.3)

r̂l,j = q̂Tl bj + δrl,j , |δrl,j | ≤ c(n, k)u∥q̂l∥2∥bj∥2, ∀l ≤ j − 1, (B.4)

r̂j,j = ∥v̂j∥2 + δrj,j , |δrj,j | ≤ c(n, k)u∥v̂j∥2. (B.5)

Combining (B.3) and (B.5) we obtain

q̂j r̂j,j = (v̂j/∥v̂j∥2 +∆qj)(∥v̂j∥2 + δrj,j) ≈ v̂j +∆qj∥v̂j∥2 + δrj,j v̂j/∥v̂j∥2,
which, used alongside (B.2), gives

bj +∆vj +∆qj∥v̂j∥2 + δrj,j v̂j/∥v̂j∥2 ≈
∑j

l=1
q̂lr̂l,j . (B.6)

Using (B.2), (B.3), and (B.4), we have the following bound

∥v̂j∥2 ≲ ∥bj∥2 +
∑j−1

l=1
∥q̂l∥2∥q̂Tl ∥2∥bj∥2 ≈ j∥bj∥2,

which, by defining ∆bj = ∆vj +∆qj∥v̂j∥2 + δrj,j v̂j/∥v̂j∥2 in (B.6), finally gives

bj +∆bj ≈ Q̂r̂j , ∥∆bj∥2 ≲ c(n, k)u∥bj∥2,
and completes the proof. □

Appendix C. CGS2 generates a closely-orthogonal set of vectors

In [21], it is shown that CGS2 computes a set of vectors orthogonal to the machine
precision level as long as the orthogonalized matrix B is not numerically singular; see the
following Theorem C.1. In this appendix, we build on this foundation to derive a set of
useful results required to analyze CGS2-GMRES.

Theorem C.1. (Rewrite of [21, Thm. 2]) Suppose CGS2 run in precision of unit roundoff

u≪ 1 is applied to B ∈ Rn×k of rank k yielding a computed Q-factor Q̂ ∈ Rn×k. Then, as

long as c(n, k)uκ2(B) ≤ 1, Q̂ satisfies

∥I − Q̂T Q̂∥F ≤ c(n, k)u, (C.1)

where c(n, k) are polynomials in n and k of low degree.

Lemma C.2. Consider Q̂ ∈ Rn×k. If ∥I − Q̂T Q̂∥F ≤ c(n, k)u, then Q̂ is well-conditioned
and we have

σmin(Q̂) ≈ σmax(Q̂) ≈ κ2(Q̂) ≈ 1, (C.2)

where c(n, k) are polynomials in n and k of low degree.

Proof. By assumption the vectors of Q̂ are orthogonal to machine precision and we have

∥I − Q̂T Q̂∥F ≤ c(n, k)u. (C.3)

To evaluate the smallest and largest singular values of Q̂ we consider the polar decomposition

Q̂ = UH, where U ∈ Rn×k is orthogonal and H ∈ Rk×k is symmetric positive-semidefinite.

Using [24, Lem. 5.1] combined with (C.3) we can bound the distance from Q̂ to U , we obtain

∥Q̂− U∥F ≤ ∥I − Q̂T Q̂∥F ≤ c(n, k)u.

Using Q̂ = Q̂− U + U we can write

σmin(Q̂) = minx
∥(Q̂− U + U)x∥2

∥x∥2
≤ σmin(U) + ∥Q̂− U∥F ≤ 1 + c(n, k)u,

σmin(Q̂) ≥ σmin(U)− ∥Q̂− U∥F ≥ 1− c(n, k)u,

which provides σmin(Q̂) ≈ 1. The same reasoning can be used to show that σmax(Q̂) ≈ 1

from which we deduce κ2(Q̂) ≈ 1 and which ends the proof. □
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Condition c(n, k)uκ2(B) ≤ 1 of Theorem C.1 on the non numerical singularity of B can

be exchanged with conditions on the norms of the projections (I − Q̂j−1Q̂
T
j−1)bj for j ≤ k

and where Q̂j−1 ∈ Rn×(j−1) is the (j−1) first columns of Q̂. Namely, we will show that if for

all j ≤ k the norm of the projection (I − Q̂j−1Q̂
T
j−1)bj , which is the projection of bj on the

orthogonal complement of Q̂j−1 formed by CGS2 at the jth iteration to compute Q̂j , is large
enough, then the conclusion of Theorem C.1 holds. In exact arithmetic, those conditions on
the projections (I −Qj−1Q

T
j−1)bj enforce bj for all j ≤ k to never lie in the range of Qj−1,

that is, the range of Bj−1 = [b1, . . . , bj−1], and, therefore, enforce the columns of B to be
independent so that B is nonsingular.

