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Reliable Risk Assessment and Management using Probabilistic Fusion
of Predictive Inter-Distance Profile for Urban Autonomous Driving

Emmanuel Alao1,2, Lounis Adouane1 and Philippe Martinet2

Abstract— Autonomous driving in urban scenarios has be-
come more challenging due to the increase in Personal Light
Electric Vehicles (PLEVs). PLEVs correspond mostly to electric
devices such as gyropods and scooters. They exhibit vary-
ing velocity profiles as a result of their high acceleration
capacity. Multiple hypotheses about their possible motion
make autonomous driving very difficult, leading to the highly
conservative behavior of most control algorithms. This paper
proposes to solve this problem by performing a continuous risk
assessment using a Fusion of Predictive Inter-Distance Profile
(F-PIDP). Then a stochastic MPC algorithm performs effective
risk management using the F-PIDP while taking into account
adaptive constraints. The advantages of the proposed approach
are demonstrated through simulations of multiple scenarios.

I. INTRODUCTION

Considerable efforts have been channeled into the devel-
opment of motion planners for Autonomous Driving Systems
(ADS) with the aim of bolstering road safety. Nevertheless,
the proliferation of novel multimodal transportation solutions
in urban areas is either a direct or indirect cause of a
rapid increase in the unpredictability of traffic environments.
Subsequently, these novel multimodal transportation systems
will be referred to as Personal Light Electric Vehicles
(PLEVs). Examples of PLEVs are gyro-pods, monowheels,
hoverboards, and electric scooters. Unexpected events often
arise due to the unpredictable behaviors of pedestrians,
whether or not they use PLEVs and adhere to traffic rules,
since there are always multiple hypotheses on their future
motion. Estimating the future states of the entities of interest
in a traffic environment corresponds to a motion prediction
problem, which is required to perform risk assessment and
risk management for the safe navigation of autonomous vehi-
cles among PLEVs. Many solutions to the motion prediction
problem exist in the literature, such as the single model and
multimodel method [1] for motion prediction. For instance,
the popular interacting multiple models (IMM) approach [2]
can consider numerous hypotheses on the future trajectory
of a traffic participant. However, accounting for multimodal
predictions makes risk assessment and management very
challenging for most autonomous navigation algorithms as
a result of the complexity of the number of possible trajec-
tories. This directly increases the constraints on the motion
of the ego-vehicle, leading to highly conservative behaviors.
The most intuitive way to perform risk assessment during
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real time operations of an ego-vehicle is to perform collision
checks. This approach starts by predicting the future config-
uration of the ego-vehicle and the PLEVs in the environ-
ment before evaluating the configurations in which collision
occurs. Other than computing where and when a collision
occurs, some complex methods can be used to also evaluate
the probability and the level of severity of the collision
[3], [4]. Many collision-based risk assessment metrics have
been proposed and leveraged in the literature, authors in
[5] give a summary of the state of the art on criticality
metrics and the relationship between them with regards to
desired applications. Similarly, multiple performance metrics
are presented in [6] for evaluating an autonomous vehicle
moving in a shared space with pedestrians. The Time To
Collision (TTC) [7] is the most popular risk indicator because
of its simplicity and computational efficiency. TTC outputs
the minimum time that collision could occur between two
traffic participants (ego-vehicle and/or PLEVs) according to
a given motion model. For vehicles, TTC can give a good
estimate of the temporal proximity between vehicles in a
well-defined scenario like the leader-follower configuration
along a straight line [8]. However, TTC performs poorly
even in common 2D situations like a curve intersection [9].
Extensions of the TTC have been proposed to solve this
problem, such as the Extended Time to Collision (ETTC)
in [10]. For PLEVs, an extension of the TTC referred
to as time-to-x (TTX) in [11] computes a discrete time
approximation of the time-to-collision, time-to-brake (TTB)
and time-to-steer (TTS). In [12] a novel approach using
a Predictive Inter-Distance Profile (PIDP) was applied for
risk assessment as a spatio-temporal metric. The possibility
of a collision happening is not always sure, due to the
various uncertainties in the factors that influence the traffic
environment. Hence, various probabilistic frameworks have
been proposed in the literature for risk assessment, such as
the Hidden Markov Model (HMM) employed in [9] and
the Dynamic Bayesian Network (DBN) applied in [4] to
measure the risk of performing multiple vehicle maneuvers.
Reachability analysis [13] is another trending method for risk
management in the research community.

