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CRITICALLY FIXED THURSTON MAPS:
CLASSIFICATION, RECOGNITION, AND TWISTING

MIKHAIL HLUSHCHANKA AND NIKOLAI PROCHOROV

Abstract. An orientation-preserving branched covering map f : S2 → S2 is called a criti-
cally fixed Thurston map if f fixes each of its critical points. It was recently shown that there
is an explicit one-to-one correspondence between Möbius conjugacy classes of critically fixed
rational maps and isomorphism classes of planar embedded connected graphs. In the paper,
we generalize this result to the whole family of critically fixed Thurston maps. Namely,
we show that each critically fixed Thurston map f is obtained by applying the blow-up
operation, introduced by Kevin Pilgrim and Tan Lei, to a pair (G,φ), where G is a planar
embedded graph in S2 without isolated vertices and φ is an orientation-preserving homeo-
morphism of S2 that fixes each vertex of G. This result allows us to provide a classification
of combinatorial equivalence classes of critically fixed Thurston maps. We also develop an
algorithm that reconstructs (up to isotopy) the pair (G,φ) associated with a critically fixed
Thurston map f . Finally, we solve some special instances of the twisting problem for the
family of critically fixed Thurston maps obtained by blowing up pairs (G, idS2).
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1. Introduction

One-dimensional holomorphic dynamics studies the iteration of analytic functions on the
Riemann sphere Ĉ or on the complex plane C. One of the most influential ideas in the
subject, and in dynamics of complex rational maps in particular, has been to abstract from
the rigid underlying complex structure and consider the more general setup of branched
self-coverings of a topological 2-sphere S2 or of a topological plane. Such a branched self-
covering is called postcritically-finite, or pcf for short, if all its critical points are periodic or
preperiodic. Nowadays, orientation-preserving pcf branched covers f : S2 → S2 of topological
degree deg(f) ≥ 2 are called Thurston maps, in honor of William Thurston, who introduced
them in order to better understand dynamics of pcf rational maps on Ĉ.

In this paper, we study the following special subclass of Thurston maps.

Definition 1.1. A branched covering map f : S2 → S2 is called a critically fixed Thurston
map if each of its critical points is fixed under f and deg(f) ≥ 2.

Pcf rational maps may seem to form a rather specific family, as there are only countably
many pcf rational maps of a fixed degree up to Möbius conjugation. However, they play a
crucial role in the study of dynamics of rational maps. In particular, the entire complicated
structure of the Mandelbrot set can be described in terms of pcf polynomials [DH84]. Fur-
thermore, the existence of a strong dynamical similarity between a dense subset of the space
of all rational maps (of any fixed degree) and pcf rational maps was conjectured in [McM94,
Conjecture 1.1]; see also the discussion in [McM94, Chapter 4].

We denote the set of critical points of a Thurston map f by Crit(f). The set Post(f) :=⋃∞
n=1 f

n(Crit(f)) of the forward iterates of the critical points is called the postcritical set of f .
For critically fixed Thurston maps, we obviously have Post(f) = Crit(f). Two Thurston
maps are called combinatorially (or Thurston) equivalent if they are conjugate up to isotopy
relative to their postcritical sets; see Definition 2.8.

One of the key features of Thurston maps is that they often admit a description in purely
combinatorial terms. A fundamental question in this context is whether a given Thurston
map f can be realized by a rational map with the same combinatorics, that is, if f is
combinatorially equivalent to a rational map. William Thurston answered this question
in his celebrated characterization of rational maps : If a Thurston map f has a hyperbolic
orbifold (this is always true, except for some well-understood special maps), then f is realized
by a rational map F if and only if f has no Thurston obstruction [DH93]. Such an obstruction
is given by a finite collection of disjoint Jordan curves in S2 \Post(f) with certain invariance
properties under the map f . Furthermore, the rational map F is unique up to Möbius
conjugation (see Section 2.5 for more discussion).
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Thurston’s characterization of rational maps allows to address the classification problem,
which asks to describe all possible combinatorial models that are realized by rational maps
within a given family. More precisely, we want to assign some finite combinatorial certificate
to each map from the family so that different certificates correspond to different maps and
vice versa. This question is well-understood for pcf complex polynomials. Specifically, they
can be classified by the so-called Hubbard trees [Poi10] or external angles [Poi93]. Recently,
the classification problem was also solved for pcf Newton maps [DMRS19, LMS22] and
critically fixed rational maps [Hlu19]. In both cases, the classification is given in terms of
planar embedded graphs on the 2-sphere. Nevertheless, the classification problem for the
family of all pcf rational maps is extremely challenging and remains wide open.

Once we have an answer to the classification problem within some class of rational maps,
we can assign canonical combinatorial data to any map from the considered family. Thus, we
can ask the recognition question of computing the canonical combinatorial model for a given
map. For example, this question was recently solved for pcf polynomials [BLMW22, BD17].
A more detailed survey of known results can be found in [BLMW22, Section 1.4].

A particular instance of the recognition question above is the twisting problem. Suppose
f : Ĉ → Ĉ is a pcf rational map and φ is an element of Homeo+(S2,Post(f)), that is, φ is
an orientation-preserving homeomorphism of S2 that fixes each postcritical point of f . The
twisting problem asks to determine if the twisted map g := φ ◦ f is realized by a rational
map and, if yes, find the canonical combinatorial model for g.

The twisting problem was initially investigated for the case when f is a complex polynomial
using algebraic machinery provided by iterated monodromy groups [BN06]. An alternative
approach in the polynomial case, using mapping class groups methods, was recently suggested
in [BLMW22]. Nevertheless, in the case of non-polynomial rational maps, not many results
are known. For instance, in [Lod13, KL19] the twisting problem was studied for rational
maps of low degree with four postcritical points.

1.1. Main results. In this paper, we construct and study combinatorial models for the class
of critically fixed Thurston maps. Below, we provide an overview of our main results.

1.1.1. Classification of critically fixed Thurston maps. The classification problem for the
family of critically fixed rational maps was studied in several works [Tis89, CGN+15], and
in [Hlu19] it was completely solved as stated in the following result.

Theorem 1.2. [Hlu19, Theorem 2] There is a canonical bijection between the combinatorial
equivalence classes (or, equivalently, Möbius conjugacy classes) of critically fixed rational
maps and the isomorphism classes of planar embedded connected graphs.

Here and in the following, a planar embedded graph is allowed to have multiple edges
but no loops. To associate a critically fixed rational map to a planar embedded connected
graph, one uses the so-called “blow-up operation”, introduced by Kevin Pilgrim and Tan Lei
in [PL98]. It is a special surgery on Thurston maps, which we roughly describe now in the
context relevant to us (see a detailed discussion in Section 3.1).

Let G be a planar embedded graph in S2 and φ be an element of Homeo+(S2, V (G)). First,
we cut the sphere S2 open along each edge e ∈ E(G) and glue in a closed Jordan region De

in each slit along the boundary. Then we define a branched covering map f̂ : Ŝ2 → S2 on the
resulting 2-sphere Ŝ2 as follows: f̂ maps the complement of

⋃
e∈E(G) int(De) in the same way

as the homeomorphism φ, and it maps each int(De), e ∈ E(G), to the complement of φ(e)
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in S2 by a homeomorphism whose extension to ∂De matches the map φ|e. After natural
identification of the domain sphere Ŝ2 with the target sphere S2, we obtain a critically
fixed Thurston map f : S2 → S2 of degree d = |E(G)| + 1 and with critical points at the
non-isolated vertices of G. We say that the map f is obtained by blowing up the pair (G,φ).

It is easy to check that the critically fixed Thurston map obtained by blowing up a pair
(G, idS2) is realized by a rational map if G is connected [CGN+15, Theorem 9]. It is shown
in [Hlu19, Proposition 7] that the converse is also true: every critically fixed rational map F
is obtained by blowing up the pair (GF , idĈ) for some planar embedded connected graph GF

in Ĉ. The graph GF is called the charge graph of F . The existence of such a graph is one of
the crucial ingredients in the proof of Theorem 1.2.

In this paper, we provide an extension of the classification result above to the class of all
critically fixed Thurston maps (including the obstructed ones). In particular, we prove that
every critically fixed Thurston map f : S2 → S2 can be obtained by blowing a pair (Gf , φf ),
where Gf is a planar embedded graph in S2 with the vertex set V (Gf ) = Crit(f) and exactly
deg(f)− 1 edges, and φf is a homeomorphism in Homeo+(S2, V (Gf )) satisfying some extra
assumptions. Namely, the image φf (e) of each edge e ∈ E(Gf ) is isotopic to e rel. V (Gf ).

Similar to the rational case, we call the graph Gf the charge graph of f and denote it
by Charge(f). We note that it is invariant under f . More precisely, Gf ⊂ f−1(Gf ) up to
isotopy rel. Crit(f).

We show that the pair (Gf , φf ) as above is uniquely defined, up to a natural equivalence
relation, within the combinatorial equivalence class of f . This allows us to completely
classify all critically fixed Thurston maps. Before we can provide the precise statement of
this classification, we need the following definitions.

Definition 1.3. Let G be a planar embedded graph in S2 and φ be a homeomorphism in
Homeo+(S2, V (G)). We say that (G,φ) is an admissible pair (in S2) if G does not have
isolated vertices and φ(e) is isotopic to e rel. V (G) for each edge e ∈ E(G).

Two admissible pairs (G1, φ1) and (G2, φ2) in two topological 2-spheres S2 and Ŝ2, re-
spectively, are called equivalent if there exists an orientation-preserving homeomorphism
ψ : S2 → Ŝ2 such that ψ(G1) = G2 and ψ ◦ φ1 ◦ ψ−1 is isotopic to φ2 rel. V (G2).

The following theorem provides a complete combinatorial classification of critically fixed
Thurston maps.

Main Theorem A. There is a canonical bijection between the combinatorial equivalence
classes of critically fixed Thurston maps and the equivalence classes of admissible pairs.

The proof of Main Theorem A is based on Pilgrim’s decomposition theory of Thurston
maps [Pil01]. In particular, we show that each critically fixed Thurston map f can be
canonically decomposed into homeomorphisms and critically fixed Thurston maps that are
realized (Theorem 3.22). The charge graph of f is then defined as a union of the charge
graphs of the “rational pieces” of this decomposition; see Section 3.6 for details.

We also point out the following simple criterion for realizability of critically fixed Thurston
maps, which also follows from a decomposition result.

Proposition 1.4. Let f be a critically fixed Thurston map. Then f is obstructed if and only
if f has a Levy fixed curve, that is, there is an essential Jordan curve γ ⊂ S2 \ Crit(f) and
a component γ′ of f−1(γ) such that γ′ is isotopic to γ rel. Crit(f) and f |γ′ : γ′ → γ is a
homeomorphism.
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Here, a Jordan curve γ ⊂ S2 \ Crit(f) is essential if each connected component of S2 \ γ
contains at least two critical points of f .

1.1.2. Recognition of combinatorial models of critically fixed Thurston maps. We study the
question of determining the combinatorial equivalence class of a given critically fixed Thurston
map f . To answer this question, we develop an algorithm that finds an admissible pair
(Gf , φf ) associated with f . The algorithm is based on iteration of a pullback operation on
planar embedded trees, in the spirit of the lifting algorithm (for pcf polynomial maps) from
[BLMW22] and the ivy iteration (for pcf quadratic rational maps) from [ST19]. We note
that, in contrast with our algorithm, the lifting algorithm does not have any complexity
estimates, and the ivy iteration lacks convergence results.

Let f : S2 → S2 be a critically fixed Thurston map and T be a planar embedded tree
in S2 with Crit(f) ⊂ V (T ). It is easy to check that the preimage f−1(T ) is a connected
planar embedded graph in S2 containing Crit(f). Hence, we can take a spanning subtree
of the critical points in the graph f−1(T ). We “simplify” the obtained tree by removing all
non-critical vertices of degree 2 (if there any). The result of this pullback operation is again
some planar embedded tree T ′ with Crit(f) ⊂ V (T ′). We call the tree T ′ a pullback of the
tree T under the map f and denote by Πf (T ) the set of all such pullbacks.

Note that a pullback of T is not uniquely defined, as we may choose different spanning
trees of Crit(f) in f−1(T ). This contrasts with the lifting operation for the polynomial case
from [BLMW22]. Nevertheless, we can still iterate our pullback operation and consider the
sequence Tn+1 ∈ Πf (Tn), n ≥ 0, of planar embedded trees. We show that this sequence
eventually lands in a special set, dependent only on the function f and not on the starting
tree T0.

To be more precise, suppose that [T ] denotes the equivalence class of a planar embedded
tree T modulo isotopy rel. Crit(f). Let us consider the set Nf of the equivalence classes [T ]
of planar embedded trees T that satisfy the following three conditions:

(i) Crit(f) ⊂ V (T );
(ii) T does not have non-critical vertices of degree 2;
(iii) T ∩ Charge(f) = Crit(f).

We note that the set Nf is finite if and only if f is realized by a rational map. This easily
follows from the connectivity of the charge graph in the rational case. Moreover, if f is
realized, then every tree T as above is invariant under f (up to isotopy).

Now the following statement is true.

Main Theorem B. Let f : S2 → S2 be a critically fixed Thurston map and T0 be a planar
embedded tree with Crit(f) ⊂ V (T0). Consider the sequence (Tn)n≥0 of planar embedded trees
in S2 such that Tn+1 ∈ Πf (Tn) for each n ≥ 0. Then there exists N ∈ N depending on f and
T0 such that [Tn] ∈ Nf for every n ≥ N .

In other words, for every sufficiently large n, the tree Tn intersects the charge graph of f
only in critical points (up to isotopy). To prove this result, we establish a certain “topological
contraction” property of the pullback operation, see Proposition 4.6.

Main Theorem B allows us to develop an algorithm that answers the raised question
of recognizing the combinatorial equivalence class of critically fixed Thurston maps; see
Algorithm 1. The key idea here is that, once we get a tree T with [T ] ∈ Nf , we can
reconstruct Charge(f) and compute an admissible pair for f using a simple combinatorial
operation; see Section 4.3 for more details. We provide an upper bound for the speed of
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convergence of Algorithm 1 in Theorem 4.7. Note that, once we know Charge(f), we can
also determine if f is realized and, if not, find its canonical Thurston obstruction.

1.1.3. Twisting problem. The machinery we develop may be used to study the twisting prob-
lem for critically fixed Thurston maps.

Let f : S2 → S2 be a critically fixed Thurston map and φ ∈ Homeo+(S2,Crit(f)). The
twisting problem asks to determine the combinatorial equivalence class of the twisted map
g := φ ◦ f . In our case, the map g is again a critically fixed Thurston map with Crit(g) =
Crit(f). Thus, we may use Algorithm 1 for solving the twisting problem; see Example 5.1.
At the same time, in some special cases, we may solve the twisting problem explicitly using
a simple combinatorial operation applied to the charge graph of the original map f .

To be exact, we consider critically fixed Thurston maps f obtained by blowing up the
pair (G, idS2), where G is a planar embedded graph in S2. Note that this family includes all
critically fixed rational maps (i.e., maps for which the graph G is connected). Further, let γ
be an essential Jordan curve in S2 \ Crit(f) such that if (G, γ) = |G ∩ γ| and |γ ∩ e| ≤ 1 for
each edge e ∈ E(G). Here, if (·, ·) denotes the (unsigned) intersection number rel. Crit(f);
see Section 2.3 for the precise definition. Finally, we consider the twisted maps of the form
T nγ ◦ f , where n ∈ Z, f and γ are as described above, and Tγ is the Dehn twist about the
curve γ. We prove that the combinatorial equivalence class of such maps can be determined
by applying a combinatorial operation, which we call the n-rotation about the curve γ, to
the original graph G = Charge(f). Roughly speaking, this operation acts like a “fractional
Dehn twist” on G; see the precise definition in Section 5.1.

Main Theorem C. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing
up a pair (G, idS2). Suppose n ∈ Z is arbitrary and γ is an essential Jordan curve in
S2 \ Crit(f) such that if (G, γ) = |G ∩ γ| and |γ ∩ e| ≤ 1 for each e ∈ E(G).

(i) If if (G, γ) ≥ 1, then the twisted map T nγ ◦f is isotopic to the map obtained by blowing
up the pair (H, idS2), where H is the result of the (−n)-rotation about the curve γ
applied to G.

(ii) If if (G, γ) = 0, then the twisted map T nγ ◦f is isotopic to the map obtained by blowing
up the (admissible) pair (G, T nγ ).

This theorem allows to conclude the following statement.

Corollary 1.5. Suppose we are in the setup of Main Theorem C with if (G, γ) ≥ 1. Then
the sequence of combinatorial equivalence classes of (T nγ ◦ f)n∈Z is strictly periodic with the
period dividing if (G, γ). In other words, if n1 ≡ n2 mod if (G, γ), then the twisted maps
T n1
γ ◦ f and T n2

γ ◦ f are combinatorially equivalent.

1.2. Organization of the paper. Our paper is organized as follows. In Section 2, we
review some general background. In Section 2.1, we fix notation and state some basic
definitions. We discuss planar embedded graphs and intersection numbers in Sections 2.2
and 2.3, respectively. In Sections 2.4 and 2.5, we provide the necessary background in
Thurston theory and formulate Thurston’s characterization of rational maps. In Section 2.6,
we discuss notions and results from Pilgrim’s decomposition theory. We also formulate some
auxiliary results about branched covers and planar graphs in Section 2.7.

In Section 3, we construct canonical combinatorial models for critically fixed Thurston
maps. In Sections 3.1–3.3, we introduce the blow-up operation and discuss its properties.
We review the classification of critically fixed rational maps in Section 3.4. In Section 3.5,
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we study invariant multicurves and decompositions of critically fixed Thurston maps. In
Section 3.6, we prove Main Theorem A, i.e., provide a complete classification of critically
fixed Thurston maps.

Further, in Section 4, we work on the algorithmic recognition of the combinatorial equiv-
alence classes for critically fixed Thurston maps. In Section 4.1, we introduce the pullback
operation on planar embedded trees. Next, we explore contraction properties of the pull-
back operation and prove Main Theorem B in Section 4.2. In Section 4.3, we discuss how
to recover a canonical combinatorial model for critically fixed Thurston maps. In particular,
we present the Lifting Algorithm (Algorithm 1) that recovers the charge graph and discuss
its complexity.

In Section 5, we study the twisting problem for the family of critically fixed Thurston
maps. We start by briefly reviewing the previous work on the problem and discussing a few
specific examples. In Section 5.1, we define the combinatorial operation of the n-rotation
of a planar embedded graph about a Jordan curve. We introduce the concept of simple
transversals with respect to a planar embedded graph in Section 5.2. Finally, we prove Main
Theorem C and discuss its implications in Section 5.3.

Acknowledgments. This material is based upon work supported by the National Science
Foundation under Grant No. 1440140, while the authors were in residence at the Mathemat-
ical Sciences Research Institute in Berkeley, California, during the Spring semester of 2022.
The authors were also partially supported by the ERC advanced grant “HOLOGRAM”. We
would like to thank Laurent Bartholdi, Mario Bonk, Kostya Drach, Dima Dudko, Lukas
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Palina Salanevich, Dierk Schleicher, Vladlen Timorin, and Rebecca Winarski for useful com-
ments, remarks, and discussions. We are also grateful to Laurent Bartholdi for help with his
GAP-package IMG.