Theorem C.3. Suppose that the first k−1 iterations of CGS2 run in precision of unit round-

off u ≪ 1 and applied to Bk−1 ∈ Rn×(k−1) yields a computed Q-factor Q̂k−1 ∈ Rn×(k−1)

satisfying

∥I − Q̂T
k−1Q̂k−1∥F ≤ c(n, k)u. (C.4)

Consider the kth iteration of CGS2 applied on Bk = [Bk−1, bk] of rank k and yielding a

computed Q-factor Q̂k = [Q̂k−1, q̂k]. As long as ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 ≥ c(n, k)u∥bk∥2, the

orthogonality of Q̂k is preserved and we have

∥I − Q̂T
k Q̂k∥F ≲ c(n, k)u, (C.5)

where c(n, k) accounts for polynomials in n and k of low degree.
Proof. The following proof is a direct revisit of [21, Thm. 2]. While our proof is self-
contained, it does not provide the level of details and insights present in [21]. Therefore, we
strongly recommend reading this work for a deeper understanding of the CGS2 orthogonal-
ization in floating-point.

Under condition (C.4) and since

I − Q̂T
k Q̂k =

[
I − Q̂T

k−1Q̂k−1 −Q̂T
k−1q̂k

−q̂Tk Q̂k−1 1− q̂Tk q̂k

]
,

proving (C.5) reduces to show that ∥Q̂T
k−1q̂k∥2 ≤ c(n, k)u. We apply the kth iteration of

CGS2 on Bk to compute q̂k. Accounting for the floating point errors, the process yields the
following two set of projections

v̂k = bk −
k−1∑
j=1

q̂j r̂j,k +∆vk, ∥∆vk∥2 ≤ c(n, k)u∥bk∥2, (C.6)

ŵk = v̂k −
k−1∑
j=1

q̂j ŝj,k +∆wk, ∥∆wk∥2 ≤ c(n, k)u∥v̂k∥2, (C.7)

associated, respectively, to the first and second application of the Gram-Schmidt orthogo-
nalization. The computed orthogonalization coefficients r̂j,k and ŝj,k for j ≤ k − 1 satisfy

r̂j,k = q̂Tj ak + δrj,k, ŝj,k = q̂Tj v̂k + δsj,k, ŝk,k = ∥ŵk∥2 + δsk,k,

|δrj,k| ≤ c(n, k)u∥q̂Tj ∥2∥bk∥2, |δsj,k| ≤ c(n, k)u∥q̂Tj ∥2∥v̂k∥2, |δsk,k| ≤ c(n, k)u∥ŵk∥2,
(C.8)

and q̂k is finally obtained as

q̂k = ŵk/∥ŵk∥2 +∆qk, ∥∆qk∥2 ≤ c(n, k)u, ∥q̂k∥2 ≤ 1 + c(n, k)u. (C.9)

To bound ∥Q̂T
k−1q̂k∥2 we first need to derive bounds for ∥v̂k∥2, ∥Q̂T

k−1v̂k∥2/∥v̂k∥2, and

∥Q̂T
k−1ŵk∥2/∥ŵk∥2.
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We start by providing a lower bound for ∥v̂k∥2; from (C.6), (C.8), and (C.9) we have

∥v̂k∥2 = ∥(I − Q̂k−1Q̂
T
k−1)bk −

k−1∑
j=1

q̂jδrj,k +∆vk∥2

≥ ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 −

k−1∑
j=1

∥q̂j∥2|δrj,k| − ∥∆vk∥2

≳ ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 − c1(n, k)u∥bk∥2,

where c1(n, k) is a polynomial in n and k of low degree. Under the assumption

∥(I − Q̂k−1Q̂
T
k−1)bk∥2 ≥ c0(n, k)u∥bk∥2 (C.10)

of the Theorem, and by choosing c0(n, k) sufficiently larger than c1(n, k), we guarantee

∥v̂k∥2 ≳
[
c0(n, k)− c1(n, k)

]
u∥bk∥2 = c(n, k)u∥bk∥2. (C.11)

We emphasize that we are not interested in determining a specific value for c0(n, k) in
assumption (C.10). Our goal is only to validate that there exists such a polynomial c0(n, k)
of low degree in n and k such that the Theorem holds.