Risk management methods are required for controlling or
minimizing the level of risk in the road traffic, based on ap-
propriate risk metrics. For example, using PIDP, the authors
in [12], proposed to minimize the risk of collision using an
adaptive PD controller combined with a neuro-fuzzy system
for safe and flexible navigation. Model Predictive Control
(MPC) is a similar method that is well known for its ability
to consider the future behavior of the traffic participants



with constraints on the control inputs over a given time
horizon [14]. MPC is not efficient for nonlinear dynamic
motions with uncertainties. Stochastic MPC (SMPC) [15] is
an extension of MPC method that represents the uncertainties
in the navigation problem as chance constraints, modeled
using a probabilistic distribution. Machine learning methods
[16] have also been explored for risk assessment and manage-
ment of autonomous vehicles. Using Deep Neural Networks
(DNN) the authors in [17] were able to perform End-to-End
(E2E) prediction and control of the velocity and steering
of an ego-vehicle, whereas the authors in [18] perform
image-based control using a combination of Convolutional
Neural Networks (CNN) [19] and Long Short-Term Memory
(LSTM) [20].

In this paper, we present a new risk assessment method
called Fusion of PIDP (F-PIDP) that extends the traditional
PIDP to account for uncertainties in the future trajectories of
a PLEV. The proposed method takes advantage of the spatio-
temporal characteristic of the PIDP and the robustness of
multi-modal motion prediction methods. A combination of
the proposed F-PIDP and SMPC algorithm is then used for
risk management to mitigate possible collisions and ensure
a smooth motion of the autonomous vehicle for the comfort
of passengers and other traffic participants.

This paper is organized as follows. Section II, presents
the backgrounds on the ego-vehicle model, multi-pedestrian
motion model, and PIDP for risk assessment and manage-
ment in the presence of PLEVs. The proposed F-PIDP for
risk assessment is presented in Section III. In Section IV,
we present the results of applying the proposed method in
two possible scenarios. Finally, Section V concludes and
highlight the main contributions of this paper.

II. BACKGROUND

A. Ego Vehicle Model

This section defines the model of the ego vehicle for
the proposed risk assessment and management strategy. The
kinematic bicycle model [21] is adopted to describe the
motion of the vehicle because it only requires the essential
(linear velocity and steering) control inputs of the vehicle,
making it useful for quick planning and re-planning which
is essential during the analysis of the proposed method [22].

Fig. 1. The kinematic bicycle model for the prediction of the vehicle
future states with the center of mass at (x, y)

The nonlinear bicycle model of the vehicle is expressed as:

ẋ = v cos(ϕ+ α) (1)
ẏ = v sin(ϕ+ α) (2)

ϕ̇ = v/lr sin(α) (3)

with, α = arctan(
lr

lr + lf
tan δ)

where [ẋ, ẏ, ϕ̇] denotes the dynamic motion of the vehicle
center. The linear velocity v and the steering δ are the control
inputs u = [v, δ] to the ego vehicle. Parameters lr and lf are
respectively the length of the rear and front wheel to the
center of the vehicle (cf. Figure 1).

B. Probabilistic Multi-Pedestrian Motion Model

This paper assumes that there are multiple trajectories
that the PLEV can take based on the situation in the
environment. Therefore, for every possible maneuver or
mode, a trajectory is computed that represent the future
motion. This approach supports making multiple hypotheses
about future predictions with the same or varying levels of
probability (cf. Figure 2). The probability of the trajectories
may be determined by the uncertainty in the filter (e.g.
IMM algorithm [2]) or directly from the sensors used. This
approach accommodates multiple (model-based and machine
learning-based) perception inputs, as long as the uncertainty
in each trajectory is known. It is important to mention that the
focus of this paper is on the proposed multi-risk assessment
and management strategy (cf. Section III). All that is linked
to the different probabilities attributed to the possible PLEV’s
trajectories as well as the perception aspects are directly
inspired by the large literature on motion prediction [1].