2. Background

2.1. Notation and basic concepts. The sets of positive integers, integers, and complex
numbers are denoted by N, Z, and C, respectively. We use the notation i for the imaginary
unit in C, I := [0, 1] for the closed unit interval on the real line, D := {z ∈ C : |z| < 1} for
the open unit disk in C, and Ĉ := C ∪ {∞} for the Riemann sphere.

The cardinality of a set X is denoted by |X| and the identity map on X by idX . If
f : X → X is a map and n ∈ N, we denote the n-th iterate of f by fn. If f : X → Y is map
and U ⊂ X, then f |U stands for the restriction of f to U .

If X is a topological space and U ⊂ X, then U denotes the closure, int(U) the interior,
and ∂U the boundary of U in X.

Let S be a connected and oriented topological 2-manifold. We denote its Euler charac-
teristic by χ(S). We use the notation S2 for an (oriented) topological 2-sphere, that is, a
2-manifold homeomorphic to the Riemann sphere Ĉ. Let V ⊂ S2 be an open and connected
subset of S2. Then χ(V ) is given by 2 − kV , where kV is the number of complementary
components of V .

A Jordan curve in S2 is the image of an injective continuous map of ∂D into the sphere S2.
A Jordan arc e in S2 is the image e = ι(I) of an injective continuous map ι : I → S2. We
will use the notation ∂e := {ι(0), ι(1)} for the endpoints and int(e) := e \ ∂e for the interior
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of the Jordan arc e (these, of course, differ from the boundary and interior of e as a subset
of S2).

A subset U ⊂ S2 is called an open or closed Jordan region (in S2) if there exists an
injective continuous map η : D→ S2 such that U = η(D) or U = η(D), respectively. In both
cases, ∂U = η(∂D) is a Jordan curve in S2. A crosscut in an open or closed Jordan region U
is a Jordan arc e such that int(e) ⊂ int(U) and ∂e ⊂ ∂U .

A closed annulus in S2 is the image A = ϕ(∂D × I) of an injective continuous map
ϕ : ∂D× I→ S2. A core curve of A is a Jordan curve γ ⊂ int(A) such that the two boundary
curves of A are in distinct components S2 \ γ.

Usually, we work with a finitely marked sphere, that is, a pair (S2, Z), where Z is a finite
set of marked points in S2. We say that e ⊂ S2 is a Jordan arc in a marked sphere (S2, Z)
if e is a Jordan arc in S2 with ∂e ⊂ Z and int(e) ⊂ S2 \ Z. A Jordan curve in (S2, Z) is a
Jordan curve γ in S2 with γ ⊂ S2 \Z. Such a Jordan curve γ is called essential if each of the
two connected components of S2 \ γ contains at least two points from Z; otherwise, we say
that γ is non-essential. A non-essential Jordan curve γ in (S2, Z) is called null-homotopic
if one of the components of S2 \ γ contains no points from Z; otherwise, we say that γ is
peripheral.

Let X and Y be topological spaces. A continuous map H : X×I→ Y is called a homotopy
from X to Y . The homotopy H is called an isotopy if the time-t map Ht := H(t, ·) : X → Y
is a homeomorphism for each t ∈ I.

Suppose Z ⊂ X. A homotopy H : X × I → Y is said to be a homotopy relative to Z
(abbreviated “H is a homotopy rel. Z”) if Ht(p) = H0(p) for all p ∈ Z and t ∈ I. Similarly,
we define an isotopy rel. Z.

Two homeomorphisms h0, h1 : X → Y are called isotopic (rel. Z ⊂ X) if there exists an
isotopy H : X × I→ Y (rel. Z) with H0 = h0 and H1 = h1.

Given M,N ⊂ X, we say that M is homotopic to N (rel. Z ⊂ X) if there exists a
homotopy H : X × I→ X (rel. Z) with H0 = idX and H1(M) = N . If H is an isotopy rel. Z
we say that M is isotopic to N rel. Z (or M can be isotoped into N rel. Z) and denote this
by M ∼ N rel. Z.

Let (S2, Z) be a finitely marked sphere. We denote by Homeo+(S2, Z) the group of all
orientation-preserving homeomorphisms of S2 that fix the set Z element-wise. We will use the
notation Homeo+0 (S

2, Z) for the subgroup of Homeo+(S2, Z) consisting of homeomorphisms
isotopic to the identity rel. Z. The pure mapping class group of the marked sphere (S2, Z)
is then defined as the quotient

PMCG(S2, Z) := Homeo+(S2, Z)⧸Homeo+0 (S
2, Z).

Let γ be a Jordan curve in (S2, Z). We will use the notation Tγ to denote a Dehn twist
about γ in (S2, Z). To define it, consider first the (left) twist map T : ∂D× I→ ∂D× I given
by the formula T (eiθ, t) =

(
ei(θ+2πt), t

)
. We assume that the cylinder ∂D × I is oriented so

that its embedding into the complex plane C via the map (eiθ, t) 7→ eiθ(t+1) is orientation-
preserving. Let now A ⊂ S2\Z be a closed annulus in S2 with core curve γ and ϕ : ∂D×I→ A
be an orientation-preserving homeomorphism. Then a Dehn twist Tγ about the curve γ is
defined by

Tγ(p) =

{
(ϕ ◦ T ◦ ϕ−1)(p) if p ∈ A
p if p ∈ S2 \ A.
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By construction, the map Tγ ∈ Homeo+(S2, Z). It is uniquely defined up to isotopy rel. Z
independently of the choice of A and ϕ. Furthermore, the isotopy class of Tγ does not depend
on the choice of the Jordan curve γ within its isotopy class rel. Z.

2.2. Planar embedded graphs. We refer the reader to [Die05] for general background in
graph theory. Below we conduct a discussion in the context of planar embedded graphs,
though many of the concepts are also relevant for abstract graphs.

A planar embedded graph in a sphere S2 is a pair G = (V,E), where V is a finite set of
points in S2 and E is a finite set of Jordan arcs in (S2, V ) with pairwise disjoint interiors.
The sets V and E are called the vertex and edge sets of G, respectively. Note that our notion
of a planar embedded graph allows multiple edges, that is, distinct edges that connect the
same pair of vertices. However, it does not allow loops, that is, edges that connect a vertex
to itself.

In the following, suppose G = (V,E) is a planar embedded graph in S2. The degree of a
vertex v in G, denoted by degG(v), is the number of edges in G incident to v. If degG(v) = 0,
we say that the vertex v is isolated, and if degG(v) = 1, we say that the vertex v is a leaf.

The subset G := V ∪
⋃
e∈E e of S2 is called the realization of G. A face of the graph G

is a connected component of S2 \ G. Given a planar embedded graph G, we will denote by
V (G), E(G), and F (G) the sets of vertices, edges, and faces of G, respectively.

It will be convenient to conflate a planar embedded graph G with its realization G. In this
case, we will specify a finite set V (G) ⊂ G of distinguished points that serve as the vertices
of the graph. Then the edge set E(G) consists of the closures of the components of G \V (G).

A walk P of length n between vertices v and v′ in G is a sequence (v0 := v, e0, v1, e1, . . . ,
vn−1, en−1, vn := v′), where ej is an edge in G incident to the vertices vj and vj+1 for each
j = 0, . . . , n − 1. If it does not create ambiguity, we may describe the walk P by the
sequence (v0, v1, . . . , vn) of its consecutive vertices. The walk P is called a path if all its
edges ej, j = 0, . . . , n − 1, are distinct, and it is called a simple path if all its vertices vj,
j = 0, . . . , n, are distinct.

A path (v0, e0, v1, e1, . . . , vn−1, en−1, vn) in G with v0 = vn and n ≥ 2 is called a cycle of
length n. Such a cycle is called simple if all vertices vj, j = 0, . . . , n− 1, are distinct.

The graph G is called connected if there is a path in G between every two vertices v, v′ ∈ V .
In other words, G is connected if its realization is a connected subset of S2. It follows that
the graph G is connected if and only if each face of G is simply connected. We say that the
graph G is a tree if G is connected and there are no cycles in G.

A subgraph of G is a planar embedded graph G′ = (V ′, E ′) such that V ′ ⊂ V and E ′ ⊂ E.
A connected component of G is a maximal connected subgraph of G. The number kG of
connected components of G is given by the Euler formula

kG = |F (G)| − |E(G)|+ |V (G)| − 1.

Let A be a non-empty subset of V . A spanning subtree of A in G is a minimal subtree T
of G with A ⊂ V (T ). Such a subtree T exists if and only if all vertices in A belong to the
same connected component of G. Note that each leaf of T must be in A due to minimality.

Suppose S2 and Ŝ2 are two topological 2-spheres. Let G = (V,E) and Ĝ = (V̂ , Ê) be two
planar embedded graphs in S2 and Ŝ2, respectively. We say that G is isomorphic to Ĝ if
there exists an orientation-preserving homeomorphism ψ : S2 → Ŝ2 that maps vertices and
edges of G into vertices and edges of Ĝ, that is, ψ(v) ∈ V̂ and ψ(e) ∈ Ê for all v ∈ V and
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e ∈ E. In this case, we call ψ an isomorphism between G and Ĝ. Clearly, isomorphisms
induce an equivalence relation on the set of all planar embedded graphs. An equivalence
class of this relation is called an isomorphism class of planar embedded graphs.

2.3. Isotopies and intersection numbers. In various constructions of isotopies through-
out this paper, we use the following fact without explicit reference (the proof follows from
[Bus10, Theorem A.6(ii)]).

Lemma 2.1. Let W be an open Jordan region in S2. Suppose α and β are Jordan arcs in S2

with int(α), int(β) ⊂ W and ∂α = ∂β. Then α and β are isotopic rel. ∂α ∪ (S2 \W ).

We will frequently consider planar embedded graphs up to isotopy rel. finite number of
marked points in S2.

Definition 2.2. Let G and G′ be two planar embedded graphs in S2 and Z ⊂ S2 be a finite
set of points. We say that G and G′ are isotopic rel. Z, denoted by G ∼ G′ rel. Z, if there
exists an isotopy H : S2 × I→ S2 rel. Z such that the following conditions are satisfied:

(i) H0 = idS2 ;
(ii) H1(V (G)) = V (G′);
(iii) H1(G) = G′.

Note that (ii) and (iii) imply that H1 provides a one-to-one correspondence between the
edges of G and G′.

The next statement guarantees that we do not run into topological difficulties while study-
ing planar embedded graphs (the proof follows from [Bus10, Lemma A.8]).

Proposition 2.3. Let G be a planar embedded graph in S2 and Z ⊂ S2 be a finite set
of points. Then there exists a planar embedded graph G′ such that G ∼ G′ rel. V (G) ∪ Z
and such that each edge of G′ is a piecewise geodesic arc in S2 (with respect to some fixed
Riemannian metric on S2).

Using [Bus10, Theorem A.5] and Lemma 2.1, we obtain the following criterion for two
planar embedded graphs to be isotopic.

Proposition 2.4. Let G and G′ be two planar embedded graphs with a common vertex set V .
Then G and G′ are isotopic rel. V if and only if for each edge e ∈ E(G) there is an edge
e′ ∈ E(G′) such that e and e′ are isotopic rel. V and mG(e) = mG′(e′).

Here, mG(e) denotes the multiplicity of an edge e in a planar embedded graph G, that is,
the total number of edges of G that are isotopic to e rel. V (G).

In the following, let (S2, Z) be a finitely marked sphere. The (unsigned) intersection
number between two Jordan arcs or curves α and β in (S2, Z) is defined as

iZ(α, β) := inf
α′ ∼ α rel. Z,
β′ ∼ β rel. Z

|(α′ ∩ β′) \ Z| ,

where the infimum is taken over all Jordan arcs or curves α′ and β′ in (S2, Z) that are
isotopic to α and β rel. Z, respectively. Note that the intersection number is finite, because
we can always reduce to the case when α and β are piecewise geodesic with respect to
some Riemannian metric on S2. We say that α and β are in minimal position rel. Z if
|(α ∩ β) \ Z| = iZ(α, β).
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β′ ⊂ β

α′ ⊂ α
β

α̃

U

Figure 1. Removing a bigon between two Jordan arcs or curves α and β.

Let α and β be two Jordan arcs or curves in (S2, Z). We say that subarcs α′ ⊂ α and
β′ ⊂ β form a bigon U in (S2, Z) if ∂α′ = ∂β′, int(α′) ∩ int(β′) = ∅, and U is a connected
component of S2 \ (α′∪β′) with U ∩Z = ∅; see the left part of Figure 1 for an illustration. It
is easy to see that in this situation α and β are not in minimal position rel. Z. Indeed, one of
the curves, say α, may be isotoped into a new curve α̃ rel. Z with |(α̃∩β)\Z| < |(α∩β)\Z|;
see the right part of Figure 1 for an illustration. We will call this procedure “removing a
bigon” between α and β. In fact, the converse is also true. If two Jordan arcs or curves α
and β in (S2, Z) with transverse intersections are not in minimal position, then there are
subarcs α′ ⊂ α and β′ ⊂ β forming a bigon (see [FM12, Proposition 1.7 and Section 1.2.7]).

Let G be a planar embedded graph in S2 without isolated vertices and α be a Jordan arc
(or curve) in (S2, Z). The intersection number iZ(G,α) between G and α rel. Z is defined
as

iZ(G,α) := inf
G′ ∼ G rel. Z,
α′ ∼ α rel. Z

|(G′ ∩ α′) \ Z|,

where the infimum is taken over all planar embedded graphs G′ in S2 and Jordan arcs
(curves) α′ in (S2, Z) that are isotopic to G and α rel. Z, respectively. We say that G and α
are in minimal position rel. Z if they satisfy

iZ(G,α) = |(G ∩ α) \ Z|
The following lemma follows easily from the definitions and Proposition 2.3 above.

Lemma 2.5. Let G be a planar embedded graph in S2 without isolated vertices and α be a
Jordan arc (or curve) in (S2, Z), where Z ⊂ S2 is a finite set of points. Then the following
statements are true:

(i) The intersection number iZ(G,α) is finite.
(ii) There exists a Jordan arc (curve) α′ in (S2, Z) that is isotopic to α rel. Z such that

G and α′ are in minimal position rel. Z.
(iii) There exists a planar embedded graph G′ that is isotopic to G rel. Z such that G′ and

α are in minimal position rel. Z.

Lemma 2.5(ii) implies that if iZ(G,α) = 0, then we may isotope α so that G ∩ α ⊂ Z.
We record the following extension of this fact, where we replace a single arc α in (S2, Z) by
a planar embedded graph H with vertices in Z.

Proposition 2.6. Let (S2, Z) be a finitely marked sphere and G be a planar embedded graph
in S2 without isolated vertices. Suppose H is a planar embedded graph in S2 with V (H) ⊂ Z
and such that iZ(G, e) = 0 for each e ∈ E(H). Then there exists a planar embedded graph
H ′ isotopic to H rel. Z such that H ′ ∩G ⊂ Z.

Proof. We will only give an outline of the proof, leaving some straightforward details to the
reader.
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First, it is sufficient to consider the case when V (H) = Z. We prove the statement by
induction on |E(H)|. If |E(H)| = 0, then there is nothing to prove. Also, if |E(H)| = 1,
then the statement follows from part (ii) of Lemma 2.5.

Assume the statement is true if |E(H)| ≤ n, where n ∈ N. Suppose now that |E(H)| =
n + 1, and consider the graph Hα := (V (H), E(H) \ {α}), which is obtained from H by
removing some edge α ∈ E(H). By induction hypothesis, there is a planar embedded graph
H ′
α isotopic to Hα rel. Z such that H ′

α ∩G ⊂ Z.

Claim. There exists a Jordan arc α′ ∼ α rel. Z such that α′ ∩ (G ∪H ′
α) ⊂ Z.

Let A be the set of all Jordan arcs α′ in (S2, Z) that are isotopic to α rel. Z and satisfy
α′ ∩ G ⊂ Z. Since iZ(G,α) = 0, the set A is non-empty by Lemma 2.5(ii). Furthermore,
iZ(e

′, α′) = 0 for every e′ ∈ E(H ′
α) and α′ ∈ A. Consider now the following intersection

number

(2.1) N := inf
α′∈A
|(H ′

α ∩ α′) \ Z|.

Proposition 2.3 implies that N is finite and there exists a Jordan arc α′ ∈ A that realizes
the infimum in (2.1). We claim that N must be equal to 0. Otherwise, there is an edge
e′ ∈ E(H ′

α) such that |(e′ ∩ α′) \ Z| > 0, which means that e′ and α′ are not in minimal
position rel. Z. But then some subarcs of e′ and α′ must form a bigon in (S2, Z) or have
a non-transverse intersection. We may remove this bigon or non-transverse intersection
between e′ and α′ and get a Jordan arc α̃ ∈ A that will satisfy

|(H ′
α ∩ α̃) \ Z| < |(H ′

α ∩ α′) \ Z|.

But this contradicts the choice of α′. Thus, N = 0 and the claim follows.

Let α′ be a Jordan arc as in the claim. Then H ′ := H ′
α ∪ α′ is a planar embedded graph

with V (H ′) = V (H) = Z and H ′∩G ⊂ Z. By construction, H ′ and H satisfy the conditions
of Proposition 2.4, and thus they are isotopic rel. Z. This finishes the proof. □

2.4. Thurston maps. A continuous surjective map f : S2 → S2 is called a branched covering
map if it locally acts as the power map z 7→ zd for some d ∈ N in orientation-preserving
coordinate charts in domain and target. More precisely, for each p ∈ S2 we require that there
are two open Jordan regions U and V containing p and f(p), respectively, two orientation-
preserving homeomorphisms φ : D→ U and ψ : D→ V , and a number d ∈ N such that

(i) φ(0) = p and ψ(0) = f(p);
(ii) (ψ−1 ◦ f ◦ φ)(z) = zd for all z ∈ D.

The integer d as in (ii) is uniquely determined by f and p. It is called the local degree of the
map f at the point p and denoted by deg(f, p). We also denote the topological degree of f
by deg(f).

A point p ∈ S2 is called a critical point of f if deg(f, p) > 1, that is, if f is not locally
injective at p. We denote the set of all critical points of f by Crit(f).

Let f : S2 → S2 be a branched covering map and V ⊂ S2 be an open and connected set.
Suppose U is a connected component of f−1(V ). Then f(U) = V and each point q ∈ V
has the same number d ∈ N of preimages under f |U counting multiplicities (given by the
local degrees of f at the preimage points). This number d is called the degree of f on U and
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denoted by deg(f |U). If the Euler characteristic χ(V ) is finite, then χ(U) is also finite and
we have the Riemann-Hurwitz formula

χ(U) +
∑

c∈U∩Crit(f)

(deg(f, c)− 1) = deg(f |U) · χ(V );

see the discussion in [BM17, Section 13.2].
The set

Post(f) :=
⋃
n∈N

fn(Crit(f))

is called the postcritical set of a branched covering map f : S2 → S2. We say that the map
f is postcritically-finite if Post(f) is finite.

Definition 2.7. A Thurston map is a postcritically-finite branched covering map f : S2 → S2

with deg(f) ≥ 2.

In other words, a branched covering map f on S2 is called a Thurston map if it is not
a homeomorphism and each critical point of f has a finite orbit under iteration. Natural
examples of Thurston maps are provided by rational Thurston maps, that is, postcritically-
finite rational maps on the Riemann sphere Ĉ.