Multiplying the expression (C.6) from the left by Q̂T
k−1 yields

Q̂T
k−1v̂k = (I − Q̂T

k−1Q̂k−1)Q̂
T
k−1bk + Q̂T

k−1

[
−

k−1∑
j=1

q̂jδrj,k +∆vk
]
,

and taking the norm of this expression accounting for the assumption (C.4), the bounds on

the errors (C.6) and (C.8), and the fact that ∥Q̂k−1∥F ≈ (k − 1)1/2 gives the bound

∥Q̂T
k−1v̂k∥2 ≤ ∥(I − Q̂T

k−1Q̂k−1)∥F ∥Q̂T
k−1∥F ∥bk∥2 + ∥Q̂T

k−1∥F
k−1∑
j=1

∥q̂j∥2|δrj,k|+ ∥∆vk∥2

≲ c2(n, k)u∥bk∥2.

Therefore, combining this previous bound with (C.11) and enforcing c0(n, k) to be sufficiently
larger than c2(n, k) + c1(n, k) gives

∥Q̂T
k−1v̂k∥2/∥v̂k∥2 ≲ c2(n, k)/

[
c0(n, k)− c1(n, k)

]
< 1. (C.12)

We now provide a bound for ∥Q̂T
k−1ŵk∥2/∥ŵk∥2. We can rewrite (C.7) in the following

form

ŵk = (I − Q̂k−1Q̂
T
k−1)v̂k −

k−1∑
j=1

q̂jδsj,k +∆wk

from which, accounting for the bounds (C.7), (C.8), and (C.12), we deduce

∥ŵk∥2
∥v̂k∥2

≥ ∥v̂k∥2
∥v̂k∥2

− ∥Q̂k−1∥F
∥Q̂T

k−1v̂k∥2
∥v̂k∥2

−
∑k−1

j=1 ∥q̂j∥2|δsj,k|
∥v̂k∥2

− ∥∆wk∥2
∥v̂k∥2

≳ 1− c3(n, k)

c0(n, k)− c1(n, k)
− c(n, k)u.

Hence, choosing, for instance, c0(n, k) ≤ 2c3(n, k) + c1(n, k) leads to

∥v̂k∥2/∥ŵk∥2 ≲ 2. (C.13)

In the same fashion as for deriving the bound (C.12), multiplying the expression (C.7) from

the left by Q̂T
k−1, taking the norm, and using the bounds (C.4), (C.8), and (C.13) yields

∥Q̂T
k−1ŵk∥2
∥ŵk∥2

≤ ∥(I − Q̂T
k−1Q̂k−1)∥F ∥Q̂T

k−1∥F
∥v̂k∥2
∥ŵk∥2

+ ∥Q̂T
k−1∥F

∑k−1
j=1 ∥q̂j∥2|δsj,k|+ ∥∆wk∥2

∥ŵk∥2
≲ c(n, k)u. (C.14)
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Finally, taking Q̂T
k−1q̂k = Q̂T

k−1ŵk/∥ŵk∥2+Q̂T
k−1∆qk and using (C.9) and (C.14) we write

∥Q̂T
k−1q̂k∥2 ≤ ∥Q̂T

k−1ŵk∥2/∥ŵk∥2 + ∥Q̂T
k−1∆qk∥2 ≲ c(n, k)u,

which ends the proof. □

From Theorem C.3, we can derive the following Corollary where we explain that the loss

of orthogonality of the computed vectors of Q̂k by CGS2 at the iteration k can only be the

consequence of a small projection norm ∥(I − Q̂k−1Q̂
T
k−1)bk∥2.

Corollary C.4. Suppose that the first k − 1 iterations of CGS2 run in precision of unit

roundoff u ≪ 1 and applied to Bk−1 ∈ Rn×(k−1) yields a computed Q-factor Q̂k−1 ∈
Rn×(k−1) satisfying ∥I − Q̂T

k−1Q̂k−1∥F ≤ c(n, k)u. Consider the kth iteration of CGS2

applied on Bk = [Bk−1, bk] of rank k and yielding a computed Q-factor Q̂k = [Q̂k−1, q̂k]. If

∥I − Q̂T
k Q̂k∥F > c(n, k)u, then

∥(I − Q̂k−1Q̂
T
k−1)bk∥2 < c(n, k)u∥bk∥2, (C.15)

the vector ŵk resulting from the computation of the two consecutive applications of the pro-

jection (I−Q̂k−1Q̂
T
k−1) yielding in exact arithmetic w̃k = (I−Q̂k−1Q̂

T
k−1)(I−Q̂k−1Q̂

T
k−1)bk

satisfies
∥ŵk∥2 ≲ c(n, k)u∥bk∥2, (C.16)

and Bk is numerically singular

σmin(Bk) ≤ c(n, k)u∥Bk∥F , (C.17)

where c(n, k) are some polynomials in n and k of low degree.