Fig. 2. Ego vehicle and a Jaywalking PLEV with multimodal trajectories:
each trajectory has its own probability

C. Predictive Inter-distance Profile (PIDP)

PIDP is a metric used to assess the risk of collision
between two or more traffic participants [10], [23]. The PIDP
is essentially a projection of the inter-distance between these
two entities, assuming their future trajectories are known and
maintained during a certain time horizon, thorizon. It is a
risk assessment metric that can perform both time-scale and
distance-scale measurement for continuous monitoring of the
dangerous situations between two traffic participants over the
given time horizon. PIDP is independent of the shape of



the trajectories of the interacting agents [12], which makes
it appropriate for situations involving PLEVs. The primary
objective of any control strategy in autonomous navigation
is to maintain a safety distance. In the context of PIDP, this
means ensuring that the computed inter-distance between the
ego vehicle and the PLEV is consistently maintained above
a predefined safety distance, represented as dsafe (cf. Figure
3). Collision occurs when the PIDP is less than the sum of
the radius of the circle around the ego-vehicle and PLEV (i.e.
PIDP(t) ≤ R+ r). However, since the motion of the PLEV
is assumed to be multi-modal with probabilities, the typical
PIDP is not sufficient for risk assessment in this context,
hence the need for a fusion of PIDPs (F-PIDPs) defined in
section III.

Fig. 3. Predictive Inter-Distance Profile (PIDP) between an ego-vehicle
and a PLEV with the severity of the situations (SR: Safety Respected, SNR:
Safety Not Respected, and Collision) w.r.t. the safety distance dsafe over
the time horizon

III. FUSION OF PIDPS (F-PIDP) FOR CONTINUOUS RISK
ASSESSMENT AND MANAGEMENT

Multimodal model of the pedestrian motion implies that
there are multiple PIDPs for each pedestrian, either due to
the uncertainty in the intended trajectories or the true velocity
of the PLEV (cf. Figure 4). This increases the complexity
of the navigation problem since each predicted trajectory is
equivalent to a virtual PLEV with a probability of existence.
The authors in [12] similar to many research studies solely
focus on a single trajectory which is equivalent to selecting
only the most probable trajectory, that is, the trajectory with
the highest probability. But considering a single trajectory
often fails because PLEV can rapidly switch its behaviors
like accelerating its speed. Another control strategy is to only
consider the most dangerous trajectory, that is, the trajectory
with the smallest inter-distance. Such a strategy would lead
to a highly conservative behavior. We propose to solve this
multi-risk problem by performing a weighted fusion of the
PIDPs. Therefore, using a quadratic polynomial curve with
probabilistic weights, we obtain a Fusion of PIDPs (F-PIDP).
The following subsections give a detailed explanation of the
steps for computing the F-PIDP.

A. Computation of each PIDP

The first step is to compute the PIDP of each probable
trajectory. Given a set of possible future trajectories of a
PLEV, P = {p1, p2, ..., pm}. The aim is to compute the
magnitude of the distance vector between the future position
of the ego-vehicle and the position of the PLEV at each time
step t, if r(t) = [x(t), y(t)]T and rpj

(t) = [xpj
(t), ypj

(t)]T

are the position vectors of the vehicle and the jth PLEV
trajectory respectively. Then

PIDPj(t) = {dj(t)|pj ∈ P, 0 ≤ t ≤ thorizon} (4)
dj(t) = ||r(t)− rpj (t)|| (5)

here PIDPj denotes the inter-distance between the ego-
vehicle and PLEV’s jth trajectory, obtained by calculating
their Euclidean norm || · ||2.