Definition 2.8. Suppose S2 and Ŝ2 are two topological 2-spheres. Two Thurston maps
f : S2 → S2 and g : Ŝ2 → Ŝ2 are called combinatorially (or Thurston) equivalent if there are
orientation-preserving homeomorphisms ψ0, ψ1 : S

2 → Ŝ2 that are isotopic rel. Post(f) and
satisfy ψ0 ◦ f = g ◦ ψ1.

We say that a Thurston map is realized (by a rational map) if it is combinatorially equiv-
alent to a rational map. Otherwise, we say that it is obstructed.

Thurston maps have the following isotopy lifting property (see, for example, [BM17, Propo-
sition 11.3]).

Proposition 2.9. Suppose f : S2 → S2 and g : Ŝ2 → Ŝ2 are two Thurston maps, and
h0, h̃0 : S

2 → Ŝ2 are homeomorphisms such that h0|Post(f) = h̃0|Post(f) and h0 ◦ f = g ◦ h̃0.
Let H : S2 × I→ Ŝ2 be an isotopy rel. Post(f) with H0 = h0.

Then the isotopy H uniquely lifts to an isotopy H̃ : S2 × I → Ŝ2 rel. f−1(Post(f)) such
that H̃0 = h̃0 and g ◦ H̃t = Ht ◦ f for all t ∈ I.

We will frequently work with Thurston maps defined by combinatorial constructions and
the following definition appears to be useful.

Definition 2.10. Two Thurston maps f : S2 → S2 and g : S2 → S2 are called isotopic if
Post(f) = Post(g) and there exist ψ0, ψ1 ∈ Homeo+0 (S

2,Post(f)) such that ψ0 ◦ f = g ◦ ψ1.

Note that Proposition 2.9 implies that two Thurston maps f, g : S2 → S2 are isotopic if
and only if f = g ◦ ψ for some ψ ∈ Homeo+0 (S

2,Post(f)).
The ramification function of a Thurston map f : S2 → S2 is a function νf : S2 → N∪{∞}

defined as follows: νf (p) equals the lowest common multiple of all local degrees deg(fn, q),
where q ∈ f−n(p) and n ∈ N are arbitrary. It easily follows that νf (p) ≥ 2 if and only if
p ∈ Post(f).
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The pair Of := (S2, νf ) is called the orbifold associated with f . The Euler characteristic
of Of is given by

χ(Of ) := 2−
∑

p∈Post(f)

(
1− 1

νf (p)

)
.

One can check that χ(Of ) ≤ 0 for every Thurston map f ; see [BM17, Proposition 2.12]. We
say that Of is hyperbolic if χ(Of ) < 0, and parabolic if χ(Of ) = 0. Thurston maps with
a parabolic orbifold are rather special and may be completely classified; see, for example,
[BM17, Chapters 3 and 7]. We note that if Post(f) ≥ 5, then Of is always hyperbolic.

2.5. Thurston’s characterization of rational maps. In the following, let f : S2 → S2

be a Thurston map. A natural question to ask is when f is combinatorially equivalent to a
rational map. William Thurston provided a topological criterion that answers this question
in his celebrated characterization of rational maps [DH93, Theorem 1]. To formulate this
result we need to introduce several concepts.

A multicurve is a finite collection Γ of essential Jordan curves in (S2,Post(f)) that are
pairwise disjoint and pairwise non-isotopic rel. Post(f). We say that a multicurve Γ is
invariant if, for every curve γ ∈ Γ, each essential component of f−1(γ) is isotopic rel.
Post(f) to a curve in Γ.

Let Γ = {γ1, . . . , γn}, n ∈ N, be an invariant multicurve for f . We will now associate an
(n × n)-matrix M(f,Γ) = (mij) with Γ as follows. Fix i, j ∈ {1, . . . , n}, and let δ1, . . . , δK ,
where K = K(i, j) ≥ 0, be all the components of f−1(γj) that are isotopic to γi rel. Post(f).
We denote by deg(f |δk) the (unsigned) mapping degree of the covering map f |δk : δk → γj.
Then the (i, j)-entry mij of the matrix M(f,Γ) is given by

mij :=

K(i,j)∑
k=1

1

deg(f |δk)
.

If K(i, j) = 0, then the sum is empty and mij = 0.
Note that M(f,Γ) depends only on the isotopy classes of curves in Γ (this easily follows

from Proposition 2.9). The Perron-Frobenius theorem implies that the spectral radius of
M(f,Γ) is given by the largest non-negative (real) eigenvalue λ(f,Γ) of this matrix. The
invariant multicurve Γ is called a (Thurston) obstruction for f if λ(f,Γ) ≥ 1.

With these definitions, we are finally in a position to state Thurston’s theorem; the proof
can be found in [DH93], see also [Hub16, Theorem 10.1.14].

Theorem 2.11. A Thurston map f : S2 → S2 with a hyperbolic orbifold is combinatorially
equivalent to a rational map F : Ĉ→ Ĉ if and only if f does not have a Thurston obstruction.
Moreover, the rational map F is unique up to conjugation by a Möbius transformation.

The easiest examples of obstructions are provided by Levy fixed curves.

Definition 2.12. Let f : S2 → S2 be a Thurston map and γ be an essential Jordan curve
in (S2,Post(f)). We call γ a Levy fixed curve if there is a connected component γ′ of f−1(γ)
such that γ and γ′ are isotopic rel. Post(f) and f |γ′ : γ′ → γ is a homeomorphism.

Note that if a Thurston map f has a Levy fixed curve γ, then it must be obstructed
(since postcritically-finite rational maps are expanding with respect to the orbifold metric;
see [Mil06, Theorem 19.6]). A priori the multicurve {γ} does not need to be invariant, but
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we can always find an invariant multicurve Γ ⊃ {γ} by taking iterative preimages of γ; see
[Lei92, Lemma 2.2] for details. Then this multicurve Γ is a Thurston obstruction for f .

A Thurston obstruction may contain curves that are “extraneous” in some natural sense.
The simplest instance of this is when one combines two invariant multicurves Γ1 and Γ2

having pairwise disjoint and pairwise non-isotopic curves, where Γ1 is an obstruction and Γ2

is not. Then Γ1 ∪ Γ2 is a Thurston obstruction as well, even though the curves from Γ2 are
obviously redundant in there. These considerations motivate the following definition.

Definition 2.13. Let f be a Thurston map with an obstruction Γ. We say that Γ is simple
if there is no permutation of the curves in Γ that puts the matrix M(f,Γ) in the block form

M(f,Γ) =

[
M11 0
M21 M22

]
,

where the spectral radius of the square matrix M11 is less than 1.

One can easily check from the definition that every Thurston obstruction contains a simple
one.

Remark. We note that Thurston’s characterization theorem remains true in a more general
setup of marked Thurston maps. A marked Thurston map on S2 is a pair (f, Z) where
f : S2 → S2 is a Thurston map and Z ⊂ S2 is a finite set of marked points that satisfies
Post(f) ⊂ Z and f(Z) ⊂ Z. The notions of combinatorial equivalence, isotopy, and Thurston
obstructions naturally extend to these maps by considering isotopies rel. Z and (multi)curves
in (S2, Z). Then Theorem 2.11 holds in the same form for marked Thurston maps; see, for
example, [BCL14, Theorem 2.1].

2.6. Decomposition theory. We outline a procedure due to Kevin Pilgrim that allows to
naturally decompose a branched covering map into “simpler” pieces. We refer the reader to
[Pil03] for details.

Let (S2, Z) be a marked sphere and Γ be a collection of pairwise disjoint Jordan curves in
(S2, Z). We denote by SΓ the set of all components of S2 \

⋃
γ∈Γ γ. Each such component S

may be viewed as a punctured sphere and we call the corresponding closure, denoted by Ŝ,
a small sphere with respect to Γ. The points in Z and the curves in Γ induce a marking
on small spheres. Namely, the small sphere Ŝ is marked by points corresponding to S ∩ Z
and ∂S ∩ Γ. The set of all (marked) small spheres with respect to Γ is denoted by ŜΓ; see
Figure 2 (bottom) and Figure 3 for an illustration.

We now strengthen the definition of an invariant multicurve for a Thurston map f . We
say that a multicurve Γ is completely invariant if the following two conditions are satisfied:

(i) each essential component of f−1(
⋃
γ∈Γ γ) is isotopic rel. Post(f) to a curve in Γ;

(ii) each curve in Γ is isotopic rel. Post(f) to a component of f−1(
⋃
γ∈Γ γ).

We note that every simple Thurston obstruction must be completely invariant.
In the following, suppose that f : S2 → S2 is a Thurston map and Γ is a completely

invariant multicurve. For convenience, we denote by f−1(Γ) the set of all components of the
set f−1(

⋃
γ∈Γ γ) ⊂ S2.

Let ŜΓ = {Ŝj}j∈J be the set of all small spheres with respect to Γ. Since Γ is completely
invariant, we may identify each small sphere Ŝj, j ∈ J , with a unique small sphere Ŝ ′

j with
respect to f−1(Γ) as follows. Let Sj ∈ SΓ be the component corresponding to the small
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f

α β

S1 S2 S3

S ′
1 S ′

2 S ′
3

(S2,Post(f))

(S2,Post(f))

Figure 2. Decomposing a Thurston map f : S2 → S2 along a completely
invariant multicurve Γ := {α, β}. The bottom indicates the multicurve Γ and
SΓ = {S1, S2, S3}. The top illustrates f−1(Γ) and Sf−1(Γ). The black dots
correspond to the postcritical points of f . The map f sends each component
in Sf−1(Γ) onto the component in SΓ of the same color. At the top, the red
curves are isotopic to α, the blue curves are isotopic to β, and the gray curves
are non-essential in (S2,Post(f)).

sphere Ŝj. Then there exists a unique component S ′
j ∈ Sf−1(Γ) such that S ′

j and Sj are
homotopic in S2 \ Post(f); see the top of Figure 2 for an illustration. Furthermore, each
component U of the complement S2 \

⋃
j∈J S

′
j is either

(a) a closed Jordan region with |U ∩ Post(f)| ≤ 1, so that ∂U is a non-essential Jordan
curve;

(b) a closed annulus whose boundary components are isotopic rel. Post(f) to a curve
γU ∈ Γ;

(c) or a Jordan curve from f−1(Γ) that is isotopic rel. Post(f) to a curve γU ∈ Γ.
We now pick a homotopy that sends each component S ′

j onto Sj and collapses each component
U of S2 \

⋃
j∈J S

′
j to a point in case (a) or to the curve γU ∈ Γ in cases (b) and (c). More

precisely, we choose a homotopy H : S2 × I→ S2 rel. Post(f) with the following properties:
(A) Ht := H(·, t) is a homeomorphism for every t ∈ [0, 1);
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Ŝ1 Ŝ2 Ŝ3

Figure 3. Dynamics of f̂ : ŜΓ → ŜΓ on the small spheres for the example
from Figure 2. The black, red, and blue dots correspond to the postcritical
points of f , the curve α ∈ Γ, and the curve β ∈ Γ, respectively.

(B) H0 = idS2 ;
(C) H1(S ′

j) = Sj for each j ∈ J ;
(D) H1|S ′

j is a homeomorphism of S ′
j onto the image H1(S

′
j) ⊂ Sj for each j ∈ J ;

(E) for each j ∈ J the homotopy H1 sends each essential component γ′ of ∂S ′
j homeo-

morphically onto the component γ of ∂Sj that is isotopic to γ′;
(F) H1(γ

′) is a single point for each non-essential component γ′ of ∂S ′
j and each j ∈ J .

Then for every j ∈ J the inverse of H1|S ′
j : S

′
j → Sj defines an identification i∗ : Ŝj → Ŝ ′

j

between the small spheres (sending marked points to marked points).
By construction, for each j ∈ J the image f(S ′

j) is a component in SΓ, which we will denote
by Sf(j). Then, by filling in the punctures, we get a branched covering map f∗ : Ŝ ′

j → Ŝf(j)
between the corresponding small spheres (and respecting the marked points).

The composition Ŝj → Ŝ ′
j → Ŝf(j) defines a branched covering map f̂ := f∗◦i∗ : Ŝj → Ŝf(j),

which we call a small sphere map. It is uniquely defined up to isotopy (relative to marked
points) for each j ∈ J .

The considerations above imply that f induces a map

f̂ :
⊔
j∈J

Ŝj →
⊔
j∈J

Ŝj

on (the disjoint union of) small spheres; see Figure 3. With a slight abuse of notation, we will
simply denote this map by f̂ : ŜΓ → ŜΓ. Since ŜΓ consists of only finitely many spheres,
each small sphere is eventually periodic under f̂ . Suppose Ŝj is a periodic small sphere.
Then the first return map f̂k(j) : Ŝj → Ŝj is a postcritically-finite branched covering map.
Hence this first return map is either a (marked) Thurston map or a homeomorphism.

To summarize the discussion above, a completely invariant multicurve Γ allows to decom-
pose the dynamics of a Thurston map f on S2 into dynamics of the induced map f̂ on the
(periodic) small spheres with respect to Γ.

In [Pil01], Kevin Pilgrim introduces the notion of a canonical Thurston obstruction for a
Thurston map f . It is a special multicurve ΓTh, defined up to isotopy rel. Post(f), which has
the following property: in the case f has a hyperbolic orbifold, the map f is realized by a
rational map if and only if ΓTh is empty. If ΓTh ̸= ∅, the multicurve ΓTh is a simple Thurston
obstruction and provides the canonical decomposition of the given Thurston map f . Nikita
Selinger gave the following topological characterization of the canonical Thurston obstruction
in terms of the pieces of this decomposition; see [Sel13, Theorem 5.6] for a precise statement.

Theorem 2.14. Let f : S2 → S2 be a Thurston map. Then the canonical Thurston ob-
struction of f is a unique minimal (with respect to inclusion) completely invariant Thurston
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obstruction Γ such that for each periodic small sphere Ŝ ∈ ŜΓ the first return map f̂k : Ŝ → Ŝ
is either

(i) a homeomorphism;
(ii) a Thurston map with a parabolic orbifold of special type (see [Sel13, Theorem 5.6] for

the details);
(iii) or realized by a rational map.

2.7. Branched covers and graphs. Let f : S2 → S2 be a branched covering map and
α be a Jordan arc in S2. We say that a Jordan arc α̃ is a lift of α under f if f |α̃ is a
homeomorphism of α̃ onto α. It easily follows from the existence and uniqueness statements
for lifts of paths under covering maps (see, for example, [BM17, Lemma A.6]) that if α is a
Jordan arc in S2 with int(α) ⊂ S2 \ f(Crit(f)), p ∈ int(α), and q ∈ f−1(p), then there exists
a unique lift α̃ of α under f with q ∈ int(α̃).

Suppose now that f : S2 → S2 is a Thurston map and G is a planar embedded graph with
V (G) ⊃ Post(f). Then the preimage f−1(G) may be viewed as a planar embedded graph
with the vertex set V (f−1(G)) := f−1(V (G)) and the edge set E(f−1(G)) consisting of all
lifts of the edges of G under f . The graph f−1(G) is then called the complete preimage of
G under the map f . We note that

V (f−1(G)) = f−1(V (G)) ⊃ f−1(Post(f)) ⊃ Post(f) ∪ Crit(f).

Furthermore, each face W̃ of f−1(G) is a component of f−1(W ) for some face W of G and
f |W̃ : W̃ → W is a covering map.

Lemma 2.15. Let f be a Thurston map and G be a connected planar embedded graph with
V (G) ⊃ Post(f). Then the complete preimage f−1(G) is a connected planar embedded graph
with Post(f) ⊂ V (f−1(G)).

Proof. Indeed, since G is connected and Post(f) ⊂ V (G), each face W of G is simply
connected and W ∩ Post(f) = ∅. Thus, by the Riemann-Hurwitz formula, each component
of f−1(W ) is simply connected as well. Hence, f−1(G) is connected and the statement
follows. □

Finally, we discuss extensions of maps between planar embedded graphs to maps between
the underlying spheres.

Suppose S2 and Ŝ2 are two topological 2-spheres. Let G = (V,E) and Ĝ = (V̂ , Ê) be
two planar embedded graphs in S2 and Ŝ2, respectively. A continuous map f : G → Ĝ is
called a graph map if forward and inverse images of vertices are vertices (i.e., f(V ) ⊂ V̂ and
f−1(V̂ ) ⊂ V ), and f is injective on each edge of G. An (orientation-preserving) branched
covering map f : S2 → Ŝ2 is called a regular extension of a graph map f : G→ Ĝ if f |G = f
and f is injective on each face of G.

A criterion for the existence of regular extensions is provided in [BFH92, Proposition 6.4].
Here, we only record the following uniqueness result from the same paper, which we use in
the sequel; see [BFH92, Corollary 6.3].

Proposition 2.16. Let G and Ĝ be two planar embedded connected graphs in S2 and Ŝ2,
respectively. Suppose that f, g : G → Ĝ are two graph maps such that f(v) = g(v) and
f(e) = g(e) for each v ∈ V (G) and e ∈ E(G). If f and g have regular extensions f and g,
respectively, then there exists ψ ∈ Homeo+0 (S

2, V (G)) such that f = g ◦ ψ.
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The following corollary follows easily from the proposition above and Proposition 2.4.

Corollary 2.17. Let G be of planar embedded connected graph in S2 and φ1, φ2 ∈ Homeo+(S2).
Suppose that φ1(e) ∼ φ2(e) rel. V (G) for every e ∈ E(G). Then φ1, φ2 are isotopic rel. V (G).

3. Critically fixed Thurston maps

The main goal of this section is to provide a classification of critically fixed Thurston maps,
that is, Thurston maps that fix (pointwise) each of its critical points.

First, we define the “blow-up operation”, introduced by Kevin Pilgrim and Tan Lei in
[PL98, Section 2.5], which provides a surgery for constructing and modifying Thurston maps
and plays a crucial role in our classification result. We do not define this operation in
complete generality, but in some rather particular case. Namely, we will be blowing up only
pairs (G,φ), where G is a planar embedded graph in S2 and φ ∈ Homeo+(S2, V (G)). The
result of this operation is a critically fixed Thurston map. (Recall that G may have multiple
edges but no loops and that Homeo+(S2, Z) denotes the group of all orientation-preserving
homeomorphisms of S2 that fix each point in a finite set Z ⊂ S2.)

Conversely, to each critically fixed Thurston map f we associate a pair (Gf , φf ), where
Gf is a planar embedded graph with vertices in Crit(f) and φf is a homeomorphism in
Homeo+(S2,Crit(f)). We show that f is isotopic to the map obtained by blowing up the
pair (Gf , φf ).

3.1. The blow-up operation. In the following, let G be a planar embedded graph in
S2 and φ be an element of Homeo+(S2, V (G)). We will now describe a construction that
associates a critically fixed Thurston map f : S2 → S2 to every such pair (G,φ) by “blowing
up” each edge of G. Mostly, we will follow the discussion from [BHI21, Section 4.1], but will
slightly simplify the definition based on the specific features of the considered case.