Proof. The converse of Theorem C.3 implies that if ∥I − Q̂T
k Q̂k∥F > c(n, k)u but ∥I −

Q̂T
k−1Q̂k−1∥F ≤ c(n, k)u, then we must have

∥(I − Q̂k−1Q̂
T
k−1)bk∥2 < c(n, k)u∥bk∥2,

and we recover (C.15).
From (C.6) and (C.7) we have

v̂k = (I − Q̂k−1Q̂
T
k−1)bk −

k−1∑
j=1

q̂jδrj,k +∆vk and ŵk = (I − Q̂k−1Q̂
T
k−1)v̂k −

k−1∑
j=1

q̂jδsj,k +∆wk,

where δrj,k, δsj,k, ∆vk, and ∆wk are defined in (C.6), (C.7), and (C.8). Accounting for (C.9)
we have ∥q̂j∥2 ≈ 1, and using in addition (C.15) we deduce

∥v̂k∥2 ≤ ∥(I − Q̂k−1Q̂
T
k−1)bk∥2 +

k−1∑
j=1

∥q̂j∥2|δrj,k|+ ∥∆vk∥2 ≲ c(n, k)u∥bk∥2.

Moreover, considering ∥Q̂k−1∥F ≈ (k − 1)1/2, we obtain

∥ŵk∥2 ≤ (∥I∥F + ∥Q̂k−1∥2F )∥v̂k∥2 +
k−1∑
j=1

∥q̂j∥2|δsj,k|+ ∥∆wk∥2 ≲ c(n, k)∥v̂k∥2 ≲ c(n, k)u∥bk∥2,

from which we recover (C.16).
Finally, from Theorem B.1, which holds for CGS and a fortiori for CGS2, the kth first

iterations of CGS2 yields computed factors satisfying

Bk = [Bk−1, bk] =
[
Q̂k−1, q̂k

] [R̂k−1 r̂1:k−1,k

0 ∥ŵk∥2

]
+∆B

(1)
k , ∥∆B

(1)
k ej∥2 ≤ c(n, k)u∥Bkej∥2, j ≤ k.

Since CGS2 constructs q̂k = ŵk/∥ŵk∥2 +∆qk with ∥∆qk∥2 ≤ c(n, k)u, see (C.9), we obtain

Bk +∆B
(2)
k = Q̂k−1

[
R̂k−1, r̂1:k−1,k

]
, ∆B

(2)
k = −(ŵk +∆qk∥ŵk∥2)eTk −∆B

(1)
k ,

and using (C.16), we bound

∥∆B
(2)
k ej∥2 ≲ c(n, k)u∥Bkej∥2, j ≤ k.



BACKWARD ERROR ANALYSIS FRAMEWORK FOR GMRES 37

Because
[
R̂k−1, r̂1:k−1,k

]
has rank k − 1, it is singular and

0 = σmin(Bk +∆B
(2)
k ) ≥ σmin(Bk)− ∥∆B

(2)
k ∥F

leading to

σmin(Bk) ≲ c(n, k)u∥Bk∥F
which proves (C.17) and ends the proof. □

Because the computed Q̂ by CGS2 is invariant by column scaling B ← BD for all diagonal
D > 0, at least if D comprises powers of the machine base (see comments in [25, p. 373]
and [32, p 502]), (C.17) in Corollary C.4 can be replaced by

σmin(BD) < c(n, k)u∥BD∥F , for all diagonal D > 0. (C.18)

The result remains true even when including the cases where the entries of D are not all
powers of the machine base, but for the sake of conciseness we do not attempt a proof of
this statement in this article.
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GMRES. BIT Numerical Mathematics, 35(3):309–330, September 1995.

[19] Luc Giraud, Serge Gratton, and Julien Langou. A note on relaxed and flexible GMRES. Technical
report, Technical Report TR/PA/04/41, CERFACS, Toulouse, France, 2004.

[20] Luc Giraud and Julien Langou. When modified Gram–Schmidt generates a well-conditioned set of

vectors. IMA J. Numer. Anal., 22(4):521–528, 10 2002.



38 BACKWARD ERROR ANALYSIS FRAMEWORK FOR GMRES
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[30] Pavel Jiránek, Miroslav Rozložńık, and Martin H. Gutknecht. How to Make Simpler GMRES and GCR

More Stable. SIAM J. Matrix Anal. Appl., 30(4):1483–1499, January 2009.
[31] Julien Langou. Solving large linear systems with multiple right–hand sides. PhD thesis, Ph. D. disser-

tation, INSA Toulouse, 2003.
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