B. Parameterization of each PIDP

In general, the inter-distance profile is a nonlinear function
due to the changing motion of the ego-vehicle and PLEV.
Hence, important characteristics of each PIDP are extracted,
to perform a fusion of the PIDPs and maintain a smooth
curve. The extracted parameters from each PIDPj are:

• PIDPj(t0) represents the start point of
the jth PIDP, which is the
same for all probable trajec-
tories

• minPIDPj(tmin) the minimum of each PIDP
at time tmin (cf. Figure 4)

• PIDPj(thorizon) the PIDP at the end of each
predicted trajectory

C. PIDP fusion using probabilistic weights

The fusion step in the F-PIDP process combines multiple
PIDPs into one representative prediction based on their level
of uncertainty. In an ideal situation where the motion or
velocity profile of the ego-vehicle and PLEV follow a smooth
path, the PIDP is expected to be a quadratic polynomial
curve derived from the Euclidean distance. Therefore, the
parameters of all the PIDPs are fused together to form a
single quadratic polynomial curve. From the equations of a
quadratic polynomial:

d(t) = a0 + a1t+ a2t
2 (6)

d(t0)
...

d(tN )

 =

1 t0 t20
...

...
...

1 tN t2N

 ·

a0a1
a2

 (7)

where d(tk) denotes the PIDP at time tk and
{a0, a1, a2} ∈ R are parameters of the polynomial curve to
be calculated. The parameters of this curve are determined



by calculating the probabilistic center of mass (pCoM) of all
PIDPs. The probability based center of mass is defined as:

pCoM(t) =

Ntraj∑
j=1

Pr(j) ∗ dj(t) (8)

here, Ntraj ∈ R denotes the number of predicted trajectories,
Pr(j) and dj denotes the probability and inter-distance of
the jth predicted trajectory at the desired time t (i.e. start,
minimum, and endpoint) of the PIDPs. This center of mass
is a weighted average that considers the likelihood of each
trajectory. The desired control points to find the parameters
of the polynomial are the fusion of PIDP (F-PIDP):

• F_PIDP (t0) fusion of the initial points
PIDPj(t0), which is the same
for all PIDPs

• F_PIDP (tmin) the fusion of all the minimum
PIDPs minPIDPj(tmin)
based on pCoM

• F_PIDP (thorizon) the fusion of all the final points
PIDPj(thorizon)

Since the fusion of the feature points d(t)=:F_PIDP (t)
in (7) are known, the parameters of the fusion {a0, a1, a2}
can be solved for using the matrix (or pseudo) inverse. The
resulting parameters are then substituted in (6) to get a
single unified F-PIDP curve that encapsulates the combined
information as shown in Figure 4.

Fig. 4. Fusion of PIDPs (F-PIDP) of an ego-vehicle and a PLEV with
multi-modal trajectories

D. PIDP Setpoint based on Safety Distance

After fusion, the base of the curve may fall below the
maximum safety distance, indicating a risk of collision. The
setpoint translation step ensures that the fused PIDP adheres
to safety standards in the future PIDP. This is done by
shifting the base of the curve vertically to meet or exceed
the maximum safety distance. This implies that:

F_PIDP (tmin) ≜ max{F_PIDP (tmin), dsafemax
} (9)

dsafemax
≜ R+ r + vmax ∗ ETTC(1sec) (10)

where dsafemax
is the maximum safety distance derived

from the maximum velocity of the ego vehicle vmax and
the extended time to collision (ETTC) of 1 seconds. R
and r corresponds to the radius of the circle that surround
completely the ego vehicle and PLEV respectively.

The new curve obtained after the translation (cf. Figure 4)
serves as a reference to the SMPC algorithm and guarantees
that the predicted trajectory maintains a safe separation from
potential obstacles. By establishing a setpoint equal to or
greater than the safety distance, collision risks are minimized.
This step is therefore crucial for proactive and preventive
navigation.