First, for each edge e ∈ E(G) we choose an open Jordan region We ⊂ S2 such that the
following conditions hold:

(A1) Each e ∈ E(G) is a crosscut in We, that is, int(e) ⊂ We and ∂e ⊂ ∂We;
(A2) We ∩ V (G) = ∂e for each e ∈ E(G);
(A3) For distinct edges e1, e2 ∈ E(G), we have We1 ∩We2 = ∂e1 ∩ ∂e2. In particular, the

open Jordan regions We are pairwise disjoint.
Next, we choose closed Jordan regions De, e ∈ E(G), so that e is a crosscut in De and

De \ ∂e ⊂ We. The two endpoints of e partition ∂De into two Jordan arcs, which we denote
by ∂D+

e and ∂D−
e . One can think of De as the resulting region if we cut the sphere S2 along

the edge e and “open up” the slit.
Now we define a map that collapses each De back to e. More precisely, we choose a

homotopy h : S2 × I→ S2 with the following properties:
(B1) ht := h(·, t) is a homeomorphism on S2 for each t ∈ [0, 1);
(B2) h0 = idS2 ;
(B3) ht is the identity map on S2 \

⋃
e∈E(G)We for each t ∈ I;

(B4) h1 is a homeomorphism of S2 \
⋃
e∈E(G)De onto S2 \

⋃
e∈E(G) e;

(B5) h1 maps ∂D+
e and ∂D−

e homeomorphically onto e for each e ∈ E(G).
It easily follows that h1(De) = e, so the homotopy h collapses each closed Jordan region De

onto e at time 1, while keeping each point in S2 \
⋃
e∈E(G)We fixed at all times.
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f□

Figure 4. A critically fixed Thurston map f□ obtained by blowing up the
pair (G□, idS2), where G□ is the planar embedded graph on the left.

Finally, for each e ∈ E(G) we choose a continuous map fe : De → S2 with the following
properties:

(C1) fe|int(De) : int(De)→ S2 \ φ(e) is an orientation-preserving homeomorphism;
(C2) fe|∂D+

e = φ ◦ h1|∂D+
e and fe|∂D−

e = φ ◦ h1|∂D−
e .

Now we may define a map f : S2 → S2 as follows:

(3.1) f(p) =

{
(φ ◦ h1)(p) if p ∈ S2 \

⋃
e∈E(G)De

fe(p) if p ∈ De.

Definition 3.1. We say that the map f : S2 → S2 as described above is obtained by blowing
up the pair (G,φ). The operation of constructing this map is called the blow-up operation.

One can check that the constructed map f : S2 → S2 is in fact a critically fixed Thurston
map with properties summarized in the following proposition. (For the proof, see [BHI21,
Lemma 4.3].)

Proposition 3.2. Suppose a map f : S2 → S2 is obtained by blowing up a pair (G,φ),
where G is a planar embedded graph in S2 and φ ∈ Homeo+(S2, V (G)). Then the following
statements are true:

(i) f is a Thurston map with deg(f) = |E(G)|+ 1;
(ii) Crit(f) = {v ∈ V (G) : degG(v) > 0};
(iii) deg(f, v) = degG(v) + 1 for each v ∈ V (G);
(iv) each v ∈ V (G) is fixed under f , in particular, f is a critically fixed Thurston map.

Example 3.3. Consider the “square graph” shown on the left in Figure 4, which we will denote
by G□. Here and in the following, all the graphs in figures are assumed to be embedded in
an underlying 2-sphere. In particular, the graph G□ has two simply connected faces, which
we denote by Ug and Uw. The face Ug corresponds to the interior of the square, which is
colored gray, and the face Uw corresponds to the exterior of the square, which is colored
white. Figure 4 illustrates a critically fixed Thurston map f□ obtained by blowing up the
pair (G□, idS2). We will use this map as a prototypical example in our paper. In the figure,
the closure of each gray region U on the right is mapped by f□ homeomorphically onto the
closure of the gray face Ug on the left so that the marked vertices on ∂U are sent to the
vertices of the same color on ∂Ug. An analogous statement is true for each white region on
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the right. Note that deg(f□) = 5, and each vertex of G□ is a fixed critical point of f□ with
local degree 3.

It follows from [PL98, Proposition 2] (and the remark after it) that the map f is uniquely
defined up to isotopy (rel. V (G)) independently of the choices in the construction above.
Moreover, up to isotopy f depends only on the isotopy classes of G and φ.

Proposition 3.4. For j = 1, 2, suppose Gj is a planar embedded graph in S2 and φj is a
homeomorphism in Homeo+(S2, V (Gj)). Let f1 and f2 be Thurston maps obtained by blowing
up the pairs (G1, φ1) and (G2, φ2), respectively.

Suppose that G1 and G2 are isotopic rel. V (G1), and φ1 and φ2 are isotopic rel. V (G1).
Then the marked Thurston maps (f1, V (G1)) and (f2, V (G2)) are isotopic.

The proposition above easily implies the following statement.

Proposition 3.5. Suppose f : S2 → S2 and g : S2 → S2 are critically fixed Thurston maps
obtained by blowing up pairs (G,φ) and (G, idS2), where G is a planar embedded graph in S2

and φ ∈ Homeo+(S2, V (G)). Then the marked Thurston maps (f, V (G)) and (φ ◦ g, V (G))
are isotopic.

Since we frequently work with Thurston maps defined up to isotopy (or modulo combina-
torial equivalence), the following easy statement will be useful.

Proposition 3.6. Let f : S2 → S2 be a Thurston map obtained by blowing up a pair (G,φ),
where G is a planar embedded graph in S2 and φ ∈ Homeo+(S2, V (G)). Suppose that a
marked Thurston map (f̂ , Qf̂ ) on a topological 2-sphere Ŝ2 is combinatorially equivalent to
(f, V (G)). Then f̂ is obtained by blowing a pair (Ĝ, φ̂), where Ĝ is a planar embedded graph
in Ŝ2 and φ̂ ∈ Homeo+(Ŝ2, V (Ĝ)).

Proof. Suppose that f : S2 → S2 is a Thurston map obtained by blowing up a pair (G,φ) as
in the statement, that is, we fix a choice of We, De, fe, and h as in the construction above.
Moreover, we assume that ψ0, ψ1 : S

2 → Ŝ2 are orientation-preserving homeomorphisms that
are isotopic rel. V (G) and satisfy ψ0 ◦ f = f̂ ◦ ψ1.

S2 \
⋃
e∈E(G)De Ŝ2 \

⋃
ê∈E(Ĝ) D̂ê

S2 \G Ŝ2 \ Ĝ

S2 \ φ(G) Ŝ2 \ φ̂(Ĝ)

f
h1

ψ1

f̂ĥ1

φ

ψ1

φ̂

ψ0

Let Ĝ be the planar embedded graph ψ1(G) in Ŝ2 with the vertex set V (Ĝ) = ψ1(V (G)) =

Qf̂ . Then the edges of Ĝ are given by the images ê := ψ1(e), e ∈ E(G). Furthermore, let
φ̂ := ψ0 ◦ φ ◦ ψ−1

1 . Then φ̂ ∈ Homeo+(Ŝ2, V (Ĝ)). We claim that the map f̂ is obtained by
blowing up the pair (Ĝ, φ̂) with the following choices:

(i) for each edge ê = ψ1(e), e ∈ E(G), we set

Ŵê := ψ1(We), D̂ê := ψ1(De), and f̂ê := ψ0 ◦ fe ◦ ψ−1
1 ;

(ii) for each t ∈ I we set ĥt := ψ1 ◦ ht ◦ ψ−1
1 .
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Indeed, this can be easily verified from the identity f̂ê = f̂ |D̂ê and the commutative diagram
above, and we leave the straightforward details to the reader. □

Remark 3.7. Let (Ĝ, φ̂) be as constructed in the proof of Proposition 3.6. Then the following
is true:

(i) If the pair (G,φ) is admissible in S2 then the pair (Ĝ, φ̂) is admissible in Ŝ2. Fur-
thermore, the pairs (G,φ) and (Ĝ, φ̂) are equivalent (see Definition 1.3).

(ii) If S2 = Ŝ2 and the marked Thurston maps (f, V (G)) and (f̂ , Qf̂ ) are isotopic then
Ĝ and φ̂ are isotopic to G and φ rel. V (G), respectively.

3.2. Admissible pairs and a blow-up criterion. Let G be a planar embedded graph
in S2 and φ ∈ Homeo+(S2, V (G)) be a homeomorphism. Recall from the introduction that
the pair (G,φ) is called admissible (in S2) if G has no isolated vertices and φ(e) is isotopic
to e for each e ∈ E(G). In this section, we provide a criterion for checking if a given critically
fixed Thurston map arises by blowing up some admissible pair (G,φ).

First, we summarize mapping properties of (critically fixed) Thurston maps obtained by
blowing up admissible pairs.

Proposition 3.8. Let f : S2 → S2 be a Thurston map obtained by blowing up an admissible
pair (G,φ) in S2. Suppose that K is a planar embedded graph in S2 that is isotopic to G
rel. V (G). Then for each α ∈ E(K) there is a triple (α+, α−, Uα) satisfying the following
conditions:

(D1) α+ and α− are distinct lifts of α under f that are isotopic to α rel. Crit(f);
(D2) Uα is a connected component of S2 \ (α+ ∪ α−);
(D3) Uα1 ∩ Uα2 = α1 ∩ α2 for distinct α1, α2 ∈ E(K);
Furthermore, let us consider the planar embedded graph K± :=

⋃
α∈E(K)(α

+∪α−) with the
vertex set V (K±) = V (K) = V (G). Then f sends each face W̃ of K± homeomorphically
onto its image. More precisely, the following statements are true:

(E1) If W̃ = Uα for some α ∈ E(K), then f sends W̃ homeomorphically onto S2 \ α.
(E2) If W̃ ̸= Uα for every α ∈ E(K), then f(W̃ ) is a face of K with ∂f(W̃ ) = f(∂W̃ )

and f |W̃ : W̃ → f(W̃ ) is a homeomorphism.
(E3) f sends S2 \

⋃
α∈E(K) Uα homeomorphically onto S2 \K. Moreover, the restrictions

f |S2 \
⋃
α∈E(K)

(
Uα \ ∂α

)
and φ|S2 \

⋃
α∈E(K)

(
Uα \ ∂α

)
are isotopic rel. V (G).

The graph K± as above is called the blow-up of K under f .

Proof. First, suppose that K is the planar embedded graph φ(G) with the vertex set V (K) =
V (G). Note that since (G,φ) is admissible, Proposition 2.4 implies that K is isotopic to G
rel. V (G). Let α be an edge of K = φ(G). Then α = φ(e) for some e ∈ E(G). We may now
set α+ := ∂D+

e , α− := ∂D−
e , and Uα := int(De), where De, ∂D+

e , and ∂D−
e are as chosen in

the construction of f by blowing up the pair (G,φ); see Section 3.1. One can easily check
that all the conditions (D1)-(D3) and (E1)-(E3) are satisfied. The general case, when K
is an arbitrary planar embedded graph isotopic to G, then follows from this by the isotopy
lifting property for Thurston maps (see Proposition 2.9). We leave it to the reader to fill in
the details. □
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We are ready now to state the following “blow-up criterion” for critically fixed Thurston
maps.

Proposition 3.9. Let f : S2 → S2 be a critically fixed Thurston map and K be a planar
embedded graph in S2 with V (K) = Crit(f) and |E(K)| = deg(f)− 1. Suppose that for each
α ∈ E(K) there is a triple (α+, α−, Uα) satisfying conditions (D1)-(D3).

Then f is obtained by blowing an admissible pair (G,φ), where G is a planar embedded
graph isotopic to K rel. Crit(f). Furthermore, f is isotopic to a critically fixed Thurston
map obtained by blowing up the (admissible) pair (K,φ).

Proof. Suppose f is a critically fixed Thurston map and K is a planar embedded graph
satisfying conditions in the statement. We will view the set K± :=

⋃
α∈E(K)(α

+ ∪ α−) as
a planar embedded graph with V (K±) = Crit(f). Then K± is a subgraph of the complete
preimage f−1(K).

Claim 1. f(Uα) ⊃ S2 \ α for each α ∈ E(K).

Indeed, fix a point q ∈ Uα \ f−1(α) and suppose p ∈ S2 \ α is arbitrary. We may connect
p and f(q) by a Jordan arc β inside S2 \ α. Then there is a lift β̃ of β under f connecting
the point q and a point p̃ ∈ f−1(p) (see, for example, [BM17, Lemma A.18]). Note that β̃
must stay inside Uα, and thus p̃ ∈ Uα. Claim 1 follows.

Note that Claim 1 implies that deg(f, q) ≥ degK(q) + 1 for each q ∈ V (K) = Crit(f).

Claim 2. Suppose H is a component of f−1(K) \K±. Then H ⊂ Uα for some α ∈ E(K).

This is an easy counting argument. Let p ∈ H and q := f(p) ∈ K. Then either q ∈ int(αq)
for some αq ∈ E(K) or q ∈ Crit(f). In the first case, Claim 1 implies that q has at least
one preimage in each Uα for α ̸= αq. At the same time, q has two preimages in ∂Uαq . Since
|E(K)| = deg(f)−1, the point p must be in one of the regions Uα with α ̸= αq. In the latter
case, q is a fixed critical point with deg(f, q) ≥ degK(q) + 1. At the same time, Claim 1
implies that q has at least one preimage in every Uα for which α is not incident to q. Again,
since |E(K)| = deg(f)− 1, the point p must be in one of these regions Uα. Claim 2 follows.

The proof of Claim 2 implies that deg(f, q) = degK(q) + 1 for each q ∈ Crit(f). In
particular, the graph K has no isolated vertices. Furthermore, for each α ∈ E(K) we have
f(Uα) ⊂ S2 \ α, and thus f(Uα) = S2 \ α by Claim 1.

Claim 3. The map f sends each face W̃ of K± homeomorphically onto its image. More
precisely, f satisfies conditions (E1)-(E3).

The proof is again based on a counting argument. Suppose first that W̃ is a face of K±

different from each Uα, α ∈ E(K). It easily follows from the Euler formula that there are
exactly |F (K)| such faces. Claim 2 implies that W̃ is also a face of f−1(K). Thus, f(W̃ )

is a face of K (with ∂f(W̃ ) = f(∂W̃ )) and f |W̃ : W̃ → f(W̃ ) is a covering map. Since
|E(K)| = deg(f)− 1, Claim 1 implies that f maps S2 \

⋃
α∈E(K) Uα injectively into S2 \K.

So f has to satisfy (E2) and (E3).
Suppose now that W̃ = Uα for some α ∈ E(K). Since f(Uα) = S2 \ α and f(∂Uα) = α,

we conclude that Uα is a component of f−1(S2 \ α). Note that Uα ∩ Crit(f) = ∅. Thus, by
the Riemann-Hurwitz formula, deg(f |Uα) = 1 and so f satisfies (E1). Claim 3 follows.
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For each α ∈ E(K) let us now choose a Jordan arc eα with int(eα) ⊂ Uα and ∂eα = ∂α.
Let G be the planar embedded graph with the vertex set V (G) = Crit(f) and the edge
set E(G) = {eα : α ∈ E(K)}. Lemma 2.1 and Proposition 2.4 imply that G is isotopic
to K rel. Crit(f). We will prove that f is obtained by blowing up a pair (G,φ), where
φ ∈ Homeo+(S2,Crit(f)).

For each edge e = eα ∈ E(G), we set De := Uα, ∂D+
e := α+, ∂D−

e := α−, and fe := f |Uα.
We also choose open Jordan regions We ⊃ De \∂e satisfying conditions (A1)-(A3). Next, we
consider a homotopy h : S2 × I → S2 that satisfies properties (B1)-(B5) together with the
following extra condition:

(∗) for each e ∈ E(G) and arbitrary x ∈ ∂D+
e and y ∈ ∂D−

e , h1(x) = h1(y) if and only if
f(x) = f(y).

Let φ : S2 \ G → S2 \K be the map defined by φ(p) := f ◦ h−1
1 (p) for each p ∈ S2 \ G.

Condition (B4) and Claim 3 imply that φ is a homeomorphism.

Claim 4. The map φ : S2\G→ S2\K extends to a homeomorphism φ ∈ Homeo+(S2,Crit(f))
so that φ(eα) = α for each α ∈ E(K).

We will only give an outline of the argument and leave some details to the reader. We
claim that the inverse map φ−1 : S2 \K → S2 \G may be extended to a continuous bijection
φ−1 : S2 → S2. Indeed, let p ∈ K be arbitrary, then p ∈ α for some α ∈ E(K). We
set φ−1(p) := h1(q) for q ∈ f−1(p) ∩ (α+ ∪ α−). Condition (∗) ensures that φ−1(p) is
well-defined and condition (B5) insures that φ−1|α : α → eα is a homeomorphism for each
α ∈ E(K). Thus φ−1 : S2 → S2 is a bijection. The continuity of φ−1 can be easily deduced
from the properties of h1 and the fact that f acts locally as a power map. This implies that
φ−1 : S2 → S2 is a homeomorphism. The rest follows from the construction of φ.

It is now straightforward to check that f is obtained by blowing up the pair (G,φ) with
the choices above. It also follows from Proposition 3.4 that f is isotopic to the map obtained
by blowing up the pair (K,φ). Finally, since α ∼ eα rel. Crit(f) for each α ∈ E(K), we
have φ(α) ∼ φ(eα) = α rel. Crit(f). Hence the pairs (G,φ) and (K,φ) are admissible. This
completes the proof of Proposition 3.9. □

3.3. Admissible pairs and arc lifting. In the following, let f : S2 → S2 be a critically
fixed Thurston map obtained by blowing up an admissible pair (G,φ) in S2. We also suppose
that the triples (e+, e−, Ue), e ∈ E(G), are as provided by Proposition 3.8 for K = G. In this
section, we prove several facts about lifts of Jordan arcs in (S2,Crit(f)) under the map f .

First, we introduce the following notion.

Definition 3.10. Let f : S2 → S2 be a critically fixed Thurston map and α be a Jordan
arc in (S2,Crit(f)). Suppose α has exactly k distinct lifts under f that are isotopic to α rel.
Crit(f). Then k is called the blow-up degree of α under f (or simply the blow-up degree of α
if f is understood) and denoted by deg(f, α). If deg(f, α) ≥ 2, we say that the Jordan arc α
blows up under f .

One can easily see that if two Jordan arcs α and α′ in (S2,Crit(f)) are isotopic rel. Crit(f),
then their blow-up degrees under f coincide, i.e., deg(f, α) = deg(f, α′).

Lemma 3.11. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing up an
admissible pair (G,φ). Suppose α is a Jordan arc in (S2,Crit(f)) such that deg(f, α) > 0.
Then if (α, e) = 0 for each edge e ∈ E(G).
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To simplify the notation, here and in the following we write if (·, ·) instead of iCrit(f)(·, ·).
Proof. Without loss of generality, we may assume that α and e are in minimal position rel.
Crit(f). Suppose that α̃ is a lift of α under f that is isotopic to α rel. Crit(f). Then by (D1)
we have

if (α, e) = |α ∩ int(e)| = |α̃ ∩ f−1(int(e))|
≥ |α̃ ∩ int(e+)|+ |α̃ ∩ int(e−)|
≥ if (α̃, e

+) + if (α̃, e
−) = 2 if (α, e).

It follows that if (α, e) = 0 for each edge e of G, as desired. □

Lemma 3.12. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing up an
admissible pair (G,φ). Then a Jordan arc α in (S2,Crit(f)) blows up under f if and only
if α is isotopic to an edge of G rel. Crit(f).

Proof. Each edge e of G blows up under f , because e+ and e− are isotopic to e rel. Crit(f).
Thus, if α is a Jordan arc isotopic to e rel. Crit(f), then it blows up as well.

Suppose now that α is a Jordan arc in (S2,Crit(f)) that blows up under f . It follows
from Lemma 3.11 that we may assume that α intersects the graph G only in its vertices.
Then by (E1) each of the deg(f)− 1 regions Ue, e ∈ E(G), contains exactly one lift α̃e of α
under f . Since α blows up, it follows that one of these lifts α̃e has to be isotopic to α rel.
Crit(f). This is possible only if ∂α̃e = ∂e, which implies that e+ ∼ α̃e by Lemma 2.1. Hence
e ∼ e+ ∼ α̃e ∼ α rel. Crit(f). This finishes the proof of the lemma. □

Lemma 3.13. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing up an
admissible pair (G,φ) and e be an edge of G. Suppose β is a Jordan arc in S2 with ∂β = ∂e
(and possibly with critical points of f in its interior) that satisfies if (β, e) = 0. Then β has
a lift β̃ under f that is isotopic to e rel. Crit(f).

Proof. Without loss of generality, we may assume that β ∩ e = ∂e. Property (E1) implies
that there is a lift β̃ of β under f with int(β̃) ⊂ Ue and ∂β̃ = ∂e. Again we have β̃ ∼ e+ ∼ e
rel. Crit(f). This completes the proof. □

The following lemma provides a quantitative version of Lemma 3.12.

Lemma 3.14. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing up
an admissible pair (G,φ). Then for each α ∈ E(G) we have deg(f, α) = mG(α) + 1. More
generally, for every Jordan arc α in (S2,Crit(f)) there are exactly max(0, deg(f, α) − 1)
edges in G that are isotopic to α rel. Crit(f).

Proof. Properties (D1), (E1), and (E3) imply that each α ∈ E(G) has the following lifts
under f : α+, α−, and a unique lift α̃e with int(α̃e) ⊂ Ue for every e ∈ E(G) \ {α}. Note
that ∂α̃e = ∂e if only if ∂α = ∂e. If follows that α̃e is isotopic to α rel. Crit(f) if and only if
e is isotopic to α rel. Crit(f), and therefore deg(α, f) = mG(α) + 1. The second part of the
lemma now follows from these considerations and Lemma 3.12. □

3.4. Rational case. Let f be a critically fixed rational map with deg(f) ≥ 2 and c ∈ Crit(f)
be a critical point of f . Note that c is a superattracting fixed point of f , and thus all points
in a neighborhood of c converge to c under iteration. The basin of attraction of c is defined
to be the set

Bc := {z ∈ C : lim
n→∞

fn(z) = c}.
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The connected component of Bc containing the point c is called the immediate basin of c
and denoted by Ωc. It follows from [Mil06, Theorem 9.3] that Ωc is a simply connected open
set and there exists a biholomorphic map τc : D→ Ωc such that

(τ−1
c ◦ f ◦ τc)(z) = zdc ,

where dc := deg(f, c). Furthermore, the map τc extends to a continuous and surjective map
τc : D→ Ωc, which provides a semi-conjugacy between the map f on Ωc and the power map
z 7→ zdc on D.

An internal ray of angle θ ∈ [0, 2π) in the immediate basin Ωc is the image of the radial
arc r(θ) := {teiθ : t ∈ I} under the map τc. The point τc(eiθ) ∈ ∂Ωc is called the landing
point of the internal ray of angle θ. Note that the internal ray of angle θ is fixed under f
if and only if θ = 2π j

dc−1
for some j ∈ {0, . . . , dc − 2}. The landing points of such rays are

repelling fixed points of the map f .
The Tischler graph of a critically fixed rational map f is the planar embedded graph

Tisch(f) whose edge set consists of the fixed internal rays taken in the immediate basins
Ωc for all c ∈ Crit(f) and vertex set consists of the endpoints of all these rays. That is,
as a subset of Ĉ, Tisch(f) is the union of all fixed internal rays described in the previous
paragraph.

Let us denote by Fix(f) the set of all fixed points of a (critically fixed) rational map f .
Recall that the holomorphic fixed point formula implies that |Fix(f)| = deg(f)+1, if counted
with multiplicity.

Due to [Hlu19, Theorem 1 and Corollary 6] and [CGN+15, Lemma 3] we have the following
properties of the Tischler graph.

Proposition 3.15. Let f be a critically fixed rational map with deg(f) ≥ 2. Then the
following statements are true:

(i) The vertex set of Tisch(f) consists of all fixed points of f . In particular,
|V (Tisch(f))| = deg(f) + 1.

(ii) Tisch(f) is a bipartite graph: each edge of Tisch(f) connects a superattracting fixed
point and a repelling fixed point of f .

(iii) Tisch(f) is connected.
(iv) The boundary ∂Q of each face Q of Tisch(f) is either a quadrilateral or a bigon with

a sticker inside (see Figure 5).

The proposition above justifies the following definition.

Definition 3.16. Let f be a critically fixed rational map with deg(f) ≥ 2. For each face Q
of the Tischler graph Tisch(f), choose a Jordan arc e(Q) joining the (only) two critical points
of f on ∂Q so that int(e(Q)) ⊂ Q (see Figure 5 for an illustration). Let G be the planar
embedded graph with the vertex set Crit(f) and the edge set {e(Q) : Q ∈ F (Tisch(f))}.
Then any planar embedded graph isotopic to G rel. Crit(f) is called the charge graph of f
and denoted by Charge(f).

Note that the Tischler graph Tisch(f) of a critically fixed rational map f with deg(f) ≥ 2
is uniquely defined, while the charge graph Charge(f) is defined only up to isotopy rel.
Crit(f).

The next statement relates critically fixed rational maps and their charge graphs via the
blow-up operation. (It immediately follows from Proposition 3.4 and [Hlu19, Proposition 7].)
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Figure 5. Constructing an edge e(Q) of Charge(f) inside a face Q of Tisch(f)
if ∂Q is a quadrilateral (left) and a bigon with a sticker inside (right). The
boundary of Q consists of black edges; the critical points of f on ∂Q are
represented by black dots; the repelling fixed points of f on ∂Q are represented
by white squares; and the edge e(Q) is represented by a dashed red line.

Proposition 3.17. Let f be a critically fixed rational map with deg(f) ≥ 2 and g be a
critically fixed Thurston map obtained by blowing up the pair (Charge(f), idĈ). Then the
maps f and g are isotopic.

Remark 3.18. In fact, Proposition 3.4 and [Hlu19, Proposition 7] imply a slightly stronger
result. Suppose f is a critically fixed rational map and G is the planar embedded graph in Ĉ
constructed in Definition 3.16 from the Tischler graph of f . Consider the planar embedded
graph G′ := G ∪ Fix(f) with the vertex set Fix(f). We note that each face of G contains
exactly one point from Fix(f) \Crit(f); see [Hlu19, Lemma 8]. Let g′ be the critically fixed
Thurston map obtained by blowing up the pair (G′, idĈ). Then the marked Thurston maps
(f,Fix(f)) and (g′,Fix(f)) are isotopic (rel. Fix(f)).

The following converse statement to Proposition 3.17 easily follows from [PL98, Corol-
lary 3].

Proposition 3.19. [CGN+15, Theorem 9] Let f be a critically fixed Thurston map obtained
by blowing up a pair (G, idS2), where G is a planar embedded graph in S2 without isolated
vertices. Then f is combinatorially equivalent to a rational map if and only if G is connected.

Remark. In fact, the following stronger statement easily follows from the discussion in Re-
mark 3.18. Let f be a critically fixed Thurston map obtained by blowing up a pair (G, idS2).
Then the marked Thurston map (f, V (G)) is realized if and only G has exactly one non-
trivial connected component H and each face of H contains at most one isolated vertex of G.
Here, a connected graph H is called non-trivial if H has at least one edge.

The family of critically fixed rational maps may be completely classified using their charge
graphs. Namely, Theorem 1.2 is an immediate corollary of the following result.

Proposition 3.20 ([Hlu19, Section 5]). Two critically fixed rational maps f and g are
combinatorially equivalent if and only if their charge graphs Charge(f) and Charge(g) are
isomorphic.

Example 3.21. Let us consider the following rational map

F□(z) =
3z5 − 20z

5z4 − 12
.

One can easily check that Crit(F□) = {1+ i,−1+ i,−1− i, 1− i} and that F□(c) = c for each
c ∈ Crit(F□), that is, F□ is a critically fixed rational map. The extra two fixed points of F□
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Figure 6. The Tischler graph of F□ (left) and the construction of the charge
graph of F□ from Tisch(F□) (right).

are 0 and ∞. Furthermore, we have deg(F□) = 5 and deg(F□, c) = 3 for each c ∈ Crit(F□).
The attracting basins and the Tischler graph of F□ are shown on the left part of Figure 6.
The right part of Figure 6 illustrates the construction of the charge graph Charge(F□).

Note that Charge(F□) is isomorphic to G□. Proposition 3.19 implies that the critically
fixed Thurston map f□ introduced in Example 3.3 is realized. It now follows from Propo-
sition 3.20 that the rational map F□ is combinatorially equivalent to f□. We will use the
map f□ in our further examples, but the same observations will hold for any Thurston map
equivalent to f□, in particular, for F□.

3.5. Decomposition. Throughout this subsection we follow the notation and terminology
developed in Section 2.6. Our goal is to prove the following result, which shows that com-
pletely invariant multicurves (and the induced decompositions) for critically fixed Thurston
maps satisfy very restrictive conditions.

Theorem 3.22. Let f be a critically fixed Thurston map and Γ be a non-empty completely
invariant multicurve. Suppose f̂ : ŜΓ → ŜΓ is the corresponding map on the small spheres
with respect to Γ. Then the following statements are true.

(i) For each curve γ ∈ Γ there is exactly one component γ′ of f−1(γ) that is isotopic to γ
rel. Crit(f). All other components δ′ of f−1(γ) are null-homotopic with deg(f |δ′) = 1.

(ii) Each small sphere Ŝ ∈ ŜΓ is fixed under f̂ .

Before we proceed with the proof of this theorem, we first provide some auxiliary definitions
and results.

Let us assume that f : S2 → S2 is an arbitrary Thurston map and Γ is a completely
invariant multicurve. Consider an (abstract) graph TΓ with the vertex set SΓ and the edge
set Γ, where we connect two distinct components S1, S2 ∈ SΓ by an edge γ ∈ Γ if and only
if γ is a boundary curve in each of them. It easily follows that TΓ is connected. In fact, TΓ
must be a tree. Indeed, the removal of any edge disconnects TΓ, because each curve γ ∈ Γ
disconnects the sphere S2. We will denote by Tf−1(Γ) the corresponding tree for f−1(Γ).

If S is a component in SΓ, we will denote by Ŝ the corresponding small sphere in ŜΓ, and
similarly for the components in Sf−1(Γ). Recall that f maps each component S ′ ∈ Sf−1(Γ)

onto a component f(S ′) ∈ SΓ, which induces a branched covering map f∗ : Ŝ ′ → f̂(S ′)
between the associated small spheres (that respects the marked points). Note that f sends
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adjacent vertices in Tf−1(Γ) to adjacent vertices in TΓ. Recall also that, since Γ is completely
invariant, for each component S ∈ SΓ there is a unique component i(S) ∈ Sf−1(Γ) that
is homotopic to S in S2 \ Post(f). This allows to identify the corresponding small spheres
Ŝ ∈ ŜΓ and î(S) ∈ Ŝf−1(Γ) via a homeomorphism i∗ : Ŝ → î(S). Then f̂ : ŜΓ → ŜΓ is
defined as the composition f∗ ◦ i∗.

We will now introduce two special subtrees of Tf−1(Γ). The first one, which we denote by
T essf−1(Γ), is the (unique) spanning subtree of the vertex set {i(S) : S ∈ SΓ} in Tf−1(Γ). It is
easy to see that the edges of T essf−1(Γ) are exactly all the essential curves in f−1(Γ). In fact,
the following claim is true (the proof is straightforward from the definitions).
Lemma 3.23. The tree T essf−1(Γ) is obtained from TΓ by edge subdivision: if two components
S1, S2 ∈ SΓ are connected in TΓ by an edge γ ∈ Γ then the components i(S1), i(S2) are
connected in T essf−1(Γ) by a simple path consisting of all edges δ′ ∈ f−1(Γ) that are isotopic to
γ rel. Post(f).

To define the second subtree of Tf−1(Γ), let us consider the set

S •
f−1(Γ) := {S ′ ∈ Sf−1(Γ) : S

′ ∩ Post(f) ̸= ∅},
which represent the vertices of Tf−1(Γ) that contain the postcritical points of f . We denote
by T •

f−1(Γ) the (unique) spanning subtree of S •
f−1(Γ) in Tf−1(Γ). The next lemma describes

the structure of T •
f−1(Γ). Again, the proof follows easily from the definitions and is left to the

reader.
Lemma 3.24. The following statements are true:

(i) The edges of T •
f−1(Γ) are all the curves in f−1(Γ) that are not null-homotopic. In

particular, T essf−1(Γ) is a subtree of T •
f−1(Γ).

(ii) Let S ′ ∈ S •
f−1(Γ). Suppose p is a postcritical point in S ′ and S ∈ SΓ is the component

containing p. Then either i(S) = S ′ and S ′ is a vertex of T essf−1(Γ), or i(S) ̸= S ′

and S ′ ∈ V (T •
f−1(Γ)) \ V (T essf−1(Γ)). In the latter case, S ′ is a leaf of T •

f−1(Γ) with
S ′ ∩ Post(f) = {p}. Furthermore, S ′ and i(S) are connected in T •

f−1(Γ) by a simple
path consisting of all p-peripheral curves δ′ ∈ f−1(Γ).

Here a curve δ′ ∈ f−1(Γ) is called p-peripheral if for a component U of S2 \ δ′ we have
U ∩ Post(f) = {p}. Note that any two p-peripheral curves are isotopic rel. Post(f).

We now turn to the proof of Theorem 3.22.

Proof of Theorem 3.22. Suppose f and Γ are as in the statement. Then Post(f) = Crit(f).
We will say that a vertex of TΓ or T •

f−1(Γ) is critical if it contains a critical point.
Let

P ′ := (v′0, δ
′
1, v

′
1, . . . , δ

′
n, v

′
n)

be a simple path in T •
f−1(Γ). Here, each v′j ∈ V (T •

f−1(Γ)) and each δ′j ∈ E(T •
f−1(Γ)) is a (non

null-homotopic) curve in f−1(Γ). Then
f(P ′) := (f(v′0), f(δ

′
1), f(v

′
1), . . . , f(δ

′
n), f(v

′
n))

is a walk in TΓ.
Suppose now that P ′ is a maximal (i.e., non-extendable) simple path in T •

f−1(Γ) such that
f(P ′) is a simple path in TΓ. Clearly, P ′ has positive length. We will refer to P ′ as a maximal
injective path in T •

f−1(Γ).
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Claim 1. The start and end vertices of P ′ are critical.

It is sufficient to show that P ′ starts at a critical vertex. If v′0 is a leaf of T •
f−1(Γ) then v′0

immediately has to be critical, because T •
f−1(Γ) is the spanning subtree of S •

f−1(Γ) in Tf−1(Γ).
In the following we assume that v′0 is not a leaf of T •

f−1(Γ). We will argue by contradiction
and suppose that v′0 ∩ Crit(f) = ∅. Set γ := f(δ′1) and let E(v′0) be the set of all edges that
are incident to v′0 in T •

f−1(Γ). By maximality of P ′, each edge δ′ ∈ E(v′0) satisfies f(δ′) = γ.
Furthermore, each critical point of f is separated from v′0 by one of these edges δ′. Let us
denote by S̃ ′ the unique component in Sf−1({γ}) that contains v′0. Then f(S̃ ′) ∈ S{γ} is an
open Jordan region. Note that each edge δ′ ∈ E(v′0) is a boundary curve of S̃ ′. It follows that
χ(S̃ ′) ≤ 0 and S̃ ′ ∩ Crit(f) = ∅. Hence f |S̃ ′ : S̃ ′ → f(S̃ ′) is a covering, which is impossible.
This contradiction implies that v′0 ∩ Crit(f) ̸= ∅, which completes the proof of the claim.

Claim 1 implies that v′0 contains a critical point c0 and v′n contains a critical point cn of f .
Let v0 and vn be the vertices of TΓ that contain c0 and cn, respectively. By Lemma 3.24(ii),
either v′0 = i(v0) and v′0 is a vertex of T essf−1(Γ), or v′0 ̸= i(v0) and v′0 is a leaf of T •

f−1(Γ) that is
connected to i(v0) by a simple path consisting of all c0-peripheral curves in f−1(Γ). In either
case, we obtain that i(v0) is the first vertex of T essf−1(Γ) on the path P ′. Similarly, i(vn) is the
last vertex of T essf−1(Γ) on the path P ′.

Since f is critically fixed, f(v′0) = v0 and f(v′n) = vn. Thus, f(P ′) is a simple path that
connects v0 and vn in TΓ. At the same time, it follows from Lemma 3.23 that the sub-path
of P ′ that connects i(v0) and i(vn) is not shorter than f(P ′). In fact, this subpath has to
pass through all the vertices i(f(v′0)) = i(v0), i(f(v

′
1)), . . . , i(f(v

′
n−1)), i(f(v

′
n)) = i(vn) and

in this order. These facts together imply the following two claims.

Claim 2. For each j = 0, . . . , n we have i(f(v′j)) = v′j. In particular, all vertices of P ′ are in
T essf−1(Γ).

Claim 3. For each j = 1, . . . , n the curve δ′j is essential and isotopic to f(δ′j) rel. Crit(f).
Furthermore, δ′j is the only curve in f−1(Γ) that is isotopic to f(δ′j) rel. Crit(f).

Let us now fix an arbitrary curve γ ∈ Γ. Since Γ is completely invariant, there must be a
component γ′ of f−1(Γ) that is isotopic to γ rel. Crit(f). The curve γ′ corresponds to an an
edge of T •

f−1(Γ), and thus it is contained in some maximal injective path in T •
f−1(Γ). It follows

from Claim 3 that γ′ satisfies f(γ′) = γ, that is, γ′ is a component of f−1(γ). Furthermore,
γ′ is the only curve in f−1(Γ) that is isotopic to γ rel. Crit(f).

Suppose now that δ′ is an arbitrary component of f−1(γ). If δ′ is not null-homotopic, it
is contained in some maximal injective path in T •

f−1(Γ). Claim 3 implies that δ′ is isotopic to
f(δ′) = γ rel. Crit(f), and thus it must be the curve γ′. If δ′ is null-homotopic, then there is
a component U of S2 \ δ′ such that U ∩ Crit(f) = ∅. It follows from the Riemann-Hurwitz
formula that deg(f |U) = 1, and hence deg(f |δ′) = 1. This proves part (i) of the theorem.

To prove part (ii), consider an arbitrary small sphere Ŝ ∈ ŜΓ. Let S be the corresponding
component in SΓ. Then i(S) is a vertex of T •

f−1(Γ), and thus it is contained in some maximal
injective path in T •

f−1(Γ). By Claim 2 we have i(f(i(S))) = i(S). It follows that f(i(S)) = S,
which means that f̂(Ŝ) = Ŝ as required. This finishes the proof of the theorem. □

We record the following immediate corollary of Theorem 3.22.
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Corollary 3.25. Let f be a critically fixed Thurston map and Γ be a non-empty completely
invariant multicurve. Then T •

f−1(Γ) = T essf−1(Γ) and f provides an isomorphism between T •
f−1(Γ)

and TΓ.