E. SMPC for Risk Management

SMPC is proposed to perform risk management by com-
puting the optimal control actions of the ego-vehicle while
accounting for various constraints and uncertainties in the
motion of the traffic agents. We formulate the SMPC problem
as a chance-constraint:

min
U

J (x0,xref ,U) + JP (x0,xref ,U) (11)

subjected to:
xk+1 = f(xk,uk) ∀k ∈ [0, Np], (12)

g(xk,uk) ≤ 000 ∀k ∈ [0, Np], (13)
Pr[x ∈ S]) ≤ 1− βββ ∀k ∈ [0, Np] (14)

where the aim of the SMPC is to optimize the objective costs
J and Jp. The dynamics of the ego vehicle (12) is used to
predict the future state of the vehicle xk, k = 1, ..., Np given
the current condition x0 and the future control inputs uk ∈
U. Constraint (13) are inequality constraints such as limits
on the minimum and maximum control inputs. The chance
constraint in (14) represents the probabilistic conditions to be
satisfied over the future motion of the vehicle given the safe
set S. The SMPC algorithm will guarantee that predefined
levels of probability 0 < βββ < 1 are met for uncertainties in
the outcome. Therefore the design parameter βββ is referred to
as the safety level. Note that J is the objective cost to reach
the desired goal and velocity. For brevity, the definition of J
and the constraint are not shown, but can be found in [15].
Here, we define Jp as the cost to reach the desired F-PIDP
setpoints, given that:

Jp =

Np∑
k=0

||d(k)− F_PIDP (k)||Q (15)

where d(k) is the inter-distance after applying the new
control inputs uk ∈ U, while F_PIDP (k) is the reference
safety distance (in Section III). The variable Q penalize
how well the reference cost is minimized. By minimizing
Jp, SMPC is able to minimize collision risk and ensure
comfortable navigation. It is important to mention that, no
uncertainties are considered in the SMPC algorithm in order
to focus on analyzing the contributions of the proposed



F-PIDP for risk assessment and management during au-
tonomous navigation.

IV. SIMULATION RESULTS AND DISCUSSION

The proposed F-PIDP approach is evaluated through the
simulation of two scenarios involving an ego-vehicle and a
jaywalking PLEV. The initial state of the ego-vehicle is set
to be 15 meters away from the PLEV and with a linear
velocity of 5 m/s and 8 m/s respectively. In both scenarios,
it is assumed that the ego-vehicle does not have enough time
to brake and is expected to perform a swerving maneuver in
order to avoid collision with PLEV, ensure the comfort of
passengers and also prevent exhibiting highly conservative
behaviors.

(cf. video link https://youtu.be/IS0qhTOYbGc)

A. Scenario 1: Jaywalking PLEV Switching from Slow to
Fast motion

In the first scenario a jaywalking PLEV begins to cross
the road at an initial linear velocity of 0.5m/s and at an
angle equivalent to a right turn (Traj 3 in Figure 5). After
approximately 3.9 s there is an abrupt change in the PLEV’s
behavior, and the velocity increases to 5 m/s (Traj 2 cf.
Figure 6). The progress of the probability of each trajectory
is shown in Figure 7 b. The sudden switch in behavior is a
dangerous situation that will lead to a collision if the ego-
vehicle predicts the motion of the PLEV based solely on

Fig. 5. (a) Scenario 1: Jaywalking PLEV moving Slowly at t = 0.9s
(b) Inter-distance plot of ego-vehicle and PLEV: The F-PIDP plot exhibits
a convex curve, indicating current safety is satisfactory. However, the steep
curve suggests a high risk of future safety distance violations due to PIDP2

the most probable trajectory. This sudden switch in motion
from Traj 3(blue) to 2(green) (probability plot cf. Figure
7 b) introduces uncertainty and necessitates an anticipatory
assessment of the situation which is achieved using the
F-PIDP. Observe that at t = 0.9s the F-PIDP plot (cf.
Figure 5) exhibits a convex curve, indicating current safety
is satisfactory. However, the high position of the curve from
the PIDPs suggests a high risk of future safety distance
violations due to Traj 2(green), since it has the minimum
PIDP and hence the most dangerous trajectory (cf. Figure
5). This convex form of the F-PIDP results from the fact
that Traj 2 has more influence on the position of the pCoM
of all the predicted trajectories. As the vehicle moves closer
to the PLEV, the F-PIDP takes a concave form even before
Traj 2 enters the collision zone (cf. Figure 6). This increases
the objective cost of the SMPC thereby suggesting a solution
that quickly moves the ego-vehicle away from the collision
zone. As earlier mentioned, uncertainties are not added to
the SMPC algorithm to reduce it influence on the proposed
method. Therefore, collision is avoided with a minimum
inter-distance of approximately 1.6 meters away from the
PLEV (cf. Figure 8). The ego-vehicle does not decrease
its velocity at the beginning because the most dangerous
trajectory (Traj 2) has a low probability, hence the velocity
plot (cf. Figure 7 a) shows a smooth velocity profile for
passenger’s comfort even when the ego vehicle accelerates
to avoid a collision.