The next corollary describes properties of canonical Thurston obstructions for critically
fixed Thurston maps. In particular, it shows that every critically fixed Thurston map can
be canonically decomposed into homeomorphisms and critically fixed rational maps.

Corollary 3.26. Let f be a critically fixed Thurston map and ΓTh be the canonical Thurston
obstruction of f . Then the following statements are true.

(i) For every curve γ ∈ ΓTh there is exactly one component γ′ of f−1(γ) that is isotopic to
γ and satisfies deg(f |γ′) = 1. All other components δ′ of f−1(γ) are null-homotopic
and also satisfy deg(f |δ′) = 1. In particular, each curve γ ∈ ΓTh is a fixed Levy
curve.

(ii) Each small sphere Ŝ ∈ ŜΓ is fixed under f̂ .
(iii) If S ∈ SΓ satisfies S ∩ Crit(f) = ∅, then the small sphere map f̂ : Ŝ → Ŝ is a

homeomorphism.
(iv) If S ∈ SΓ satisfies S ∩ Crit(f) ̸= ∅, then the small sphere map f̂ : Ŝ → Ŝ is realized

by a critically fixed rational map of degree d(Ŝ) = 1 + 1
2

∑
c∈S∩Crit(f)(deg(f, c)− 1).

Proof. The proof is immediate from Theorem 3.22 since the canonical Thurston obstruction
ΓTh is simple. The formula for d(Ŝ) follows from the Riemann-Hurwitz formula. □

The next corollary shows that it is sufficient to check absence of fixed Levy curves to
conclude that a given critically fixed rational map is realized.

Corollary 3.27. Let f be a critically fixed Thurston map. Then every Thurston obstruction
of f contains a fixed Levy curve. In particular, f is realized if and only if f does not have a
fixed Levy curve.

Proof. The proof is immediate from Theorem 3.22 since every Thurston obstruction contains
a simple one. □

3.6. The charge graph and classification. The goal of this subsection is to extend the
notion of the charge graph of a critically fixed rational map to the more general setup of
critically fixed Thurston maps. Moreover, we will provide a classification of critically fixed
Thurston maps in terms of admissible pairs.

Let f : S2 → S2 be a critically fixed Thurston map and Γ := ΓTh be the canonical
Thurston obstruction for f . Let us decompose ŜΓ as the union ŜΓ,Rat ⊔ ŜΓ,Homeo, where
ŜΓ,Rat consists of the small spheres containing critical points of f , and ŜΓ,Homeo consists of
the small spheres without critical points. By Corollary 3.26, each small sphere Ŝ ∈ ŜΓ is
fixed under f̂ . Moreover, each small sphere map f̂ |Ŝ, Ŝ ∈ ŜΓ,Homeo, is a homeomorphism,
and each small sphere map f̂ |Ŝ, Ŝ ∈ ŜΓ,Rat, is combinatorially equivalent to a critically fixed
rational map FŜ. In the latter case, Proposition 3.6 implies that f̂ |Ŝ is obtained by blowing
up a pair (GŜ, φŜ), where GŜ is a (connected) graph isomorphic to Charge(FŜ). Note that
we may naturally view GŜ as a planar embedded graph in S2. Then the union

(3.2) Charge(f) :=
⊔

Ŝ∈ŜΓ,Rat

GŜ,
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of all such graphs is a planar embedded graph in S2 with the vertex set Crit(f). This
observation leads us to the following definition.

Definition 3.28. Let f be a critically fixed Thurston map. We define the charge graph
of f to be the planar embedded graph Charge(f) with the vertex set Crit(f) constructed as
above.

Note that the charge graph is defined only up to isotopy rel. Crit(f). In fact, its isotopy
class is uniquely characterized by the following result.

Theorem 3.29. Let f be a critically fixed Thurston map. Then the following statements
are true.

(i) The map f is isotopic to a critically fixed Thurston map obtained by blowing up an
admissible pair (Charge(f), φf ).

(ii) If f is isotopic to a critically fixed Thurston map f ′ obtained by blowing up an ad-
missible pair (G′, φ′), then G′ and φ′ are isotopic to Charge(f) and φf rel. Crit(f),
respectively.

Proof. Suppose f is a critically fixed Thurston map, G := Charge(f) is the charge graph
of f , and Γ := ΓTh is the canonical Thurston obstruction of f .

Consider a small sphere Ŝ ∈ ŜΓ,Rat, and let S be the respective component in SΓ. Note
that Ŝ is marked by a finite set Q(Ŝ) corresponding to Crit(f)∩S and Γ∩∂S. In fact, each of
these points is a fixed point of f̂ |Ŝ (see Corollary 3.26(i)). By construction, S ⊂ S2 contains
exactly one component GS of the charge graph G. Combining Proposition 3.2, Corollary
3.26(iv), and the Riemann-Hurwitz formula, we obtain

|E(G)| =
∑

Ŝ∈ŜΓ,Rat

|E(GS)| =
∑

Ŝ∈ŜΓ,Rat

(deg(f̂ |Ŝ)− 1) =

=
∑

Ŝ∈ŜΓ,Rat

1

2

∑
c∈S∩Crit(f)

(deg(f, c)− 1) =
1

2

∑
c∈Crit(f)

(deg(f, c)− 1) = deg(f)− 1.

We claim that each edge α of G admits a triple (α+, α−, Uα) that satisfies the conditions
of Proposition 3.9. Indeed, if α ∈ E(GS) then the map f̂ |Ŝ induces such a triple in S2

by Proposition 3.8. Here, we use the fact that the marked small sphere map (f̂ |Ŝ, Q(Ŝ))
is combinatorially equivalent to a marked critically fixed rational map (FŜ,Fix(FŜ)); see
Proposition 3.6 and Remark 3.18. Part (i) of the theorem now follows from Proposition 3.9.

Suppose now that f is isotopic to a map f ′ obtained by blowing up an admissible pair
(G′, φ′). Then each edge α′ ∈ E(G′) blows up under f by Proposition 2.9. Lemma 3.14
implies that α′ is isotopic to an edge α of G and mG(α) = mG′(α′). It then follows from
Proposition 2.4 that G and G′ are isotopic rel. Crit(f) = Crit(f ′).

It is now left to prove that φf and φ′ are isotopic rel. Crit(f). Let g be the map obtained
by blowing up the pair (G,φ′). Since f and f ′ are isotopic, Propositions 3.4 implies that
f and g are isotopic as well. Therefore, we may write f = g ◦ ψ for some homeomorphism
ψ ∈ Homeo+0 (S

2,Crit(f)). Then G±
f = ψ−1(G±

g ), where G±
f =

⋃
α∈E(G)(α

+ ∪ α−) and
G±
g are the blow-ups of G under f and g, respectively. Choose a connected graph H ⊂

S2\
⋃
α∈E(G)(Uα\∂α) with V (H) = Crit(f). Then, (E3) implies that (g◦ψ)(e) = f(e) ∼ φf (e)

rel. Crit(f) for every e ∈ E(H). At the same time, since int(ψ(e)) ⊂ S2 \
⋃
α∈E(G) ψ(Uα),
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we get (g ◦ ψ)(e) = g(ψ(e)) ∼ φ′(ψ(e)) ∼ φ′(e) rel. V (G). Corollary 2.17 now implies that
φf and φ′ are isotopic rel. Crit(f). This finishes the proof of the theorem. □

Based on the previous results, we can now complete a solution to the classification problem
for the entire class of critically fixed Thurston maps.

Definition 3.30. Let (G1, φ1) and (G2, φ2) be two admissible pairs in S2 and Ŝ2, respec-
tively. We say that (G1, φ1) and (G2, φ2) are equivalent if there is an orientation-preserving
homeomorphism ψ : S2 → Ŝ2 such that ψ(G1) = G2 and ψ ◦ φ1 ◦ ψ−1 is isotopic to φ2 rel.
V (G2).

The following result establishes Main Theorem A from the introduction.

Theorem 3.31. There is a canonical bijection between the combinatorial equivalence classes
of critically fixed Thurston maps and the equivalence classes of admissible pairs.

Proof. Let CritFixMaps be the set of all combinatorial equivalence classes of critically fixed
Thurston maps and AdmPairs be the set of all equivalence classes of admissible pairs. As
common, we will denote the equivalence class of an element by [·].

Let f be a critically fixed Thurston map. Theorem 3.29(i) implies that f is isotopic
to a map obtained by blowing up an admissible pair (Gf , φf ). By Theorem 3.29(ii) and
Remark 3.7, this induces a well-defined map Φ: CritFixMaps→ AdmPairs given by

Φ([f ]) = [(Gf , φf )] .

The map Φ is clearly surjective since blowing up of any admissible pair gives raise to
some critically fixed Thurston map according to Proposition 3.2. To check if the map Φ is
injective, let f : S2 → S2 and g : Ŝ2 → Ŝ2 be two critically fixed Thurston maps defined by
blowing up some admissible pairs (Gf , φf ) and (Gg, φg) in S2 and Ŝ2, respectively. Suppose
that these admissible pairs are equivalent, that is, there exists an orientation-preserving
homeomorphism ψ : S2 → Ŝ2 such that ψ(Gf ) = Gg and the homeomorphisms ψ ◦ φf ◦ ψ−1

and φg are isotopic rel. Crit(g). The proof of Proposition 3.6 implies that the map ψ◦f ◦ψ−1

is obtained by blowing up the pair (Ĝ, φ̂), where Ĝ is the planar embedded graph ψ(G) in
Ŝ2 with the vertex set V (Ĝ) = ψ(V (G)) = Crit(g) and φ̂ = ψ ◦ φf ◦ ψ−1. Proposition 3.4
then implies that the maps ψ ◦ f ◦ ψ−1 and g are isotopic. Thus, the maps f and g are
combinatorially equivalent, which means that Φ is injective. This finishes the proof of the
theorem. □

We close this section by noting that we can easily determine the canonical obstruction of
a critically fixed Thurston map obtained by blowing up an admissible pair. To do so, we
need to introduce some terminology.

Let G be a planar embedded graph in S2. Suppose H is a connected component of G and
U is one of its faces. Since U is simply connected, we may fix a homeomorphism η : D→ U .
Let 0 < ε < 1. We say that a Jordan curve γ ⊂ U is an ε-boundary of G (with respect to
U) if η−1(γ) ⊂ {z : 1− ε < |z| < 1} and η−1(γ) separates 0 from ∂D. Note that the isotopy
class of γ rel. V (G) is fixed for all sufficiently small ε and is independent of the choice of η.
In the following, whenever we talk about ε-boundaries we assume that ε is sufficiently small.

Theorem 3.32. Let f be a critically fixed Thurston map obtained by blowing an admissible
pair (G,φ). Set Γ to be the multicurve obtained by taking all essential ε-boundaries of G and
identifying the isotopic ones. Then Γ is the canonical Thurston obstruction for f .
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Proof. We will only give an outline of the argument and leave some straightforward details
to the reader.

Let f be a critically fixed Thurston map obtained by blowing an admissible pair (G,φ).
Without loss of generality, we may assume that φ(α) = α for each edge α ∈ E(G). Suppose
(α+, α−, Uα), α ∈ E(G), are the triples provided by Proposition 3.8 for K = G. We also
denote by G± =

⋃
α∈E(G)(α

+ ∪ α−) the corresponding blow-up of G under the map f .

Claim. Let γ be an essential ε-boundary of f . Then there is exactly one component γ′ of
f−1(γ) that is isotopic to γ rel. Crit(f) and satisfies deg(f |γ′) = 1. All other components δ′
of f−1(γ) are null-homotopic and satisfy deg(f |δ′) = 1. In particular, γ is a fixed Levy curve
of f .

Suppose γ is an essential ε-boundary of G with respect to U . Then γ ⊂ W ⊂ U where W
is a multiply connected face of G. Let W̃ be the face of G± such that f |W̃ : W̃ → W is a
homeomorphism (see Proposition 3.8). Then W̃ contains a unique component γ′ of f−1(γ).
Clearly, deg(f |γ′) = 1. By (E1) and (E3), any other component δ′ of f−1(γ) belongs to Uα
for some α ∈ E(G). Therefore, δ′ is null-homotopic and satisfies deg(f |δ′) = 1.

To prove the claim, it remains to show that γ′ is isotopic to γ rel. Crit(f). We may
naturally view H := ∂U a subgraph of G. Similarly, H± :=

⋃
α∈E(H)(α

+ ∪ α−) ⊃ ∂W̃ is a
subgraph of G±. By the uniform continuity of f , the curve γ′ is an ε-boundary of G± with
respect to a unique face Ũ of H± that contains W̃ . Let Q be the component of S2 \ γ that
contains H. Changing f by an isotopy rel. Crit(f), we may assume that Q contains each
Uα with α ∈ E(H), while all Uα with α ∈ E(G) \E(H) remain the same. Then γ is also an
ε-boundary of G± with respect to Ũ . Therefore, the curves γ′ and γ are isotopic rel. Crit(f).

The claim implies that the multicurve Γ is completely invariant. Suppose Ŝ ∈ ŜΓ is a
small sphere with respect to Γ, and S is the respective component in SΓ. Recall that Ŝ is
marked by a finite set Q(Ŝ) corresponding to Crit(f)∩ S and Γ∩ ∂S. By Theorem 3.22(ii),
the small sphere Ŝ is fixed under f̂ . If S ∩ Crit(f) = ∅, then the small sphere map f̂ |Ŝ is a
homeomorphism. Otherwise, S contains a unique connected component GS of G. Further-
more, each face W of GS contains at most one marked point in Q(Ŝ). It now easily follows
from Remark 3.18 that the marked small sphere map (f̂ |Ŝ, Q(Ŝ)) is realized. We claim that
the multicurve Γ satisfies the criterion in Theorem 2.14, and thus Γ is a canonical obstruc-
tion of f . Indeed, to check minimality, assume that Γ′ ⊊ Γ and γ ∈ Γ \ Γ′. Let S ′ ∈ SΓ′

be the component containing γ. Note that γ is an essential curve in the respective marked
small sphere Ŝ ′. Moreover, Ŝ ′ ∩ Crit(f) ̸= ∅. The claim now implies that γ is a Levy fixed
curve in the (marked) small sphere map associated with Ŝ ′. Therefore, Γ′ does not meet the
requirements from Theorem 2.14, and Γ must be the canonical obstruction for f . □

4. Lifting algorithm

In this section, we develop an algorithm that for a given critically fixed Thurston map f
finds its charge graph Gf := Charge(f). This also allows us to reconstruct an admissible pair
(Gf , φf ) that is associated with f by Theorem 3.29(i). Namely, we provide a combinatorial
description of the homeomorphism φf using the charge graph Gf and the original map f . By
the discussion in Section 3.4, knowing the graph Gf we can decide whether f is obstructed
or not, depending on the connectivity of Gf . Furthermore, if f is realized, the charge graph
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Gf uniquely determines the combinatorial equivalence class of f . Otherwise, we find the
canonical obstruction of f by looking at the connectivity components of Gf .

4.1. The pullback operation. In the following, we suppose that f : S2 → S2 is a critically
fixed Thurston map and T is a planar embedded tree in S2 with Crit(f) ⊂ V (T ). By
Lemma 2.15, the complete preimage f−1(T ) is a connected graph with Crit(f) ⊂ V (f−1(T )).
Hence, we can choose a spanning subtree of the critical set Crit(f) in the graph f−1(T ), that
is, a minimal under inclusion subtree T̃ of f−1(T ) such that Crit(f) ⊂ V (T̃ ). Note that each
non-critical vertex of T̃ must then have degree at least 2. Next, we further “simplify” the
tree T̃ by removing all non-critical vertices of degree 2 (if there are any). More formally, we
consider the tree T ′ embedded in S2 with the same realization as T̃ but with the vertex set
V (T ′) given by

V (T ′) = Crit(f) ∪ {v ∈ V (T̃ ) : degT̃ (v) ≥ 3}.

Definition 4.1. The operation of deriving a planar embedded tree T ′ from the tree T as
described above is called the pullback operation. We also say that T ′ is a pullback of the
tree T under the map f and denote by Πf (T ) the set of all such pullbacks.

We emphasize that the result of the pullback operation is not uniquely determined, since
the choice of the spanning subtree T̃ may not be unique. Nevertheless, independently of this
choice, each pullback T ′ is a planar embedded tree with Crit(f) ⊂ V (T ′). This allows us to
iterate the pullback operation and get a sequence (Tn)n≥0 of planar embedded trees, where

T0 = T and Tn+1 ∈ Πf (Tn) for n ≥ 0.

The following proposition implies that the “combinatorial complexity” of the pullbacks
Tn, n ∈ N, is uniformly bounded. In the next subsection, we will show that the “topological
complexity” of these pullbacks eventually stabilizes.

Proposition 4.2. Let f : S2 → S2 be a critically fixed Thurston map and T be a planar
embedded tree in S2 with Crit(f) ⊂ V (T ). Suppose that T ′ is a pullback of T under f . Then
|V (T ′)| ≤ 2|Crit(f)| − 2.

Proof. By definition of the pullback operation, each non-critical vertex of T ′ has degree
greater than 2. Hence the following inequality holds:∑

v∈V (T ′)

degT ′(v) ≥ |Crit(f)|+ 3(|V (T ′)| − |Crit(f)|).

At the same time, since T ′ is a tree, we have∑
v∈V (T ′)

degT ′(v) = 2|V (T ′)| − 2.

It follows that
2|V (T ′)| − 2 ≥ |Crit(f)|+ 3(|V (T ′)| − |Crit(f)|),

and thus |V (T ′)| ≤ 2|Crit(f)| − 2, as desired. □

Example 4.3. Let us consider the critically fixed Thurston map f□ from Example 3.3 and a
planar embedded tree T with V (T ) = Crit(f□) shown on the left in Figure 7. The tree T
has three edges colored red, green and blue. The complete preimage f−1

□ (T ) is illustrated
on the right in Figure 7. The map f□ sends each edge and vertex of f−1

□ (T ) to the edge and
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f□T f−1
□ (T )

Figure 7. Taking the complete preimage of a tree T with V (T ) = Crit(f□)
under the critically fixed Thurston map f□.

Figure 8. Examples of pullbacks of the tree T from Figure 7 under the
map f□.

vertex of the same color. The graphs in dashed lines indicate the charge graph of f□ (on the
left) and its blow-up (on the right).

Figure 8 illustrates some of the possible pullbacks of the tree T under the map f□. Note
that the first two examples are trees with vertices only in the critical points of f□, while
the second two examples are trees with an extra non-critical vertex of degree 3 indicated in
white.

4.2. Topological contraction of the pullback operation. To control the “topological
complexity” of iterated pullbacks of a tree under a critically fixed Thurston map f , we will
use intersection numbers rel. Crit(f). As before, we simply write if (·, ·) instead of iCrit(f)(·, ·).
Definition 4.4. Let f : S2 → S2 be a critically fixed Thurston map and G be a planar
embedded graph in S2 with Crit(f) ⊂ V (G). We define the norm ∥G∥f of G with respect
to the map f as

∥G∥f := max
α∈E(Charge(f))

if (G,α).

Our goal is to show the following result.

Theorem 4.5. Let f : S2 → S2 be a critically fixed Thurston map and T0 be a planar
embedded tree in S2 with V (T0) ⊃ Crit(f). Consider the sequence (Tn)n≥0 of planar embedded
trees in S2 obtained by the iterative application of the pullback operation starting with the
tree T0, that is, Tn ∈ Πf (Tn−1) for each n ∈ N. Then ∥Tn∥f = 0 for n ≥ ∥T0∥f .