Fig. 6. (a) Scenario 1: Jaywalking PLEV moving Fast at t = 4.5s (b)
Inter-distance plot of ego-vehicle and PLEV: As the vehicle moves closer
to the PLEV, the F-PIDP takes a concave form even before Traj 2 enters
the collision zone



Fig. 7. (a) Velocity plot showing a smooth linear velocity and steering
(b) Probability plot with a switching from Traj 3 (blue) to Traj 2 (green)
after t = 3.9s

Fig. 8. The overall inter-distance plot of ego-vehicle and PLEV for
scenario 1: shows the region where safety is not respected (SNR) when
the PLEV changes its trajectory from Traj 3 to 2

B. Scenario 2: PLEV overtaking a parked vehicle

In this scenario, the PLEV attempts to overtake a station-
ary truck, and in the process, comes dangerously close to
the ego vehicle in the adjacent lane. An initial assessment
of the scene using PIDP suggest a high risk of collision
as indicated by PIDP1 falling below the collision margin
(cf. Figure 9). However, the F-PIDP does not only consider
the most dangerous trajectory but also considers the most
probable trajectory of the PLEV based on the likelihood
of each trajectory shown in the probability plot (cf. Figure
10 b). Therefore, the inter-distance plot indicates that the
safety distance is respected in the initial few seconds as the
ego-vehicle approaches the PLEV (cf. Figure 11). Whereas,
during the time interval from t = 2.6s and t = 8.1s,
the safety distance is temporarily not respected due to the
parallel motion of the ego-vehicle and the PLEV (cf. Figure
11). To navigate this risk, the adaptive behavior of the F-
PIDP encourages the ego-vehicle to further reduce its speed
and slowly approach the PLEV. The F-PIDP plot has a

concave curve that makes it easier for the car to get out of
the dangerous situation as shown in Figure 9. This ensures
that the ego vehicle neither comes to a complete halt nor
makes abrupt maneuvers, but instead, decelerates and then
carefully moves past the risky zone. This adaptive response is
visualized in the velocity profile plot (cf. Figure 10). Observe
that the velocity of the ego-vehicle decreases to about 2m/s
at time t = 4.5s before it accelerates to move past the PLEV.

Fig. 9. (a) Scenario 2: PLEV overtaking a parked vehicle at t = 4.9s (b)
Inter-distance plot of ego-vehicle and PLEV overtaking a stationary truck:
the F-PIDP plot shows a concave curve that encourages escaping from the
risky scenario

Fig. 10. (a) Velocity plot showing a smooth linear velocity and steering
(b) Probability plot with increasing probability for Traj 2 (green)



Fig. 11. Inter-distance plot showing the overall PIDP: collision is avoided
and the vehicle is able to move into the Safety Respected region (SR)

V. CONCLUSIONS

This paper proposed to perform continuous risk assess-
ment in the presence of PLEVs using a fusion of predictive
inter-distance profile (F-PIDP). The F-PIDP method fuses
multiple motion intentions (PIDPs) while accounting for
the uncertainties in the predicted motion of the PLEV. The
fusion involves fitting a quadratic polynomial to key points
from all PIDPs and shifting the curve to a desired safety
distance. By utilizing the predictions from the F-PIDP, a
SMPC algorithm is able to minimize collision risk and ensure
comfortable navigation as presented through simulation re-
sults. This combination ensures that the ego-vehicle reacts to
the current situation and also proactively adjusts its trajectory
in anticipation of potential future risk. Future work will
consider situations with multiple PLEVs and uncertainties
in the predicted velocities of the PLEVs.
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