In other words, after at most ∥T0∥f iterations of the pullback operation we obtain a tree
that, up to isotopy rel. Crit(f), intersects the charge graph of f only in critical points (to
conclude this from the theorem, use Proposition 2.6). This establishes Main Theorem B.
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fα

p1
p2

p3 p4

p+1
p+2 p+3

p+4

p−1
p−2 p−3

p−4

Figure 9. Left: a planar embedded tree T (in red) intersecting an edge α (in
black). Right: the preimage f−1

α (T ) (in red) and ∂Uα = α+ ∪ α− (in black).

Example. Let us consider the map f□ and the tree T from Example 4.3. One can check that
∥T∥f = 1, but for every pullback T ′ of T under f we have ∥T ′∥f = 0.

Theorem 4.5 will easily follow from the next statement.

Proposition 4.6. Let f : S2 → S2 be a critically fixed Thurston map and T be a planar
embedded tree in S2. Then for each edge α ∈ E(Charge(f)) we have:

(i) if (f−1(T ), α) ≤ if (T, α);
(ii) if (f−1(T ), α) < if (T, α), if if (T, α) > 0.

Proof. Let f , T , and α be as in the statement. Since the charge graph of f is defined
up to isotopy, we may assume without loss of generality that the tree T and the edge
α ∈ E(Charge(f)) are in minimal position rel. Crit(f). By Proposition 3.8, there are distinct
lifts α+, α− of α under f and a component Uα of S2 \ (α+∪α−) such that α+, α− are isotopic
to α rel. Crit(f) and f |Uα : Uα → S2 \ α is a homeomorphism.

We first show that inequality (i) holds. Since f |α+ : α+ → α is a homeomorphism, we
have

|(f−1(T ) ∩ α+) \ Crit(f)| = |(T ∩ α) \ Crit(f)| = if (T, α).

At the same time, since α+ ∼ α rel. Crit(f), we have

if (f
−1(T ), α) = if (f

−1(T ), α+) ≤ |(f−1(T ) ∩ α+) \ Crit(f)|,

which implies the desired inequality.
Suppose now that if (T, α) > 0. By the argument above, to prove (ii) it is sufficient to

show that

(4.1) if (f
−1(T ), α+) < |(f−1(T ) ∩ α+) \ Crit(f)|

or

(4.2) if (f
−1(T ), α−) < |(f−1(T ) ∩ α−) \ Crit(f)|

In other words, our goal is to show that some intersection between f−1(T ) and either α+ or
α− can be removed by an isotopy rel. Crit(f).

Let P = {p1, p2, . . . , pm}, m > 0, be the set of intersections between int(α) and T listed
from one endpoint of α to another. If we set P+ := int(α+) ∩ f−1(T ) and P− := int(α−) ∩
f−1(T ), we may write P+ = {p+1 , p+2 , . . . , p+m} and P− = {p−1 , p−2 , . . . , p−m} where f(p+i ) =
f(p−i ) = pi for each i = 1, . . . ,m.
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α+ α̃
H H

Figure 10. Modifying the Jordan arc α+ into a Jordan arc α̃ by an isotopy
rel. Crit(f) to reduce intersections with f−1(T ).

Consider the preimage f−1
α (T ) of the tree T under the map fα := f |Uα : Uα → S2. Note

that f−1
α (T ) is a planar embedded graph with the vertex set f−1

α (V (T )) ∪ P+ ∪ P−. Fur-
thermore, each connected component of f−1

α (T ) is a planar embedded tree with at least one
vertex on ∂Uα = α+ ∪ α−; see Figure 9 for an illustration.

Claim. There exists a connected component H of f−1
α (T ) such that H ∩ int(α+) = ∅ or

H ∩ int(α−) = ∅.
Indeed, let H+ and H− be the components of f−1

α (T ) such that p+1 ∈ H+ and p−1 ∈ H−.
Note that H+ ∩ H− = ∅, because otherwise H+ = H− and fα(H

+) ⊂ T contains a cycle,
which leads to a contradiction. If either H+ ∩ int(α−) = ∅ or H− ∩ int(α+) = ∅, then we are
done. Otherwise, H+∩{p−2 , . . . , p−m} ≠ ∅ and H−∩{p+2 , . . . , p+m} ≠ ∅; but then H+∩H− ̸= ∅,
which is a contradiction. The claim follows.

Without loss of generality we may assume that there is a connected component H of
f−1
α (T ) with H ∩ int(α−) = ∅. But since Uα ∩ Crit(f) = ∂α, the Jordan arc α+ may be

isotoped into a Jordan arc α̃ rel. Crit(f) so that

|(f−1(T ) ∩ α̃) \ Crit(f)| < |(f−1(T ) ∩ α+) \ Crit(f)|;
see Figure 10 for an illustration. Thus (4.1) holds, which completes the proof of part (ii). □

The first part of Proposition 4.6 remains true if T is an arbitrary planar embedded graph
in S2 (in fact, the same proof applies). However, as the next example shows, the assumption
that T is a tree is crucial for the second part of the statement. This explains why using the
pullback operation, which extracts a subtree out of a complete preimage, instead of taking
the complete preimage itself is essential.

Example. Consider the left part of Figure 11. Let G be the planar embedded graph shown
in black dashed lines and H be the planar embedded graph shown in colored solid lines.
Suppose f is a critically fixed Thurston map obtained by blowing up the pair (G, idS2). The
colored lines on the right in Figure 11 indicate a subgraph H̃ of f−1(H). Let H ′ be the planar
embedded graph in S2 with the same realization as H̃ but with vertex set V (H ′) = V (H) =
Crit(f). Note that H ′ is isotopic to H rel. Crit(f), and thus if (f−1(H), α) = if (H,α) for
each edge α ∈ E(G). This obviously implies that ∥f−n(H)∥f = ∥H∥f = 2 for each n ≥ 0.

Proof of Theorem 4.5. Let f and (Tn)n≥0 be as in the statement. Proposition 4.6 implies that
for each n ≥ 0 we have the inequality ∥f−1(Tn)∥f ≤ ∥Tn∥f , which is strict unless ∥Tn∥f = 0.
At the same time, since Tn+1 is a subset of f−1(Tn), we have ∥Tn+1∥f ≤ ∥f−1(Tn)∥f for each
n ≥ 0. Thus the sequence ∥T0∥f , ∥T1∥f , . . . strictly decreases until we reach 0. This finishes
the proof of the theorem. □
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Figure 11. Left: a graph G in dashed black lines and a graph H in colored
solid lines. Right: the blow-up of G in dashed black lines, and a subgraph H̃
of f−1(H) in colored solid lines. The colors indicate onto which edges of H
the edges of H̃ are mapped under f .

4.3. Lifting algorithm. We are finally ready to describe an algorithm that finds the charge
graph of a given critically fixed Thurston map f : S2 → S2.

Let T0 be a planar embedded tree in S2 with Crit(f) = V (T0), and suppose that Tn+1 ∈
Πf (Tn) is a pullback of Tn for every n ≥ 0. By construction, each Tn is a planar embedded
tree in S2 with V (Tn) ⊃ Crit(f). Let β be a simple path in Tn with endpoints in Crit(f),
which we view as a Jordan arc in S2 joining the corresponding endpoints. Note that β may
have critical points in its interior. A lift β̃ of β under f is called critical if β̃ is a Jordan arc
in (S2,Crit(f)), that is, ∂β̃ ⊂ Crit(f) and int(β̃) ∩ Crit(f) = ∅. By Lemma 3.14, there are
exactly max(0, deg(f, β̃)−1)) edges in Charge(f) that are isotopic to a critical lift β̃. At the
same time, if if (β, α) = 0 for some edge α ∈ E(Charge(f)) with ∂α = ∂β, then there is a
critical lift β̃ of β under f such that β̃ ∼ α rel. Crit(f) (see Lemma 3.13). Combining these
facts with Theorem 4.5, we propose an algorithm for reconstruction of the charge graph of
f ; see Algorithm 1.

Algorithm 1 Lifting Algorithm
Input: a critically fixed Thurston map f : S2 → S2

Output: the charge graph Charge(f) of the map f
1: set E := ∅ and n := 0
2: choose any planar embedded tree T0 in S2 with V (T0) = Crit(f)
3: while |E| ≤ deg(f)− 1 do
4: for every simple path β in Tn with endpoints in Crit(f) do
5: for every critical lift β̃ of β under f do
6: if there is no arc in E isotopic to β̃ rel. Crit(f) then
7: add max(0, deg(f, β̃)− 1) edges isotopic to β̃ rel. Crit(f) to E so that
8: all edges in E have pairwise disjoint interiors
9: end if

10: end for
11: end for
12: take Tn+1 ∈ Πf (Tn)
13: n← n+ 1
14: end while
15: return (Crit(f), E)
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Figure 12. Iterations of the Lifting Algorithm applied to the critically fixed
Thurston map f□.

Theorem 4.7. Let f : S2 → S2 be a critically fixed Thurston map and T0 be an initial
planar embedded tree in S2 with V (T0) = Crit(f). Then Algorithm 1 stops after taking at
most ∥T0∥f pullback operations and returns the charge graph of f .

Proof. Theorem 4.5 implies that after taking at most ∥T0∥f iterations of the pullback op-
eration, we obtain a planar embedded tree T ′ with Crit(f) ⊂ V (T ′) and ∥T ′∥f = 0. The
statement now follows from the discussion above. □

Remark. Note that the running of Algorithm 1 significantly depends on the choice of the
starting tree T0 and the choices of the pullbacks Tn+1 ∈ Πf (Tn) for n ≥ 0. Nevertheless, the
trees Tn have uniformly bounded combinatorial complexity. More precisely, Proposition 4.2
implies that |V (Tn)| ≤ 2|Crit(f)| − 2, so |E(Tn)| ≤ 2|Crit(f)| − 3 for each n ≥ 0.

Example 4.8. To illustrate Algorithm 1, we apply it to the critically fixed Thurston map f□
from Example 3.3.

We start with the tree T0 shown in color on the top left in Figure 12. The top part of
the figure illustrates (up to isotopy rel. Crit(f□)) the trees T1 ∈ Πf (T0) and T2 ∈ Πf (T1)
constructed during the algorithm. The bottom part of the figure shows the corresponding
complete preimages. Here, as usual, the map f□ sends each edge of f−1

□ (Tn) to the edge of Tn
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of the same color. Slightly thicker colored edges in f−1
□ (T0) and f−1

□ (T1) indicate the choice
of the pullbacks T1 and T2, respectively. The graphs in dashed lines illustrate the charge
graph of f□ (on the top pictures) and its blow-up (on the bottom pictures).

We now describe how the set E changes during each iteration of the algorithm; see Figure 12
as a reference.

(1) On the first iteration, we discover the edges AB and CD of the charge graph G□.
(2) On the second iteration, we discover the edge AD of G□. Note that the simple paths

(A,D,B) and (C,A,D) in T1 also have critical lifts that blow up under f□, but they
provide us only with the edges AB and CD of G□ obtained on the previous iteration.

(3) On the third iteration, we discover the last edge BC of G□ and the algorithm stops.
Note that ∥T0∥f = 2, thus the bound in Theorem 4.7 is sharp.

We close this section by noting that we may combinatorially encode a homeomorphism
from the admissible pair by knowing only the charge graph of the map.

Let f : S2 → S2 be a critically fixed Thurston map and G be the charge graph of f . By
Theorem 3.29(i), f is isotopic to a map g : S2 → S2 obtained by blowing up some admissible
pair (G,φg). Proposition 3.8 now implies that we may find triples (α+, α−, Uα), α ∈ E(G),
that satisfy conditions (D1)-(D3) and (E1)-(E3) with respect to f . Note that these triples
are uniquely determined by the map f and and the graph G when |Crit(f)| > 2: for every
edge α ∈ E(G) there is a unique pair α+, α− of its lifts that satisfies conditions (D1)-(D3).

Let H be a connected graph with V (H) = V (G) = Crit(f) and H∩Uα ∈ {α+, α−} for each
α ∈ E(G). Conditions (D1) and (E3) imply that f sendsH homeomorphically onto its image.
The map f |H may be continuously extended to a homeomorphism φf ∈ Homeo+(S2, V (H)).
This easily follows from [Hlu17, Proposition 3.4.3] since f preserves the cyclic order of edges
incident to every vertex of H. Alternatively, since f |H : H → f(H) is a graph map, we may
use the criterion [BFH92, Proposition 6.4] to check that f |H admits a regular extension,
which then must be a homeomorphism. Note also that φf is unique up to isotopy rel. V (H)
(see Proposition 2.16).

The following statement implies that the pair (G,φf ) corresponds to the map f .

Proposition 4.9. The pair (G,φf ) is admissible. Moreover, the homeomorphisms φf and
φg are isotopic rel. V (G).

Proof. It is sufficient to show that φf and φg are isotopic rel. V (G). Suppose f = g ◦ ψ for
some ψ ∈ Homeo+0 (S

2,Crit(f)). Note that G±
f = ψ−1(G±

g ), where G±
f =

⋃
α∈E(G)(α

+ ∪ α−)

and G±
g are the blow-ups of G with respect to f and g, respectively (see Proposition 3.8).

We claim that φf (e) and φg(e) are isotopic rel. V (G) for every e ∈ E(H).

Case 1. Suppose e ∈ {α+, α−} for some α ∈ E(G). Then φf (e) = f(e) = α. At the same
time, φg(e) ∼ φg(α) rel. V (G), because e ∼ α rel. V (G), and φg(α) ∼ α rel. V (G), because
the pair (G,φg) is admissible. Thus φf (e) ∼ φg(e) rel. V (G).

Case 2. Suppose e /∈ {α+, α−} for every α ∈ E(G). By (E3), (g ◦ ψ)(e) = f(e) ∼ φf (e) rel.
V (G). By construction, int(ψ(e)) ⊂ S2 \

⋃
α∈E(G) ψ(Uα). We get (g ◦ ψ)(e) ∼ φg(ψ(e)) ∼

φg(e) rel. V (G), where the first equivalence follows from (E3) and the second one from
ψ ∈ Homeo+0 (S

2,Crit(f)). Therefore, φf (e) ∼ φg(e) rel. V (G) as claimed.

The statement now follows from Corollary 2.17. □
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5. Twisting problem

Let f : S2 → S2 be a Thurston map and φ ∈ Homeo+(S2,Post(f)) be a homeomorphism.
Consider the map g := φ ◦ f : S2 → S2, called the twist of f by φ (or simply a twisted map).
Note that g is a branched covering map on S2 with deg(g) = deg(f) and Crit(g) = Crit(f).
Moreover, f and g have the same dynamics on the critical set, so g is a Thurston map. In
particular, if f is critically fixed, then the twisted map g is critically fixed as well. By the
twisting problem we mean the problem of determining the combinatorial equivalence class of
the twisted map g = φ ◦ f , knowing the maps f and φ.

Since we are interested in g only up to combinatorial equivalence, we may consider f and φ
up to isotopy rel. Post(f). In particular, we may treat φ as an element of PMCG(S2,Post(f)).
Recall that PMCG(S2,Post(f)) is generated by finitely many Dehn twists; see, for example,
[FM12, Theorems 4.9 and 4.11]. Thus, understanding the case when φ = T nγ , where n ∈ Z
and Tγ is the Dehn twist about an essential Jordan curve γ on (S2,Post(f)), has been of
particular interest.

The twisting problem for polynomial maps has been sufficiently well studied in the last
decade [BN06, KL19, BLMW22, MW22, LW22]. However, in the non-polynomial case,
the problem has been previously considered only for rational maps of low degree with four
postcritical points [Lod13, KL19].

In this section, we address the twisting problem for the family of critically fixed Thurston
maps. We start though by briefly discussing the principal previous work in the polynomial
case; see [BLMW22] for a more thorough overview.

The first instance of the twisted problem was posed by John Hubbard in the 1980s. Namely,
let us consider the quadratic polynomials of the form z2 + c for which the critical point 0 is
3-periodic. There are exactly three such polynomials, called the rabbit polynomial pR (with
c ≈ −0.1225 + 0.7448i), the co-rabbit polynomial pC (with c ≈ −0.1225− 0.7448i), and the
airplane polynomial pA (with c ≈ −1.7548). Take the rabbit polynomial pR and postcompose
it with (an iterate of) the Dehn twist Tγ about a Jordan curve γ surrounding the postcritical
points pR(0) and p2R(0) and staying in the upper half-plane. The Levy-Bernstein theorem
[Hub16, Theorem 10.3.9] implies that the twisted map T nγ ◦ pR is realized for every n ∈ Z,
and thus it must be combinatorially equivalent to precisely one of the polynomials pR, pC ,
and pA. The problem of understanding the combinatorial class of T nα ◦pR (in terms of n ∈ Z)
is called Hubbard’s twisted rabbit problem.

Laurent Bartholdi and Volodymyr Nekrashevych solved the twisted rabbit problem in
[BN06] using a novel algebraic machinery provided by iterated monodromy groups. Quite
unexpectedly, the answer depends on the 4-adic expansion of the power n of the twist. A
similar algebraic approach can be applied to the twisting problem for some other polynomial
and non-polynomial maps. For example, twisting questions for z2+i and 3z2

2z3+1
are considered

in [BN06] and [Lod13], respectively. We remark that in these cases the twisted maps may
be obstructed.

Recently, an alternative solution to the twisting problem for postcritically-finite polyno-
mials was proposed by James Belk, Justin Lanier, Dan Margalit, and Rebecca R. Winarski
[BLMW22]. Similarly to the work of Bartholdi-Nekrashevych, the solution is algorithmic,
but it is based on ideas from combinatorial topology to a greater extent; see [BLMW22] for
a comparison of the two methods.
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Figure 13. Finding the combinatorial class of the map g = T−1
γ ◦ f□.

The classification results and the lifting algorithm we developed in the preceding sections
naturally suggest an algorithmic solution to the twisting problem for the family of critically
fixed Thurston maps.

Example 5.1. Let us show how using Algorithm 1 one can find the combinatorial class of the
twisted map g := T−1

γ ◦ f□, where γ is the curve in gray on the top left picture in Figure 13.
Here, the graph in dashed lines represents the charge graph G□. We run Algorithm 1 for the
map g starting with the tree T0 shown in color on the top left picture in the figure.

During the first iteration of the algorithm, it will find that there are critical lifts of the
paths (A,B), (C,D), (A,D,C), and (B,A,D) in the tree T0 providing four different edges
of the charge graph of the map g. Examples of such lifts are shown in slightly thicker colored
lines on the top right picture in Figure 13, which illustrates the full preimage g−1(T0). Here,
the graph in dashed lines represents the blow-up of G□. Furthermore, f□ sends each edge of
g−1(T0) to the edge of the same color in the tree Tγ(T0) on the top middle picture. Similarly,
T−1
γ sends each edge of Tγ(T0) to the edge of the tree T0 of the same color.
The bottom part of Figure 13 verifies that the found lifts indeed blow up under the twisted

map g. Namely, the picture on the left shows a graph G composed of these lifts (up to isotopy
rel. Crit(f□)); the middle picture shows Tγ(G); and the picture on the right illustrates the
blow-up G± of G with respect to the map g.
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T1/4 T1/4

Figure 14. The action of the 1/4-twist on radial arcs.

It follows that Algorithm 1 stops after the very first iteration. Note that the charge graph
G□ of f and the charge graph G of g = T−1

γ ◦ f are connected and isomorphic to each other.
Therefore, the maps f□ and T−1

α ◦ f□ are combinatorially equivalent by Proposition 3.20,
even though they are not isotopic.

The main goal of this section is to address some special instances of the twisting problem for
the family of critically fixed Thurston maps f obtained by blowing up a pair (G, idS2). Note
that up to isotopy this family includes all critically fixed rational maps (see Proposition 3.17).
We will show that for some special Jordan curves γ in (S2,Crit(f)) the combinatorial class of
the twisted map T nγ ◦f , n ∈ Z, can be obtained by applying a simple combinatorial operation
to the charge graph of the initial map f .

5.1. Graph rotation. Our goal now is to introduce a simple combinatorial operation on
planar embedded graphs that will allow us to describe the action of (special) Dehn twists on
critically fixed rational maps.

Consider the map Tn/m : ∂D× I→ ∂D× I, where n ∈ Z and m ∈ N, defined as

Tn/m
(
eiθ, x

)
=

(
ei(θ+2πx n

m), x
)
.

The map Tn/m is called the n/m-twist on the cylinder ∂D×I. Note that Tn/m fixes pointwise
the boundary circle ∂D× {0}, and “rotates” the boundary circle ∂D× {1} counterclockwise
by angle 2π n

m
. Furthermore, Tn/m = (T1/m)

n for all n ∈ Z and m ∈ N. Figure 14 illustrates
the action of the 1/4-twist (here, the cylinder ∂D× I is viewed as an annulus in C under the
embedding (eiθ, t) 7→ eiθ(t+ 1)).

Let (S2, Z) be a finitely marked sphere and G be a planar embedded graph in S2 with
G ∩ Z = V (G). Suppose γ is a Jordan curve in (S2, Z) such that |γ ∩ e| ≤ 1 for each edge
e ∈ E(G). We also assume that iZ(G, γ) = |G ∩ γ| ≥ 1, and denote by β1, . . . , βm all the
edges of G that γ intersects. We label these edges in the order they are met by γ (for some
chosen basepoint and orientation on γ).

Let us thicken the curve γ to a (small) closed annulus A ⊂ S2 \Z so that A\G has exactly
m components. Choose an orientation-preserving homeomorphism ϕ : ∂D × I → A so that
ϕ(rj,m) = βj ∩ A for each j = 1, . . . ,m, where rj,m :=

{(
e2πi

j−1
m , x

)
: x ∈ I

}
are radial arcs

in the cylinder ∂D× I subdividing it into m congruent pieces.
Consider now the map Tn/m,ϕ : S2 → S2 defined as

Tn/m,ϕ(p) =

{
(ϕ ◦ Tn/m ◦ ϕ−1)(p) if p ∈ A
p if p ∈ S2 \ A.

We call Tn/m,ϕ the n/m-twist of A with respect to ϕ.
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γ1 ⊂ Aγ1

γ2 ⊂ Aγ2

∼

∼

Figure 15. The 1-rotations of G□ about the curves γ1 (top) and γ2 (bottom).

Note that Tn/m,ϕ is a homeomorphism of S2 if and only if n/m ∈ Z. In fact, the map Tn/m,ϕ
should be thought of as a “fractional” Dehn twist: when q := n/m ∈ Z, Tn/m,ϕ coincides
(up to isotopy rel. Z) with the qth iterate T qγ of the Dehn twist Tγ about the curve γ. For
n/m /∈ Z, the map Tn/m,ϕ fixes one of the boundary curves of A and “rotates” the other one
to the left when viewed from the inside of A.

Consider the image G′ := Tn/m,ϕ(G) of the graph G under the n/m-twist of A with respect
to ϕ. It is easy to see that G′ may be viewed as a planar embedded graph in S2 with the
vertex set V (G). Note that then Tn/m,ϕ modifies only the edges β1, . . . , βm of G and keeps
all other edges fixed. One can check that, up to isotopy rel. Z, the graph G′ is uniquely
defined independently of the choice of A and ϕ.

Definition 5.2. The graph G′ constructed as above is called the n-rotation of the graph G
about the curve γ.

Example 5.3. Figure 15 illustrates the 1-rotations of the graph G□ about two Jordan curves
γ1 and γ2. Here, the pictures in the left column indicate the chosen annuli Aγ1 and Aγ2
around γ1 and γ2, respectively. The red arcs correspond to the intersections of the annuli
with the graph. In the middle column, we see the images of G□ under the the 1/2-twist of
Aγ1 (top) and the 1/4-twist of Aγ2 (bottom), that is, the 1-rotations of G□ about γ1 and γ2,
respectively. The red arcs indicate the modifications of the edges. Finally, the right column
shows the same graphs after simplification by isotopy rel. V (G□).

In analogy with the usual Dehn twists, we have the following statement.

Proposition 5.4. Let (S2, Z) be a finitely marked sphere. For j = 1, 2, suppose that Gj is
a planar embedded graph in S2 with Gj ∩ Z = V (Gj), and γj is a Jordan curve in (S2, Z)
with iZ(Gj, γj) = |Gj ∩ γj| ≥ 1 and |ej ∩ γj| ≤ 1 for each ej ∈ E(Gj).

If G1 is isotopic to G2 and γ1 is isotopic to γ2 rel. Z, then the n-rotations of G1 about γ1
and of G2 about γ2 are isotopic rel. Z for all n ∈ Z.
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5.2. Simple transversals and their properties. Let G be a planar embedded graph
in S2. We say that an essential Jordan curve γ in (S2, V (G)) is a simple transversal with
respect to G if it satisfies the following conditions:

(i) iV (G)(G, γ) = |G ∩ γ|, that is, G and γ are in minimal position;
(ii) |e ∩ γ| ≤ 1 for each edge e ∈ E(G).

Lemma 5.5. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing up a
pair (G, idS2) and γ be a simple transversal with respect to G. Then the following are true:

(i) There exists a unique component γ′ of f−1(γ) that is isotopic to γ rel. V (G). More-
over, deg(f |γ′) = iV (G)(G, γ) + 1.

(ii) All other components δ′ of f−1(γ) are null-homotopic in (S2, V (G)) and satisfy
deg(f |δ′) = 1.

Proof. The lemma easily follows from the definition of the blow-up operation; see (3.1).
Indeed, let f and γ be as in the statement. In particular, we fix a choice of We, De, fe, and
h as in Section 3.1.

We assume below that m := iV (G)(G, γ) ≥ 2; the proof can be easily adapted for the
remaining two cases. Let β1, . . . , βm be all the edges of G that γ intersects. We label these
edges in the order they are met by γ (for some chosen basepoint and orientation on γ). Then
the Jordan curve γ is broken into m consecutive Jordan arcs γ1, γ2, . . . , γm having endpoints
xj ∈ βj and xj+1 ∈ βj+1 for each j = 1, 2, . . . ,m. Here and further all indices are considered
modulo m.

By (3.1), f−1(γ) ∩ Dβj is a Jordan arc γ±j connecting two preimages x−j ∈ ∂D−
βj

and
x+j ∈ ∂D+

βj
of xj under f . Moreover, up to relabeling, we may assume that x+j and x−j+1

are connected by a lift γ′j ⊂ S2 \
⋃m
j=1 int(Dj) of γj under f . The concatenation of the arcs

γ±1 , γ
′
1, γ

±
2 , γ

′
2, . . . , γ

±
m, γ

′
m is a Jordan curve γ′. Moreover, f |γ′ : γ′ → γ is a covering of

degree m + 1. We may now modify h within
⋃m
j=1 int(Dj) so that h realizes a homotopy

between γ′ and γ in S2 \ V (G). Hence γ′ and γ are isotopic rel. V (G); see, for example,
[FM12, Proposition 1.10].

Finally, if δ′ is a component of f−1(γ) different from γ′, then δ′ ⊂ int(De) for some
e ∈ E(G) \ {β1, β2, . . . , βm}. Hence, δ′ is null-homotopic in (S2, V (G)) and deg(f |δ′) = 1.
This completes the proof of the lemma. □

Remark. We note that simple transversals with respect to the charge graph of a critically
fixed rational map f correspond exactly to the essential curves in the global curve attractor
of f ; see [Hlu19, Proposition 10] and Lemma 5.5. In particular, for every Jordan curve
γ in (S2,Crit(f)) there exists n ∈ N such that each component of f−n(γ) is either non-
essential or isotopic rel. Crit(f) to a simple transversal with respect to Charge(f). In fact,
the same statement is true for all critically fixed Thurston maps obtained by blowing up a
pair (G, idS2).

5.3. Twists about simple transversals. We now look at a special instance of the twisting
problem. Namely, we consider a critically fixed Thurston map f obtained by blowing up
a pair (G, idS2) and (iterates of) Dehn twists Tγ about simple transversals γ with respect
to G. We are going to describe the combinatorial classes of the twisted maps using the graph
rotation operation introduced in Section 5.1.

Proposition 5.6. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing
up a pair (G, idS2) and γ be a simple transversal with respect to G with |G ∩ γ| ≥ 1. Then
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T−1
γ ◦ f is isotopic to the map obtained by blowing up the pair (H, idS2), where H is the

1-rotation of G about the curve γ. In particular, H is the charge graph of g.

Proof. Suppose f and γ are as in the statement. In particular, we fix a choice of We, De, fe,
and h as in Section 3.1. Then V (G) = Crit(f) and deg(f) = |E(G)|+1. Setm := iV (G)(G, γ),
and let A be a (small) closed annulus in S2 \ V (G) obtained by thickening the curve γ so
that A \G has exactly m components.

Let us denote by H the 1-rotation of G about the curve γ realized by a 1/m-twist T1/m,ϕ
of A with respect to some orientation-preserving homeomorphism ϕ : ∂D × I → A as in
Section 5.1. Without loss of generality, we may also assume that the Dehn twist Tγ is
defined with respect to this homeomorphism ϕ, so that Tγ is the identity on S2 \ int(A).
We are going to show that each edge α ∈ E(H) of H has a triple (α+, α−, Uα) satisfying
conditions (D1)-(D3) with respect to the map g := T−1

γ ◦ f . It would then follow from
Proposition 3.9 and Theorem 3.29(ii) that H is the charge graph of g.

By adjusting De, fe, h (which does not change the isotopy class of f), we may assume the
following:

• De ∩ A = ∅ if e ∩ A = ∅ (i.e., if e ∩ γ = ∅);
• A is a component of f−1(A), so that f |A : A→ A is a self-cover of degree m+ 1 (cf.

Lemma 5.5).
We are going to set up now some notation. Suppose X and Y are the two components

of S2 \ int(A), where X is the component with ∂X = ϕ(∂D× {0}) and Y is the component
with ∂Y = ϕ(∂D×{1}). Then T1/m,ϕ fixes ∂X pointwise, and it rotates ∂Y to the left when
viewed from the inside of A.

Let EA(G) := {β1, . . . , βm} be the set of all edges of G that intersect A. These edges
subdivide the annulus A into m closed components A1, . . . , Am. We label these edges and
components so that they are met in the order

β1, A1, β2, A2, . . . , βm, Am

when we walk around the Jordan domain X in the counter-clockwise direction. For a ref-
erence, see the top middle picture in Figure 16. Here, the graph G and the annulus A are
drawn in black and blue, respectively.

The arcs β+
j := ∂D+

βj
and β−

j := ∂D−
βj

, j = 1, . . . ,m, subdivide the annulus A into 2m

closed components A±
1 , A

′
1, . . . , A

±
m, A

′
m so that A±

j = A ∩Dβj and A′
j ⊂ Aj for each j. Up

to relabeling, we may assume that these arcs and components are met in the order

β−
1 , A

±
1 , β

+
1 , A

′
1, β

−
2 , A

±
2 , β

+
2 , A

′
2, . . . , β

−
m, A

±
m, β

+
m, A

′
m

when we walk around X in the counter-clockwise direction; see the top right picture in
Figure 16 for a reference.

Let us decompose each edge βj, j = 1, . . . ,m, as the union

βj = βj,X ∪ βj,A ∪ βj,Y ,

where βj,X := βj ∩X, βj,A := βj ∩ A, and βj,Y := βj ∩ Y . We decompose the edges β+
j and

β−
j in the same manner.
Set

αj := βj,X ∪ T1/m,ϕ(βj,A) ∪ βj+1,Y ;
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Figure 16. Proof of Proposition 5.6.

here and in the following, all indices are considered modulo m. By definition of the graph
rotation, α1, . . . , αm are all the edges of H that intersect A. Therefore,

E(H) = {α1, . . . , αm} ∪
(
E(G) \ EA(G)

)
;

see the left picture in Figure 16, where H is shown in solid black and red lines. We set
αj,A := T1/m,ϕ(βj,A) = αj ∩ A. Note that αj,A ⊂ Aj for each j = 1, . . . ,m.

Let α ∈ E(H) be arbitrary. We will now define triples (α+, α−, Uα) that will satisfy
conditions (D1)-(D3) with respect to the map g = T−1

γ ◦ f .
First, if α ∈ E(G) \ EA(G), then we set α+ := ∂D+

α , α− := ∂D−
α , and Uα := int(Dα).

Otherwise, α = αj for some j = 1, . . . ,m. Recall that the Dehn twist Tγ about γ is defined
with respect to the same homeomorphism ϕ as the 1/m-twist T1/m,ϕ. Thus

Tγ(αj) = βj,X ∪ Tγ(αj,A) ∪ βj+1,Y ,

where int(Tγ(αj,A)) intersects (transversely) each arc βj,A and βj+1,A exactly once; see the red
arc in the bottom middle picture in Figure 16. Since f | int(A±

j ) : int(A±
j )→ int(A) \ βj and

f |A′
j : A

′
j → Aj are homeomorphisms, there are two lifts α+

j and α−
j of αj under g = T−1

γ ◦ f
such that

α−
j = β−

j,X ∪ α
−
j,A ∪ β

−
j+1,Y

and
α+
j = β+

j,X ∪ α
+
j,A ∪ β

+
j+1,Y ,

where α−
j,A and α+

j,A are lifts of Tγ(αj,A) under f that satisfy

α−
j,A ⊂ A±

j ∪ A′
j and α+

j,A ⊂ A′
j ∪ A±

j+1.
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Finally, let us set Uαj
to be the connected component of S2 \ (α+

j ∪ α−
j ) that contains

int(Dβj)∩X (and int(Dβj+1
)∩ Y ); see the bottom right picture in Figure 16 for a reference.

Claim. The constructed triples (α+, α−, Uα), α ∈ E(H), satisfy conditions (D1)-(D3) for
g = T−1

γ ◦ f .

This follows easily from the construction. Indeed, condition (D2) is immediate, as well as
condition (D1) for α ∈ E(G) \ EA(G). Now, if α = αj for some j = 1, . . . ,m, then αj, α+

j

and α−
j satisfy ∂αj = ∂α+

j = ∂α−
j . Moreover, these arcs are inside the closed Jordan region

W ′ := (Dβj ∩X) ∪ A±
j ∩ A′

j ∪ A±
j+1 ∪ (Dβj+1

∩ Y ).

Lemma 2.1 now implies that αj, α+
j and α−

j are all isotopic rel. Crit(g) = Crit(f) (take W
to be an open Jordan region with W ′ ⊂ W and W ∩Crit(f) = W ′ ∩Crit(f) = ∂αj). Lastly,
condition (D3) for the triples (α+, α−, Uα), α ∈ E(H), follows from the fact that the triples
(∂D+

e , ∂D
−
e , int(De)), e ∈ E(G), satisfy it by Proposition 3.8. We leave this straightforward

verification to the reader.
The claim above and Proposition 3.9 imply that g = T−1

γ ◦f is isotopic to a critically fixed
Thurston map obtained by blowing up an admissible pair (H,φ). Hence, H is isotopic to
the charge graph of g by Theorem 3.29(ii).

To complete the proof we need to check that φ is isotopic to idS2 rel. Crit(f). Let H ′ be
a connected graph with V (H ′) = Crit(f) and

H ′ ∩

A ∪ ⋃
α∈E(H)

Uα

 = α+
1 ∪ · · · ∪ α+

m.

Note that f(α′) ∼ α′ for every α′ ∈ E(H ′). It follows now from Proposition 4.9 and
Corollary 2.17 that φ ∼ idS2 rel. Crit(f). This finishes the proof of the proposition. □

The following result establishes Main Theorem C.

Theorem 5.7. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing up a
pair (G, idS2). Suppose γ is a simple transversal with respect to G and n ∈ Z is arbitrary.

(i) If if (G, γ) ≥ 1, then the twisted map map T nγ ◦ f is isotopic to the map obtained by
blowing up the pair (H, idS2), where H is the (−n)-rotation of G about the curve γ.

(ii) If if (G, γ) = 0, then the twisted map T nγ ◦f is isotopic to the map obtained by blowing
up the (admissible) pair (G, T nγ ).

Proof. (i) Proposition 5.6 implies the statement for n = −1. By a similar argument, we can
also show the statement for n = 1. The rest of the statement follows from these two cases
and Proposition 5.4 by induction on n.

(ii) The statement immediately follows from Proposition 3.5 and Theorem 3.29(ii), because
the pair (G, T nγ ) is admissible. □

We can now easily deduce Corollary 1.5 from the introduction.

Corollary 5.8. Let f : S2 → S2 be a critically fixed Thurston map obtained by blowing up a
pair (G, idS2) and γ be a simple transversal with respect to G with |G ∩ γ| ≥ 1.

Then the sequence of combinatorial equivalence classes of (T nγ ◦ f)n∈Z is strictly periodic
with the period dividing if (G, γ). In other words, if n1 ≡ n2 mod if (G, γ), then the twisted
maps T n1

γ ◦ f and T n2
γ ◦ f are combinatorially equivalent.
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Proof. Let n ∈ Z be arbitrary and suppose that n = mk + r, where m := if (γ,G), k ∈ Z,
and 0 ≤ r < m. By Theorem 5.7(i), the twisted map T nγ ◦ f is isotopic to the map obtained
by blowing up the pair (H, idS2), where H is the (−n)-rotation of G about the curve γ.

Let G′ be the (−r)-rotation of G about the curve γ. By definition of the graph rotation,
the graph H is isotopic to the graph T kγ (G

′) rel. Crit(f). Thus the map T nγ ◦ f is isotopic
to the map obtained by blowing up the pair (T kγ (G

′), idS2), while T rγ ◦ f is isotopic to the
map obtained by blowing up the pair (G′, idS2). Since the pairs (T kγ (G′), idS2) and (G′, idS2)
are equivalent, Theorem 3.31 implies that the maps T nγ ◦ f and T rγ ◦ f are combinatorially
equivalent. This finishes the proof of the corollary. □

Example 5.9. Let γ1, γ2 be the simple transversals with respect to G□ as in Figure 15. By
Proposition 5.6, the charge graphs of T−1

γ1
◦ f□ and T−1

γ2
◦ f□ are as shown on the top right

and bottom right in the same figure. In particular, we see that T−1
γ1
◦ f□ is combinatorially

equivalent to f□ and T−1
γ2
◦f□ is obstructed. (Note that the former agrees with what we have

obtained in Example 5.1.) Furthermore, using Theorem 5.7(i) and Corollary 5.8, one can
verify that T nγ1 ◦ f□ is combinatorially equivalent to f□ for all n ∈ Z. We also obtain that
the twisted map T nγ2 ◦ f□ is equivalent to Tγ2 ◦ f□, and thus obstructed, for odd n ∈ Z; and
it is equivalent to f□, and thus realized, for even n ∈ Z.
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